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Abstract

We simulate and analyze how beam quality improves while being amplified in edge
emitting broad area semiconductor amplifiers with a periodic structuring of the electrical
contacts, in both longitudinal and lateral directions. A spatio-temporal traveling wave model
is used for simulations of the dynamics and nonlinear interactions of the optical fields,
induced polarizations and carrier density. In the case of small beam amplification, the
optical field can be expanded into few Bloch modes, so that the system is described by a
set of ODEs for the evolution of the mode amplitudes. The analysis of such model provides
a deep understanding of the impact of the different parameters on amplification and on
spatial (angular) filtering of the beam. It is shown that under realistic parameters the two-
dimensional modulation of the current can lead not only to a significant reduction of the
emission divergence, but also to an additional amplification of the emitted field.

1 INTRODUCTION

Edge emitting broad area semiconductor (BAS) lasers and amplifiers are robust, compact and
highly efficient devices for generation of high power beams. However, the spatial and temporal
quality of the emitted beams is usually rather low [1, 2]. Several approaches for an improve-
ment of the spatial quality of the radiated optical beam have been proposed and implemented,
each, however, with its disadvantages. For example, different schemes of optical injection [3, 4]
and optical feedback [5, 6, 7], or integrated narrow master oscillator – tapered power ampli-
fier configurations [8, 9] improve the beam quality, however, in return, the device becomes less
compact or rather sensitive to the back reflections. Besides, it has been recently suggested
that 2-dimensional modulations of the gain in structured artificial materials enable managing the
diffraction of optical beams [10, 11].

In this paper, a theoretical scheme allowing an efficient shaping of the radiated beam is pre-
sented. This method implies the compression of the central far-field (FF) lobe down to ≤ 0.5◦

and is based on the (longitudinal and lateral) periodic structuring of the electrical contact [12, 13]
(see Fig. 1). It is demonstrated how a proper choice of the spatial periods along with the suffi-
cient modulation amplitude of the gain and the refractive index causes amplification and spatial
(angular) filtering of the beam.

d

dx

z

y x
z

Figure 1: Schematic representation of the
periodically modulated optically injected
broad area semiconductor amplifier.

The diffractive propagation of a small optical beam along the longitudinal axis of the BAS ampli-
fier can be described by a linear 1+1-dimensional (1D+1D) Schrödinger equation with a periodic
potential in both coordinates [12]. By expanding the optical field to a few Bloch modes, this model
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can be reduced to a system of ODEs. Its analysis gives a deep understanding of the impact of
different parameters (modulation depth and periods, amplifier length, linewidth enhancement
factor) to the amplification and the angular shaping of the emitted field.

For simulations of small and moderate beams along periodically modulated BAS amplifiers, the
spatio-temporal 2+1-dimensional traveling wave (2D+1D TW) model [9, 14] which describes the
spatio-temporal dynamics and nonlinear interactions of the optical fields, induced polarizations
and carrier density is applied. Even though the gain saturation reduces the modulation depth at
different positions of the BAS device, the obtained results (compression of the emission diver-
gence) are in a good agreement with the linear model analysis.

Precise dynamic simulations of BAS devices and tuning/optimization of the model with respect to
one or several parameters require huge CPU time and memory resources. Dynamic simulations
of such devices can easily take one or even several days of computations on a single proces-
sor computer. Some speed-up of computations can be achieved by using problem-dependent
relations of the grid steps, including also variable steps in the lateral dimension. All these grid
optimizations, however, are not sufficient when one- or a few- parameter studies should be per-
formed. For this reason, the required computations are performed by means of parallel solvers
[15, 16] on parallel compute cluster at the Weierstrass Institute in Berlin.

