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Abstract

An analytical model for multicomponent systems of nonlocally interacting particles is

presented. Its derivation is based on the principle of minimization of free energy under

the constraint of conservation of particle number and justified by methods established in

statistical mechanics. In contrast to the classical Cahn–Hilliard theory with higher order

terms, the nonlocal theory leads to an evolution system of second order parabolic equa-

tions for the particle densities, weakly coupled by nonlinear and nonlocal drift terms, and

state equations which involve both chemical and interaction potential differences. Apply-

ing fixed-point arguments and comparison principles we prove the existence of variational

solutions in suitable Hilbert spaces for evolution systems. Moreover, using maximal reg-

ularity for nonsmooth parabolic boundary value problems in Sobolev–Morrey spaces and

comparison principles, we show uniqueness, global regularity and uniform positivity of

solutions under minimal assumptions on the regularity of interaction. Applying a refined

version of the  Lojasiewicz–Simon gradient inequality, this paves the way to the convergence

of solutions to equilibrium states. We conclude our considerations with the presentation

of simulation results for phase separation processes in ternary systems.

1. Introduction

Description of the physical phenomenon. There are many interesting isothermal drift-

diffusion processes taking place in a closed system of nonlocally interacting particles of

different type. Generally, in those multicomponent mixtures, all of the configurational

changes are the result of processes that try to minimize the free energy of the whole

ensemble. This free energy contains the sum of the binding energies between the particles

with respect to their type and their distances. The mesoscopic scale of our model is larger

than the single particle picture of quantum mechanics but smaller than the continuum

mechanical limit: The averaged long-range interaction forces are explicitly described by

attractive or repulsive interaction potentials. On the other hand, the short-range repelling

forces are accounted for using the logarithmic distribution function of Fermi statistics

reflecting the exclusion principle for particles with Fermi-type behavior. These forces are

responsible for the diffusion process that enters in competition with the nonlocal drift

process. Of course, also noninteracting, and, therefore, purely diffusive components are

allowed to take part in the processes under consideration.

Typical applications are transport processes of electrically charged particles in solutions

or semiconductor heterostructures, chemotactic aggregation of microorganisms in biolog-

ical environments, and, especially, phase separation processes in alloys including the case

of diffusive damage.

The system of model equations. The justification of our model relies on the methods of

statistical mechanics: We assume that particles of different type jump around on a given

microscopically scaled lattice following a stochastic exchange process. Here, voids are



2 Jens A. Griepentrog

admissible types of particles, too. Exactly one particle sits on each lattice site (exclusion

principle). Two particles of type k and ` ∈ {0, 1, . . . ,m} change their sites x and y with

a certain probability, due to diffusion and nonlocal interaction. This process tries to

minimize the free energy of the particle ensemble.

To carry over these properties from the discrete microscopic scale to the continuous

mesoscopic level, statistical mechanics uses the hydrodynamical limit process: The num-

ber of particles in the lattice tends to infinity. As the result, the state of the meso-

scopic ensemble is described by densities of particles occupying a spatial domain X ⊂ Rn

with Lipschitz boundary. Following the pioneering work of Giacomin, Lebowitz and

Marra in [13, 14] as well as of Quastel, Rezakhanlou and Varadhan in [33, 34],

this limit process leads to an evolution system of m+ 1 conservation laws

ρ′k +∇ · jk = 0 in (0,∞)×X,
n · jk = 0 on (0,∞)× ∂X,
ρk(0) = ρ◦k in X,

 (1)

with particle densities ρ0, ρ1, . . . , ρm, initial values ρ◦0, ρ
◦
1, . . . , ρ

◦
m, and current densities j0,

j1, . . . , jm. Due to the exclusion principle, the particle densities are nonnegative, bounded

by a given positive total density Σ, and they sum up to this total density Σ pointwise:

0 ≤ ρ0, ρ1, . . . , ρm ≤ Σ,
m∑
k=0

ρk = Σ. (2)

This defines the simplex of admissible states. Note that Σ is allowed to be a nonsmooth

function of the space variable to model processes taking place in a fixed heterogeneous

environment with a spatially varying total storage capacity Σ. Moreover, the closedness

of the system (1) enforces that the sum of all current densities vanishes:
m∑
k=0

jk = 0. (3)

Consequently, in (1), only m of the m + 1 equations are independent of each other.

Hence, it is convenient to drop out one redundant equation in (1), say the equation for

the zero component, and to describe the state of the system by m-component vectors

ρ = (ρ1, . . . , ρm), having in mind that ρ0 = Σ−
∑m

k=1 ρk is a function of ρ.

In our work, the free energy F (ρ) = Φ(ρ) + Ψ(ρ) of an admissible state ρ is modelled

as the sum of the strongly convex chemical energy

Φ(ρ) =
m∑
k=0

∫
X

ρk(x) ln
ρk(x)

Σ(x)
dλn(x),

and of the (quadratic) potential energy

Ψ(ρ) =
1

2

m∑
k=0

m∑
`=0

∫
X

ρk(x)(Pk`ρ`)(x) dλn(x) +
m∑
k=0

∫
X

ρk(x)φk(x) dλn(x),
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split into the (possibly nonlocal and nonconvex) energy of self-interaction defined by oper-

ators Pk` = P`k and a part representing the potential energy due to external potentials φk.

As mentioned above, the logarithmic chemical energy reflects the Fermi-type behavior of

the particles. It prevents the densities ρ to come too close to the boundary of the simplex

of admissible states given by (2). This chemical part alone would prefer uniform distri-

butions. To control the behavior of nonlocal self-interaction between particles of type k

and ` ∈ {0, 1, . . . ,m}, we have in mind, for example, integral operators given by

(Pk`ρ`)(x) =

∫
X

pk`(x, y) ρ`(y) dλn(y).

To model, for instance, the phenomenon of phase separation, the (signs of the) entries in

the symmetric (m+ 1)× (m+ 1)-matrix kernel (pk`) have to be chosen in such a way that

particles of the same type attract and particles of different type repel each other.

Local minimizers of the free energy functional F under the constraints of conservation

of particle number and the admissibility conditions (2) are supposed to be physically

relevant equilibrium distributions ρ∗ of the multicomponent system, and more generally,

admissible steady states of the energy-driven evolution system. Correspondingly, they can

be found as solutions of the Euler–Lagrange equation as in the work of Griepentrog

and Gajewski in [8]. There, we were mainly interested in equilibrium states and we

established a descent method to find solutions (ρ∗, v∗) of the Euler–Lagrange equation

DF (ρ∗) = v∗,

∫
X

ρ∗(x) dλn(x) =

∫
X

ρ◦(x) dλn(x),

where v∗ ∈ Rm denote Lagrange multipliers.

In view of the fact that the Lagrange multipliers v∗ should be constant, one assumes their

spatial antigradients to be the forces driving the evolutionary process towards equilibrium.

The hydrodynamical limit process, see [13, 14, 33, 34], leads to the evolution system (1)

with current densities

jk = −
m∑
`=1

mk`(ρ)∇v` for k ∈ {1, . . . ,m}, (4)

where the symmetric and positive semidefinite mobility matrix (mk`(ρ)) is the product of

the diffusivity matrix (ak`(ρ)) and the inverse Hessian D2Φ(ρ)−1 which is nothing else but

D2Φ(ρ)−1 = diag(ρ)− ρ⊗ ρ

Σ
=
(
δk`ρk − ρk

ρ`
Σ

)
.

Note that this positive semidefinite matrix degenerates, if and only if at least one of

the densities ρk vanishes. The Lagrange multipliers v are thermodynamically identified

with the conjugated variables of the densities ρ and denoted as grand chemical potential

differences v = DF (ρ). Because of the structure of the free energy, they are written as

the sum v = ζ + w of the chemical potential differences

ζk = DkΦ(ρ) = ln
ρk
Σ
− ln

ρ0
Σ
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and the interaction potential differences

wk = DkΨ(ρ) =
m∑
`=0

(Pk`ρ` − P0`ρ`) + (φk − φ0)

for k ∈ {1, . . . ,m}. We reformulate the above evolution system with gradient structure

as a system of drift-diffusion equations with semilinear diffusion and nonlinear nonlocal

drift terms, if we rewrite the currents as

jk = −
m∑
`=1

ak`(ρ)∇ρ`
Σ
−

m∑
`=1

mk`(ρ)∇w` for k ∈ {1, . . . ,m}.

Both modelling and existence analysis for the case of smooth data and the nondiagonal

Stefan–Maxwell diffusion matrix (ak`) were considered, for instance, in the book [15]

of Giovangigli, in the contribution [1] of Bothe, and the work [25] of Jüngel

and Stelzer. In contrast to our work, these authors do not consider drift terms to

model the interaction processes between the particles. To our knowledge, nonlocal drift

terms are not only advantageous for that purpose, but they can also be understood as a

natural regularization of nondiagonal terms.

Since our theory of maximal regularity for parabolic boundary value problems with

nonsmooth data is restricted to weakly coupled systems, in our work we consider the

equidiffusive (diagonal) case (ak`) = (AΣδk`) with a diffusion coefficient A, which may

depend nonsmoothly on space and time. As in the work [7] of Gajewski and Gröger

or the paper [10] of Gajewski and Skrypnik on the analysis of reaction-drift-diffusion

processes of electrically charged particles in semiconductor heterostructures, the total

density Σ may depend nonsmoothly on the space variable.

Several authors considered similar models describing nonlocal phase separation pro-

cesses with a degenerate mobility of the above mentioned type. The case of homogeneous

binary systems was justified by Giacomin and Lebowitz in [14], and analyzed in the

pioneering work [11] of Gajewski and Zacharias with the emphasis to existence and

uniqueness of solutions. There, the diffusion coefficient A may depend nonsmoothly on

the space variable and, in addition to that, strongly monotone and Lipschitz continuous

on the gradient ∇v. Based on this, in the papers [28, 29] of Londen and Petzeltova

and in the recent contribution [12] of Gal and Grasselli the asymptotic convergence

of the trajectory to an equilibrium state were established.

