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ABSTRACT. The influence of small perturbations in the kernel and the right-hand side of 
boundary integral equations, e.g. of Symm's integral equation, discretized by collocation 
or quadrature formula methods, is analyzed in Sobolev and Holder-Zygmund norms. 

Introduction 

In this paper we analyze the influence of small perturbations in the right-hand terms 
and kernels of some boundary integral equations (BIE) and pseudodifferential equations 
(PE), discretized by Galerkin, collocation, quadrature formulae or related methods. The 
rounding errors cause perturbations of order, say 10-103; the measurement and modelling 
errors may cause much larger perturbations, say of order 0, 1 - 13. Both types of per-
turbations are hard to be controlled, therefore we assume to be given only their possible 
magnitude. Of course, also controllable perturbations, caused e.g. by a data compression 
in the stiffness matrix or by numerical integrations to complete a discretization, may be 
taken into account. 

An important feature of (elliptic) BIE and PE is that the underlying operators build 
isomorphisms between appropriate pairs of spaces in Sobolev and Holder scales. Effective 
discretizations present similar isomorph~sms uniformly with respect to the discretization 
parameter - this is the essence of the stability property of a discretization method. An 
establishment of the stability is not a purpose of this paper, we mainly consider methods 
with already known stability properties. In different norms, the influence of perturbations 
of data is of different magnitude. Considered as equations in L2 , BIE of the first kind and 
PE of a negative order are ill-posed. Our estimates give an insight how the discretization 
parameter should be chosen to obtain a regularization effect; no special regularization of 
the problem is needed. This phenomenon is sometimes called the self-regularization of 
an ill-posed problem through its discretization. 

In some abstract settings, the self-regularization of ill-posed problems through projec-
tion methods has been analyzed by N atterer [8], and Vainikko and Hamarik [13]. In [8) 
only the right-hand term of the equation was perturbed; in [13) only a pair of spaces (and 
not scales) was used. It is reasonable to present newly and independently an error anal-
ysis in an abstract setting with consequences to the self-regularization. This is done in 
Section 1. The corresponding results and arguments are elementary. Our main results 
concern applications to concrete discretization methods (Sections 2-4). A key to these 
results is a sufficiently sharp analysis of operator perturbations in different norms cor-
responding to realistic models of data errors. Here we restrict ourselves to the case of 
Symm's integral equation postponing more general BIE and PE to other papers. We refer 
to papers of G.C. Hsiao and other authors (see e.g. [2, 4, 5, 1, 3)) where the influence 
of perturbations in the right-hand term is estimated. We analyze also the influence of 
perturbations in the parametrization x = 1(t) of the boundary curve. 
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1. ERROR BOUNDS: AN ABSTRACT CONSIDERATION 

Let EA and F\ Ao ::; A < oo, be Banach spaces with the properties 

EA' C EA , I Iv I IE1. ::; cllv I IE1.' for Ao ::; A ::; A1 < oo , v E E>-' , 
>..' >.. I I I >..' F C F , I gl p1. ::; cllgllp1.' for Ao ::; A ::; A < oo, g E F . 

We consider the problem 

Au=f (1.1) 

where A E £(E\ F>..) is an isomorphism for all A 2:: Ao, and f E F'"' with someµ > A0 • 

Let 

En C n E>.. , Fn C n p>. , n E IN , 
A~.\o >.~>.o 

be some finite dimensional subspaces where dim En = dim Fn. We approximate the 
problem ( 1.1) by the :finite dimensional problems 

AnUn = fn (1.2) 

where fn E Fn and An E £(En, Fn) are approximations to f and A corresponding to a 
discretization of problem (1.1 ). We assume that the stability condition 

I lvnl IE1.o ::; collAnvnl jp1.o , Vn E En, n 2:: no (1.3) 

holds. Under suitable approximation conditions to fn and An, this allows to establish an 
· error estimate · . 

llun - ullE1.o ::; cn>.o-µllul IEµ, n 2:: no 

or something else of this type, e.g. 