2 MODEL EQUATIONS

2.1 Traveling wave model

To simulate a unidirectional beam propagation and amplification in periodically modulated broad
area semiconductor amplifier (see Fig. 1), the 2D+1D TW model is applied. According to this
model, the spatio-temporal dynamics of the optical field is governed by the following set of
equations:

ng

c0
∂tE =

[
−∂z − i

2k0nb
∂2
x + g(N,|E|2)

2
+ i ñ(N)−

[
α
2

+ i δ0

]
−D

]
E,

DE = g
2

(E − P ) , ∂tP = γ (E − P ) + iω P,

E(0, x, t) = µ(x, t) = µie
−x2 ln(4)/σ2

i eiωit,

(1)

where E(z, x, t) is a slowly varying complex amplitude of the optical field propagating along
the longitudinal axis of the BAS amplifier, |E|2 denotes a local photon density, the linear op-
erator D and the induced polarization function P (z, x, t) model a Lorentzian approximation of
the material gain dispersion [17], whereas the complex function µ(x, t) represents an optically
injected Gaussian beam. The gain and the refractive index change functions

g = η
g′ ln (N/Ntr)

1 + ε|E|2
, ñ = ηk0

√
σN (2)

couple the field equations to the diffusive rate equation for carrier density N(z, x, t),

∂tN = dN∂
2
xN+

J̄ζ(z, x)

qd
−
(
AN+BN2+CN3

)
− c0

ng
<e
[
E∗(g(N, |E|2)−2D)E

]
, (3)
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whereas the spatial current modulation function

ζ(z, x) = 1 + sign [sin (2πz/dz) sin (2πx/dx)] (4)

represents the spatially periodic electrical contact (see Fig. 1).

In all simulations and analysis the following parameters have been used: the central wavelength
λ0 = 1µm, the background refractive index nb ∈ [2.5, 3.725], the group velocity index ng =
3.6, the depth of the active zone d = 15 nm, the length of the device L ∈ [1.6, 6.4] mm, the
width of the devicew = 200µm, the differential gain g′ = 25 cm−1, the refractive index change
factor σ = 1 · 10−25 cm3, the transparency carrier density Ntr = 1 · 1024 m−3, the internal
absorption α = 1.5 cm−1, the static detuning δ = 0 cm−1, the nonlinear gain compression
ε = 5 · 10−18 cm3, the carrier diffusion coefficient DN = 21 cm2/s, three carrier recombination
parameters A = 0.3 ns−1, B = 2 · 10−10 cm3/s, C = 2.5 · 10−30 cm6/s, the mean injection
current density J̄ = 10 A/mm2, the lateral period of electrical contact dx = 4 or 8µm, the
longitudinal period of electrical contact dz = 100 or 400µm, the Lorentzian gain amplitude, half
width at half maximum, and gain peak detuning g = 100 cm−1, γ = 60 ps−1, and ω = 0 ps−1,
the frequency of the optical injection ωi = 0 ps−1, the FWHM of the optical injection intensity
σi = 20µm, and the scaling factor η ∈ [1, 3] for the gain and index change functions g and ñ.
For more detailed description of these parameters see Refs. [9, 13, 17].

It will be shown, that the beam quality improvement requires the selection of the spatial periods
dx and dz satisfying the following relation:

Q =
2d2

xnb
dzλ0

=
2k0nbqz
q2
x

≈ 1, where k0 =
2π

λ0

, qx =
2π

dx
, qz =

2π

dz
. (5)

Once nb = 3.125 and λ0, dx, dz have the values defined above, the resonance condition
Q = 1 holds. For simplicity, in the following simulations the value of factor Q was tuned by
modifying the parameter nb.

2.2 Reduced models

The 2D+1D TW model can be significantly simplified by neglecting a small impact of the gain
dispersion (omit polarizationP by setting g = 0), nonlinear gain compression (ε = 0), adjusting
ωi = 0 and assuming |E|2 � 1, which allows an elimination of N from the field equations (1).
In this case, the stationary field equations can be efficiently approximated by a 1D+1D linear
Schrödinger equation with a periodic potential β(z, x) [12]:

∂zE = −i
2k0nb

∂xxE + β(z, x)E, E(0, x) = µ(x, 0),

β(z, x) = β̄ + (1 + iαH)am sin (qzz) sin (qxx) .
(6)

Here, the complex factor β̄ gives a fixed spatially uniform contribution (gain and index detuning)
to the potential β(z, x), whereas αH and am are the linewidth enhancement factor and the
harmonic modulation amplitude, both depending on the parameters of the TW model (1–4).
When solving Eq. (6), one can assume that β̄ = 0 since the original field function can be
recovered afterwards by a simple transformation Eorig(z, x) = E(z, x)eβ̄origz.
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Next, by assuming the amplifier width w → ∞, representing the field function E(z, x) in Eq.
(6) as the sum of three Bloch modes

