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Abstract

Higher order variational time stepping schemes allow an efficient post-processing 
for computing a higher order solution. This paper presents an adaptive algorithm 
whose time step control utilizes the post-processed solution. The algorithm is 
applied to convection-dominated convection-diffusion equations. It is shown that 
the length of the time step properly reflects the dynamics of the solution. The 
numerical costs of the adaptive algorithm are discussed.

1 Introduction

Adaptive time step control is a tool that might increase the e�ciency of many
simulations of problems from Computational Fluid Dynamics (CFD). There
are several proposals in the literature for the way to control an adaptive time
step. A simple approach monitors just the change of the solution in two sub-
sequent discrete times, e.g., as applied in [2] to a semi-implicit Euler scheme
for the Navier–Stokes equations. In more advanced methods, the time step



control is based on comparing solutions computed with different time step-
ping schemes. A classical approach from the numerical solution of ordinary
differential equations [11,22], the use of embedded schemes, was applied to
the incompressible Navier–Stokes equations in [18]. Embedded schemes re-
quire only a post-processing step which can be performed very efficiently. One
obtains the solution of a scheme with one order less than the originally used
scheme, and in this way an estimate of the error for the lower order method.
However, the application of embedded schemes is only possible for higher order
time stepping schemes. Such schemes do not seem to be popular in the CFD
community. Most often, one finds the use of first and second order schemes
in the literature. For the Crank–Nicolson scheme, which is of second order,
there are two proposals for controlling the time step on the basis of apply-
ing another second order scheme and then to estimate the truncation error.
In [29], the other second order scheme is the fractional-step θ-scheme and in
[10], the use of the explicit Adams–Bashforth scheme was studied. The ap-
proach from [29] has a high computational effort. Applying an explicit scheme
reduces the computational cost drastically, but the issue of a CFL condition
arises. The Adams–Bashforth approach was studied in [10] for one-dimensional
convection-diffusion equations, its use for two-dimensional convection-diffusion
equations can be found, e.g., in [6,7].

This paper studies higher order variational time discretizations, namely con-
tinuous Galerkin–Petrov (cGP(k), k ∈ {2, 3}) and discontinuous Galerkin
(dG(k), k ∈ {1, 2}) methods. As already mentioned above, the use of higher
order time stepping schemes does not seem to be popular for applications from
CFD. There might be various reasons for this situation, among them are cer-
tainly the higher implementation effort and higher numerical costs. However,
there are studies which show that the application of higher order time step-
ping schemes might give much more accurate results than the use of simple
schemes, e.g., see [15,18]. In variational time stepping schemes, the temporal
derivative is treated in a finite element way. To this end, one takes finite ele-
ment functions which depend on space and time, makes the ansatz that the
discrete solution can be represented with these functions, integrates the equa-
tion in space and time and applies the usual integration by parts in space. In
the definition of the time stepping scheme, the test space is taken to be dis-
continuous in time, at the discrete times. This choice enables the performance
of a standard time marching algorithm and it avoids the solution of a global
system in space and time as in space-time finite element methods. In the dis-
continuous Galerkin method, ansatz and test space coincide. The application
of this method in parabolic problems can be found, e.g., in [9,27]. It turns
out that jump terms at the discrete times appear in this discretization. Using
instead continuous-in-time ansatz functions, the jump terms are avoided. Be-
sides calling this approach continuous Galerkin–Petrov method, one can find
other names in the literature, like continuous Galerkin method [8] or discontin-
uous Galerkin–Petrov method [26]. Numerical studies with cGP(k) and dG(k)
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for convection-dominated convection-diffusion equations can be found in [1].
In these studies, an equidistant time step was used and two stabilization tech-
niques for the spatial discretization were investigated. A super-convergence
of the error in the l∞ norm was observed. A space-time adaptive method for
higher order variational time discretizations in the context of incompressible
Navier–Stokes equations was presented in [3]. This method uses goal-oriented
error estimation techniques for controlling the adaptivity. Algorithmic aspects
for higher order variational time discretizations have been investigated recently
in [13].

Low order variational time discretizations lead to well known methods, e.g.,
dG(0) is the implicit Euler scheme and cGP(1) the Crank–Nicolson scheme. An
obvious drawback of higher order variational temporal discretizations is their
high numerical effort: one has to solve not only a number of scalar problems
in each time step but even a coupled system of problems. For cGP(k), a clever
construction was proposed in [26] such that the coupling becomes much weaker
than in the original method. But the coupling cannot be avoided completely.

The higher computational cost per time step of the variational time discretiza-
tions can be compensated if, for a given problem, only the necessary number
of time steps, for achieving a prescribed accuracy, is applied. For obtaining a
small number of time steps, usually the length of the time step has to vary such
that an adaptive time step control is necessary. With an adaptive time step
control, also the high order of the methods can be exploited best. Fortunately,
a post-processing procedure was proposed in [23] that allows to compute a so-
lution of one order higher than the original method in the L2(L2) time-space
norm, thus an estimate of the error for the original method can be obtained.
For the cGP(k) methods, the post-processing from [23] requires the solution
of a linear system of equations, which is inexpensive compared with one step
of cGP(k). The availability of two solutions with different order enables also
the application of well understood techniques from the numerical analysis of
ordinary differential equations for controlling the adaptive time step, e.g., see
[28].

