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1 Introduction 1

Abstract

We prove a uniform Poincaré-like estimate of the relative free energy by the dis-
sipation rate for implicit Euler, finite volume discretized reaction-diffusion systems.
This result is proven indirectly and ensures the exponential decay of the relative free
energy with a unified decay rate for admissible finite volume meshes.

1 Introduction

In a heterostructured domain Q C RY, we consider m diffusing species X; with initial
densities U; which undergo a finite number of reversible chemical reactions. Besides the
densities u; of the species X; we introduce their (dimensionless) chemical potentials v; and
chemical activities a;. According to Boltzmann statistics we have u; = w;e" = w;a;, i =
1,...,m, where the reference densities @; express the heterogeneity of the system. For the
fluxes j; of the species X; we make the ansatz j; = —d;u; Vv; = —d;u;e""Vu; = —d;u; Va,,
i =1,...,m, with diffusion coefficients d;. Let R C Z!' x Z'[" be a finite subset. Each pair
(ar, B) € R represents the vectors of stoichiometric coefficients of a reversible reaction

a1Xy+ -+ amXp = S X1+ -+ B X

According to the mass action law, the net rate of this pair of reactions is of the form
kop(a® — a”), where ko is a reaction rate coefficient and a® = [[*,a*. The net
production rate of species X; resulting from all reactions taking place is

R; = Z kap(a® — d®)(Bi — o).
(a,B)ER

The problem under consideration consists of the m continuity equations

8ui
ot

+V-ji=RiinRy xQ v-j;=0 onRy x 00, ®)
ui(O):Ui inQ, i=1,...,m.

The set S := span{a — 8 : (a,) € R} C R™ represents the stoichiometric subspace
defined by the reaction system. Our essential assumptions on the data are

(A1) Qs an open, bounded, polyhedral domain in RV, N = 2,3;
u;, Uy € L), wy, Uy 20 >0, i=1,...,m, RCZT} x ZT finite subset,
kag, di - 2 x R — R, Carathéodory functions satisfying
di(z,a) > 06, ¢ > kog(z,0) > bog(x) fa.a. z € Q, and all a € R,
where ||bag|lzr > 0 for all (o, 5) € R.
If N = 3 then max(, gjer max { >/"; ai, > imq Bi} <3,
ANORT = (), where
A:={aeR?: a® =d for all (o, B) € R, [,(tia —U)dz € S}.
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These assumptions allow us to handle a general class of reaction-diffusion systems, in-
cluding heterogeneous materials, reactions occurring in subdomains and diffusion and
reaction rate coefficients depending on the state variables, see [3, Remark 1].

The aim of the paper is to show for finite volume discretized versions of Problem (P) a
Poincaré-like estimate of the discrete relative free energy by the discrete dissipation rate
uniformly for all meshes with (A2), see Theorem 1. The essential new result is that our
proof works without any restriction on the mesh size which is needed in [4, Theorem
3.2]. Using discrete functional inequalities from [1] instead of results in [5] the estimate is
generalized from Voronoi meshes to admissible finite volume meshes. More general reaction
rate and diffusion coefficients are treated, too. Finally, for Euler backward in time and
finite volume in space discretization schemes, the discretized free energy along the discrete
solutions decays exponentially to its equilibrium value with a uniform decay rate for all
discretizations fulfilling (A2), see Theorem 2. This gives the discrete counterpart to the
behavior in the continuous case characterized by [6, Theorem 4.3] in a more general setting.

2 Discretization scheme and main result

An admissible mesh of 2 (see [2]) denoted by M = (P, T, E) is formed by a family of grid
points P in Q, a family 7 of control volumes and a family £ of parts of hyperplanes in RY
(which represent the faces of the boxes). Let M be the number of grid points zx € P,
M = #P. |K| denotes the measure of the box K € 7. For K, L € T with K # L either
the (N — 1) dimensional Lebesgue measure of K N L is zero or K N L = & for some o € &.
The symbol 0 = K|L denotes the surface between K and L. The set of interior surfaces is
called &;,; C €. Moreover, for o € £ we denote by m, the (N — 1) dimensional Lebesgue
measure of the face 0. For 0 = K|L € &,y let d, be the Euclidean distance of zx and =,
and o is assumed to be orthogonal to the line connecting xx and zy. Ex is the subset of
& such that 0K = K \ K = U,ecg, 0. Concerning the discretization we suppose

