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ABSTRACT. A functional type a posteriori error estimator for the finite element discretisation of the sta-
tionary reaction-convection-diffusion equation is derived. In case of dominant convection, the solution
for this class of problems typically exhibits boundary layers and shock-front like areas with steep gradi-
ents. This renders the accurate numerical solution very demanding and appropriate techniques for the
adaptive resolution of regions with large approximation errors are crucial. Functional error estimators
as derived here contain no mesh-dependent constants and provide guaranteed error bounds for any
conforming approximation. To evaluate the error estimator, a minimisation problem is solved which
does not require any Galerkin orthogonality or any specific properties of the employed approximation
space. Based on a set of numerical examples, we assess the performance of the new estimator. It is
observed that it exhibits a good efficiency also with convection-dominated problem settings.

1. INTRODUCTION

The aim of this paper is to derive a functional type a posteriori error estimator for the reaction-
convection-diffusion equation of the form

− divA∇u+ a · ∇u+ ρ2u = f

defined on some Lipschitz domain Ω ⊂ R2. This equation describes the transport of some scalar
quantity u by a diffusion with coefficient A, a convection with regard to vector field a and some
reaction with coefficient ρ2 which models creation or depletion of the quantity u. The term f on the
right-hand side models a source or sink. We assume the coefficients to be chosen appropriately for
a solution to exist. In practical applications, the convection often dominates the process and makes
the problem difficult to solve accurately numerically. This is due to so-called layers which arise in
the solution. These are regions where the solution exhibits steep gradients which present a serious
challenge for numerical (and also analytical) methods. Layers can appear within the domain as well
as at the boundaries. Since they are critical for an accurate approximation of the solution, adequate
techniques to resolve such layers are required. A possible approach is the application of a posteriori
error erstimators. These can be used to steer an adaptive mesh refinement with the aim to identify
regions where the error of the approximation is high. Moreover, they provide a measure for the quality
of the numerical approximation.

Adaptivity in the numerical solution for partial differential equation has become a common require-
ment in practical computations and a broad range of estimators has been developed, see e.g. [AO00,
Ver96, NR04, BS01]. In recent years, the goal to derive sharp bounds without unknown constants
has evolved and lead to some very efficient estimators which are often based on flux equilibration
techniques. Functional type error estimators as presented in this work were introduced in [Rep97,
Rep00, Rep01] and further developed in a series of articles and books, see [Rep08b, Rep07, RS06]
and also [RS11, RSS12]. In these error estimators, Galerkin orthogonality of the numerical solution
is not required and they can be derived without unknown constants in the estimate. For the model
equation used in this article, recent advances in this area [Rep08a] have not yet been applied and
demonstrated which we intend to remedy. It is shown that reliable, efficient and robust functional error
estimators can be derived for the reaction-convection-diffusion problem.

For an adaptive refinement algorithm, an error estimator η can be used, if η identifies the regions in
the domain where the numerical solution uh should be improved, i.e. where the approximation error
e := u− uh is large. This requires the error estimator to be defined by local contributions ηT on all
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elements T ∈ T such that

η2 :=
∑
T∈T

η2
T .

The aim is to control the global error e in some norm |||·||| such that

|||e||| < ε

with some small ε > 0. An adaptive algorithm based on the error estimator η stops when the
threshold ε is reached, i.e. the solution has achieved sufficient accuracy.

For the examined second order equations, the discrete solution may deteriorate at local singularities
which e.g. arise from boundary layers, sharp shock-like fronts or corners in the domain. The mesh is
expected to be adaptively refined in such critical areas of the domain. This will be examined in the
numerical examples in Section 5. It turns out that the adapted meshes produced on the basis of the
functional error estimator resolve the layers of the problems very precisely.

Notation. Throughout this paper, the common notation for Sobolev spaces defined on a domain Ω
is used [Ada75, Bra07, BS08]. The space of quadratically integrable functions is denoted by L2(Ω),
the Sobolev space H1(Ω) of functions with additional L2 integrable first order weak derivatives. The
L2 scalar product is denoted by (u, v) :=

∫
Ω
uv dx and the induced norm by ‖·‖. Moreover, let

H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0}

and

H(Ω, div) := {y ∈ L2(Ω,R2) | divy ∈ L2(Ω)}.

We assume a piecewise domain Ω ⊂ R2 and its regular partition T into triangles T ∈ T with
edges E ∈ E and the set of vertices N . Any two triangles of T share at most one common edge
or two vertices and all triangles are shape regular, i.e., the ratio of the smallest circumscribed circle
and the largest circle inscribed is bounded by a constant which does not depend on the triangle for
any T ∈ T . We denote by h the mesh-size function which is defined by h := hT := diam(T ) on
T ∈ T . The jump of v ∈ L2(Ω) along some edge E ∈ E is denoted by [v]E and the outer unit
normal vector with regard to E is denoted by νE .