The goal of this paper consists in exploring the potential of higher order vari-
ational time discretizations in connection with an adaptive time step control,
based on the post-processed solution, for scalar convection-diffusion equations.
The use of the post-processed solution for an adaptive time step control is a
straightforward idea. But to the best of our knowledge, its realization and
numerical assessment cannot be found so far in the literature.

The paper is organized as follows. Section 2 introduces the problem and de-
scribes its discretization in space. The higher order variational time stepping
schemes are presented in Section 3. Then, the post-processing and the adaptive
time step control are discussed in Section 4. Section 5 presents the numerical
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studies and their results are summarized in Section 6.

2 The Model Problem and Its Discretization in Space

Consider the scalar convection-diffusion-reaction equation: Find u : Ω×(0, T ]→
R such that

∂tu− ε∆u+ b · ∇u+ σu = f in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(·, 0) = u0 in Ω.

(1)

Here, Ω ⊂ Rd, d ∈ {2, 3}, is a polygonal or polyhedral domain with Lipschitz
boundary ∂Ω. Furthermore, 0 < ε� 1 is a diffusivity constant, b(t,x) is the
flow velocity, σ(t,x) is the reaction coefficient, and f(t,x) is a given outer
source of the unknown scalar quantity u. It will be assumed that either ∇ ·
b(t,x) = 0 and c(t,x) ≥ 0, or that there exists a positive constant σ0 such
that

σ(t,x)− 1

2
div b(t,x) ≥ σ0 > 0 ∀(t,x) ∈ Ω× [0, T ],

which are standard assumptions for equations of type (1).

For the finite element discretization, (1) is transformed into a variational for-
mulation. To this end, consider the space V := H1

0 (Ω), its dual space H−1(Ω),
and 〈·, ·〉 as the duality pairing between these spaces. The inner product in
L2(Ω) is denoted by (·, ·).

A function u is a weak solution of problem (1) if u ∈ L2 (0, T ;H1
0 (Ω)) and

∂tu ∈ L2 (0, T ;H−1(Ω)), with

〈∂tu(t), v〉+ a(u(t), v) = 〈f(t), v〉 ∀v ∈ V (2)

for almost all t ∈ (0, T ] and u(0) = u0, where the bilinear form a is given by

a(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (σu, v).

Let {Th} denote a family of shape regular triangulations of Ω into compact d-
simplices, quadrilaterals, or hexahedra such that Ω =

⋃
K∈Th K. The diameter

of K ∈ Th will be denoted by hK and the mesh size h is defined by h :=
max
K∈Th

hK . Let Vh ⊂ V be a finite element space defined on Th.

The standard Galerkin method applied to (2) consists in finding uh ∈ H1(0, T ;Vh)
such that uh(0) = uh,0 and for almost all t ∈ (0, T ]

(∂tuh(t), vh) + a (uh(t), vh) = (f(t), vh) ∀vh ∈ Vh, (3)
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where uh,0 ∈ Vh is a suitable approximation of u0 and f ∈ L2(Ω) was assumed
for simplicity of notation. In the convection-dominated case, the standard
Galerkin formulation (3) is inappropriate since the discrete solution is usu-
ally globally polluted by spurious oscillation, unless the mesh parameter is
sufficiently small.

One of the most efficient stabilized methods is the Streamline-Upwind Petrov–
Galerkin (SUPG) method [4,12] that is frequently used due to its stability
properties, its higher-order accuracy in appropriate norms, and its easy im-
plementation, e.g., see [24]. In the time-continuous case, the SUPG stabi-
lized semi-discrete problem reads as follows: Find uh ∈ H1(0, T ;Vh) such that
uh(0) = uh,0 and for almost every t ∈ (0, T ]

(∂tuh(t), vh) + ah (uh(t), vh) +
∑
K∈Th

δK (∂tuh(t), b · ∇vh)K

= (f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K (4)

for all vh ∈ Vh. The bilinear form ah(·, ·) is defined by

ah(uh, vh) := a(uh, vh) +
∑
K∈Th

δK (−ε∆uh + b · ∇uh + σuh, b · ∇vh)K ,

where (·, ·)K denotes the inner product in L2(K) and {δK} denotes the set of lo-
cal stabilization parameters. A theoretically supported choice of the stabiliza-
tion parameters is an open question. Even for simple time stepping schemes,
like the backward Euler scheme, one has in the general situation only a con-
vergence proof for δK = O(τ), were τ is the length of the time step, whereas
in special cases optimal estimates for δK = O(hK) were proved, see [16] for
details. Since the small scales, which require a stabilization, are the spatial
layers, we think that the latter choice is more appropriate. Numerical stud-
ies in [16] came also to this conclusion. Concretely, for the numerical studies
presented below, the stabilization parameters were set to be δK = 0.25hK .

Any other linear stabilization which is based on a modification of the bilinear
form, like continuous interior penalty (CIP) or local projection stabilization
(LPS) schemes, can be applied within higher order variational time discretiza-
tions in the same way as the SUPG method, see [1]. For nonlinear stabi-
lizations, like spurious oscillation at layers diminishing (SOLD) methods, a
stabilization term might be discretized explicitly and then they can be used
also in the same way. However, for stabilization methods which are based on
modifications of matrices and vectors, like finite element flux-corrected trans-
port (FEM-FCT) methods [21], the application of higher order variational
time discretizations seems to be an open problem.
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3 Temporal Discretization

The main topic of this paper is a study of the continuous Galerkin–Petrov and
discontinuous Galerkin time stepping schemes. These schemes are basically the
same as described in [1]. To keep this paper self-containing, a brief presentation
of the schemes, which provides the basic ideas, will be given here.

Consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval I := [0, T ]
and set In := (tn−1, tn], τn := tn − tn−1, n = 1, . . . , N , and τ := max1≤n≤N τn.
For a given non-negative integer k, the fully discrete time-continuous and
time-discontinuous spaces, respectively, are defined as follows:

Xk := {u ∈ C(I, Vh) : u|In ∈ Pk(In, V ), n = 1, . . . , N} ,
Yk :=

{
v ∈ L2(I, Vh) : v|In ∈ Pk(In, V ), n = 1, . . . , N

}
,

where

Pk(In, Vh) :=

u : In → Vh : u(t) =
k∑
j=0

U jtj, U j ∈ Vh ∀j


denotes the space of Vh-valued polynomials of order k in time. The functions in
the space Yk are allowed to be discontinuous at the nodes tn, n = 1, . . . , N−1.
For such functions, the left-sided value u−n , right-sided value u+n , and the jump
[u]n are defined by

u−n := lim
t→tn−0

u(t), u+n := lim
t→tn+0

u(t), [u]n := u+n − u−n .

The cGP(k) method applied to (4) leads to a time marching scheme with the
following problems: Find uh,τ |In ∈ Pk(In, Vh) such that for all vh ∈ Vh

∫
In

(∂tuh,τ (t), vh) + ah(uh,τ (t), vh) +
∑
K∈Th

δK (∂tuh,τ (t), b · ∇vh)K

ψ(t) dt

=
∫
In

(f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K

ψ(t) dt ∀ψ ∈ Pk−1(In),

with uh,τ |I1(t0) = uh,0 and uh,τ |In(tn−1) := uh,τ |In−1(tn−1) for n ≥ 2. The
functions ψ denote scalar basis functions which are zero on I \ In and which
are a polynomial of degree less than or equal to (k − 1) on In.

The (k−1)-point Gauss–Lobatto quadrature rule for the numerical integration
of time integrals is applied, which is exact for polynomials of degree less than
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or equal to (2k − 1). In order to determine the local solution uh,τ |In , it is
represented by

uh,τ |In(t) =
k∑
j=0

U j
n,hφn,j(t) ∀t ∈ In,

with coefficients U j
n,h ∈ Vh, j = 0, . . . , k.

Denote by t̂j and ω̂j, j = 0, . . . , k, the Gauss–Lobatto points and the corre-

sponding quadrature weights on [−1, 1], respectively. Furthermore, let φ̂j ∈ Pk,
j = 0, . . . , k, and ψ̂j ∈ Pk−1 denote the Lagrange basis functions with respect
to t̂j, j = 0, . . . , k, and t̂j, j = 1, . . . , k, respectively. The basis functions
φn,j ∈ Pk(In), j = 0, . . . , k, and ψn,j ∈ Pk−1(In), j = 1, . . . , k, are defined via
an affine reference transformation

Tn : [−1, 1]→ In, t̂ 7→ tn−1 +
τn
2

(t̂+ 1), (5)

see [1].

Using the same setting as in [1], the following fully discrete coupled system
of equations is derived: For U0

1,h = uh,0 and U0
n,h = Uk

n−1,h if n ≥ 2, find the

coefficients U j
n,h ∈ Vh, j = 1, . . . k, such that

k∑
j=0

αci,j

(U j
n,h, vh

)
+

∑
K∈Th

δK
(
U j
n,h, b · vh

)+
τn
2
ah(U

i
n,h, vh)

=
τn
2

[(f(tn,i), vh) + βci (f(tn,0), vh)]

+
τn
2

∑
K∈Th

δK
[
(f(tn,i), b · ∇vh)K + βci (f(tn,0), b · ∇vh)K

]
(6)

for i = 1, . . . , k and for all vh ∈ Vh, where αci,j and βci are defined by

αci,j := φ̂′j(t̂i) + βci φ̂
′
j(t̂0), βci := ω̂0ψ̂i(t̂0), i = 1, . . . , k, j = 0, . . . , k,

see [23].

In the following, (6) is written as a linear algebraic block system. To this end,
let ϕi ∈ Vh, i = 1, . . .mh, be finite element basis functions of Vh and ujn ∈ Rmh

denote the nodal vector of U j
n,h ∈ Vh, such that

U j
n,h(x) =

mh∑
i=1

(
ujn
)
i
ϕi(x), x ∈ Ω.

Furthermore, the mass matrix M ∈ Rmh×mh , the matrices Cj
n ∈ Rmh×mh

associated with the additional time derivative term, the stiffness matrices Ajn ∈
Rmh×mh , and the discrete right-hand side vector F j

n ∈ Rmh are given by
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(M)i,k := (ϕk, ϕi),

(Cj
n)i,k :=

∑
K∈Th

δK (ϕk, b(tn,j) · ∇ϕi)K ,

(Ajn)i,k := ah (ϕk, ϕi) , (7)

(F j
n)i := (f(tn,j), ϕi) +

∑
K∈Th

δK (f(tn,j), b(tn,j) · ∇ϕi)K .