(A2) Let M be an admissible finite volume mesh with
diSt(l’K,U) >0d, VK €T Vo € Ex N Eint (9 > 0).
Let Z = {to,t1,...,tn, ...} be a partition of Ry with to =0, ¢, € Ry,
th—1 <tn,n €N, t, — 400 as n — 00, sup,en(tn —th—1) < 7 < 00.
X (M) represents the set of functions from € to R which are constant on each box of the

mesh. For wy, € X(M) the value at the box K € 7 is called wg. For wy, € X(M) the
discrete H!seminorm |wy|1 o and H' norm ||wy||1 am are defined by

m,
lwnlia = Y ok = wr?, wnllf g = wnlf ag + [lwsl 72 (1)
oc=K|LEE;n+

For K € T we denote by u;k (t,) the constant density on K at t,. Associated to the grid
points we have chemical potentials v;x(t,) and chemical activities a;x (tn), ¢ = 1,...,m.
Moreover we work with the vectors i, ¥, a@ € RM™ and the vectors on a box UK, Uk, G €
R™. We introduce the mean values on the control volumes K € 7,

1 1
Ui = — [ wi(x)dz, Kk, -:/k:a x,-)dz
o= @ ko) = g [ Kool
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and the corresponding piecewise constant functions i, and k,gp. The discrete version of
Problem (P) is

Ui (tn) —Uir (tn— m
ik ( Z) - tZK( n—1) |K| — Z Y (tn) (air (tn) — aiK(tn))Tg = RE(t,),
n n—1 o=K|LeEx o )
uzK(tn) = UK eviK(tn) = UK aiK(tn), i=1,...,m, n>1, ( M)

UiK(O):UiK::ﬁfQUidl} i=1,....m, KeT,

where Y7 = Y?(d@) is a mean of d;(z,a)%u;(x) on the face o and RX are given by

RE = RE(ak) = Z (Bi — Oéi)k'aﬁK(@K)(ﬁ?( - 5?()\K|-

(,B)ER
We introduce the operator E:RMm _, RMm Ei = ((mKe”iK)KGT)izl _,, and
U= {ﬁ ERM™: (3 wig|Kln Y umil K1) € 3}.
KeT KeT

The discrete dissipation rate D: RMm R corresponding to Problem (Ppq) and the
discrete free energy F : RM™ — R take the form

D - o (i v; Mo
D=3 Y V(e ) uu — )

; do
i=1 o=K|LEE;n:

3 Y ke (e = P (a - B) - |,
(a,B)eR KET

m

ﬁ(ﬁ): Z <uiKlnﬁz—K—uiK +EZK>’K|
i=1 KeT Uik

Assuming (A1), Problem (P) has exactly one weak stationary solution (u*,v*) fulfilling
Jow* —U)da € S, see [6, Theorem 3.2]. It is the thermodynamic equilibrium and the
corresponding constant vector of chemical activities a* lies in A. Also the discrete Problem
(Prq) has a unique stationary solution (@*,v™*) with @* — U € U which again represents
the thermodynamic equilibrium of the discrete problem (Pyy), see [4, Theorem 3.1]. Let
uy, vy, ap € X(M) be the piecewise constant functions corresponding to u*, v*, @*. Ac-
cording to [4, Corollary 3.1] we have

Both results from [4] hold true for admissible meshes, too.

We now prove a Poincaré type inequality (similar to [6, Theorem 4.2] for the continuous
case) which gives for the discretized situation a uniform estimate of the relative free energy
F(@) — F(@*) by the dissipation rate D being independent on the underlying mesh M.
[4, Theorem 3.2] contains a proof for Voronoi meshes with mesh sizes less than some
constant depending on the data of the problem. Here we establish a uniform estimate for
all admissible finite volume meshes fulfilling (A2).
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Theorem 2.1 We assume (Al) and (A2). Let (4*,7*) be the thermodynamic equilibrium
of (Pm). Then for every p > 0 there is a constant ¢, > 0 such that

F(E?) — F(@*) < ¢,D(7) (2)

~ o~

for all 7 e N, := {5 e RM™ . F(ED) — F(a*) < p,
P

admissible finite volume meshes.

— ~

—EvelU+ }, uniformly for all

£

Proof. In this proof we denote by ¢ (possibly different) positive constants depending only
on the data but not depending on the mesh. Let p > 0 be arbitrarily given.