I lun - ullE1.o :::; cn>.o-µ log nl lullEµ, n 2:: no 

(1.4) 

in some cases. For instance, usually there are operators Pn : E --+ En and Qn : F --+ Fn 
(not necessarily linear) such that 

!Iv - PnvllE1.:::; cn>.-µllvllEµ, Ao:::; A:::;µ, n E IN, v EE'"', (1.5) 

llAnPnv - QnAvjlp1. :::; cn>.-µllvllEµ, Ao:::; A:::;µ, n E IN, v EE'"', 
llfn - Qnfllp1. :::; cn>.-µllfllpµ, Ao :::; A :::; µ, n E IN, 

and under those conditions (1.4) easily follows from (1.3): 

llun - PnullE1.o :::; collAn(Un - Pnu)llp1.o =Co ll(fn - Qnf) + (QnAu - AnPnu)llp1.o 
:::; cn>.o-µ ( llJ I Ipµ + I lullEµ) :::; c'n>.o-µ llullEµ, 

I lun - ullE1.o :::; llun - Pnul IE1.o + llu - PnullE1.o ::; cn>.o-µllullEµ. 

But we are indifferent to this argument assuming in the sequel both (1.3) and (1.4). 

Let us discuss the influence of noises in the data. The noises may be caused e.g. 
by rounding errors preparing the problem to a discretization, measurement errors, and 
modelling errors. As a result, instead of fn and An we have at our disposal some fn,8 E Fn 
and An,e: E £(En, Fn) where the parameters 5 > 0 and e 2:: 0 characterize the level of 
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the noises in the data. A discretization procedure may magnificate these quantities. We 
accept the following model: 

llfn,8-fnllF?.o ~ 5nllfllFµ, nEJN } 
ll(An,~ -An)vnllFAO ~ c~JlvnllEAO ,vn E En' n E JN' 
ll(An,~ - An)vnllFAO ~ cnllvnllEµ' Vn E En' n E JN. 

(1.6) 

Typically 5n ~ cnd5, c~ ~ cndo c, en ~ cnd1 c with d 2:: 0, d0 2:: d1 2:: 0 but also more 
complicated magnifications may occur, e.g., en ~ cnd(log n )c or something else. Actually, 
the establishment of inequalities of type (1.6) will be the main task analyzing the stability 
of concrete discretization methods with respect to the noises. 
Lemma 1.1. Let (1.3) and (1.6) hold. Then for n 2:: n 0 satisfying 

c ~ ~ q cO" 1 
, q E ( o, 1) , (1. 7) 

the operator An,~ is invertible, and for Un,~,8 = A~,;fn,8 and Un = A~1 fn we have 

llun,~,8 - UnllE?.o ~ -1 Co (cnllunllEµ + 5nllJllFµ) · -q 

Proof. It follows from (1.3) and (1.6) that, for n satisfying (1. 7), the stability inequality 
for An,~ holds true: 

Therefore 
Co 

Jlun,~,8 - UnllE?.o < -1 -llAn,~(un,~,8 - Un)llF?.o -q ' 

- -
1 

Co llCJn,8 - fn) +(An -An,~)unllF?.o 
-q 

< -
1

Co (8nllJllFµ+cnllunllEµ). 
-q 

0 

Theorem 1.1. Let A E £(E\ F>.) be an isomorphism for Ao ~ A ~ µ and let f E pµ. 
with some µ > Ao. Let (1.3)-(1.6) hold. Finally, let the following inverse inequality hold: 

I lvnl IE?. ~ c1n>.->.o I lvnl IE?.o , Ao ~ A ~ µ, Vn E En, n E IN. (1.8) 
Then for n 2:: n0 satisfying {1. 7) we have 

llun,~,8 - ullE?. ~ c [n>.-µ + n>.->.0 (cn + 8n)] llullEµ, Ao~ A~µ, (1.9) 

where u = A-1 f E Eµ is the solution of (1.1) and Un,~,8 = A~1~h,n is the solution of (1.2) 
corresponding to the noisy data. 

Proof. First we show that the estimate (1.4) can be extended to E>. norms as follows: 

llun - ul IE?. ~ cn>.-µl lul IEµ, Ao ~ A ~ µ · (1.10) 
Indeed, due to (1.8), (1.5) and (1.4), 

llun - ullE?. < ]lun - Pnul!EA + llu - PnullE?. 
< cn>.->.o I lun - Pnul IE?.o + cn>.-µl lul IEµ 
< cn>.->.o (I lun - ul IE?.o + I lu - Pnul IE?.o) + cn>.-µl lul IEµ 
< c'n>.-µl lul IEµ · 
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Further, using Lemma 2 .1 we find 

llun,~,8 - ullEA < llun,~,8 - UnllEA + llun - ullEA 
< C1n>.->.ollun,~,8 - UnllEAo + c'n>.-µllullEµ. 