The patch of some node z ∈ N or an edge E ∈ E is defined by ωz := {T ∈ T | z ∈ T} or
ωE := {T ∈ T | E ∈ T}, respectively. Moreover, we define the discrete spaces

Vh :=
{
v ∈ C(Ω) | ∀T ∈ T v|T ∈ P1(T ) and v = 0 on ΓD

}
and V 2

h := Vh × Vh,

where Pk, k ∈ N, is the space of polynomials of maximal degree k.

Outline. The paper is organised as follows. In the next section, the reaction-convection-diffusion
equation and required properties are defined. Moreover, a classic stabilised FEM discretisation for
convection dominated problems, the streamline diffusion method (SDM, see [Joh90]), is introduced.
In Section 3, our new functional type a posteriori error estimator is derived. Section 4 recalls some
classical a posteriori error estimators which are still used frequently in practice due to their simplicity.
The numerical experiments of Section 5 demonstrate the performance of our estimator with a set of
benchmark problems.
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2. MODEL PROBLEM AND DISCRETISATION

In this section we introduce the model problem under consideration and describe a stabilised dis-
cretisation with the Finite Element Method (FEM).

2.1. Model Problem. We consider the stationary linear reaction-convection-diffusion problem

− divA∇u + a · ∇u + ρ2u = f in Ω,

u = u0 on ΓD,

A∇u · n = F on ΓN .

(2.1)

on a connected bounded domain Ω ⊂ R2 with Lipschitz boundary Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅,
consisting of some Neumann boundary part ΓN and some Dirichlet boundary ΓD of positive measure
meas(ΓD) > 0. The Dirichlet boundary function u0 is assumed to be sufficiently smooth and well
approximated on ΓD in the discrete space of the solution. Moreover, we assume f and F to be
sufficiently smooth. The diffusion tensor A = (aij), i, j = 1, 2, is symmetric and positive definite
with

(2.2) c1 |ξ|2 ≤ Aξ · ξ ≤ c2 |ξ|2 for any ξ ∈ R2.

The vector-valued function a satisfies the conditions

a ∈ L∞(Ω; R2), div a ∈ L∞(Ω), div a ≤ 0

and

ρ ∈ L∞(Ω), ρ < ρ⊕, −1

2
div a + ρ2 =: λ2 ≥ λ2

0.

We set

κ(x) :=
1

2
(a · n)(x),

and assume that the function κ is defined at almost all points on the boundary Γ. Moreover, the
inflow part of the boundary is a subset of ΓD, i.e., {x ∈ Γ | (a · n)(x) < 0} ⊂ ΓD.

The solution u of (2.1) is defined as a function in the space V0 + u0, where

V := H1(Ω) and V0 := {v ∈ V | v = 0 on ΓD}.

The variational formulation of (2.1) reads: Find u ∈ V0 + u0 such that

a(u,w) = `(w) for all w ∈ V0(2.3)

with

a(u,w) := (A∇u,∇w) + (a · ∇u+ ρ2u,w),

`(w) := (f, w) + (F,w)ΓN
.

One can prove by standard arguments that the solution u ∈ V0 + u0 of (2.3) exists and is unique,
cf. [BS08, Bra07]. Furthermore, u continuously depends on the data with respect to the energy norm
defined by

(2.4) |[u− v]| :=
(
|||∇(u− v)|||2 +

∫
Ω

λ2(u− v)2dx +

∫
ΓN

κ(u− v)2ds

)1/2

.
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Here,

(2.5) |||q||| :=
(∫

Ω

Aq · q dx
)1/2

for any vector-valued function q ∈ L2(Ω; R2). We also introduce the norm

(2.6) |||q|||∗ :=

(∫
Ω

A−1 q · q dx
)1/2

which is equivalent to the norm (2.5) due to (2.2).

2.2. FEM Discretisation. With some discrete approximation uh,0 ∈ Vh of the Dirichlet data u0, we
consider the FEM discretisation of the weak formulation (2.3): Find uh ∈ Vh + uh,0 such that

(2.7) a(uh, vh) = `(vh) for all vh ∈ Vh.

For the common case of dominant convection, the standard finite element method (FEM) is not a
stable discretisation. This can be observed by the appearance of spurious oscillations in the solution.
To circumvent this unphysical behaviour, the stability of the discretisation is increased by the addition
of artificial diffusion to the standard weak form of the (hyperbolic) problem. For this, as a common
and established stabilisation technique, we recall the streamline diffusion method (SDM). We refer
to [EJ93, Joh90, JNP84] for details on the SDM and also to [HB79, HMM86] for the streamline-upwind
Petrov-Galerkin method (SUPG).