1. Leti=EveU+U. By [4, Lemma 3.1] there exist constants ¢1, ¢a > 0 not depending
on the mesh M such that

m m
1 Y IWain = Jullie < Fid) = F(i*) < cp Y lfuin — ufjll7s- (3)
i=1 =1
Using (A1) and the inequality (z —y)In{ > [z — VYI? for z,y > 0, we estimate

23 e - Ve[

i=1 0€Eint
+c Z /bgh e”ho‘/Q ”hﬁ/2> de =: D,(¥), ©eRMm™,
(a,B)ER
Therefore it suffices to prove the inequality
F(@t) — F(@*) < CDy(%) VoeN, (4)
with some constant C' > 0 not depending on the mesh M.

2. If (4) would be false, then there would be a sequence of admissible meshes M,, and
corresponding ¥, € Np, i, = Ev, € U, +U, n €N, such that

F(it,) — F(it}) = CuDy(,) > 0, (5)

and limy,_.o Cy, = +00. Clearly, for each M,, we have to use the corresponding quantities
M, E, F, Dy,... and sets Eipt, U, N,. But we don’t write them with an index M,,. Let
anig = ek K € Tp. By Unih, Unihy Gnihy - € X(My), i = 1,...,m, we denote the
corresponding piecewise constant functions. From (3) we obtain

c oy - 3 =%
IVanin = /@l z2 < cll/inin = /g l72 < E(F(un) = F(iy)) < c(p).  (6)
Thus by assumption and because of a,, = a; we find a suitable ¢(p) < oo with
IWVanin|r2 < é(p), i=1,...,m, for all n. (7)

3. The definition of D; and (4) gives Y ;" "/amh’%,/\/ln < ¢Dy(0,) — 0. Applying the
discrete Poincaré inequality for functions with general boundary values (see [1, Theorem
5]) we find for \/a,;, € X(M,),i=1,...,m,

1
Vanin — ma(y/anin) — 0 in LQ(Q), where  mq(v/anp) == |Q|/ v/ Qnin dz.
Q
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The discrete Sobolev-Poincaré inequality (see [1, Theorem 3]) gives for g € [1,00) if N = 2
and for g € [1,6] if N = 3 the estimate

H\/ Anih — mQ(\/ anih)”Lq < Cq” vV Anih — mQ(\/ anih)’ ,
< &(Ivanin + [Vanin — ma(v/anin)|| z2) — 0.

Since mq(v/anin) |92 = |vaninll 1 < cllv/aninllrz < c¢(p) by (7) for all M,, we find (for a

subsequence, and we restrict our further investigations to this subsequence) mq(\/anin) —

Va; in R. Using that

IV anin = V@il < [yanin = ma(y/anm)| + [ma(y/ani) = V/ail
we conclude
Vamin — Vi in L), i=1,...,m, (8)
for ¢ € [1,00) if N =2 and for q € [1,6] if N = 3. From
it = @i = (v = V@) (Vama + Vi) = (Vagn = V@) +23/ai(yann — Vi)

we find that

lanin = @ill 2 < [lv/anin — Vaillzs + 2/ @illv/anin — vaill 12 — 0. (9)

4. Let raglan) = (a2* — al/*)2. Using |bagllz: = ||bagnllz1, taking into account the
restriction of the reaction order if N = 3 and (8) we have for all (a, 3) € R

0 < ||bagras(@)|r = [1bapnras(@)||
< bagnras(@nn) = baprrap(@| Lt + |basnaras(ann) |l
< [bagnllzelTas(@nn) = rap(@)| L1 + D1 () — 0.

Therefore, with ||bag||z1 > 0 we find necessarily that
a*=a Y(o,p)eR. (10)

5. We introduce u := (U1, ..., Un), U; := u; a;, and show fg(ﬂ— U)dz € S. Let v € S+
(orthogonal complement of S in R"™) be arbitrarily given. Then

Iy - /Q (@@~ U)de| < |y /Q (6 = anp )T da] + |y - /Q (@nninn — Unn) dal.

By (9) the first integral on the right hand side tends to zero, the second is zero since
Uy — U, € U. Thus, together with (10) we find @ € A, and according to (A1) we obtain
that @ = a*. By the definition of @ this yields u = u*.

6. Because of (3) and (9) we have

>~
jj\>

m
= Fiy) < ex Y il p=llanin — ajp |72 — 0 (11)
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as n — oo. Additionally (according to (5)) we find

C’i )\12 Dy (v,) — 0 as n — oo. (12)

7. For all n we introduce

1 ni .
bnih —)\7< a/\h >€X(Mn), 1=1,...,m.