Then, the fully discrete problem in In (6) is equivalent to the following k × k
block system: For given u0

n, find ujn ∈ Rmh , j = 1, . . . , k, such that

k∑
j=0

αci,j
(
M + Cj

n

)
ujn +

τn
2
Ainu

i
n =

τn
2

[
F i
n + βci

(
F 0
n − A0

nu
0
n

)]
, i = 1, . . . , k.

(8)

The finite element nodal vector u0
n of the solution uh,τ |In−1 is given either via

the discrete initial condition uh,0 for n = 1 or by u0
n = ukn−1 for n ≥ 2.

The dG(k) method applied to (4) leads to the following problem in In: Given
u−n with u−0 = uh,0, find uh,τ |In ∈ Pk(In, Vh) such that for all ψ ∈ Pk(In)

∫
In

(∂tuh,τ (t), vh) + ah (uh,τ (t), vh) +
∑
K∈Th

δK (∂tuh,τ (t), b · ∇vh)

ψ(t) dt

+

([uh,τ ]n−1, v+n−1)+
∑
K∈Th

δK
(
[uh,τ ]n−1, b · ∇v+n−1

)ψ(tn−1)

=
∫
In

(f(t), vh) +
∑
K∈Th

δK (f(t), b · ∇vh)K

ψ(t) dt ∀vh ∈ Vh. (9)

Here, the (k+1)-point right-sided Gauss–Radau quadrature formula is applied
for the numerical evaluation of the integrals, which is exact for polynomials
up to degree 2k. Let t̂j and ω̂j, j = 1, . . . , k+ 1, denote the points and weights
for this quadrature formula on [−1, 1], respectively. Using the representation
of uh,τ

uh,τ |In(t) :=
k+1∑
j=1

U j
n,hφn,j(t)

where U j
n,h ∈ Vh, j = 1, . . . , k + 1, and following [1], one obtains the following

system of equations: Find the coefficients U j
n,h ∈ Vh, j = 1, . . . k+ 1, such that
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k+1∑
j=1

αdi,j

(U j
n,h, vh

)
+

∑
K∈Th

δK
(
U j
n,h, b · ∇vh

)+
τn
2
ah
(
U i
n,h, vh

)

= βdi

(U0
n,h, vh

)
+

∑
K∈Th

δK
(
U0
n,h, b · ∇vh

)
+
τn
2

(f(tn,i), v) +
∑
K∈Th

δK (f(tn,i), b · ∇vh)K


for i = 1, . . . , k + 1, and for all vh ∈ Vh, where

αdi,j := φ̂′j + βdi φ̂j(−1), βdi :=
1

ω̂i
φ̂i(−1), U0

n,h = U−n−1,h.

In matrix-vector notation, the following (k + 1)× (k + 1)-block-system of the
problem in In is derived: Find ujn ∈ Rmh for j = 1, . . . , k + 1, such that

k+1∑
j=1

αdi,j
(
M + Cj

n

)
ujn+

τn
2
Ainu

i
n = βdi

(
M + C0

n

)
u0
n+

τn
2
F i
n, i = 1, . . . , k+1,

where ujn denotes the nodal vector of U j
n,h ∈ Vh. After having solved this

system, one enters the next time interval and sets the initial value of In+1 to
u0
n+1 := uk+1

n .

4 Post-processing and Adaptive Time Step Control

Following [23], a higher order in time approximation can be obtained by means
of a post-processing of the time-discrete solution uh,τ with low computational
costs for the cGP(k) and dG(k) methods.

Let uh,τ denote the solution of the cGP(k) method (6). The post-processed
solution Πunh,τ on the time interval In is given by

(Πunh,τ )(t) = uh,τ (t) + anζn(t), t ∈ In,

where

ζn(t) =
τn
2
ζ̂(t̂), t̂ := T−1n (t),

with Tn from (5). The polynomial ζ̂ ∈ Pk+1 vanishes in all Gauss–Lobatto
points t̂j, j = 0, . . . , k, and it is scaled such that ζ̂ ′(1) = 1. The nodal vector
γn of a finite element function ah ∈ Vh is the solution of(

M + Ck
n

)
γn = F k

n − Aknukn −
(
M + Ck

n

)
ηkn, (10)
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where ηkn denotes the nodal representation of u′h,τ (tn) ∈ Vh and the matrices
and the vector are given in (7). It has been shown in [23] that the post-
processed solution Πunh,τ (t) can be interpreted as the solution obtained with
a time stepping scheme of order (k + 1), k ≥ 2. Thus, computing Πunh,τ (t)
requires the solution of the linear system of equations (10), where the system
matrix is dominated by the mass matrix. A similar post-processing can be
performed for the dG(k) method (9).