< lcoci n>.->.o (enllunllEµ. + 8nllJllFµ.) + c'n>.-µllullEµ. · 
-q 

Noticing that due to (1.10) I !uni IEµ. ~ cl lul IEµ., we obtain (1.9). 
Remark 1.1. If in Theorem 1.1, instead of (1.4), we have 

I lun - ul IE>-o ~ cn>.o-µ log nj lul IEµ., n ~ no, 

then, instead of (1.9), we obtain 

Remark 1.2. If 

then (1.9) yields 

D 

(1.11) 

(1.12) 

The error estimate (1.12) is of the same order as in the case of exact data ( cf. (1.10) ). 
N ~te that conditions ( 1.11) are realistic only in the case of controllable perturbations of 
the data, e.g., in the cases of data compression and/ or numerical integration completing 
a discretization. 

Let us shortly discuss the case of (in general, non-controllable) perturbations of the 
data with a simplest magnification model in (1.6): 

(1.13) 

Then (1.9) takes the form 

llun,~,8 - ul IE>. ~ c ( n>.-µ + nd+>.->.o (c: + 8)) I lullEµ., Ao ~ A ~ µ. 

The best results will be obtained for n such that n>.-µ and nd+>.->.o ( c; + 8) are of the same 
order, i.e. n rv (c: + 8.t1f(d+µ->.o), resulting to 

(1.14) 

This estimate is of highest order for A= Ao: 

(1.15) 

Estimates (1.14) and (1.15) characterize the self-regularization of problem (1.1), if con-
sidered in an ill-posed setting, through its discretizations (1.2). Similar results can be 
easily obtained for more complicated magnification models rather than (1.6), (1.13). 
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2. TRIGONOMETRIC COLLOCATION FOR SYMM'S INTEGRAL EQUATION. 
ERROR BOUNDS IN SOBOLEV NORMS 

Symm's integral equation 

£log Ix - ylv(y)dsy = g(x)' x Er' 

arises from solving the Dirichlet boundary value problem for the Laplace equation in a 
region f2 c IR2 with a Jordan curve r = an as the boundary. We assume that r is 
C00-smooth and we have a C 00-smooth 1-periodic parametrization t -t r(t) : IR -t r of 
r such that h'(t)I =f. 0 for all t E IR. The equation reduces to 

flog l1(t) - 7(s )lu(s )ds = f(t), t E [O, 1], (2.1) 

where u(t) = v(r(t))h'(t)I, f(t) = g(r(t)). It is known that (2.1) is uniquely solvable if 
and only if the capacity of r is different from 1. Introduce the standard representation 

Au := Aou + Bu = f (2.2) 

of (2.1) where 

(Aou)(t) =flog I sill1r(t - s)lu(s)ds, (2.3) 

i { log lr( t) - 1( s) I t =f. 
(Bu)(t) =la b(t,s)u(s)ds, b(t,s) = lsin7r(t- s)I' s, 

0 
· log t lr' ( t) I/ 7r) , t = s . 

(2.4) 

The operator Ao has the property 

{ 

1 . 2 
- --eim 7rt 0 -I- m E 'll 

Aoeim27rt = 2lml ' I ' 

-log2, m = 0. 
(2.5) 

The kernel b( t, s) of the operator B is C 00-smooth and 1-biperiodic. 

Let H\ ;\ E IR, denote the Sobolev space of 1-periodic functions (distributions) on the 
real line with the norm 

where u(m) = f~u(s)e-im211"sds, m E 'll, are the Fourier coefficients of u(t) = 
EmE2Z u(m)eim27rt. Due to (2.5), Ao E £(H\ HA+l) is an isomorphism for all A E IR. 
Since B E £(H\ H">.+1) is compact, the operator A= Ao+ B E £(H\ H'A+l) is also an 
isomorphism for all .:\ E IR (we assume that cap r =f. 1). 

Introduce then-dimensional space of trigonometric functions 
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Let Pn and Qn denote the corresponding orthogonal and interpolation projections, re-
spectively: 

L u(m)eim27l"t E In' 
mEZn 

Qnu E Jn, (Qnu)(jn- 1) u(jn-1), j == 0, ... ,n -1. 