The numerical experiments in Section 5 employ the standard SDM which exhibits good stability prop-
erties and high order accuracy. Instead of a test function v as noted above, we now use w which has
an additional modification term that accounts for the vector field a,

w = v + δa · ∇v.

Several choices for the scaling δ are discussed in the literature. Usually it is expressed as a function
of the local Péclet number Peh which depends on the local mesh size hT and the coefficient a,

δ =
hT
2|a|

ζ(Peh).

For our computations we use ζ(Peh) := max{0, 1− 1/(2Peh)} as in [PV00], also see [EJ93].

With the SDM discretisation, the modified bilinear and linear forms for the system (2.7) read

aSDM(uh, vh) := a(uh, vh)−
∑
T∈T

(divA∇uh, δa · ∇vh)T + (a · ∇uh + ρ2uh, δa∇vh),

`SDM(vh) := `(vh) + (f, δa · ∇vh).

3. FUNCTIONAL ERROR ESTIMATOR

3.1. General upper bound of the energy norm. In this section we are concerned with a general
functional a posteriori error estimator for reaction-convection-diffusion problems of the form (2.1).
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Here, we recall the derivation of this general estimate which was presented in [NR07] and [Rep08b]
for the reader’s convenience. At first, we observe that for any v ∈ V∫

Ω

(div a) (u− v)2 dx =

∫
ΓN

a · n (u− v)2 ds −
∫

Ω

a · ∇(u− v)2 dx

=

∫
ΓN

2κ (u− v)2 ds −
∫

Ω

2 (a · ∇(u− v)) (u− v) dx,

and, therefore,∫
Ω

(
(a · ∇(u− v))(u− v) + ρ2(u− v)2

)
dx =

∫
Ω

λ2(u− v)2dx+

∫
ΓN

κ(u− v)2ds.(3.1)

As exemplified in [NR07, Rep08b], with w = u − v , the weak formulation (2.3) of the reaction-
convection-diffusion problem has the form

∫
Ω

(
A∇(u− v) · ∇(u− v) + (a · ∇(u− v))(u− v) + ρ2(u− v)2

)
dx =∫

Ω

(f − (a · ∇v)− ρ2v)(u− v) dx −
∫

Ω

A∇v · ∇(u− v) dx +

∫
ΓN

F (u− v) ds.

(3.2)

We deduce with (3.1) that the left-hand side of (3.2) is equivalent to the squared energy norm (2.4)
and recall that for all

y ∈ Q := H(Ω, div) = {q ∈ L2(Ω,R2) | div q ∈ L2(Ω), q · n ∈ L2(ΓN)}
the equation∫

Ω

(
w div y + y · ∇w

)
dx =

∫
ΓN

(y · n)w ds for all w ∈ V0 := H1
0 (Ω)

holds. Thus, (3.2) yields the following representation of the energy norm

|[u− v]|2 =

∫
Ω

rΩ(v, y)(u− v) dx +

∫
Ω

(y − A∇v) · ∇(u− v) dx+

∫
ΓN

(F − y · n)(u− v) ds

(3.3)

with

(3.4) rΩ(v, y) := f − a · ∇v − ρ2v + div y.

We denote the first term of (3.3) by

I1 :=

∫
Ω

rΩ(v, y)(u− v) dx.

Application of Hölder and Friedrichs’ inequalities yields

I1 =µ

∫
Ω

rΩ(v, y)(u− v)dx+ (1− µ)

∫
Ω

rΩ(v, y)(u− v) dx

≤µ
∫

Ω

rΩ(v, y)(u− v)dx+ (1− µ) ‖rΩ(v, y)‖L2(Ω) c
−1
1 CF,Ω |||∇(u− v)||| ,

(3.5)

where 0 ≤ µ ≤ 1 and CF,Ω is the Friedrichs’ constant defined by

CF,Ω := sup
w∈V0\{0}

‖w‖Ω

‖∇w‖Ω

.
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If we set µ = 0 in case of λ = 0 and choose µ arbitrarily in (0, 1) in all other cases, the values
of the integral (3.5) can be estimated by

I1 ≤µ
∥∥∥∥1

λ
rΩ(v, y)

∥∥∥∥
L2(Ω)

‖λ (u− v)‖L2(Ω) + (1− µ) ‖rΩ(v, y)‖L2(Ω) c
−1
1 CF,Ω |||∇(u− v)||| .