However, for dG(k) the higher order in time post-processed solution can be
computed even simpler. The post-processed solution Πunh,τ of the solution uh,τ
of (9) on the interval In can be represented as

(Πunh,τ )(t) = uh,τ (t) + bnϑn(t), t ∈ In,

where

ϑn(t) =
τn
2
ϑ̂(t̂), t̂ := T−1n (t),

with Tn from (5). The polynomial ϑ̂ ∈ Pk+1 is uniquely defined by ϑ̂(t̂j) = 0

for all Gauss–Radau points t̂j, j = 1, . . . , k + 1, and ϑ̂′(1) = 1. The finite
element function bn ∈ Vh is obtained by

bn :=
1

ϑn(tn−1)

(
u−n−1 − u+n−1

)
,

i.e., it is just a scaled difference between the initial condition u−n−1 at t = tn−1
and the calculated solution u+n−1 at t = tn−1. Also in this case, it was proved
in [23] that there is an interpretation of Πunh,τ (t) as the solution obtained with
a scheme of order (k + 2), k ≥ 1. In numerical studies, we could observe that
both post-processing techniques for dG(k) gave the same results.

Adaptive time step control aims at computing a numerical solution with a pre-
scribed accuracy using as few time steps as possible. In particular for problems
where the dynamics changes in (0, T ), the application of equidistant time steps
is governed by the subintervals with the fastest dynamics, such that in other
subintervals much more time steps might be performed than necessary. This
paper studies if the higher order in time post-processed solution Πunh,τ is an ap-
propriate tool for controlling the length of the time steps. Since two solutions
of different order are available, one can use well understood techniques, from
the numerical simulation of ordinary differential equations, for controlling the
length of the time step.

In the numerical simulations presented in this paper, the adaptive time step
control is based on the Euclidean error norm of the error of the numerical
solution and its post-processed solution

rn := ‖unh,τ − Πunh,τ‖,
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which is a standard criterion. The use of other quantities of interest will be
subject of future studies. There are several proposals in the literature for de-
termining a new time step, so-called controllers, e.g., see [28]. In the numerical
simulations presented in Section 5, the PC11 controller

τ ∗n+1 = θ

(
TOL rn
r2n+1

)1/(k+1)
τ 2n
τn−1

(11)

was used, e.g., as in the simulations of [18]. In (11), θ is a safety factor which
is introduced to reduce the chance of rejection of τ ∗n+1. In our simulations
θ = 0.8 was used. The parameter TOL determines the required accuracy of
the numerical solution. The impact of TOL on the number of time steps will
be studied in Section 5. Finally, to avoid a strong increase or decrease of
subsequent time steps, the proposal for the next time step is computed with

τn+1 = min
{
smaxτn,max

(
sminτn, τ

∗
n+1

)}
,

which is known as the integral step size controller in the deterministic frame-
work [11]. In our simulations, smin = 0.1 and smax = 2 were used. A step size
τn+1 is accepted if rn+1 ≤ TOL, otherwise it is rejected.

Besides the PC11 controller (11), we performed also simulations with the
PID controller with the parameters proposed in [30]. Usually, the computed
solutions were similar for the same value of TOL (often a little bit more
accurate for the PID controller), but the PID controller took notable more
time steps. For the sake of brevity, only the results obtained with the PC11
controller will be presented in Section 5.

5 Numerical Results

This section presents numerical studies of the proposed algorithm for the adap-
tive time step control. In the first example, an adaptive time step control is
advantageous because the convection field is time-dependent. Time-dependent
convection fields are a common feature of problems from applications as the
convection field is often a velocity field computed from the Navier–Stokes
equations. The temporal variation in the second example results from a time-
dependent boundary condition at the inlet. This feature reflects, e.g., changes
of the temperature or the concentration of a species at the inlet during the
studied process, which is also a typical feature in many applications.

The use of higher order discretizations in time should be combined with the
application of higher order discretizations in space. In the studied examples,
quadrilateral (2d) or hexahedral (3d) meshes were used with the Q2 finite
element. As already mentioned in Section 2, the SUPG method was utilized as
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stabilization. It is well known from numerical experience, e.g., in [19], that the
SUPG method is not a perfect stabilization, mainly because of the appearance
of spurious oscillations. However, it is certainly the most popular finite element
stabilization such that its study is worthwhile in our opinion.

Our experience in [17] for simple time stepping schemes was that Krylov sub-
space methods with standard preconditioners work most efficiently for the
solution of the arising linear systems of equations. A major reason is the
availability of a good initial iterate, namely the solution from the previous
discrete time. In our numerical studies for the higher order variational time
stepping schemes we found, however, that Krylov subspace methods with stan-
dard preconditioners did not perform as efficiently as for simple time stepping
schemes. For two-dimensional problems, we found that even the application of
the sparse direct solver UMFPACK [5] was faster. Thus, UMFPACK was
used in the simulations of Example 1. In three dimensions, the use of iterative
solvers was still more efficient than applying the direct solver. The simulations
for Example 2 were preformed with GMRES [25] and a damped Jacobi pre-
conditioner with the damping parameter 0.7 as solver for the linear systems
of equations.

All simulations were performed with the code MooNMD [14] at HP BL460c
Gen8 computers with Eight-Core 2700 MHz Xeon processors.

Example 1 Time-dependent convection field. This example is a generaliza-
tion of the well known rotating body problem. It is defined in Ω = (0, 1)2, the
diffusion is set to be ε = 10−20. The other coefficients are σ = 0 and f = 0.
Homogeneous Dirichlet boundary conditions are prescribed on (0, T )×∂Ω. At
the initial time, three disjoint bodies, are given, see Figure 1. More precisely,

for a given (x0, y0), set r(x, y) =
√

(x− x0)2 + (y − y0)2/r0. The center of the

slotted cylinder is located at (x0, y0) = (0.5, 0.75) and its shape is defined by

u(0;x, y) =

 1 if r(x, y) ≤ 1, |x− x0| ≥ 0.0225 or y ≥ 0.85,

0 otherwise.