It is known that (see e.g. [9], (12]) 

llu - Pnull>- < Gr-" lluJI,,, >.-:!, µ, u E w, (2.6) 

J [u - Qnu[ [>. < C>.,µn>.-µ[ [u[ [,., 0 -:!, >. -:!, µ, u E H", µ > ~ . (2. 7) 

Introduce the operator ( cf. (2.4)) 
n-1 

(Bnu)(t) == n~ 1 L b(t,jn-1)u(jn-1). 
j=O 

Approximate the equation (2.2) by the equation 

AnUn :== Aoun + QnBnUn == Qnf, Un E fn (2.8) 

(fully discretized trigonometric collocation method). A possible matrix form of (2.8) is 

(An+ Bn)Y.n == f_n 

where Y.n == (un(jn-1 ))j::-J, f_n == (f(jn-1 ))j::J are n-vectors, and An== (akj), Bn == (bkj), 
0 ~ k, j ~ n - 1, are n x n:-matrices with entries · 

We recall the convergence result (see (10]). 

Theorem 2 .1. Assume cap r # 1 and f E Hµ.+1, µ > - ~. Then there is some no such 
that the stability inequality 

llvnll,\ ~ C,\ll(Ao + QnBn)vnll-\+1, Vn E fn, n ~no 

holds for all .A E JR, and 

I lun - ul I>. ~ C>.,µn>.-µ.l lul Iµ, -1 :::; A :::; µ 

for the solutions u == A- 1 f E Hµ. and Un == A;;1 Qnf E In of (2.2) and (2.8), respectively. 

Thus conditions (1.3)-(1.5) with E>. == H\ FA == H-\+1, .A ~ .A0 == -1, are fulfilled. 
Clearly, also (1.8) holds true, and to apply Theorem 1.1, we only have to establish the 
inequalities of type (1.6) corresponding to disturbations of f(t) and 1(t). Assume that 

( n-1 ~ [fo(jn-1) - f(jn-1)12) 
112

-:!, JJ[/Jl,.+1 (2.10) 

l1~(jn- 1 ) -1(jn-1)I:::; £, l1~(jn- 1 ) -1'(jn-1)I:::; ne, j == 0, ... ,n -1. (2.11) 
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Only the grid values off or f8 are used 'in the method (2.8), therefore we may assume 
that f8 = f n,8 E Jn. 
Lemma 2.1. Under the conditions (2.10) we have 

I lh - Qnfl lo ::; 51IJI1µ+1, 
and under the condition (2.11) we obtain 

ll(An,r: - An)vnllo::; c(logn)ellvnllo, Vn ET,., n E IN, 

where An,r: corresponds to the perturbed data (cf. (2.4), (2.8), (2.9)): 
n-1 

An,r: =Ao+ QnBn,r:, (Bn,r:v)(t) = n-1 :E br:(t,jn-1 )v(jn-1), 
j=O 

br:(t,s) = og jsin7r(t-s)j' s, 
{ 

1 br:(t)-fr;(s)I t:f-

log ( b~ ( t) I/ 71") , t = s . 

Proof. It is well known that 

llvnlla = (l\n(t)l2dtt2 = (n-1 %1vnUn-1)12r2

, vn E 1n. 

(2.12) 

(2.13) 

(2.14) 

Since f8 - Qnf ET,., (2.12) is equivalent to (2.10). Let us prove (2.13). Due to (2.14) we 
have 

llvnlla - lll<nll. := ( n-l % lvn(jn-1)12) 
112 

, llAnvnlla = llA..unll., 
llAn,r; - An)vnllo - ll(An,r: -An)Qnll* = ll(Bn,r; - Bn)Qnll* 

< llBn,r: - Bnll*ll~ll* = llBn,e: - Bnll*llvnllo 
where llBnll* is the usual spectral norm of the n x n-matrix. Thus, 

llBn,• - Bnll• ::; max { mf'x n-1 ~ Jb,(kn- 1,jn-1
) - b(kn-1,jn-1 )J, 

m?-X n-1 :E lbr:(kn-1 ,jn-1 ) - b(kn-1,jn-1)1}. 
J k 

It follows from (2.11) that 

lb,(kn-1,jn-1
) - b(kn-1,jn-1 )1 < cl . (kc: .) 1 I, 0::; k,j::; n - 1, k # j, 

S1Il7l" - J n-
lbe:(jn-1, jn-1) - b(jn-1 , jn-1 )I < enc:, 0::; j::; n - 1, 

and this results to 1 IBn,r: - Bnl I* ::; c(log n )c: proving (2.13). 
As a consequence of (2.13) we obtain 

ll(An,e: - An)vnllo ::; C2n(logn)cllvnll-1, 
ll(An,e: - An)vnllo ::; cnmax(O,-µ)(logn)cllvnllµ. 