We want to emphasize that in contrast to the above mentioned papers [11, 12, 28, 29], in

the present work all the qualitative properties of the solutions, namely, the uniqueness and

the uniform regularity as well as the uniform positivity and the asymptotic convergence of

the solution, are derived from minimal assumptions on the regularity of the gradients ∇w`
of the interaction potentials. We do not need to assume these gradients to be bounded.

In fact, it suffices to suppose that for some exponent ω0 > n−2 and some constant c0 > 0
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the Morrey-type condition
m∑
`=1

∫
X∩Q(x,r)

|∇w`(s)|2 dλn ≤ c0r
ω0 (5)

holds true for every cube Q(x, r) ⊂ Rn with center x ∈ X, radius r > 0 and every

point s ≥ 0 on the time axis. This enables us to treat a huge variety of interactions,

especially the limit case of regularity governed by the nonsmooth data of the problem.

An illustrating example is given in Section 7, where we consider nonlocal phase separation

processes with interaction potentials defined as solutions to nonsmooth elliptic boundary

value problems.

Organization of the work. This work generalizes and a continues the proceedings con-

tribution [20] of the author. In Section 2 we fix both our general assumptions and the

functional analytical framework to formulate the problem in heterogeneous environments.

Applying fixed-point arguments and comparison principles, in Section 3 we prove the

existence of variational solutions in suitable Hilbert spaces for evolution systems. At the

same time, we fill a gap in the proof of [20, Lemma 1].

In Section 4 we collect main results of our theory of maximal regularity for parabolic

boundary value problems with nonsmooth data in Sobolev–Morrey and Hölder spaces,

see Griepentrog and Recke [21, 22, 23]. These results are the main tools for our

proof of unique solvability and global regularity of solutions, see also [20, Section 4 and 5].

Section 5 is dedicated to the uniform positivity of solutions. Here, the proof relies

on a Moser-type iteration procedure, based on a multiplicative Sobolev inequality with

Morrey-type weights, which can be found in Mazya’s book [30, Corollary 1.4.7/2], and

which exactly corresponds to the regularity assumption (5) on the gradients ∇w` of the

interaction potentials.

Using a refined version of the  Lojasiewicz–Simon gradient inequality similar to [12, 28],

this paves the way to the proof of asymptotic convergence of solutions to an admissible

equilibrium state in Section 6, which turns out to be a solution of the Euler–Lagrange

equation under the constraint of conservation of particle number. The free energy de-

creases monotonically along the trajectory to the corresponding limit.

In Section 7 we conclude our considerations with the presentation of simulation results

for phase separation processes in ternary systems including the case of diffusive damage.

2. General assumptions and formulation of the problem

The following assumptions are valid for the whole work. Suppose m ∈ N to be the number

of independent components and n ∈ N, n ≥ 3 to be the space dimension. Let (Rn,Ln, λn)

be the σ-finite measure space of n-dimensional Lebesgue-measurable subsets of Rn. For

F ∈ Ln and p ∈ [1,∞) we denote by Lp(F ;V ) the set of all Lebesgue p-integrable functions

u : F → V with values in the Banach space (V, ‖ ‖V ). The class L∞(F ;V ) consists of all

Lebesgue-measurable functions u : F → V which are essentially bounded.
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For every F ⊂ Rn we introduce the class B(F ;V ) of bounded functions u : F → V . We

define the set C(F ;V ) of continuous functions u : F → V and the subclass BC(F ;V ) =

B(F ;V ) ∩ C(F ;V ). Moreover, for α ∈ (0, 1] we consider the set C0,α(F ;V ) of Hölder-

continuous functions u : F → V and the subclass BC0,α(F ;V ) = B(F ;V ) ∩ C0,α(F ;V ).

For k ∈ N ∪ {∞} and open sets U ⊂ Rn we denote by Ck(U ;V ) the set of functions

u : U → V which have continuous derivates up to the k-th order. The subclass of all

these functions with bounded continuous derivatives up to the k-th order forms the set

BCk(U ;V ). Finally, we introduce the subset Ck
0 (U ;V ) of functions u ∈ Ck(U ;V ) with

compact support supp(u) in U .

Here and in what follows we denote, as usual, by 〈 , 〉H and ( | )H dual pairings and

scalar products in Hilbert spaces H, respectively. For subsets Y of Rn we write intY , clY

and ∂Y for the topological interior, the closure, and the boundary of Y , respectively.

Let S = (0, T ) be a time interval of finite length. Considering problems with nonsmooth

data, we suppose X ⊂ Rn to be a domain with Lipschitz boundary defined in the spirit

of Giusti or Gröger, see [16, 24]:

Definition 1 (Domain with Lipschitz boundary). Let the open cube and half-cube

Q(x, r) =
{
ξ ∈ Rn : sup1≤i≤n |ξi − xi| < r

}
,

Q+(x, r) =
{
ξ ∈ Rn : sup1≤i≤n |ξi − xi| < r, ξn − xn < 0

}
,

be defined for x ∈ Rn, r > 0, respectively. A bounded, open and connected set X ⊂ Rn is

called domain with Lipschitz boundary if for each x ∈ ∂X we find some neighborhood U

of x in Rn and a bi-Lipschitz transformation Λ from U onto Q(0, 1) such that Λ[U ∩X] =

Q+(0, 1) and Λ(x) = 0.

Hilbert spaces for evolution problems. For the functional analytic formulation of diffusion

and drift processes of interacting particles in a fixed environment, its (possibly nonsmooth)

spatially heterogeneous storage capacity needs to be measured properly:

Assumption 1 (Storage capacity). Let (Rn,Ln, σ) be a measure space satisfying

σ∗λ
n(F ) ≤ σ(F ) ≤ σ∗λn(F ) for every set F ∈ Ln, (6)

where 0 < σ∗ ≤ σ∗ < ∞ are given lower and upper bounds of the total density. We

interpret σ(F ) as the measure of the particle number which can be stored in F ∈ Ln.

Remark 1 (Topological equivalence). Obviously, the density Σ ∈ L∞(Rn) of the mea-

sure σ with respect to the Lebesgue measure λn satisfies σ∗ ≤ Σ(x) ≤ σ∗ for λn-almost all

x ∈ Rn. Hence, in the following we are allowed to introduce all the spaces of integrable

functions with respect to the measure space (Rn,Ln, σ) without changing their standard

topologies. One has only to keep in mind that the constants in the estimates eventually

depend on the fixed lower and upper bounds σ∗ > 0 and σ∗ > 0, too.
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Definition 2 (Hilbert spaces). 1. We consider the pair of dual Hilbert spaces

H = L2(X;Rm) and H∗ = [L2(X;Rm)]∗,

equipped with the nonstandard scalar product given by

〈ρ, h〉H = 〈Jg, h〉H = (g|h)H =
m∑
k=1

∫
X

gkhk dσ for g, h ∈ H.

Here, the duality of intensive quantities g ∈ H and the corresponding extensive distribu-

tions ρ = Jg ∈ H∗ is established by the duality map J ∈ L(H;H∗). We introduce the

operator J ∈ L(L2(S;H);L2(S;H∗)) by (Ju)(s) = Ju(s) for s ∈ S and u ∈ L2(S;H).

2. Moreover, we introduce the dual pair of Sobolev spaces

V = W 1,2(X;Rm) and V ∗ = [W 1,2(X;Rm)]∗,

equipped with nonstandard scalar product

(u|w)V =
m∑
k=1

∫
X

(∇uk · ∇wk + ukwk) dσ for u, w ∈ V .

The completely continuous and dense embedding of V into H and its adjoint are denoted

by K ∈ L(V ;H) and K∗ ∈ L(H∗;V ∗). Then, E = K∗JK ∈ L(V ;V ∗) is symmetric and

positive semidefinite. Correspondingly, we define the operators K : L2(S;V )→ L2(S;H)

and E : L2(S;V ) → L2(S;V ∗) by (Ku)(s) = Ku(s) and (Eu)(s) = Eu(s) for s ∈ S and

u ∈ L2(S;V ) as illustrated in the following commutative diagrams

V
K−−−→ HyE yJ

V ∗
K∗←−−− H∗

and

L2(S;V )
K−−−→ L2(S;H)yE

yJ

L2(S;V ∗)
K∗←−−− L2(S;H∗)

The generalization of the concept of Sobolev spaces for evolution equations follows the

ideas of Lions and Gröger, see Dautray and Lions [4, Chapter XVIII, §5] and

Griepentrog [21, Section 1]:

Definition 3 (Sobolev space). 1. The function f ∈ L2(S;V ∗) is called weakly differ-

entiable if there exists some f ′ ∈ L2(S;V ∗) which satisfies∫
S

〈f ′(s), v〉V ϑ(s) dλ(s) = −
∫
S

〈f(s), v〉V ϑ′(s) dλ(s) for all ϑ ∈ C∞0 (S), v ∈ V .

2. Corresponding to E : L2(S;V )→ L2(S;V ∗), which is associated to S and E ∈ L(V ;V ∗)

in Definition 2, we define the Sobolev space

WE(S;V ) =
{
u ∈ L2(S;V ) : (Eu)′ ∈ L2(S;V ∗)

}
,

equipped with the scalar product

(u|w) = (u|w)L2(S;V ) + ((Eu)′|(Ew)′)L2(S;V ∗) for u, w ∈ WE(S;V ).
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Remark 2. The embedding map K is continuous from WE(S;V ) into C(clS;H) and

completely continuous from WE(S;V ) into L2(S;H).

Energy functionals. As mentioned in the introduction, the free energy F = Φ + Ψ is split

into a sum of a strongly convex chemical part Φ and a quadratic interaction part Ψ, which

are now specified rigorously:

Assumption 2 (Chemical energy). 1. For every γ ∈
[
0, 1

m+1

]
we introduce

U(γ) =
{
h ∈ L∞ : γ ≤ h0, h1, . . . , hm ≤ 1− γ, h0 = 1−

∑m
k=1 hk

}
as a closed subset of L∞ = L∞(X;Rm). Here, and in the following, we always have in

mind that h0 = 1−
∑m

k=1 hk is a function of h = (h1, . . . , hm).