(3.6)

For the second integral of (3.3), we set

I2 :=

∫
Ω

(y − A∇v) · ∇(u− v) dx

and find by the Hölder inequality

I2 ≤ |||y − A∇v|||∗ |||∇(u− v)||| .(3.7)

Finally, we define

I3 :=

∫
ΓN

(F − y · n)(u− v) ds

and obtain for 0 ≤ ν ≤ 1

I3 ≤ ν

∫
ΓN

(F − y · n)(u− v) ds + (1− ν) ‖(F − y · n)‖L2(ΓN ) c
−1
1 CT,ΓN

|||∇(u− v)||| ,

where CT,ΓN
is a constant from the trace inequality such that

‖w‖L2(ΓN ) ≤ CT,ΓN
‖∇w‖L2(Ω) for all w ∈ V0.

The factor ν can be chosen arbitrarily in the interval (0, 1). With ν = 0 for κ = 0, we arrive at the
estimate

I3 ≤
∥∥∥∥ ν√

κ
(F − y · n)

∥∥∥∥
L2(ΓN )

∥∥√κ (u− v)
∥∥
L2(ΓN )

+ (1− ν) ‖(F − y · n)‖L2(ΓN ) c
−1
1 CT,ΓN

|||∇(u− v)||| .
(3.8)

We define

C1 := c−1
1 CF,Ω and C2 := c−1

1 CT,ΓN
.

With (3.6)-(3.8) we obtain

|[u− v]|2 ≤

(∥∥∥µ
λ
rΩ(v, y)

∥∥∥2

L2(Ω)
+ |||y − A∇v|||2∗ +

∥∥∥∥ ν√
κ

(F − y · n)

∥∥∥∥2

L2(ΓN )

)1/2

×
(
‖λ(u− v)‖2

L2(Ω) + |||∇(u− v)|||2 +
∥∥√κ(u− v)

∥∥2

L2(ΓN )

)1/2

+
(
C1(1− µ) ‖rΩ(v, y)‖L2(Ω) + C2(1− ν) ‖(F − y · n)‖L2(ΓN )

)
|||∇(u− v)||| ,

which implies

|[u− v]| ≤

(∥∥∥µ
λ
rΩ(v, y)

∥∥∥2

L2(Ω)
+ |||y − A∇v|||2∗ +

∥∥∥∥ ν√
κ

(F − y · n)

∥∥∥∥2

L2(ΓN )

)1/2

+ C1(1− µ) ‖rΩ(v, y)‖L2(Ω) + C2(1− ν) ‖(F − y · n)‖L2(ΓN ) .

(3.9)
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The right-hand side of the general error majorant (3.9) contains three free parameters µ, ν, and y .
It can be optimized with respect to them based on some numerical approximation uh of the model
problem (2.7).

In the following subsection, we demonstrate particular representations of this estimate which can be
advantageous for different parameter settings of the reaction-convection-diffusion problem.

3.2. Particular cases of the error majorant. One obtains particular forms of (3.9) by specific
choices for the parameters µ and ν.

(a) For λ2 < 1 and κ < 1, one can choose µ = λ and ν =
√
κ. It follows

|[u− v]| ≤
(
‖rΩ(v, y)‖2

L2(Ω) + |||y − A∇v|||2∗ + ‖(F − y · n)‖2
L2(ΓN )

)1/2

+ C1 ‖(1− λ) rΩ(v, y)‖L2(Ω) + C2

∥∥(1−
√
κ)(F − y · n)

∥∥
L2(ΓN )

.
(3.10)

(b) If the parameters λ2 and κ exhibit large oscillations, the choice µ = ν = 0 can be beneficial.
In this case, we obtain

(3.11) |[u− v]| ≤ |||y − A∇v|||∗ + C1 ‖ rΩ(v, y)‖L2(Ω) + C2 ‖(F − y · n)‖L2(ΓN ) .

This estimate does not contain λ2 and κ to some negative power and, hence, is stable even for
small values of these parameters.

(c) If the parameters λ2 and κ exhibit large oscillations, one can additionally set ν =
√
κ and

µ = λ in those parts of Ω where λ2 and κ are small, e.g. see [NR07].
(d) Setting µ = ν = 1, we obtain

(3.12) |[u− v]| ≤

(∥∥∥∥1

λ
rΩ(v, y)

∥∥∥∥2

L2(Ω)

+ |||y − A∇v|||2∗ +

∥∥∥∥ 1√
κ

(F − y · n)

∥∥∥∥2

L2(ΓN )

)1/2

,

which is advantageous for reaction-convection-diffusion problems with dominant convection term.
This estimation does not contain the constants from the trace and Friedrichs’ inequalities and thus
can be employed to obtain guaranteed bounds in many applications. Furthermore, it contains the
constant c1 to some negative power.