E(x, z) = e−ikxx
(
a0(z) + a+1(z)e−iqxx+iqzz + a−1(z)eiqxx+iqzz

)
,

and omitting the resulting fast rotating terms, one arrives to the following system of ODEs:

d
dz
~a = iq2x

2k0nb

 (kx
qx

)2 c −c
c (kx

qx
+ 1)2−Q 0

−c 0 (kx
qx
− 1)2−Q

~a, c = k0nb(αH−i)am
2q2x

, (7)

where ~u denotes a three-component complex-valued vector, ~u = (u0, u+1, u−1)T . The solution
of the linear system of ODEs (7) can be written as

~a(z) =
3∑
l=1

~A(l)e−ik
(l)
z z (8)

where −ik(l)
z and ~A(l) are (kx-dependent) complex eigenvalue and eigenvector of the related

spectral problem, such that
∑3

l=1
~A

(l)
0 (kx) = µ(x, 0)eikxx.

3 Simulations and analysis of the reduced models

3.1 Analysis of the reduced ODE model

Fig. 2 shows the dependence of normalized wave vectors kz on the small radiation angle
γo ≈ kx/k0 for five different values of Q. The imaginary parts of the complex wave-vector
components kz (upper panels of Fig. 2) represent the modal gain so that the FF of the beam
radiated from the long BAS amplifier at each angle γo should be mainly determined by the mode
with the maximal gain at this γo. Thus, for the factor Q which is only slightly larger than 1 one
can expect an amplification of the optical field radiated around γo = 0 (column (c) of Fig. 2)
and, therefore, a significant shaping of the FF at these angles. On the other hand, the FF at
the other values of Q should have a double-peak structure (see maximal gain curves in other
panels of Fig. 2).

It is noteworthy that the maximum mode gain value =m(kz) ≈ 4 · 10−5 k0 achieved at Q =
1.005 and γo = 0 (see upper panel of Fig. 2(c)) doubles the emission power at this angle
in, approximately, 1.4 mm long BAS amplifier. Thus, in order to improve the beam shaping in
amplifiers of moderate (only a few of mm) length independently on the lateral profile of the
initial beam, one should choose the design of the device following the following suggestions.
First, the factorQ should be slightly larger than 1. Second, the modulation amplitude am should
be as large as possible, what implies the enhancement of the mode gain. Finally, one should
properly control the value of the linewidth enhancement factor αH in order to keep the width of
the maximum mode gain around γo = 0 at ∼ 0.5◦.
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Figure 2: Mode wave-vectors kz in dependence on radiation angle γo and Q. First row: mode
gain/absorption profiles. Second row: shift of the real wave-vectors. Columns (a), (b), (c), (d),
and (e) represent computations with Q = 0.8, 0.98, 1.005, 1.04, and 1.2, respectively. In all
simulations η = 3, dx = 4µm, dz = 100µm, whereas all other parameters are determined in
Section 2.

3.2 Shaping of the far fields

As it was mentioned above, in the small optical field case the TW model (1–4) can be efficiently
replaced by the linear Schrödinger equation (6) and, further, by the system of ODEs (7). In order
to justify the analysis of the system (7) discussed in the previous Subsection the simulations
of (6) were performed using β̄ = 0, whereas am and αH were defined by the parameters
determined in Section 2. The effects predicted above for Q ≈ 1 can already be recognized
when analyzing the radiated field from the 1.6 mm long BAS amplifier: see the second and the
third columns of Fig. 3, where parameters η = 3, (dx, dz) = (4, 100)µm, and Q = 0.98 or
Q = 1.04, respectively, were used. In the first column of the same figure, a similar propagation
of the injected beam in the non-modulated BAS amplifier is shown.