2. The functional Φ : H∗ → R ∪ {+∞} of chemical energy is given by

Φ(ρ) =

{∫
X

∑m
k=0 hk lnhk dσ for ρ = Jh, h ∈ U(0),

+∞ otherwise.
(7)

The relative density h ∈ U(0) is the density of the corresponding particle distribution

ρ = Jh with respect to the measure σ. The definition of h0 = 1 −
∑m

k=1 hk implies the

definition of ρ0 = σ −
∑m

k=1 ρk as a function of ρ = (ρ1, . . . , ρm).

Remark 3 (Strong convexity). The functional Φ : H∗ → R ∪ {+∞} is proper,

lower semicontinuous, and strongly convex with the closed and convex effective domain

dom(Φ) = J [U(0)]. We have

δΦ(ρ) + (1− δ)Φ(ρ̂) ≥ Φ(δρ+ (1− δ)ρ̂) + 1
2
(m+ 1)δ(1− δ)‖ρ− ρ̂‖2H∗

for all ρ, ρ̂ ∈ dom(Φ) and δ ∈ [0, 1]. As a consequence, the subdifferential ∂Φ ⊂ H∗ ×H
is both strongly monotone and maximal monotone.

Remark 4 (Chemical potentials and real analyticity). 1. For γ ∈
(
0, 1

m+1

]
, h ∈ U(γ)

and ρ = Jh ∈ dom(Φ) we get

ζk = DkΦ(ρ) = lnhk − lnh0 for every k ∈ {1, . . . ,m}. (8)

The components of ζ = DΦ(ρ) ∈ L∞ are called chemical potential differences. There

exists a constant c1 > 0 depending on m and γ such that the estimates

〈DΦ(ρ)−DΦ(ρ̂), ρ− ρ̂〉H∗ ≥ (m+ 1)‖ρ− ρ̂‖2H∗ , (9)

‖DΦ(ρ)−DΦ(ρ̂)‖H ≤ c1‖ρ− ρ̂‖H∗ (10)

hold true for all ρ, ρ̂ ∈ J [U(γ)], and the Hessian D2Φ(ρ) ∈ L(J [L∞];L∞) is positive

definite and has the representation

〈D2Φ(ρ)%, %̂〉H∗ =
m∑
k=1

m∑
`=1

∫
X

(
δk`
hk

+
1

h0

)
g` ĝk dσ for % = Jg, %̂ = Jĝ with g, ĝ ∈ L∞.
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2. The functional Φ is real analytic in the set J [U ], whenever U is open in L∞ and

contained in U(γ) for some γ ∈
(
0, 1

m+1

]
. Its Fréchet derivative DΦ : J [U ]→ L∞ is a real

analytic operator, and the second derivative D2Φ(ρ) ∈ L(J [L∞];L∞) is an isomorphism

for all ρ ∈ J [U ], see Griepentrog and Gajewski [8, Lemma 12].

Remark 5 (Convex conjugate functional). The Fréchet differentiable convex conjugate

Φ∗ : H → R to the strongly convex functional Φ : H∗ → R ∪ {+∞} is given by

Φ∗(ζ) =

∫
X

ln
(
1 +

∑m
k=1 exp(ζk)

)
dσ for every ζ ∈ H,

and we obtain DΦ∗(ζ) = Jh ∈ dom(Φ), where h ∈ U(0) is given by the functions

hk =
exp(ζk)

1 +
∑m

`=1 exp(ζ`)
for every k ∈ {1, . . . ,m}. (11)

Moreover, the Hessian D2Φ∗(ζ) ∈ L(H;H∗) is represented by

〈D2Φ∗(ζ)g, ĝ〉H =
m∑
k=1

m∑
`=1

∫
X

(δk`hk − hkh`) g` ĝk dσ for all g, ĝ ∈ H.

These preliminary considerations justify the definition of both the diffusion and drift

operator discussed in the introduction:

Assumption 3 (Diffusion). 1. Let the diffusion coefficient A ∈ L∞(S ×X) satisfy

ν ≤ A ≤ 1/ν λn+1-almost everywhere on S ×X

for some constant ν ∈ (0, 1]. The linear diffusion operator L : L2(S;V ) → L2(S;V ∗) is

defined by

〈Lu, h〉L2(S;V ) =
m∑
k=1

∫
S

∫
X

A∇uk · ∇hk dσ dλ for u, h ∈ L2(S;V ). (12)

2. Let the bilinear operator B : L∞(S × X;Rm×m) × L2(S;V ) → L2(S;V ∗) for M ∈
L∞(S ×X;Rm×m) and w, h ∈ L2(S;V ) be given by

〈B(M,w), h〉L2(S;V ) =
m∑
k=1

m∑
`=1

∫
S

∫
X

AMk`∇w` · ∇hk dσ dλ. (13)

Assumption 4 (Drift). Let the the mobility M : U(0) → L∞(X;Rm×m) be given by

the symmetric matrix-valued function

Mh = diag(h)− h⊗ h = (δk`hk − hkh`) for h ∈ U(0). (14)

Correspondingly, the drift operator M : dom(M) → L∞(S × X;Rm×m) is defined by

(Mu)(s) = Mu(s) for s ∈ S, u ∈ dom(M) on the domain

dom(M) =
{
u ∈ L∞(S ×X;Rm) : 0 ≤ u0, u1, . . . , um ≤ 1, u0 = 1−

∑m
k=1 uk

}
.
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Assumption 5 (Potential energy of interaction). Let Pk` = P`k be bounded linear

operators from [L2(X)]∗ into W 1,2(X) representing the self-interaction between particles

of type k, ` ∈ {0, 1, . . . ,m} and φk ∈ W 1,2(X) be external potentials for k ∈ {0, 1, . . . ,m}.
The functional Ψ : H∗ → R of interaction energy is given by the quadratic functional

Ψ(ρ) =
1

2

m∑
k=0

m∑
`=0

∫
X

hkPk`ρ` dσ +
m∑
k=0

∫
X

hkφk dσ (15)

for ρ = Jh ∈ H∗ corresponding to h ∈ H, and having in mind both ρ0 = σ −
∑m

k=1 ρk
and h0 = 1−

∑m
k=1 hk as definitions, see Assumption 2.

We define the (possibly nonconvex) functional F = Φ + Ψ : H∗ → R ∪ {+∞} of free

energy with the closed and convex effective domain dom(F ) = dom(Φ) = J [U(0)].

Remark 6 (Interaction potentials). Due to Assumption 5 the quadratic functional

Ψ : H∗ → R has the representation

Ψ(ρ) = 1
2
〈ρ, Pρ〉H + 〈ρ, ψ〉H + Ψ(0) for every ρ ∈ H∗, (16)

where the constant is determined by Ψ(0) = 1
2

∫
X
P00σ dσ+

∫
X
φ0 dσ. The bounded linear

operator P ∈ L(H∗;V ) and the element ψ ∈ V are given by

(Pρ)k =
m∑
`=1

(
(Pk` − P0`)− (Pk0 − P00)

)
ρ` and ψk = (Pk0 − P00)σ + (φk − φ0) (17)

for every k ∈ {1, . . . ,m}. Note that KP ∈ L(H∗;H) is a symmetric and completely

continuous operator. The components

wk = DkΨ(ρ) = (Pρ)k + ψk (18)

of w = DΨ(ρ) = Pρ + ψ ∈ V are called interaction potential differences. According to

Assumption 2, there exists a constant L > 0 such that for all ρ ∈ dom(Φ) the estimate

m∑
k=1

∫
X

|∇wk|2 dσ ≤ L

holds true, whenever w = Pρ+ ψ ∈ V .

Corresponding to P , we define the self-interaction operator P : L2(S;H∗) → L2(S;V )

by (Pρ)(s) = Pρ(s) for s ∈ S, ρ ∈ L2(S;H∗).

Now, we can rigorously formulate the concept of a solution of the evolution problem:

Definition 4 (Solution). For a given initial value a ∈ U(0) we are looking for a

solution u ∈ WE(S;V ) ∩ dom(M) of the evolution system

(Eu)′ + Lu+ B(Mu,PJu+ ψ) = 0, (Ku)(0) = a. (P)
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3. Existence of solutions

At first we solve a regularized problem with truncated nonlinearities. To do so, for c ∈ R
we define the truncations

c− = −min{c, 0}, c+ = max{c, 0}, c� = min{max{c, 0}, 1},

and we carry over this setting in the usual way to the concept of truncated functions. The

truncation of vector-valued functions is given by the vector of its truncated components.

Definition 5 (Regularization). 1. The truncated mobility R : H → L∞(X;Rm×m) is

given by the symmetric matrix-valued function

Rh =
∑m

l=0 h
�
l diag(h�)− h� ⊗ h� =

(
δk`h

�
k

∑m
l=0 h

�
l − h�`h�k

)
for h ∈ H. (19)

Correspondingly, the regularized drift operator R : L2(S;H) → L∞(S × X;Rm×m) is

defined by (Ru)(s) = Ru(s) for s ∈ S, u ∈ L2(S;H).

2. The regularized self-interaction operator Q : L2(S;H)→ L2(S;V ) is given by

Qu = PJu� for u ∈ L2(S;H). (20)

Lemma 1 (Solvability of a regularized problem). Let the Assumptions 1–5 be satisfied.

Then, for every a ∈ U(0) there exists a solution u ∈ WE(S;V ) of the regularized problem

(Eu)′ + Lu+ B(Ru,Qu+ ψ) = 0, (Ku)(0) = a. (R)

Proof. 1. Our proof is based on the application of Schauder’s fixed-point principle. Let

Λ ≥ 0 be the Lipschitz constant of Q and a ∈ U(0) be a fixed initial value. For every

u ∈ L2(S;H) we have Qu ∈ L2(S;V ) and B(Ru,Qu + ψ) ∈ L2(S;V ∗). Hence, there

exists a uniquely determined solution Fu ∈ WE(S;V ) satisfying KFu ∈ C(clS;H), see

Dautray and Lions [4, Chapter XVIII, §5] or Griepentrog [21, Section 2], of the

evolution problem

(EFu)′ + LFu = −B(Ru,Qu+ ψ), (KFu)(0) = a. (21)

That means, we have properly defined a fixed-point operator F : L2(S;H) → L2(S;H).

Our aim is to prove that F : L2(S;H)→ L2(S;H) is completely continuous and F[C] ⊂ C

holds for a closed convex set C ⊂ L2(S;H) depending only on the data of the problem.