3.3. An advanced form of the error majorant. In practical applications it is useful to have an error
estimation which is stable with respect to small values of λ2 and κ but at the same time is applicable
to problems with dominant convection. Such an error estimate is the main result in this paper.

Theorem 3.1. (A guaranteed stable energy norm a posteriori error estimator)

Let u be the exact solution of problem (2.1) and let v ∈ V0 + u0, y ∈ H(Ω, div) and α, β ∈ R
be arbitrary. Then

|[u− v]|2 ≤M2
Ω(v, y, α, β) := ηNB + ηDF + ηRES,(3.13)

where the first term of the right hand side comes from the boundary value estimation and is defined
by

ηNB := (1 + α)(1 + β)

∫
ΓN

C2
2 (F − y · n)2

α(1 + β) + κC2
2

ds.
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The second term is related to the diffusion flux estimator and is given by

ηDF := (1 + α)(1 + β) |||y − A∇v|||2∗ .

The third term is a measure of the residual of the differential equation computed for an approximate
solution v and a “flux” y and is defined by

ηRES := (1 + α)(1 + β)

∫
Ω

C2
1r

2
Ω(v, y)

β + λ2C2
1

dx.

Proof. To prove the theorem, we minimise the right-hand side of (3.9) with respect to the parameters
µ and ν. We square the sum of the first two terms of (3.9) and employ Young’s inequality with some
positive β and note that the minimum of

(1 + β)µ2

∫
Ω

1

λ2
r2

Ω(v, y) dx+
(

1 +
1

β

)
C2

1(1− µ)2

∫
Ω

r2
Ω(v, y) dx

with regard to µ is equal to ∫
Ω

(β + 1)C2
1 r

2
Ω(v, y)

β + λ2C2
1

dx.

This leads to

|[u− v]| ≤

√
(1 + β)

(
|||y − A∇v|||2∗ + ν2

∫
ΓN

1

κ
(F − y · n)2 ds +

∫
Ω

C2
1 r

2
Ω(v, y)

β + λ2C2
1

dx

)
+ C2(1− ν) ‖(F − y · n)‖L2(ΓN ) .

(3.14)

In order to optimize (3.14) with respect to ν, we again apply Young’s inequality with a positive param-
eter and consider the terms containing the function ν. A straightforward calculation of the minimum
of

(1 + α)ν2

∫
ΓN

1 + β

κ
(F − y · n)2 ds +

(
1 +

1

α

)
C2

2(1− ν)2

∫
ΓN

(F − y · n)2 ds

concludes the proof. �

3.4. Computation of the majorant. To estimate the energy norm |[u − v]|, we need to evaluate
the terms in (3.13) to obtain some flux approximation y as well as parameters α and β. For the
diffusion equation, methods for the determination of β and the flux approximation y based on
some discrete solution v have already been discussed in the literature (e.g., see [NR04, Rep07,
Rep08b, Rep06, RS06]). Below we briefly discuss the application of these methods to our case. We
emphasize that any choice (α, β, y) ⊂ R×R×H(Ω, div) in the error majorant (3.13) results in
a guaranteed upper bound of the error. However, sharp estimates require a sensible choice of these
quantities. Moreover, a strategy needs to be devised which balances the extra computational cost
with the benefit of sharper estimates. A possible approach is presented in this section.

If the values of A, a, F, f, and CΩ are known then M2
Ω(v, y, α, β) is a quadratic functional

with respect to y . Our goal is to find some discrete yh ∈ V 2
h ∩ H(Ω, div) and α, β ∈ R such

that M2
Ω(v, yh, α, β) is close to the minimum over y ∈ H(Ω, div). Minimization with respect

to α and β is an algebraic problem. We introduce some additional notation for the corresponding
iterative algorithm.
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For every vertex z ∈ N of the triangulation Th, denote by Pz := {τ ∈ Th : z ∈ τ } the

neighboring elements. Moreover, y(0)
h ∈ V 2

h is defined implicitly from the patchwise flux averaging
by the nodal condition

(3.15) y
(0)
h (z) :=

1

|ωz|

∫
ωz

A∇v dx.

For all vertices zj ∈ N , 1 ≤ j ≤ N, let M2
Ω,ωzj

(v, yh, α, β) be the contribution of the patch ωzj

to the majorant M2
Ω(v, yh, α, β). The first algorithm carries out a global optimisation procedure in

order to determine appropriate parameters for the error estimator.