D 

These are two last inequalities (1.6) in the present case. Now Theorem 1.1 yields the 
following result. 
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Theorem 2.2. Assume the conditions of Theorem 2.1 and (2.10), (2.11). Then for n 2 
no satisfying 

c2n(lcgn)e < q/c_1 , q E (0, 1), 

equation (2.8) with perturbed data is uniquely solvable, and 

llun,t:,8 - ull>- :::=; c [n>.-µ + n>.+l5 + n>.+i+max(O,-µ)(logn)e] !lullµ, -1 :::=;A:::=;µ. (2.15) 

In the case µ 2 0 (2.15) simplifies to the form 

llun,t:,8 - uil>- :::=; c [n>.-µ + n>.+i5 + n>.+i(logn)e] !lullµ, -1 :::=; >. :::=; µ. 

With n f'.J ( e + 8t1/(µ+l) this yields 

llun,t:,8 - ull>- :::=; c [8(µ->.)/(µ+1) + e(µ->.)/(µ+l)j log(e + 8)1] !lullµ, -1 :::=; >. :::=; µ. (2.16) 

The problem (2.1) is ill-posed if considered in H 0 =L2(0,1). The inequality (2.16) with 
>. = 0 characterizes the (self) regularization properties of the discrete collocation method 
(2.8). 

3. ERROR BOUNDS IN HOLDER-ZYGMUND NORMS 

Let 1-l>., >. E IR, be the scale of Holder-Zygmund spaces of 1-periodic functions on 1R 
with the usual Holder-Zygmund norm ( cf. [6, 7, 9]). Let us again consider the procedure 
(2.8) for the numerical solution of Symm's equation (2.1). The following stability and 
error estimates are known ( cf. [7]). · 

Theorem 3.1. Assume cap r I= 1 and f E 1-{,J.'+l, µ > -1. Then there is an n 0 such that 
for n > n 0 the stability inequality 

(3.1) 

and the error estimate 

(3.2) 

hold for -l < >. :::=; µ < oo where u = A-1 f E 1-lµ and Un = A;,1Qnf E Tn are the 
solutions of (2.2) and (2.8), resp. D 

Thus, the conditions (1.3)-(1.5) with E>. = 1-l\ p>- = 1-l>-+i, ). 2 ).0 = -1 +a, a > 0, 
are fulfilled. Also the inverse inequality (1.8) holds in the form 

I lvnl 11£:\ :::=; cn>.-µl lvnl lw1. , Vn E Tn, )., µ E 1R, µ :::=; A· (3.3) 

Now, let us consider disturbed data with the property 

(3.4) 

where 8 > 0, j = 0, ... , n - 1 and f8(jn- 1 ) is a disturbation of f(jn- 1 ). The goal now is 
to verify the estimates (1.6)-(1.8) in the case of Holder-Zygmund norms. It is crucial for 
that to have estimates in the C-norm. 
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Lemma 3.1. From the assumption (3.4) we obtain 

( n-1 o~~-1 lf.;(jn-1) - f(jn-1)12) 1/2::; OllJll1£µ+i (3.5) 

and 

(3.6) 
where µ > -1 and fa is the trigonometric interpolation polynomial of the data fo(jn- 1 ). 

Proof. We have 

lfo - Qnflc = IQn(fo - f)lc < c(logn) ~ax lfo(jn-1 ) - f(jn- 1 )1 
O~J~n-1 

< c(logn)8llfllw,+1. 

Lemma 3.2. The assumptions (2.11) imply 

l(An,t: - An)vlc:::; c(logn) 2c:lvlc, v E C. 

Proof. We estimate 

l(An,e - An)vlc 

< c(logn)m:xn-1 ~ lbe(kn-1 ,jn-1)-b(kn-1 ,jn-1 )j lvlc 
J 

< c1(log n )2c:lvlc, 
cf. the proof of Lemma 2.1. 