2. Let u ∈ L2(S;H) and Fu ∈ WE(S;V ) be the solution of problem (21). Applying the

test function ϕ = Fu ∈ WE(S;V ) to (21) and Young’s inequality we get the estimate∫ t

0

〈(EFu)′(s), (Fu)(s)〉V dλ(s) +
m∑
k=1

∫ t

0

∫
X

A|∇(Fu)k|2 dσ dλ

≤ m

2ν

m∑
k=1

m∑
`=1

∫ t

0

∫
X

|(Ru)k`∇(Qu+ ψ)`|2 dσ dλ+
1

2

m∑
k=1

∫ t

0

∫
X

A|∇(Fu)k|2 dσ dλ
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for all t ∈ clS. Using the fact that due to (19) we have |(Ru)k`| ≤ m for k, ` ∈
{0, 1, . . . ,m}, for all t ∈ clS partial integration yields∫

X

|(KFu)(t)|2 dσ + ν
m∑
k=1

∫ t

0

∫
X

|∇(Fu)k|2 dσ dλ

≤
m∑
k=1

∫
X

|ak|2 dσ +
m4

ν

m∑
k=1

∫
S

∫
X

|∇(Qu+ ψ)k|2 dσ dλ. (22)

To obtain an estimate for Fu in L2(S;V ), we get one contribution by taking t = T on

the left hand side of (22). For the other contribution, we integrate both sides of (22) over

t ∈ S. Summing up, this yields∫
S

∫
X

|Fu|2 dσ dλ+ ν

m∑
k=1

∫
S

∫
X

|∇(Fu)k|2 dσ dλ

≤ (T + 1)
m∑
k=1

∫
X

|ak|2 dσ +
m4(T + 1)

ν

m∑
k=1

∫
S

∫
X

|∇(Qu+ ψ)k|2 dσ dλ.

Since Λ ≥ 0 is the Lipschitz constant of Q : L2(S;H)→ L2(S;V ), this yields

ν2‖Fu‖2L2(S;V ) ≤ ν(T + 1)‖a‖2H +m4(T + 1)‖Qu+ ψ‖2L2(S;V )

≤ ν(T + 1)‖a‖2H + 2m4(T + 1)
(
Λ‖u�‖2L2(S;H) + T‖ψ‖2V

)
.

That means, we have ‖Fu‖2L2(S;V ) ≤ r2 for all u ∈ L2(S;H), if we fix r > 0 by

ν2r2 = ν(T + 1)‖a‖2H + 2m4(T + 1)
(
mΛTσ(X) + T‖ψ‖2V

)
.

Hence, we get F[C] ⊂ C for the closed ball C =
{
u ∈ L2(S;H) : ‖u‖L2(S;H) ≤ r

}
.

Moreover, a similar calculation also shows that

ν2‖B(Ru,Qu+ ψ)‖2L2(S;V ∗) ≤ m4‖Qu+ ψ‖2L2(S;V ) ≤ 2m4
(
mΛTσ(X) + T‖ψ‖2V

)
and ν2‖LFu‖2L2(S;V ∗) ≤ r2 hold true for all u ∈ L2(S;H). Consequently, using iden-

tity (21), we obtain the boundedness of the set F[L2(S;H)] in WE(S;V ). Due to the

completely continuous embedding of WE(S;V ) into L2(S;H), see Remark 2, this yields

that the fixed-point map F : L2(S;H)→ L2(S;H) is a compact operator.

3. Let (ui) ⊂ L2(S;H) be a sequence which converges to u ∈ L2(S;H) in L2(S;H).

For every i ∈ N there exists a unique solution Fui ∈ WE(S;V ) of the problem

(EFui)
′ + LFui = −B(Rui,Qui + ψ), (KFui)(0) = a.

Because Fu ∈ WE(S;V ) is the solution of problem (21), for every i ∈ N it follows

(EFui−EFu)′+L(Fui−Fu) = B(Ru,Qu+ψ)−B(Rui,Qui+ψ), (KFui−KFu)(0) = 0.
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Testing with ϕ = Fui − Fu ∈ WE(S;V ), Young’s inequality yields the estimate∫ t

0

〈(EFui − EFu)′(s), (Fui − Fu)(s)〉V dλ(s)

≤ m

2ν

m∑
k=1

m∑
`=1

∫ t

0

∫
X

(
|(Rui)k`∇(Qui − Qu)`|2 + |(Ru− Rui)k`∇(Qu+ ψ)`|2

)
dσ dλ

for all t ∈ clS, i ∈ N. Having in mind that |(Ru)k`| ≤ m for k, ` ∈ {0, 1, . . . ,m}, and

integrating by parts, for all t ∈ clS we get∫
X

|(KFui −KFu)(t)|2 dσ ≤ m

ν

m∑
k=1

m∑
`=1

∫
S

∫
X

|(Ru− Rui)k`∇(Qu+ ψ)`|2 dσ dλ

+
m4

ν

m∑
k=1

∫
S

∫
X

|∇(Qui − Qu)k|2 dσ dλ,

and, hence, after integration over t ∈ S,∫
S

∫
X

|Fui − Fu|2 dσ dλ ≤ mT

ν

m∑
k=1

m∑
`=1

∫
S

∫
X

|(Ru− Rui)k`∇(Qu+ ψ)`|2 dσ dλ

+
m4T

ν

m∑
k=1

∫
S

∫
X

|∇(Qui − Qu)k|2 dσ dλ.

The integrand of the first part of the right hand side is majorized by 4m2|∇(Qu + ψ)`|2
for every i ∈ N, and it tends to zero λn+1-almost everywhere on S×X in the limit i→∞
because of the Lipschitz continuity of R and the convergence limi→∞ ‖ui − u‖L2(S;H) = 0.

Hence, applying Lebesgue’s theorem, the first part tends to zero. On the other hand,

lim
i→∞
‖Qui − Qu‖L2(S;V ) ≤ Λ lim

i→∞
‖ui − u‖L2(S;H) = 0.

That means, the second part of the right hand side tends to zero, too. We arrive at

limi→∞ ‖Fui − Fu‖L2(S;H) = 0, in other words, F : L2(S;H)→ L2(S;H) is continuous.

4. Together with the second step of the proof, F : L2(S;H)→ L2(S;H) is a completely

continuous operator, which maps the closed convex set C into itself. Hence, Schauder’s

fixed-point theorem yields a solution u ∈ WE(S;V ) ∩ C of the equation Fu = u. Conse-

quently, we have found a solution u ∈ WE(S;V ) of the regularized problem (R). �

Theorem 2 (Solvability of the original problem). Suppose the Assumptions 1–5 to be

fulfilled. Then, for every a ∈ U(0) there exists a solution u ∈ WE(S;V ) ∩ dom(M) of the

evolution system (P).

Proof. 1. Let a ∈ U(0) be given. Due to Lemma 1 there exists a solution u ∈ WE(S;V )

of the regularized problem (R). Let us use the notation w = PJu� + ψ ∈ L2(S;V ).
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2. Considering the test function ϕ = (−u−1 , . . . ,−u−m) ∈ L2(S;V ), from (19) it follows

m∑
k=1

m∑
`=1

(Ru)k`∇w` · ∇ϕk = −
m∑
k=1

m∑
l=0

u�l u
�
k∇wk · ∇u−k +

m∑
k=1

m∑
`=1

u�`u
�
k∇w` · ∇u−k = 0,

since for every k ∈ {1, . . . ,m} by definition we have u�k∇u−k = 0. Hence, testing (R) with

ϕ and having in mind a1, . . . , am ≥ 0, for all t ∈ clS integration by parts yields

0 =

∫ t

0

〈(Eu)′(s), ϕ(s)〉V dλ(s) +
m∑
k=1

∫ t

0

∫
X

A∇uk · ∇ϕk dσ dλ

≥ 1

2

m∑
k=1

∫
X

|u−k (t)|2 dσ + ν

m∑
k=1

∫ t

0

∫
X

|∇u−k |
2 dσ dλ

That means, we arrive at u1, . . . , um ≥ 0, and, hence, u0 = 1−
∑m

k=1 uk ≤ 1.

3. Choosing the test function ϕ = (−u−0 , . . . ,−u−0 ) ∈ L2(S;V ), from (19) we obtain

m∑
k=1

m∑
`=1

(Ru)k`∇w` · ∇ϕk = −
m∑
`=1

m∑
l=0

u�l u
�
` ∇w` · ∇u−0 +

m∑
k=1

m∑
`=1

u�`u
�
k∇w` · ∇u−0

= −
m∑
`=1

u�0u
�
` ∇w` · ∇u−0 = 0,

because of the relation u�0∇u−0 = 0. Applying the test function ϕ to (R) and remembering

the facts that u0 = 1−
∑m

k=1 uk and a0 ≥ 0, for all t ∈ clS integration by parts yields

0 = −
∫ t

0

〈(Eu)′(s), ϕ(s)〉V dλ(s)−
m∑
k=1

∫ t

0

∫
X

A∇uk · ∇ϕk dσ dλ

≥ 1

2

∫
X

|u−0 (t)|2 dσ + ν

∫ t

0

∫
X

|∇u−0 |2 dσ dλ,

in other words, we get u0 ≥ 0, and, therefore,
∑m

k=1 uk = 1− u0 ≤ 1.

4. It follows from Step 2 and 3 of the proof that for every solution u ∈ WE(S;V )

of the regularized problem (R) we have u ∈ dom(M). By the definition of truncation

this yields u = u�. Consequently, u ∈ WE(S;V ) ∩ dom(M) is a solution of the original

problem (P). �

Remark 7 (Conservation of particle number). If u ∈ WE(S;V )∩dom(M) is a solution

of the evolution system (P) for the initial value a ∈ U(0), then, taking ϕ = (1, . . . , 1) ∈
L2(S;V ) as a test function in (P), we get that for every component the number of particles

is conserved:∫
X

uk(t) dσ =

∫
X

ak dσ for all t ∈ clS and every k ∈ {0, 1, . . . ,m}.
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4. Uniqueness and uniform regularity of the solution

Before we prove the uniqueness and the uniform regularity of the solution to problem (P),

we collect main results of our theory of maximal regularity for parabolic boundary value

problems with nonsmooth data in Sobolev–Morrey and Hölder spaces.