Algorithm 1: Global minimization of the error majorant
input : iterations νmax > 0
output: error majorantM2

Ω

y
(0)
h (z)← 1

|ωz |

∫
ωz
A∇v dx

α(0) ← 1

β(0) ← 1
for ν = 1, . . . , νmax do

1 y
(ν)
h ← argmin

w∈V 2
h

M2
Ω(v, w, α(ν−1), β(ν−1))

2 α(ν) ← argmin
α∈R+

M2
Ω(v, yνh, α, β

(ν−1))

3 β(ν) ← argmin
β∈R+

M2
Ω(v, yνh, α

(ν), β)

end

Calculate M2
Ω(v, y

(νmax)
h , α(νmax), β(νmax))

With M2
Ω(v, y, α, β) from (3.13), a minimisation with respect toα according to line 2 in Algorithm 1

yields the relation∫
ΓN

C2
2 (F − y · n)2 (κC2

2 − 1− β)

(α (β + 1) + κC2
2)2

ds = −
∫

Ω

C2
1 r

2
Ω(v, y)

β + λ2C2
1

dx− |||y − A∇v|||2∗ .(3.16)

Similarly, for β in 3 of Algorithm 1, we obtain∫
ΓN

C4
2 κ (F − y · n)2

(α (β + 1) + κC2
2)2

ds +

∫
Ω

C2
1 r

2
Ω(v, y) (λ2C2

1 − 1)

(β + λ2C2
1)2

dx = − |||y − A∇v|||2∗ .

A minimisation of M2
Ω(v, y, α, β) with respect to y according to line 1 in Algorithm 1 reveals∫

ΓN

C2
2 〈y · n, η · n〉

α (1 + β) + κC2
2

+

∫
Ω

〈A−1 y, η〉+

∫
Ω

C2
1 〈div y, div η〉
β + λ2C2

1

=

∫
ΓN

C2
2 〈F, η · n〉

α (1 + β) + κC2
2

+

∫
Ω

〈∇uh, η〉 −
∫

Ω

C2
1 〈f̃ , div η〉
β + λ2C2

1

(3.17)

with test functions η and f̃ := f − a · ∇v − ρ2 v. We note that the global minimization in line 1
of Algorithm 1 requires the assembly and solution of a linear system (3.17) of dimension 2N . On
the one hand, we expect that the computational costs are of the same order as the cost to compute
the discrete solution v. On the other hand, one could save memory (at the expense of less sharp
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estimates) if line 1 in Algorithm 1 would be replaced by a few steps of a Gauss-Seidel type iteration
from line 1 of Algorithm 2.

In the following, an algorithm based on the solution of local minimisation problems is depicted.

Algorithm 2: Local minimization of the error majorant
input : iterations νmax, ιmax > 0
output: error majorantM2

Ω

y
(0)
h (z)← 1

|ωz |

∫
ωz
A∇v dx

α(0) ← 1

β(0) ← 1
for ν = 1, . . . , νmax do

γ
(0)
N ← y

(ν−1)
h

1 for i = 1, . . . , ιmax do

γ
(i)
0 ← γ

(i−1)
N

for j = 1, . . . , N do

vj ← argmin
w∈S2

j

M2
Ω,ωzj

(v, γ
(i)
j−1 + w, α(ν−1), β(ν−1))

γ
(i)
j ← γ

(i)
j−1 + wj

end
end

y
(ν)
h ← γ

(ιmax)
N

α(ν) ← argmin
α∈R+

M2
Ω(v, yνh, α, β

(ν−1))

β(ν) ← argmin
β∈R+

M2
Ω(v, yνh, α

(ν), β)

end

Calculate M2
Ω(v, y

(νmax)
h , α(νmax), β(νmax))

4. OTHER ESTIMATORS

We recall some classic a posteriori error estimators [Ver96, AO00, BS01] in order to compare them
with the new functional type error estimator derived in the previous section. Comparative studies with
these estimators for the model problem at hand have also been carried out elsewhere, e.g. in [PV00]
and [Joh00].

4.1. Residual Error Estimator. The residual of equation (2.1) for the error e = u− uh with regard
to the discrete solution uh ∈ Vh gives rise to the residual error estimator. Define the volume and
edge residuals RT and RE for any v ∈ Vh, T ∈ T and E ∈ E by

RT (v) := f + divA∇v − a · ∇v − ρ2v on T,

RE(v) :=


[A∇v · νE]E for E in Ω,

F − A∇ · νEv for E on ΓN ,

0 for E on ΓD.
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For some element T ∈ T , the local residual estimator is defined by

η2
R,T (v) := α2

T‖RT (v)‖2
L2(T ) +

∑
E∈∂T

αE‖RE(v)‖2
L2(E).

with some weights αT , αE > 0. It can be shown that the resulting global error estimator with respect
to the discrete solution uh ∈ uh,0 + Vh,

ηR(uh) :=

(∑
T∈T

η2
R,T (uh)

)1/2

,

is a bound for the true error up to unknown constants, i.e., |||e||| ≤ CηR with C > 0. A natural choice
for the weights is αT = hT and αE = hE . A different interpolation operator in the derivation leads
to the factors αT = min{hTA−1/2, 1} and αE = A−1/2 min{hTA−1/2, 1} as shown in [Ver98,
PV00]. We use these factors in the numerical experiments. For further details about residual error
estimators, we refer the interested reader to [CEHL12].