The hump at the left-hand side is given by (x0, y0) = (0.25, 0.5) and

u(0;x, y) =
1

4

(
1 + cos(πmin{r(x, y), 1})

)
,

and the conical body on the lower part is given by (x0, y0) = (0.5, 0.25) and

u(0;x, y) = 1− r(x, y).

The initial condition is zero outside the bodies. Finally, the convection field is
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defined by

b(t, x, y) =
1

1 + 0.98 · sin(4t)

0.5− y

x− 0.5

 .
This field describes a rotation around (0.5, 0.5)T whose speed varies in time.
In the standard rotating body problem, the rotation does not depend on time.
Setting T = 6.164546203 leads to exactly five revolutions of the bodies.

Fig. 1. Example 1. Initial condition.

The simulations were performed on an equidistant quadrilateral grid with
squares of edge length h = 1/64 such that there were 16641 degrees of freedom
(including Dirichlet nodes).

First of all, one had to find appropriate values for the parameter TOL in the
PC11 controller (11). In our experience [18], appropriate values of TOL de-
pend on the used temporal discretization. Choosing TOL too large introduced
notable smearing, in particular in the region of the slotted cylinder. In Fig-
ure 2 it can be seen that this situation occurs for dG(1) and TOL = 10−2. For
TOL ≤ 5 · 10−3, there are only minor differences in the computed solutions.
For all other methods and TOL ≤ 10−2 we obtained very similar solutions like
for dG(1) and TOL = 10−3, see the lower picture in Figure 2. After having
performed numerous simulations, we decided to present results with the same
parameters TOL ∈ {5 · 10−3, 10−3, 5 · 10−4} for all studied methods.

For the chosen parameters, the evolution of the length of the time step is shown
in Figure 3. It can be observed that in all cases the time step reflects the speed
of the rotation very well. A close look on the pictures and the numbers given
in Table 1 shows that the higher the order of the method the less time steps
were used. In our simulations, there were no rejections of proposed time steps
for this example.

From Figure 3 one can conclude that an accurate simulation of the time in-
tervals with fast rotation requires a time step of around τ = 10−4. Thus, for
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Fig. 2. Example 1. Solution at the final time with dG(1), left: TOL = 10−2, right:
TOL = 5 · 10−3, bottom: TOL = 10−3.

Table 1
Example 1. Number of time steps. Note that there were no rejections.

TOL dG(1) dG(2) cGP(2) cGP(3)

5 · 10−3 1574 1405 1440 1250

1 · 10−3 8595 6999 7168 6260

5 · 10−4 17223 13989 14327 12500

using an equidistant time step, one has to choose this value. In Figure 4 one
can observe that there are no visible differences in the solutions obtained with
this small equidistant time step and the solution computed with the adaptive
time stepping algorithm (with only 8.6 % of the number of time steps). Hence,
in this respect, the adaptive algorithm worked efficiently and accurately. As
already mentioned above, the SUPG stabilization leads to spurious oscilla-
tions. In addition, some smearing, especially at the slotted cylinder, can be
observed.

Not only the number of time steps but also the overhead of the time step
control algorithm is of importance for the efficiency of the method. Table 2
presents averaged computing times for the solution of the block systems arising
in the time stepping schemes and for the solution of the linear system (10) for
the post-processing. It turned out that the overhead for dG(1) and cGP(2) was
around 20 %, whereas it was around 8 % for the higher order methods dG(2)
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Fig. 3. Example 1. Temporal evolution of the length of the time step, dG(1), dG(2),
cGP(2), cGP(3) (left to right, top to bottom).

Fig. 4. Example 1. Solution at the final time, left: cGP(2) with adaptive time step
and TOL = 10−3 (7168 steps), right: cGP(2) with equidistant time step τ = 10−4

(61646 steps).

and cGP(3). Using the alternative strategy for computing the post-processed
solution for the dG(k) methods resulted practically in a negligible overhead. In
summary, the savings in the number of time steps were much more important
than the overhead of the adaptive time step control algorithm.

The costs of one step with the popular (second order) Crank–Nicolson scheme
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Table 2
Example 1. Averaged computing times (in seconds) for solving the block systems
and for solving system (10) for computing the post-processed solution, both with
the sparse direct solver UMFPACK.

method dG(1) dG(2) cGP(2) cGP(3) (10)

time 0.50 1.28 0.50 1.28 0.10

are around the costs of the post-processing step, if also UMFPACK is used.
Considering on the one hand the second order method dG(1) with adaptive
time stepping and on the other hand the Crank–Nicolson scheme with equidis-
tant time step τ = 10−4, then the adaptive time method becomes more ef-
ficient if it needs less than around one fifth of the number of equidistant
time steps, i.e., less than around 12000 time steps. This situation is given for
TOL ∈ {5 · 10−3, 10−3}. Even the third order method cGP(2) would be faster
than the Crank–Nicolson method for these values of the parameter TOL. If
more efficient solvers can be applied for the Crank–Nicolson scheme, then the
threshold for the number of time steps for the variational temporal discretiza-
tions to become more efficient decreases of course.