Using the inverse inequality (3.3) for s > 0 

lvnlc:::; cn9 llvnll1£-a, Vn E Tn 
and the imbedding 1-{,8 C C, s > 0, we obtain from Lemma 3.2 the estimate 

l(An,t: - An)vnlc:::; c(logn) 2nmax(O,-s)ellvnll1£a, Vn E Tn 
for s E IR. By applying the inverse inequality (3.3) to (An,e - An)vn E Tn this gives 

D 

(3.7) 

D 

ll(An,e -An)vnll1£cr:::; c(logn) 2nu+max(O,-s)ellvnll1la' Vn E Tn' s E IR (3.8) 

where a > 0 may be taken arbitrarily small. This is the last inequality of (1.6) in the 
present case with .:\0 = -1 + a. 

Now, let again Un be the solution of the discretized problem (2.8) and Un,e,8 be the 
solution of the perturbed problem. From the estimates (3.6), (3.7) and (3.8) we will 
derive error estimates in Holder-Zygmund norms. 

Theorem 3.2. Let the assumptions of Lemmas 3.1 and 3.2 be fulfilled. We obtain for 
f E 1-lµ+l and n 2:: no, -1 < ). :::; µ < co, 

llu - Un,e,8111£:>.:::; c [n>.-µ(logn) + n>.+i(logn)8 + n>.+l+max(O,-µ)(logn) 2e] llullwL. (3.9) 
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Proof. In analogy to the proof of Theorem 1.1 for ..X0 = -1 + O', O' > 0, using (3.3) and 
(3.8) and the Lemmas 3.1 and 3.2. D 

Finally, let us describe the error estimate (3.9) in dependence of the noise levels 8 and 
e where n is taken as a suitable function n( 8, e ). 

Theorem 3.3. Let the assumptions of Lemmas 3.1 and 3.2 be fulfilled andµ ~ 0. If we 
take 

n r-...J ( e + 8t1 f(µ+l) 

we obtain, for n > no and f E 1-lµ+l, 

I lu - Un,e:,8111£:>. :::; c( e + 8) (µ->.)/(µ+l)(log( e + 8) )2 llullwL. 

4. A QUADRATURE METHOD. ERROR BOUNDS IN SOBOLEV NORMS 

(3.10) 

(3.11) 

Here we are concerned with the quadrature formula method considered by Saranen and 
Schroderus [11] for an exactly given operator and an exactly given right-hand side. In 
the special case of Symm's equation we impose errors to the data and investigate their 
influence on the approximated solution. 

Let us approximate the solution of the equation (2.2) by the solution Un E In of 

where 

K(t, s) 

{3( t) 

Qn (~ ~ K(t,jn- 1)(u(jn-1
) - u(t)) + JJ(t)u(t)) 

log !r(t) - r(s)I 

l K(t,r)dr, 

( 4.1) 

r is the considered parametrization of the 0 00-curve r' and Qn is the operator of trigono-
metric interpolation. The vector '.!kn E Cn 

( ( · -l))n-1 '.!kn= Un Jn i=O 
is the solution of the equation 

Vn'.!bi = (J (kn-l) )f::6 
where Vn is the matrix with the entries dk,j, k,j =. 1, ... , n, 

{ 

~K(kn- 1 , jn- 1 ), 

dk,i = {3(kn- 1 ) - ~ 2:: K(kn-1 , vn-1 ), 
v#k 

k-:j:j 

k =j. 

Let us recall the stability inequality and the convergence result from [11]: 

(4.2) 

Theorem 4.1. Assume cap r -:j: 1 and f E Hµ+l, µ > -1/2. Then there is an no such 
that for n > n 0 the stability inequality 

llvnll>.:::; C>.llDnvnll>.+i, Vn E Jn, 
holds for ..X E IR and the error estimate 

llun - ull>.:::; G>.,µn>.-µllullµ 
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( 4.4) 

(4.5) 



holds for -l ~ .:\ < µ ~ .:\ + 2, where u and Un are the solutions of (2.2) and (4.1), 
respectively. 