4.2. Recovery Error Estimator. The principle of recovery (or averaging) operators is to construct
some kind of higher order approximation Ghuh of the flux ∇uh of the discrete solution uh ∈ Vh.
In a simple case, the recovery operator Gh maps into the discrete space of uh. The result is a
smoothed approximation which is supposed to be close to the real flux ∇u. Thus, ‖A1/2(∇uh −
Ghuh)‖L2(Ω) ≤ ρ‖A1/2∇(u− uh)‖L2(Ω) for some 0 < ρ < 1 and the left-hand side can be used
as an error estimator for |||e|||. The error bound

|||u− uh||| ≤
1

1− ρ
‖A1/2(∇uh −Ghuh)‖L2(Ω)

follows immediately by the triangle inequality.

These error estimators are often coined after Zienkiewicz and Zhu (ZZ) [ZZ87]. Several choices for
Gh are possible, cf. [ZZ87, AO00]. For the numerical examples of Section 5, the recovery operator
Gh : L2(Ω) → Vh is defined for any node z ∈ N by the average of the gradients of the elements
contained in the patch ωz weighted by the relative size of the respective element |T |/|ωz|, i.e.,

Ghuh(z) :=
∑
T∈ωz

|T |
|ωz|
∇uh|T .

The error estimator can then be defined by

ηZZ(uh) := ‖A1/2(∇uh −Ghuh)‖L2(Ω)

It is well-known that, in practice, recovery error estimators often perform surprisingly well. This obser-
vation and their very simple implementation render them extremely popular. However, the constant
ρ is usually unknown and the true error might be underestimated quite strongly within a problem-
dependent pre-asymptotic regime. We refer to [CB02] and [Car04] for more details on the theoretical
foundation.

5. NUMERICAL EXAMPLES

In this section, we present numerical examples for different coefficients which illustrate the perfor-
mance of the a posteriori error estimator derived in Section 3. Moreover, we compare our new
functional error estimator with some popular error estimators as presented in Section 4, namely
the residual estimator and the gradient recovery estimator. The chosen test cases can also be found
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in [Joh00, PV00, ESV10] which allows a direct comparison of the results. The graphs show the energy
error |||e||| = |||uh − u||| based on the known true solution u and the bounds of the functional (MΩ).
Additionally, the efficiency index of the functional error estimatorMΩ defined by effMΩ

=MΩ/|[e]|
is plotted. Note that the classical error estimators are of course not competitive in accuracy with
modern estimators as the one developed in this paper. However, we include them since they are
quite popular in practice due to their reliability and simple implementation. Moreover, when used with
an adaptive algorithm, experience shows that the residual estimator often leads to a quasi-optimal
sequence of meshes.

For the numerical examples, we consider the second order equation (2.1) on the unit square Ω =
(0, 1)×(0, 1) with different diffusion valuesA and specific convection a and adsorption ρ2 data such
that the analytic solution is known. We focus on the more difficult and interesting case of dominant
convection since the purely elliptic case has been treated exhaustively in previous publications. The
Dirichlet boundary conditions are defined by some admissible sufficiently smooth u0. In order to avoid
instabilities due to dominating convection, the streamline diffusion method described in Section 2.2
is employed throughout.

In all numerical examples of the next subsections, the bulk marking (also known as Dörfler or greedy
marking) based on the functional error estimatorMΩ is applied. For some bulk parameter 0 < Θ <
1, the algorithm finds the smallest set of triangles τ ⊂ T such that

Θ
∑
T∈T

MΩ(T ) ≤
∑
T∈τ

MΩ(T ).

Here, MΩ(T ) := MΩ|T is the restriction of the estimator onto any triangle T ∈ T . Different
marking strategies are possible and can lead to differently adapted meshes, see [PV00] for a study
of several algorithms. The mesh is refined at least for the elements in τ with possible additional
refinements to re-establish conformity of the mesh.

For the numerical results in this section, we assume Θ = 0.4 and use Algorithm 1. We set α =

0.0001 and choose β =
(

1−λ2C2
1

|||y−A∇v|||2∗

)1/2

C1 ‖rΩ(v, y)‖L2(Ω) − λ2C2
1 for the minimization in line 3

of Algorithm 1.