Example 2 Time-dependent inlet condition. This three-dimensional exam-
ple was proposed in [20]. Given Ω = (0, 1)3, a species enters the domain at
some inlet and it leaves the domain at the opposite side of the domain. While
transported through the domain, the species is diffused somewhat and in the
subregion where the species is transported, also a reaction occurs. The con-
vection field points from the center of the inlet to the center of the outlet and
it is not parallel to the coordinate axes.

Concretely, the inlet is located at {0}×(5/8, 6/8)×(5/8, 6/8) and the position
of the outlet is given by {1} × (3/8, 4/8)× (4/8, 5/8). The convection field is
prescribed by b = (1,−1/4,−1/8)T , the diffusion is given by ε = 10−6, and
the reaction by

c(x) =

 1 if ‖x− g‖2 ≤ 0.1,

0 else,

where g is the line through the center of the inlet and the center of the outlet
and ‖ · ‖2 denotes the Euclidean norm. The given ratio of diffusion and con-
vection is typical in many applications. The boundary condition at the inlet
is prescribed by

uin(t) =


sin(πt/2) if t ∈ [0, 1],

1 if t ∈ (1, 2],

sin(π(t− 1)/2) if t ∈ (2, 3].

Homogeneous Neumann boundary conditions are set at the outlet and homo-
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geneous Dirichlet conditions at the rest of the boundary. There are no sources,
i.e., f = 0. The initial condition is set to be u0(x) = 0. In the time interval
(0, 1), the inflow is increasing and the injected species is transported towards
the outlet. Then, in (1, 2), there is a constant inflow and the species reaches
the outlet. At the end of this time interval, there is almost a steady-state
solution. Finally, in (2, 3), the inflow decreases.

The simulations were performed on an equidistant hexahedral grid with the
mesh width h = 1/32, leading to 274625 degrees of freedom (including Dirich-
let nodes).

Also for this example, we found that TOL ∈ {5 · 10−3, 10−3, 5 · 10−4} are
appropriate parameters to be used in the PC11 controller (11). The evolution
of the length of the time step is presented in Figure 5. Starting with a small
time step, the time step increases in the time interval (1, 2). In particular, at
the end of this interval, where the solution is nearly steady-state, it becomes
comparably large. But it can be clearly seen that the length of the time step
drops at t = 2, due to the change of the inlet condition. Thus, the evolution
of the length of the time step reflects the dynamics of the problem well.
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Fig. 5. Example 2. Temporal evolution of the length of the time step, dG(1), dG(2),
cGP(2), cGP(3) (left to right, top to bottom).

Detailed information on the needed number of time steps is provided in Ta-
ble 3. Clearly, the number of time steps increases with decreasing parameter
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TOL. The second order method dG(1) needed few steps more than the higher
order methods. It can be observed in Figure 5 that the length of the time step
is oscillating in (2, 3) for this method.

Table 3
Example 2. Number of effective and rejected time steps.

TOL dG(1) dG(2) cGP(2) cGP(3)

5 · 10−3 29 2 28 1 26 1 27 0

1 · 10−3 58 2 52 1 51 1 50 0

5 · 10−4 90 1 75 0 73 0 75 0

As a measure of accuracy, the value of the solution (amount of species) at the
center of the outlet was proposed in [17]. It can be observed in Figure 6 that
all simulations gave very similar results. Apart of dG(1) with TOL = 5 · 10−3,
they are very close to the result obtained when applying the small equidistant
time step τ = 0.01.
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Fig. 6. Example 2. Temporal evolution of the amount of species at the center of the
outlet, dG(1), dG(2), cGP(2), cGP(3) (left to right, top to bottom).

Averaged computing times per time step are provided in Table 4. Smaller val-
ues of the parameter TOL, which lead in the average to smaller time steps,
improve obviously the initial iterates and, accordingly, result in faster solutions
of the linear systems of equations. The numerical costs of dG(1) and cGP(2)
on the one hand, and dG(2) and cGP(3) on the other hand, are comparable.
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The overhead for computing the post-processed solution is small too negli-
gible. Since the computing time for one time step with the Crank–Nicolson
scheme is comparable with the time for the post-processing step, one finds
that the variational time stepping schemes become rewarding, compared with
an equidistant Crank–Nicolson scheme, only if the number of time steps can
be reduced considerably by applying the adaptive time step control.

Table 4
Example 2. Averaged computing times (in seconds) for solving the block systems
and for solving system (10) for computing the post-processed solution.

method dG(1) dG(2) cGP(2) cGP(3) (10)

TOL = 5 · 10−3 82 141 70 133 2

TOL = 1 · 10−3 37 86 35 83 2

TOL = 5 · 10−4 21 60 22 61 2

In our numerical studies, we considered also a two-dimensional example with
the same features as Example 2. Since the spatial resolution could be chosen
finer in two dimensions, the spatial error became smaller compared with the
temporal error than in the three-dimensional example. As result, the drop
in the length of the time step as the inlet condition decreases, at t = 2,
is more pronounced than in the three-dimensional situation. We decided to
present the three-dimensional results since they might be of more interest for
potential applications.