Parabolic Morrey spaces of functions. For r > 0 we define a set of subintervals of S by

Sr =
{
S ∩ (t− r2, t) : t ∈ S

}
.

Let G = clX be the closure of the domain X ⊂ Rn with Lipschitz boundary. For r > 0

we introduce the set of intersections of X and G with cubes, respectively, by

Xr =
{
X ∩Q(x, r) : x ∈ X

}
and Gr =

{
G ∩Q(x, r) : x ∈ G

}
.

The following classical definitions go back to Campanato [2] and Da Prato [3]:

Definition 6. For ω ∈ [0, n+ 2] the parabolic Morrey space Lω2 (S;H) is the set of all

functions u ∈ L2(S;H) such that

[u]2Lω2 (S;H) = sup
r>0

sup
I∈Sr

sup
Y ∈Xr

r−ω
m∑
k=1

∫
I

∫
Y

|uk|2 dσ dλ

remains finite. The norm of u ∈ Lω2 (S;H) is defined by

‖u‖2Lω2 (S;H) = ‖u‖2L2(S;H) + [u]2Lω2 (S;H).

Remark 8. Note that these spaces are usually denoted by L2,ω(S × X;Rm). Apart

from these, later on we use further parabolic Morrey-type function spaces. Hence, we have

decided to use a different but integrated naming scheme. The set L∞(S ×X) of bounded

measurable functions is a space of multipliers for Lω2 (S;H).

Definition 7. For ω ∈ [0, n+ 2] we introduce the parabolic Sobolev–Morrey space

Lω2 (S;V ) =
{
u ∈ L2(S;V ) : (|∇u1|, . . . , |∇um|) ∈ Lω2 (S;H)

}
,

and we define the norm of u ∈ Lω2 (S;V ) by

‖u‖2Lω2 (S;V ) = ‖u‖2L2(S;V ) + [(|∇u1|, . . . , |∇um|)]2Lω2 (S;H).

Parabolic Sobolev–Morrey spaces of functionals. We define function spaces associated with

relative open subsets Y of the closure G = clX of the domain X ⊂ Rn with Lipschitz

boundary. Following the work [24] of Gröger, by W 1,2
0 (Y ;Rm) we denote the closure of

C∞0 (Y ;Rm) =
{
u| intY : u ∈ C∞0 (Rn;Rm), supp(u) ∩ (clY \ Y ) = ∅

}
in W 1,2(intY ;Rm), and we write W−1,2(Y ;Rm) for the dual space of W 1,2

0 (Y ;Rm). In

particular, W 1,2
0 (G;Rm) and W−1,2(G;Rm) coincide with the classical Sobolev spaces V =

W 1,2(X;Rm) and V ∗ = [W 1,2(X;Rm)]∗, respectively. For a shorter notation we introduce

the family V =
{
W 1,2

0 (Y ;Rm) : Y relative open subset of G
}

of these subspaces.
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Let I be an open subinterval of S and consider a subspace V0 ∈ V of V . If ZV0 : V0 → V

is the zero extension map, then we define ZI,V0 : L2(I;V0)→ L2(S;V ) by

(ZI,V0u)(s) =

{
ZV0u(s) if s ∈ I,
0 otherwise,

for u ∈ L2(I;V0).

Note that ZI,V0 is a linear isometry from L2(I;V0) into L2(S;V ). In the same spirit

as the parabolic Morrey spaces of functions, in Griepentrog [21, Section 5] we have

constructed a new scale of parabolic Sobolev–Morrey spaces of functionals as subspaces of

L2(S;V ∗). To localize a functional f ∈ L2(S;V ∗) we define the mapping f 7→ LI,V0f from

L2(S;V ∗) into L2(I;V ∗0 ) as the adjoint operator to the extension map ZI,V0 : L2(I;V0)→
L2(S;V ). That means, we set

〈LI,V0f, ϕ〉L2(I;V0) = 〈f,ZI,V0ϕ〉L2(S;V ) for ϕ ∈ L2(I;V0).

The isometric property of ZI,V0 yields

‖LI,V0f‖L2(I;V ∗0 ) ≤ ‖f‖L2(S;V ∗) for all f ∈ L2(S;V ∗).

Definition 8. For r > 0 we consider the subfamily Vr =
{
W 1,2

0 (Y ;Rm) : Y ∈ Gr
}

of V. Then, for ω ∈ [0, n+ 2] we define the parabolic Sobolev–Morrey space Lω2 (S;V ∗) of

functionals as the set of all elements f ∈ L2(S;V ∗) for which

[f ]2Lω2 (S;V ∗) = sup
r>0

sup
I∈Sr

sup
V0∈Vr

r−ω ‖LI,V0f‖2L2(I;V ∗0 )

has a finite value. We introduce the norm of f ∈ Lω2 (S;V ∗) by

‖f‖2Lω2 (S;V ∗) = ‖f‖2L2(S;V ∗) + [f ]2Lω2 (S;V ∗).

Then, the following theorem on functionals holds true, see [21, Theorem 5.6]:

Theorem 3. If Assumption 1 is satisfied, then the mapping (g0, g) 7→ f defined by

〈f, ϕ〉L2(S;V ) =
m∑
k=1

∫
S

∫
X

g0k ϕk dσ dλ+
m∑
k=1

∫
S

∫
X

gk · ∇ϕk dσ dλ for ϕ ∈ L2(S;V ),

generates a linear continuous operator from Lω−22 (S;H)× [Lω2 (S;H)]n into Lω2 (S;V ∗) for

ω ∈ [0, n+ 2], and its norm depends on m, n and X, only.

Sobolev–Morrey spaces for evolution equations. Based upon the preceeding definitions,

in Griepentrog [21, Section 6] we have constructed a new function class suitable for

the regularity theory of second order parabolic boundary value problems with nonsmooth

data, see Griepentrog [22, Sections 6 and 7]. In fact, all these results were already

established in the doctoral thesis [17] of the author.



Evolution of nonlocally interacting particles 17

Definition 9. Using the same notation as in Definition 2 and 3, for ω ∈ [0, n+ 2] we

introduce the Sobolev–Morrey space for evolution equations

W ω
E (S;V ) =

{
u ∈ WE(S;V ) ∩ Lω2 (S;V ) : (Eu)′ ∈ Lω2 (S;V ∗)

}
.

The norm is defined by

‖u‖2Wω
E (S;V ) = ‖u‖2Lω2 (S;V ) + ‖(Eu)′‖2Lω2 (S;V ∗) for u ∈ W ω

E (S;V ∗).

It turns out to be of great advantage that these spaces are embedded into parabolic

Hölder spaces, see Griepentrog [21, Theorem 3.4, Theorem 6.8, Theorem 6.9]:

Theorem 4 (Embedding). If Assumption 1 holds true, then for the exponents ω ∈
(n, n + 2] and α = 1

2
(ω − n) ∈ (0, 1] the space W ω

E (S;V ) is continuously embedded into

C0,α/2(clS;C(clX;Rm)) ∩ C(clS;C0,α(clX;Rm)). For every exponent α ∈
(
0, 1

2
(ω − n)

)
this embedding is completely continuous.

The main tools to prove uniqueness and uniform regularity of the solution to prob-

lem (P) are maximal regularity results for linear parabolic boundary value problems with

nonsmooth data in Sobolev–Morrey spaces, see Griepentrog and Recke in [22, The-

orem 6.8] and [23, Theorem 3.1]:

Theorem 5 (Maximal parabolic regularity). Let the Assumptions 1 and 3 be satisfied.

1. There exists ω̄ ∈ (n, n+2] such that for every ω ∈ [0, ω̄) the mapping u 7→ (Eu)′+Lu

is a linear isomorphism from {u ∈ W ω
E (S;V ) : (Ku)(0) = 0} onto Lω2 (S;V ∗).

2. Assume that N : C(clS;C(clX;Rm)) → Lω2
2 (S;V ∗) is a bounded linear Volterra

operator for some ω2 ∈ (n, n + 2]. Then there exists an exponent ω̄ ∈ (n, ω2] such that

for every ω ∈ (n, ω̄] the mapping u 7→ (Eu)′ + Lu + Nu is a linear isomorphism from

{u ∈ W ω
E (S;V ) : (Ku)(0) = 0} onto Lω2 (S;V ∗).

To apply these results, in addition to Remark 6 it suffices to suppose a regularity

assumption on the interaction functional Ψ in terms of a suitable Morrey-type condition.

In fact, this universal condition ensures not only uniqueness and uniform regularity, but

also uniform positivity and asymptotic convergence of the solution to problem (P).

Definition 10. Let ω ∈ [0, n] be some fixed exponent.

1. The Morrey space L2,ω(X;Rm) is the set of all functions h ∈ H such that

[h]2L2,ω(X;Rm) = sup
r>0

sup
Y ∈Xr

r−ω
m∑
k=1

∫
Y

|hk|2 dσ

remains finite. The norm of h ∈ L2,ω(X;Rm) is defined by

‖h‖2L2,ω(X;Rm) = ‖h‖2H + [h]2L2,ω(X;Rm).
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2. We define the Sobolev–Morrey space by

W 1,2,ω(X;Rm) =
{
w ∈ V : (|∇w1|, . . . , |∇wm|) ∈ L2,ω(X;Rm)

}
,

and the norm of w ∈ W 1,2,ω(X;Rm) is given by

‖w‖2W 1,2,ω(X;Rm) = ‖w‖2V + [(|∇w1|, . . . , |∇wm|)]2L2,ω(X;Rm).

Assumption 6 (Regularity of interaction). Introducing the abbreviations

L∞ = L∞(X;Rm) ⊂ H and C = C(clX;Rm) ⊂ L∞,

as well as

C0,α = C0,α(clX;Rm) ⊂ C and W 1,2,ω = W 1,2,ω(X;Rm) ⊂ V

for α ∈ (0, 1] and ω ∈ [0, n], we suppose that P ∈ L(H∗;V ) and ψ ∈ V defined in (17)

satisfy the regularity properties

P |J [L∞] ∈ L(J [L∞];W 1,2,ω0) and ψ ∈ W 1,2,ω0

for some given Morrey exponent ω0 ∈ (n − 2, n]. The corresponding Hölder exponent is

denoted by α0 = 1
2
(ω0 − n+ 2) ∈ (0, 1].