One can see, that the spatial modulation of β(z, x) induces the deformation of the middle lobe
of the FF (middle row panels of columns 2 and 3 in Fig. 3). For Q = 0.98 (second column),
a dip on the top of the middle lobe of the FF is formed, what corresponds to the double-peak
form of the modal gain of the dominant mode (indicated by the blue dashed curve in Fig. 2(b)).
A reverse deformation of the FF is seen for Q = 1.04 (third column). Here, the steepening of
the FF lobe in the vicinity of γo = 0 is due to the growth of the dominating mode (black solid
curve in Fig. 2(d)) at γo ≈ 0, and the simultaneous decay of the other mode (blue dashed curve
in Fig. 2(d)), which has a dominant primary contribution at γo ≈ ±0.5◦. Thus, in the case of
the shorter devices both the initial contributions and the gain profiles of the modes play a role in
shaping the propagating beam.

Large angular span far fields are shown in the upper row panels of Fig. 3. One can see, that the
shaping of the central FF lobe is supplemented with additional radiation at two opposite angles
γo ≈ ±λ0/dx, corresponding to the relation kx ≈ ±qx and resulting from the non-vanishing
contributions of the mode amplitudes a±1 in Eq. (7). The indirect indication of the side angle
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Figure 3: Simulated beam propagation in BAS amplifier according to the model (6) without
modulation of β, i.e., am = 0 [first column], withQ = 0.98 [second column], and withQ = 1.04
[third column]. From top to bottom: the large span of the FF [first row], the FF around the central
lobe [second row], and the corresponding full (black) and small-scale-averaged (orange) near
fields [third row].

radiation is also given by the rapidly oscillating near field intensities (solid black curves in the
third row panels). Thick orange curves in these panels represent small-scale averaged near
fields [4], which were obtained by omitting large wave-number components of the near fields.

3.3 Importance of the factorQ

Several other modulated devices with dx and dz such that the factorQ is far from the resonance
condition have been simulated. A comparison of these simulations is given in Fig. 4.

The first two columns of Fig. 4 represent simulations performed on the devices with the param-
eters satisfying resonance condition Q ≈ 1. In the first column of this figure, one can see the
behavior of the periodically modulated BAS amplifier already discussed before (only η = 2.5
in this case). The first and the second row panels show the FF and the FWHM of the central
FF lobe for different factorsQ. Whereas forQ ∈ [0.9, 1] the middle FF lobe becomes broader,
for Q ∈ [1, 1.1] it is narrowing. The narrowest and highest central FF lobe is observed at
Q = 1.04 (see also the right column panels of Fig. 3). Here, some radiation at the side angles
can be lost. However, the amplification factor (which is the ratio of the emitted field intensity to
the intensity of the emitted field by a similar non-modulated amplifier) of the radiation within the
central angle at thisQ is close to one: see the orange curve at the left third row panel of Fig. 4.

It was mentioned before, that the maximum mode gain =mkz(kx) (which is the deciding factor
in shaping and amplification of the beam) can be increased by increasing the modulation am-
plitude am. Some improvement of the gain and index modulation contrast in BAS devices can
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Figure 4: Simulated beam propagation in BAS amplifiers according to Eq. (6) for η = 2.5
and (dx, dz) = (4, 100)µm [first column], (8, 400)µm [second column], (4, 200)µm [third
column], (8, 100)µm [fourth column]. All other parameters are like in Fig. 3. First row: mapping
of the far fields in logarithmic scale. Second row: the FWHM of the central FF lobe. Third row:
the amplification factor of the whole emitted field (black) and its small-scale average (orange).

be achieved by increasing the modulation period dx (comparing to dx = 4µm used in all the
examples before), and, therefore, decreasing the carrier smoothening by the carrier diffusion.
The second column of Fig. 4 shows the behavior of the device with the doubled value of dx and
four-times increased dz, which allows to keep the condition Q ≈ 1 satisfied. The modulation
amplitude am in this case is more than doubled. The field radiation at the side angles is much
greater, what is indicated by the significant difference of a full and the small-scale-averaged
field intensities in the third row panel. Like in the previous example, the broadening and the
narrowing of the middle FF lobe are observed for Q < 1 and Q > 1, respectively. Apparently,
the beam shaping atQ ∈ [1.06, 1.1] is much more pronounced now. It is also noteworthy, that
even though the significant side-band radiation can be lost, the central angle radiation at these
Q is still higher than the power of the field radiated by a similar non-modulated device (orange
curve in the third row panel).