6 Summary

A method for the adaptive time step control in higher order variational time
discretizations was proposed and studied numerically. This method was ap-
plied in the context of convection-dominated convection-diffusion equations.
The adaptive time step control utilizes a post-processed solution which is of
higher order than the solution of the time stepping scheme. The time step
control was performed with the PC11 controller. Numerical examples were
presented which has typical features appearing in applications, like a time-
dependent convection field or a time-dependent boundary condition at the
inlet.

The numerical studies showed that the time step control works fine. The dy-
namics of the solutions were represented well by the length of the time step.
Taking both, efficiency and accuracy into consideration, then cGP(2) is cer-
tainly the best of the studied methods. From the point of view of efficiency, it
was estimated that the adaptive time step control with cGP(2) is rewarded,
compared with the Crank–Nicolson scheme and equidistant time steps, if the
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number of time steps can be reduced by a factor of 5− 20, depending on the
example. Since cGP(2) is of higher order than the Crank–Nicolson scheme, not
only the efficiency is increased in this situation but also the temporal accuracy.
In addition, the time step control based on solutions of schemes with different
order might have some algorithmic advantage compared with a time step con-
trol based on two second order solutions as proposed for the Crank–Nicolson
scheme.

The estimated factor for the reduction of the number of equidistant time
steps is quite large. The key for increasing the competitiveness of the studied
methods is certainly the development of efficient solvers for the arising block
systems. A first step, for the incompressible Navier–Stokes equations, can be
found in [13], but further research on this topic is needed.
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[7] Javier de Frutos, Bosco Garćıa-Archilla, and Julia Novo. An adaptive finite
element method for evolutionary convection dominated problems. Comput.
Methods Appl. Mech. Engrg., 200(49-52):3601–3612, 2011.

[8] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational differential
equations. Cambridge University Press, Cambridge, 1996.

20



[9] Kenneth Eriksson, Claes Johnson, and Vidar Thomée. Time discretization of
parabolic problems by the discontinuous Galerkin method. RAIRO Modél.
Math. Anal. Numér., 19(4):611–643, 1985.

[10] Philip M. Gresho, David F. Griffiths, and David J. Silvester. Adaptive time-
stepping for incompressible flow. I. Scalar advection-diffusion. SIAM J. Sci.
Comput., 30(4):2018–2054, 2008.

[11] E. Hairer and G. Wanner. Solving ordinary differential equations. II,
volume 14 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 2010. Stiff and differential-algebraic problems, Second revised edition,
paperback.

[12] T. J. R. Hughes and A. N. Brooks. A multidimensional upwind scheme with no
crosswind diffusion. In Finite element methods for convection dominated flows
(Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979),
volume 34 of AMD, pages 19–35. Amer. Soc. Mech. Engrs. (ASME), New York,
1979.

[13] S. Hussain, F. Schieweck, and S. Turek. An efficient and stable finite element
solver of higher order in space and time for nonstationary incompressible flow.
Internat. J. Numer. Methods Fluids, 73(11):927–952, 2013.

[14] Volker John and Gunar Matthies. MooNMD—a program package based on
mapped finite element methods. Comput. Vis. Sci., 6(2-3):163–169, 2004.

[15] Volker John, Gunar Matthies, and Joachim Rang. A comparison of time-
discretization/linearization approaches for the incompressible Navier-Stokes
equations. Comput. Methods Appl. Mech. Engrg., 195(44-47):5995–6010, 2006.

[16] Volker John and Julia Novo. Error analysis of the SUPG finite element
discretization of evolutionary convection-diffusion-reaction equations. SIAM
J. Numer. Anal., 49(3):1149–1176, 2011.

[17] Volker John and Julia Novo. On (essentially) non-oscillatory discretizations of
evolutionary convection-diffusion equations. J. Comput. Phys., 231(4):1570–
1586, 2012.

[18] Volker John and Joachim Rang. Adaptive time step control for the
incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.,
199(9-12):514–524, 2010.

[19] Volker John and Ellen Schmeyer. Finite element methods for time-dependent
convection-diffusion-reaction equations with small diffusion. Comput. Methods
Appl. Mech. Engrg., 198(3-4):475–494, 2008.

[20] Volker John and Ellen Schmeyer. On finite element methods for 3D time-
dependent convection-diffusion-reaction equations with small diffusion. In BAIL
2008—boundary and interior layers, volume 69 of Lect. Notes Comput. Sci.
Eng., pages 173–181. Springer, Berlin, 2009.

[21] Dmitri Kuzmin. Explicit and implicit FEM-FCT algorithms with flux
linearization. J. Comput. Phys., 228(7):2517–2534, 2009.

21



[22] Jens Lang. Adaptive multilevel solution of nonlinear parabolic PDE systems,
volume 16 of Lecture Notes in Computational Science and Engineering.
Springer-Verlag, Berlin, 2001. Theory, algorithm, and applications.

[23] G. Matthies and F. Schieweck. Higher order variational time discretizations for
nonlinear systems of ordinary differential equations. Preprint 23/2011, Fakultät
für Mathematik, Otto-von-Guericke-Universität Magdeburg, 2011.

[24] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Robust numerical methods
for singularly perturbed differential equations, volume 24 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, second edition, 2008.

[25] Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 7(3):856–869, 1986.

[26] F. Schieweck. A-stable discontinuous Galerkin-Petrov time discretization of
higher order. J. Numer. Math., 18(1):25–57, 2010.
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