Remark 9. Since the embedding of W 1,2,ω into C0,α is continuous for ω ∈ (n − 2, n]

and α = 1
2
(ω− n+ 2) ∈ (0, 1], it is completely continuous for every α ∈

(
0, 1

2
(ω− n+ 2)

)
.

Hence, P |J [L∞] is completely continuous as an operator in L(J [L∞];L∞).

According to Assumption 2 and Remark 6, there exists a constant L0 > 0 such that for

all admissible states ρ ∈ dom(Φ) = J [U(0)] the estimate
m∑
`=1

∫
Y

|∇w`|2 dσ ≤ L0r
ω0 for all r > 0 and Y ∈ Xr

holds true, whenever w = Pρ+ ψ ∈ W 1,2,ω0 are the corresponding interaction potentials.

Remark 10. Note that Assumption 6 is much weaker compared with Gajewski

and Zacharias in [11], Londen and Petzeltova in [28, 29] or Gal and Gras-

selli in [12]. These authors consider the homogeneous case σ = λn and suppose that

P ∈ L(H∗;V ) and ψ ∈ V satisfy Lipschitz conditions

P |J [L∞] ∈ L(J [L∞];C0,1) and ψ ∈ C0,1

which excludes many interactions governed by nonsmooth data. We refer to Section 7 for

a comprehensive discussion of an illustrating example for nonlocal phase separation.

Remark 11. Due to Assumptions 5, 6 and Remark 9, for all r > 0, I ∈ Sr and Y ∈ Xr

the potentials w = PJu+ ψ ∈ L2(S;V ) corresponding to u ∈ dom(M) satisfy

r−ω0−2
m∑
k=1

∫
I

∫
Y

|∇wk|2 dσ dλ = r−2
∫
I

r−ω0

m∑
k=1

∫
Y

|∇wk(s)|2 dσ dλ(s) ≤ L0.
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The mapping u 7→ w = PJu+ψ is a continuous affine operator from L∞(S×X;Rm) into

Lω2
2 (S;V ) for ω2 = ω0 + 2 ∈ (n, n+ 2].

The proof of the uniqueness result presented in this work is based on the global regularity

of the difference of two solutions to problem (P).

Theorem 6 (Unique solvability). Suppose the Assumptions 1–6 to be fulfilled. Then,

for all initial values a ∈ U(0) and every time interval S = (0, T ) the evolution system (P)

has a unique solution u ∈ WE(S;V ) ∩ dom(M).

Proof. 1. Let u, û ∈ WE(S;V ) ∩ dom(M) be two solutions of problem (P). Then, setting

f = B(Mû,PJû+ ψ)−B(Mu,PJu+ ψ) ∈ L2(S, V ∗), (23)

the difference c = u− û ∈ WE(S;V ) solves the linear parabolic problem

(Ec)′ + Lc = f, (Kc)(0) = 0.

Following Theorem 3 and Remark 11, due to u, û ∈ dom(M) and PJu + ψ, PJû + ψ ∈
Lω2
2 (S;V ), the right-hand side f even belongs to Lω2

2 (S;V ∗). Now, Theorem 5 on maximal

parabolic regularity in Sobolev–Morrey spaces yields c ∈ W ω
E (S;V ) for some ω ∈ (n, ω2].

Having in mind Theorem 4, we obtain the continuity property c ∈ C(clS;C).

2. Using the bilinearity of B, from (23) we deduce an alternative representation of the

functional f ∈ Lω2
2 (S;V ∗) in terms of the difference c = u− û ∈ W ω

E (S;V ):

−f = B(diag(u)− u⊗ u,PJu+ ψ)−B(diag(û)− û⊗ u,PJu+ ψ)

+ B(diag(û)− û⊗ u,PJu+ ψ)−B(diag(û)− û⊗ u,PJû+ ψ)

+ B(diag(û)− û⊗ u,PJû+ ψ)−B(diag(û)− û⊗ û,PJû+ ψ)

= B(diag(c)− c⊗ u,PJu+ ψ) + B(diag(û)− û⊗ u,PJc)−B(û⊗ c,PJû+ ψ).

Using this representation and ω2 ∈ (n, n + 2], Theorem 3 allows us to define a bounded

linear Volterra operator N : C(clS;C)→ Lω2
2 (S;V ∗) by setting

Nĉ = B(diag(ĉ)− ĉ⊗ u,PJu+ ψ) + B(diag(û)− û⊗ u,PJĉ)−B(û⊗ ĉ,PJû+ ψ)

for ĉ ∈ C(clS;C). Because we have Nc = −f , Step 1 of the proof yields that the difference

c ∈ WE(S;V ) ∩ C(clS;C) solves the linear parabolic problem

(Ec)′ + Lc+ Nc = 0, (Kc)(0) = 0.

By Theorem 5 on maximal parabolic regularity in Sobolev–Morrey spaces, the mapping

c 7→ (Ec)′ + Lc + Nc is a linear isomorphism from {u ∈ W ω
E (S;V ) : (Ku)(0) = 0} onto

Lω2 (S;V ∗) for some ω ∈ (n, ω2]. Hence, we get c = u− û = 0, which finishes the proof. �
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Theorem 7 (Uniform regularity of the solution). Let the Assumptions 1–6 be satisfied,

and θ ∈
(
0, 1

2

)
and T ≥ 1 be arbitrarily fixed. Suppose a ∈ U(0) to be an admissible initial

value and u ∈ WE(S;V ) ∩ dom(M) to be the solution of the evolution system (P).

1. Then, we have u|(θ, T ) ∈ W ω
E ((θ, T );V ) for some ω ∈ (n, ω2] depending on m, n, ν,

ω2 ∈ (n, n+ 2], and X.

2. The norm of u|(t0, t1) in the space W ω
E ((t0, t1);V ) is uniformly bounded regardless of

the choice of T ≥ 1 or t0 ∈
[
θ, T − 1

2

]
, whenever t1 = t0 + 1

2
holds true. In this case the

bound depends on m, n, ν, ω0, θ, L, L0 and X.

Proof. 1. Since the initial value a ∈ U(0) may have spatial discontinuities, we can not

expect the solution to be regular in the whole interval S. We arbitrarily fix t0 ∈
[
θ, T − 1

2

]
and choose some temporal cut-off function ϑ ∈ C∞(R) satisfying 0 ≤ ϑ ≤ 1 and

ϑ(s) = 0 for s ≤ t0 − θ, ϑ(s) = 1 for s ≥ t0, and |ϑ′(s)| ≤ 2

θ
for s ∈ R

to consider the regularity properties of the product ϑu.

2. Considering t1 ∈ (t0, T ] and testing (P) with the product ϑϕ for functions ϕ ∈
L2(S;V ) vanishing outside the subinterval S0 = (t0 − θ, t1) of S, we obtain that the

restriction û = (ϑu)|S0 ∈ WE(S0;V ) is the solution to the evolution problem

(E0û)′ + L0û = f0, (K0û)(t0 − θ) = 0, (24)

where the operators K0, E0 and L0 are associatied to S0 and V as in Definition 2 and 3

and Assumption 3, and the right-hand side f0 ∈ L2(S0;V
∗) is represented by

〈f0, ϕ〉L2(S0;V ) =
m∑
k=1

∫
S0

∫
X

ϑ′uk ϕk dσ dλ

−
m∑
k=1

m∑
`=1

∫
S0

∫
X

ϑA(Mu)k`∇(PJu+ ψ)` · ∇ϕk dσ dλ

for ϕ ∈ L2(S0;V ). In view of u ∈ dom(M) and PJu + ψ ∈ Lω2
2 (S;V ) the right-hand

side f0 of (24) belongs to Lω2
2 (S0;V

∗) due to Theorem 3 and Remark 11, and the norm of

f0 in Lω2
2 (S0;V

∗) depends on m, n, ω0, θ, L, L0 and X.

3. In the case S0 = S, Step 2 and Theorem 5 on maximal parabolic regularity in

Sobolev–Morrey spaces yield û = ϑu ∈ W ω
E (S;V ) for some ω ∈ (n, ω2], which leads to

u|(θ, T ) ∈ W ω
E ((θ, T );V ).

4. Setting t1 = t0 + 1
2
, the subinterval S0 of S has the fixed length θ+ 1

2
. Together with

Step 2 we obtain that the norm of the functional f0 in Lω2(S0;V
∗) is uniformly bounded

for all choices of the subinterval S0 =
(
t0− θ, t0 + 1

2

)
in S. Due to Theorem 5 this carries

over to the norm of the solution û ∈ W ω
E (S0;V ) of (24) with respect to the family of

subintervals S0 under consideration. Consequently, the norm of u|(t0, t1) in the space

W ω
E ((t0, t1);V ) is uniformly bounded regardless of the choice of T ≥ 1 or t0 ∈

[
θ, T − 1

2

]
,

whenever t1 = t0 + 1
2

holds true. �
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5. Uniform positivity of the solution

In this section we restrict ourselves to consider initial values a ∈ U(0) which have the

property that for every k ∈ {0, 1, . . . ,m} the k-th component has a positive number∫
X
ak dσ > 0 of particles. In the opposite case

∫
X
ak dσ = 0, the k-th component would

not give a contribution to the multicomponent mixture and could be dropped out of the

system, since the particle number is conserved along the trajectory, see Remark 7.

Assumption 7 (Strict admissibility). Let a ∈ U(0) be some admissible initial value

for problem (P) and consider the mean values

āk =

∫
X

ak dσ =
1

σ(X)

∫
X

ak dσ ∈ [0, 1] for k ∈ {0, 1, . . . ,m}.

We suppose that āk ∈ (0, 1) holds true for every k ∈ {0, 1, . . . ,m} and set

β = 1
2

min{ā0, ā1, . . . , ām} ∈
(
0, 1

2

)
.

In this case the initial value a ∈ U(0) is called strictly admissible.