The remaining two columns of Fig. 4 represent the devices with the non-resonant relation of
the modulation periods, Q ≈ 0.5 and Q ≈ 4. One can clearly see that even though some
small side-angle radiation at γo ≈ ±λ0/dx (upper panels) is present, the simulated far and
near fields remain insensitive to the changes of Q that is far away from the resonance Q =
1. It is noteworthy that a similar, insensitive to the variation of nb, behavior can be obtained
when simulating a striped contact BAS device [6] with only laterally modulated β (only lateral
modulation with a period dx is present), or a standard BAS device without any modulation of β.
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4 Simulations of the TW model

Finally, the beam shaping in realistic BAS amplifiers have been analyzed. For this reason, the
simulations of the beam propagation and amplification in non-modulated and two different mod-
ulated L = 6.4 mm long BAS amplifiers using the TW model (1–4), factor η = 1, and other
parameters defined in Section 2 were performed. The results of these simulations for BAS am-
plifiers are summarized in Fig. 5.
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Figure 5: Beam propagation in non-modulated (left), modulated with (dx, dz) = (4, 100)µm
(middle), and (dx, dz) = (8, 400)µm (right) BAS amplifiers according to Eqs. (1–4). Injected
beam intensity was 0.1 mW, factorQ = 1.04, η = 1, whereas all other parameters are given in
Section 2. 1st-4th rows: mappings of the field intensity, the carrier density distribution, normal-
ized and non-normalized FF recorded and computed for different longitudinal positions (different
lengths) of the amplifier. 5th and 6th rows: FWHM of the central FF lobe and the field intensity at
corresponding longitudinal position. 7th row: central part of the FF at four different longitudinal
positions.

Since the injection of the time independent Gaussian beam is assumed, all lateral field intensity
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and carrier density distributions at fixed positions z can be interpreted as field and carrier dis-
tributions at the right end of some BAS amplifier of length L = z. The intensity of the injected
beam is 0.1 mW. It is sufficiently small, so that the gain compression is nearly absent, and an
exponential growth of the field intensity is registered for z ≤ 2.5 mm (see a linear growth of
the curves in 6 row panels of Fig. 5). The comparison of the simulations in this regime with the
results of the linear theory derived and discussed above are in perfect qualitative and quantita-
tive agreement. On the other hand, the beam intensity for z > 4 mm becomes rather high and
saturates the gain (see depletion of carrier densities in the second row panels), what, conse-
quently, leads to the saturation of the field intensity itself. It is noteworthy, that the depletion of
the carrier densities at large z can also imply a narrowing of the far fields (see the FF profiles
for L ≥ 4.5 mm in the lower row of the left column of Fig. 5). A further beam narrowing of
such type in conventional BAS amplifiers, however, leads to the self-focusing and filamentation,
which again degrades the quality of the emitted beam.

The spatial distribution of the carriers, gain and index functions at large z in modulated BAS
devices still show well recognizable modulation periods dx and dz. The local averages and
modulation amplitudes (defined by the fixed factors β̄ and am in the linear modeling approach
(6)), however, are no more uniform in space. This suggests deviations from the linear theory
results discussed in Section 3.

Even though, that the quantitative agreement for larger z is lost, the Fig. 5 still demonstrates a
significant beam amplification and shaping in modulated BAS devices (see second column of
Fig. 5 for L ≈ 4µm, third column for L > 3µm, and note the maximal emitted power in the 6th
row of the figure). For the devices with the fine modulation period the beam shaping effect is,
however, small (compare first and second columns of Fig. 5). For longer devices (L > 5 mm)
the field emission at the angles±[0.3, 0.8]◦ increases, what reduces the beam quality again. A
more optimistic situation is observed for the BAS amplifiers with larger modulation periods (right
column of Fig. 5). The FF compression is significantly enhanced, whereas the field emission
intensity is also slightly increased.

5 CONCLUSIONS

To conclude, it is shown that a spatial modulation of the bias current in BAS amplifiers with a
length on the order of a few millimeters can lead to a substantial improvement of the spatial
structure of the amplified beam. The study is performed, using a 2D+1D TW model, under
realistic semiconductor parameters and technically realizable modulation periods. Beyond what
is here presented, this new technique could be implemented to improve the spatial quality of
emission of BAS lasers.
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