Z

Because of (bnir — bpir,)? <x (w/amK Vanip)? for all o0 = K|L € & it results

Dy (v)

b < — 0.
;| mh|1M c )\

As demonstrated in Step 3 (for y/a,;1,), the discrete Poincaré and Sobolev-Poincaré inequal-
ity ensure for by, the convergence ||by, — ma( mh)HLq —0,i=1,...,m, for ¢ € [1,00)
if N =2 and for g € [1,6] if N =3. Using a; = a; = a},,, (6) and (11) we obtain

nih’

[ma (bnin)| 1€2]

IN

1
nih — V @i dz < ni ni
e | W = Vil da f\W Vi
c o c
o IWanin = v appllez < 5~ (F(dn) — F(a;)'? < A =c

n

IN

for all M. Thus we find (for a subsequence) mq(bnin) — b; in R. By bnin — bi| <
|bnin — ma(bpin)| + Ima(bnin) — bi| we conclude for i = 1,...,m that

buin — bi in LI(Q) for g € [1,00) if N =2 and for ¢ € [1,6] if N =3.  (13)

8. We define y = (91, ..., Um), ¥i := 23u = 2b;4;5; and show Joydz € S. Let v € S+.
Since 2bpinGitinin = (Unih — U)p,)/ An + bmh(\r /i )V @; Ui it Tesults

m m
"Y / ﬂdﬂ?‘ = 2’ Z/ bi@iUninyi dx‘ = 2‘ Z/(bm'haium'h% + (bi — bmh)aiﬂm'h%)dw‘
© =179 =179
< - [ i da| + cllbunlla | Vn — Vil + el — Bl @l
Q

where the first term on the last line is zero since i, @), € u + ﬁn and the last two terms
tend to zero as n — oo by (8) and (13), respectively. This leads to [, ydz € S.

9. By the definition of rog(ans) and by, we obtain for all (a, 5) € R,

a""rag(ann) = (H(Anbm‘h + 1) = [T nbwin + 1)@)2

i=1 i=1

= (» meh ~5) +
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where
1Qn| < eX3(|bun| + )P0 with 0 < pg < 2 max max { Zal,Zﬂz

(A1) ensures pg < 6 if N = 3. Since A\, — 0 as n — oo (see (11)), we find
1
/\THQnHLl <cAp / (|bpn| + 1)P2 dz — 0 as n — oc.
n Q

This together with (12) and (14) gives

lim baﬁh(i brin (s — ﬁz-))2 dz =0 VY(a,p)€R.
=1

n—oo QO

Therefore, from (A1) we conclude b = (by, ..., by) € S*. This together with the definition
of g and [, 7dz € S (see Step 8) leads to

g-/g’jdx: /Qufbi dz =0

which ensures b = 0 and y=0.

10. Using the definition of A, (see (11)), (3), by — 0 in L4(Q2) and (8) we find
1= 3 (Pl - Fa)) < cZnumhannamh a2,

< CZ/Q (7%:@)2 (N/am-h + \/&TZ) da < ch?Lihb} <’a} + |V anin — \/67\2) dzx
i=1 =1

m
< e lbwinlEa (14 IV = Vaillis) = o.
i=1

This contradiction shows that the assumption made at the beginning of Step 2 of the proof
was wrong, i.e., (4) holds, and the proof is complete. O

3 Conclusions

Since F(U) — F(i*) < ¢(U,u*,u) =: p uniformly for all discretizations we have #(t,) € J\Afp
for n > 1 for solutions (u, V) to (Pprq). Following the proof of [4, Theorem 3.3], but now
using the improved result of our Theorem 1, we can choose in step 3 of that proof one
A > 0 such that )\e’\Tcp < 1 uniform for all M, see (A2), too. Especially we do not
have any upper restriction on the mesh size, can use admissible finite volume meshes, and
obtain
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Theorem 3.1 We assume (Al) and (A2). Then there exists a universal X\ > 0 such that
for all solutions (@, V) to (Ppq) the estimate

~

F(i(t,)) — F(a*) < e (F(0) - F(@*)) Yn>1

holds uniformly for all discretizations, especially the scheme (Pprq) is dissipative.

Theorem 2 (as discrete version of [6, Theorem 4.3]) enables us to provide uniform positive
lower bounds for the particle densities for the solutions of (Pp,) if the order of all reactions
is less or equal to two and N = 2, see [3, Lemma 4, Theorem 4].
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