Definition 11 (Regularized potentials). Let Assumption 7 be satisfied and set

Γβ =
{
γ > 0 : γ2 < min

{
β
2
, β2
}}
.

For every γ ∈ Γβ we consider a convex function ιγ ∈ C∞(R) with the property

ιγ(z) = ln
β

z + γ2
for z ∈ [0, 1].

If u ∈ WE(S;V ) ∩ dom(M) is the solution of (P), then the functions ζk = ιγ ◦ uk ∈
L2(S;W 1,2(X)) ∩ L∞(S × X), defined for k ∈ {0, 1, . . . ,m}, are called corresponding

γ-regularized potentials.

Remark 12 (Measure estimate for level sets). Suppose Assumption 7 to be fulfilled.

Then for every k ∈ {0, 1, . . . ,m} and γ ∈ Γβ we consider the level sets

Nβ−γ2(ak) =
{
x ∈ X : ak(x) ≥ β − γ2

}
,

and we obtain

āk σ(X) =

∫
Nβ−γ2 (ak)

ak dσ +

∫
X\Nβ−γ2 (ak)

ak dσ

≤ σ(Nβ−γ2(ak)) + (β − γ2)
(
σ(X)− σ(Nβ−γ2(ak))

)
,

which leads to the following measure estimate

σ(Nβ−γ2(ak)) ≥ (1− β + γ2)σ(Nβ−γ2(ak)) ≥ (āk − β + γ2)σ(X) ≥ βσ(X).

If u ∈ WE(S;V )∩dom(M) is the solution of (P), then u(s) ∈ V satisfies the same relations

for every s ∈ S, since the particle number is conserved, see Remark 7.
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We apply a variant of Moser-type iteration to get Harnack-type estimates for the lower

bound of the relative densities based on the classical results [26, 27, 32] of Kruzhkov

and Moser.

Lemma 8 (Basis of Moser-type iteration). Let the Assumptions 1–7 be satisfied and

u ∈ WE(S;V ) ∩ dom(M) be the solution of (P) to the strictly admissible initial value

a ∈ U(0). Suppose ζ0, ζ1, . . . , ζm to be the corresponding γ-regularized potentials for some

γ ∈ Γβ and w = PJu+ ψ to be the corresponding interaction potentials.

Then, for all t0, t ∈ S with t0 < t we have the estimate

ν

2

m∑
k=0

∫ t

t0

∫
X

|∇ζk|2 dσ dλ ≤ (m+ 1)σ(X) ln
β

γ2

(
1

β
+

1

2

)

+
m(m+ 1)

2ν3

m∑
k=1

∫ t

t0

∫
X

|∇wk|2 dσ dλ.

Proof. 1. Due to our assumptions on ιγ ∈ C∞(R) we have

ι′γ(z) = − 1

z + γ2
and ι′′γ(z) =

1

(z + γ2)2
= |ι′γ(z)|2

as well as

− ln

(
1

β
+

1

2

)
≤ ln

β

1 + γ2
≤ ιγ(z) ≤ ln

β

γ2
for all z ∈ [0, 1].

2. We consider the test function ϕ =
(
ι′γ ◦u1, . . . , ι′γ ◦um

)
∈ L2(S;V )∩L∞(S×X;Rm)

for (P). Then, integrating by parts, for all t0, t ∈ S with t0 < t we get∫ t

t0

〈(Eu)′(s), ϕ(s)〉V dλ(s) =
m∑
k=1

∫
X

ζk(t) dσ −
m∑
k=1

∫
X

ζk(t0) dσ

≥ −mσ(X) ln
β

γ2

(
1

β
+

1

2

)
.

3. Using the properties of ιγ and the positivity of A, we obtain

〈Lu, ϕ〉L2(S;V ) =
m∑
k=1

∫ t

t0

∫
X

|ι′γ ◦ uk|2A∇uk · ∇uk dσ dλ ≥ ν

m∑
k=1

∫ t

t0

∫
X

|∇ζk|2 dσ dλ.

Applying Young’s inequality to the right-hand side of the identity

〈B(Mu,w), ϕ〉L2(S;V ) = −
m∑
k=1

m∑
`=1

∫ t

t0

∫
X

uk(δk` − u`)
uk + γ2

A∇w` · ∇ζk dσ dλ,

and remembering the boundedness of A, we also get the following estimate

〈B(Mu,w), ϕ〉L2(S;V ) ≥ −
ν

2

m∑
k=1

∫ t

t0

∫
X

|∇ζk|2 dσ dλ−
m2

2ν3

m∑
`=1

∫ t

t0

∫
X

|∇w`|2 dσ dλ.
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4. Summing up the results of Step 2 and 3, the variational formulation of (P) yields

ν

2

m∑
k=1

∫ t

t0

∫
X

|∇ζk|2 dσ dλ ≤ mσ(X) ln
β

γ2

(
1

β
+

1

2

)
+
m2

2ν3

m∑
`=1

∫ t

t0

∫
X

|∇w`|2 dσ dλ

for all t0, t ∈ S with t0 < t.

5. We repeat the above considerations with the test function ϕ =
(
ι′γ ◦u0, . . . , ι′γ ◦u0

)
∈

L2(S;V ) ∩ L∞(S ×X;Rm) for (P). Integrating by parts, for all t0, t ∈ S with t0 < t we

obtain the estimate

−
∫ t

t0

〈(Eu)′(s), ϕ(s)〉V dλ(s) =

∫
X

ζ0(t) dσ −
∫
X

ζ0(t0) dσ ≥ −σ(X) ln
β

γ2

(
1

β
+

1

2

)
.

6. Similarly to Step 3 we get

−〈Lu, ϕ〉L2(S;V ) =

∫ t

t0

∫
X

|ι′γ ◦ u0|2A∇u0 · ∇u0 dσ dλ ≥ ν

∫ t

t0

∫
X

|∇ζ0|2 dσ dλ.

Using Young’s inequality to estimate the right-hand side of the identity

−〈B(Mu,w), ϕ〉L2(S;V ) =
m∑
`=1

∫ t

t0

∫
X

u0u`
u0 + γ2

A∇w` · ∇ζ0 dσ dλ,

and having in mind the boundedness of A, we obtain

−〈B(Mu,w), ϕ〉L2(S;V ) ≥ −
ν

2

∫ t

t0

∫
X

|∇ζ0|2 dσ dλ−
m

2ν3

m∑
`=1

∫ t

t0

∫
X

|∇w`|2 dσ dλ.

7. Summing up the results of Step 5 and 6, the variational formulation of (P) yields

ν

2

∫ t

t0

∫
X

|∇ζ0|2 dσ dλ ≤ σ(X) ln
β

γ2

(
1

β
+

1

2

)
+

m

2ν3

m∑
`=1

∫ t

t0

∫
X

|∇w`|2 dσ dλ

for all t0, t ∈ S with t0 < t. In view of Step 4, this finishes the proof. �

Since for every domain X ⊂ Rn with Lipschitz boundary there exists a bounded linear

extension operator from W 1,2(X) to W 1,2(Rn), see Giusti [16], the following generalized

Sobolev embedding theorem of Mazya [30, Corollary 1.4.7/2] is applicable. This will

be our main tool to prove the uniform positivity of solutions under Assumption 6 on

the regularity of the interaction operator, which is a much more general and natural

assumption compared with that of Londen and Petzeltova in [28, Section 3] or Gal

and Grasselli in [12, Section 4], see Remark 10.

Theorem 9 (Embedding). Let X ⊂ Rn be a domain with Lipschitz boundary. Suppose

that µ is a Radon measure with support in clX which satisfies

µ(clX ∩Q(x, r)) ≤ c1r
ω for all x ∈ Rn and 0 < r ≤ 1,
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and some constants c1 > 0 and ω ∈ (n − 2, n]. Then there exists some constant c2 > 0

depending on c1, n, ω and X, such that for all v ∈ W 1,2(X) the multiplicative inequality∫
clX

|v|2 dµ ≤ c2

(∫
X

(
|∇v|2 + |v|2

)
dλn
)1−α(∫

X

|v|2 dλn
)α

holds true, where α = 1
2
(ω − n+ 2) ∈ (0, 1] is the corresponding Hölder exponent.

Lemma 10 (Inductive step of Moser-type iteration). Suppose the Assumptions 1–7 to

be satisfied and u ∈ WE(S;V )∩dom(M) to be the solution of (P) to the strictly admissible

initial value a ∈ U(0). Let ζ0, ζ1, . . . , ζm be the corresponding γ-regularized potentials for

some γ ∈ Γβ and w = PJu+ ψ be the corresponding interaction potentials.

Let κ = 1 + 2/n and α0 = 1
2
(ω0 − n+ 2) ∈ (0, 1] be the Hölder exponent corresponding

to ω0 ∈ (n− 2, n]. Let t0 ∈ [0, T ) and θ ∈
(
0, 1

2

)
with [t0, t0 + θ] ⊂ [0, T ) and consider the

sequence (ti) ⊂ [t0, t0 + θ) of points defined by ti = t0 + θ(1− 2−i) for i ∈ N.

Then there exists some constant c > 0 depending only on m, n, ν, α0, β, θ, L0, and X

such that for every p ≥ 2, i ∈ N, and t ∈ [t0 + θ, T ] the following estimate holds true:

m∑
k=0

∫ t

ti+1

∫
X

|ζ+k |
κp dσ dλ ≤

(
2i+1c p2/α0

∫ t

ti

∫
X

(
m∑
k=0

|ζ+k |
p +

m∑
k=1

|∇wk|2
)
dσ dλ

)κ

.

Proof. 1. Let i ∈ N and p ≥ 2 be fixed. Having in mind ti = t0 + θ(1 − 2−i), we choose

some cut-off function ϑ ∈ C∞(R) satisfying 0 ≤ ϑ ≤ 1 and

ϑ(s) = 0 for s ≤ ti, ϑ(s) = 1 for s ≥ ti+1, and |ϑ′(s)| ≤ 2i+2

θ
for s ∈ R,

and we define functions v0, v1, . . . , vm ∈ L2(S;W 1,2(X)) ∩ L∞(S ×X) by

vk = −p |ζ
+
k |p−1

uk + γ2
ϑ2χ[ti,t] for k ∈ {0, 1, . . . ,m} and some t ∈ (ti, T ],

where χ[ti,t] : R→ [0, 1] is the indicator function of the interval [ti, t].