5.1. Example 1. We consider problem (2.1) for the diffusion A = ζ I with different values ζ ∈ R,
a = (2, 3)T , ρ2 = 2, identity matrix I and ΓD = ∂Ω. The right-hand side and boundary conditions
are chosen such that the exact solution is given by

u(x, y) = 16x(1− x)y(1− y)

(
1

2
+ atan

(
2√
A

(
1

16
−
(
x− 1

2

)2

−
(
y − 1

2

)2
))

/π

)
.

The solution is plotted in Figure 1 [left]. It exhibits a circular inner layer where the gradient is depen-
dent on the diffusion and behaves like O(ζ−1/2).

In Figure 2 the performance of the functional error estimator for different diffusion values, A ∈
{10−2I, 10−4I}, is depicted.

We observe that in both cases the functional error estimator quickly exhibits optimal convergence
rates. The efficiency index is close to 1 for A = 10−2I with 105 degrees of freedom and gets
close to 10 for A = 10−4I . In the energy norm, this dependence on the Péclet number is to be
expected, see [ESV10]. The averaging estimator ηZZ underestimates the true error but narrows the
gap significantly after some pre-asymptotic range for A = 10−4. The plot of the adaptively refined



13

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 1. Example 1 solution [left] and adaptively refined mesh [right].

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

 

 

M
Ω

energy error

efficiency M
Ω

η
R

η
ZZ

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

 

 

M
Ω

energy error

efficiency M
Ω

η
R

η
ZZ

FIGURE 2. Energy error versus degrees of freedom for adaptive refinement: Exam-
ple 1 with A = 10−2I [left] and A = 10−4I [right].

mesh in Figure 1 [right] illustrates that the inner layer is resolved accurately. In Figure 3, the spatial
error distribution as given by the error estimator and the exact solution is plotted. It shows a close
resemblance qualitatively.

5.2. Example 2. We consider problem (2.1) with different values for ζ, a = (1, 0)T , ρ2 = 1 and
ΓD = ∂Ω. The right-hand side and boundary conditions are chosen such that the solution is given
by

u(x, y) =
1

2
x(1− x)y(y − 1)(1− tanh(10− 20x)).

The solution on an adaptively refined mesh is plotted in Figure 4 [right]. The steep vertical gradient
at the center of the domain is refined strongly.

In Figure 5 the performance of the functional error estimator for different diffusion values, A ∈
{10−2I, 10−4I} is depicted.

The numerical results are comparable to the ones of Example 1. Again, the interior layer with steep
gradients is resolved accurately. Moreover, the functional error estimatorMΩ quickly reaches a good
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FIGURE 3. Error distribution in energy norm for Example 1 with A = 10−4I after 7
iterations of the adaptive algorithm. Exact error [left] and error estimator [right]; lighter
color indicates larger error.
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FIGURE 4. Example 2 solution [left] and refined mesh [right].

efficiency with respect to the Péclet number of the problem. As before, the averaging estimator ηZZ is
not reliable since it underestimates the true error to which it converges from below. However, after an
initial phase it is quite close to the true error. Figure 6 depicts the spatial error distribution as given
by the error estimator and the exact solution. Again, we see a close resemblance qualitatively.

5.3. Example 3. We consider problem (2.1) withA = 10−2I, a = (2, 3)T , ρ2 = 1 and ΓD = ∂Ω.
The right-hand side and boundary conditions are chosen such that the solution is given by

u(x, y) = xy2 − y2 exp

(
2(x− 1)

A

)
− x exp

(
3(y − 1)

A

)
+ exp

(
2(x− 1) + 3(y − 1)

A

)
.

The discrete solution on an adaptively refined mesh is plotted in Figure 7 [left]. It exhibits boundary
layers at the top and right-hand side of the domain. These layers are accurately resolved by the
adaptive algorithm based on the functional error estimatorMΩ.

The convergence plots in Figure 7 [right] illustrate the stability of the functional error estimator. While
the residual and the averaging estimators ηR and ηZZ are not even monotonously decreasing initially,
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FIGURE 5. Energy error versus degrees of freedom for adaptive refinement: Exam-
ple 2 with A = 10−2I [left] and A = 10−4I [right].
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FIGURE 6. Error distribution in energy norm for Example 2 with A = 10−4I after
10 iterations of the adaptive algorithm. Exact error [left] and error estimator [right];
lighter color indicates larger error.

the error estimatorMΩ exhibits optimal convergence rates almost immediately. Its efficiency is close
to 1 even for relatively few degrees of freedom. Note that the boundary layers first have to be resolved
sufficiently for the energy error to decrease significantly.
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