The method ( 4 .. 2) is not fully discrete. To obtain a fully discrete method we approximate 
the integral (see (2.4)) 

f3(t) = fo11og h(t) -1(s) Ids = fo\(t, s )ds + fo11og I sin 7r(t - s )Ids 

= l b(t,s)ds + log2 

by 
1 f3n(t) == - I: b(t, ln-1 ) +log 2. 
n 09~n-l 

Then dk,k (see (4.3)) will be approximated by dk,k, where 

Thus, 

dk,k: = f3n(kn- 1
) - ~ I: log ['Y(kn-1

) -1(ln-1)1 

1 
log 2 - -

n 

O~l~n-1 

l::j:k 

1 I '(kn-1)1 log I sin 7r(k - l)n-1
1 +-log 'Y . 

n 7r . 

Lemma 4.1. For any r > 0 there is a constant er such that 

max ldk k - dk kl < Crn-r. 
l~k~n-1 ' ' -

Proof. Since b( t, s) is C 00-smooth and 1-biperiodic, 

~~1 lf3n(t) - (3( t) I :::; ~fti_ f lb( t, S) - Qn,,b( t, S) Ids :::; Crn-r , 

and ( 4. 7) follows immediately. 

Corollary 4.1. Theorem 4.1 remains valid for the fully discrete method ( 4.2) with 

l 1 K(k -1 . -1) k -t . - n ,Jn , r J, 
n 

dk · == 1 1 h' (kn - 1 ) I 
'
1 log 2 - - L: log I sin 7rmn - l I + - log , k == j . 

n l~m~n-1 n 7r 

(4.6) 

(4.7) 

D 

(4.8) 

In what follows we consider the fully discret method ( 4.2), ( 4.8). Let us turn to the 
perturbed data. Then (2.10) again yields (2.12), and from (2.11) we get the following 
L2-estimate for Dn,e - Dn. 

Lemma 4.2. For Dn corresponding to ( 4.8), the conditions (2.11) imply 

ll(Dn,e - Dn)vllo ~ c(logn)ellvllo, v E ln. (4.9) 
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Proof. In the same way as in Section 2 we obtain 

ll(Dn,~ - Dn)vnllo ::; ll'.Dn,~ - '.Dnll•llvnllo 
and 

IJ'.Dn,~ - '.DnlJ* < max {mkax2: ldk,j - dk,il, m?-XL Jdk,j - dk,il} 
j J k 

< mrx~ ld%,j - dk,jl 
J 

because of the symmetry of the kernel K. We estimate 

We have 

L ldk,j -dk,jl ~ L IK~(kn- 1 ,jn- 1 ) - K(kn-1,jn-1)1 
j n i# 

1 + -I log b~(kn-1 )J - log b'(kn-1)11 
n 

< ~ L I Ke (kn -l, jn -l) - K (kn -l, jn -l) I + cc; . 
ni# 

I K~ (kn -l, j n - l) - K (kn -l, jn - 1) 1 · 

= jlog b(kn-1) -1'(jn-1)J - log be(kn-1) -1'~(jn- 1 )lj 

- 1 b(kn-1) - ,(jn-1) I -1 lre(kn-1) - 1~Un-1) I 
- og lsin7r(kn-1--jn-1)1 og lsin7r(kn-1 -jn-1)1 

Therefore, in the same way as in Section 2 we obtain 
1 - L IK~(kn- 1 ,jn- 1 ) - K(kn-1,jn-1 )I ::; c · c; ·log n, 
ni# 

and the Lemma follows. 

From ( 4.9) we obtain the inequality 
ll(Dn,e - Dn)vnllo::; cnmax(O,-µ)(logn)cllvnllµ. 

0 

(4.10) 
Theorem 4.2. Let the assumptions (2.10) and (2.11) be fulfilled and let f E H"'+l, 
µ > -~. Then for n 2:: n 0 we have 

llun,e,8 - uJJ>.::; c [n>.-µ + n>.+l5 + n>.+l+max(O,-µ)(logn) · c:] !lullµ (4.11) 

for -1::; A<µ::; A+ 2. In the caseµ 2:: 0 (4.11) has the form 

I lun,~,8 - ull>. ::; c [ n>.-µ + n>.+18 + n>.+i (log n) · c] I lullµ. ( 4.12) 

Proof: Apply Theorem 1.1 using (2.12), ( 4.10). 
Theorem 4.3. Let the assumptions (2.10), (2.11) be fulfilled and let f E H"'+l, µ 2:: 0. 
If we choose 

we obtain for n > no 
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~ Jiu - Un,~,811>-::; c(e + 5) µ+i ·I log(e + 5)1 llullµ 
where -1 ::; A < µ ::; ), + 2. 
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