2. We take ϕ = (v1, . . . , vm) ∈ L2(S;V ) ∩ L∞(S ×X;Rm) as a test function for prob-

lem (P). Integrating by parts and applying the chain rule, for all t ∈ (ti, T ] we get∫
S

〈(Eu)′(s), ϕ(s)〉V dλ(s) =
m∑
k=1

∫
X

|ζ+k (t)|p ϑ2(t) dσ −
m∑
k=1

∫ t

ti

∫
X

|ζ+k |
p 2ϑ′ϑ dσ dλ

≥
m∑
k=1

∫
X

|ζ+k (t)|p ϑ2(t) dσ − 2i+3

θ

m∑
k=1

∫ t

ti

∫
X

|ζ+k |
p dσ dλ.

3. Due to our assumptions on ιγ ∈ C∞(R) we have

ι′γ(z) = − 1

z + γ2
and ι′′γ(z) =

1

(z + γ2)2
= |ι′γ(z)|2 for all z ∈ [0, 1].
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Hence, the chain rule yields

∇vk = −p|ζ
+
k |p−1 + p(p− 1)|ζ+k |p−2

uk + γ2
ϑ2χ[ti,t]∇ζ+k for every k ∈ {0, 1, . . . ,m}.

Therefore, using the positivity of A, we get the estimate

〈Lu, ϕ〉L2(S;V ) ≥ ν

m∑
k=1

∫ t

ti

∫
X

p
(
|ζ+k |

p−1 + (p− 1)|ζ+k |
p−2)ϑ2 |∇ζ+k |

2 dσ dλ.

4. Using Young’s inequality and the boundedness of A we obtain

〈B(Mu,w), ϕ〉L2(S;V ) ≥ −
ν

2

m∑
k=1

∫ t

ti

∫
X

p
(
|ζ+k |

p−1 + (p− 1)|ζ+k |
p−2)ϑ2 |∇ζ+k |

2 dσ dλ

− m

2ν3

m∑
k=1

m∑
`=1

∫ t

ti

∫
X

p
(
|ζ+k |

p−1 + (p− 1)|ζ+k |
p−2)ϑ2 |∇w`|2 dσ dλ.

5. Having in mind another variant of Young’s inequality, namely, bδd1−δ ≤ δb+ (1− δ)d
for every b, d ≥ 0 and 0 ≤ δ ≤ 1, for k ∈ {0, 1, . . . ,m} we get the polynomial estimate

p|ζ+k |
p−1 + p(p− 1)|ζ+k |

p−2 ≤
(
(p− 1)|ζ+k |

p + 1
)

+
(
(p− 1)(p− 2)|ζ+k |

p + 2(p− 1)
)
,

and, hence,

1
2
p2 |ζ+k |

p−2 ≤ p(p− 1)|ζ+k |
p−2 ≤ p|ζ+k |

p−1 + p(p− 1)|ζ+k |
p−2 ≤ p2

(
|ζ+k |

p + 1
)
.

Together with Step 3 and 4 this yields

〈Lu+ B(Mu,w), ϕ〉L2(S;V ) ≥
ν

4

m∑
k=1

∫ t

ti

∫
X

p2 |ζ+k |
p−2 ϑ2 |∇ζ+k |

2 dσ dλ

− m

2ν3

m∑
k=1

m∑
`=1

∫ t

ti

∫
X

p2
(
|ζ+k |

p + 1
)
ϑ2 |∇w`|2 dσ dλ.

6. If we define the functions π0, π1, . . . , πm ∈ L2(S;W 1,2(X)) ∩ L∞(S ×X) by

πk = |ζ+k |
p/2 for k ∈ {0, 1, . . . ,m},

the chain rule yields 4 |∇πk|2 = p2 |ζ+k |p−2 |∇ζ
+
k |2. Summing up the results of Step 2 and 5,

the variational formulation of (P) leads to the following estimate for every t ∈ (ti, T ]:

m∑
k=1

∫
X

|πk(t)|2 ϑ2(t) dσ + ν
m∑
k=1

∫ t

ti

∫
X

|∇πk|2 ϑ2 dσ dλ

≤ 2i+3

θ

m∑
k=1

∫ t

ti

∫
X

|πk|2 dσ dλ+
m

2ν3

m∑
k=1

m∑
`=1

∫ t

ti

∫
X

p2
(
|πk|2 + 1

)
ϑ2 |∇w`|2 dσ dλ.
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7. We repeat the above arguments for the test function ϕ = (v0, . . . , v0) ∈ L2(S;V ) ∩
L∞(S × X;Rm). Integrating by parts and using the chain rule, for every t ∈ (ti, T ] we

obtain

−
∫
S

〈(Eu)′(s), ϕ(s)〉V dλ(s) =

∫
X

|ζ+0 (t)|p ϑ2(t) dσ −
∫ t

ti

∫
X

|ζ+0 |p 2ϑ′ϑ dσ dλ

≥
∫
X

|ζ+0 (t)|p ϑ2(t) dσ − 2i+3

θ

∫ t

ti

∫
X

|ζ+0 |p dσ dλ.

8. Similarly to Step 3 and 4, the positivity and the boundedness of A yields the estimates

−〈Lu, ϕ〉L2(S;V ) ≥ ν

∫ t

ti

∫
X

p
(
|ζ+0 |p−1 + (p− 1)|ζ+0 |p−2

)
ϑ2 |∇ζ+0 |2 dσ dλ

as well as

−〈B(Mu,w), ϕ〉L2(S;V ) ≥ −
ν

2

∫ t

ti

∫
X

p
(
|ζ+0 |p−1 + (p− 1)|ζ+0 |p−2

)
ϑ2 |∇ζ+0 |2 dσ dλ

− m

2ν3

m∑
`=1

∫ t

ti

∫
X

p
(
|ζ+0 |p−1 + (p− 1)|ζ+0 |p−2

)
ϑ2 |∇w`|2 dσ dλ.

Analogously to Step 5, this leads to

−〈Lu+ B(Mu,w), ϕ〉L2(S;V ) ≥
ν

4

∫ t

ti

∫
X

p2 |ζ+0 |p−2 ϑ2 |∇ζ+0 |2 dσ dλ

− m

2ν3

m∑
`=1

∫ t

ti

∫
X

p2
(
|ζ+0 |p + 1

)
ϑ2 |∇w`|2 dσ dλ.

9. Summing up the estimates of Step 7 and 8 as in Step 6 and having in mind π0 = |ζ+0 |p/2
and 4 |∇π0|2 = p2 |ζ+0 |p−2 |∇ζ+0 |2, the variational formulation of (P) yields the estimate∫

X

|π0(t)|2 ϑ2(t) dσ + ν

∫ t

ti

∫
X

|∇π0|2 ϑ2 dσ dλ

≤ 2i+3

θ

∫ t

ti

∫
X

|π0|2 dσ dλ+
m

2ν3

m∑
`=1

∫ t

ti

∫
X

p2
(
|π0|2 + 1

)
ϑ2 |∇w`|2 dσ dλ.

Together with Step 6, for every t ∈ (ti, T ] we end up with

m∑
k=0

∫
X

|πk(t)|2 ϑ2(t) dσ + ν
m∑
k=0

∫ t

ti

∫
X

|∇πk|2 ϑ2 dσ dλ

≤ 2i+3

θ

m∑
k=0

∫ t

ti

∫
X

|πk|2 dσ dλ+
m

2ν3

m∑
k=0

m∑
`=1

∫ t

ti

∫
X

p2
(
|πk|2 + 1

)
ϑ2 |∇w`|2 dσ dλ.
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10. Following Assumption 6 and Remark 9, there exists a uniform bound L0 > 0 for

the Morrey seminorm
m∑
`=1

∫
X∩Q(x,r)

|∇w`(s)|2 dσ ≤ L0r
ω0 for all x ∈ X, r > 0 and λ-almost all s ∈ S.

Due to Remark 12, the set where the function πk(s) ∈ V vanishes, for λ-almost all

s ∈ S and every k ∈ {0, 1, . . . ,m} has at least σ-measure βσ(X). Applying Theorem 9,

Lemma 18, and Young’s inequality (δb)1−α0(δ1−1/α0d)α0 ≤ (1−α0)δb+α0δ
1−1/α0d for real

numbers b, d ≥ 0, δ > 0, we find some constant c0 > 0, depending on m, n, α0, β, L0,

and X, such that for λ-almost all s ∈ S and δ > 0 we have
m∑
k=0

m∑
`=1

∫
X

|πk(s)|2 |∇w`(s)|2 dσ ≤ c0

m∑
k=0

∫
X

(
δ |∇πk(s)|2 + δ1−1/α0 |πk(s)|2

)
dσ.

Specifying δ > 0 such that c0mp
2δ = ν4 holds true, Step 9 yields

m∑
k=0

∫
X

|πk(t)|2 ϑ2(t) dσ +
ν

2

m∑
k=0

∫ t

ti

∫
X

|∇πk|2 ϑ2 dσ dλ

≤
∫ t

ti

∫
X

((
2i+3

θ
+

(c0mp
2)1/α0

2ν4/α0−1

) m∑
k=0

|πk|2 +
m(m+ 1)p2

2ν3

m∑
k=1

|∇wk|2
)
ϑ2 dσ dλ

for every t ∈ (ti, T ]. Consequently, using the properties of the cut-off function ϑ, there

exists some constant c1 > 0 depending on m, n, ν, α0, β, θ, L0, and X such that

sup
s∈[ti+1,t]

m∑
k=0

∫
X

|πk(s)|2 dσ +
m∑
k=0

∫ t

ti+1

∫
X

|∇πk|2 dσ dλ

≤ 2i+1c1p
2/α0

∫ t

ti

∫
X

(
m∑
k=0

|πk|2 +
m∑
k=1

|∇wk|2
)
dσ dλ

for every t ∈ [t0 + θ, T ].

11. In view of Remark 12, the set where the function πk(s) ∈ V vanishes, for λ-almost

all s ∈ S and every k ∈ {0, 1, . . . ,m} has at least σ-measure βσ(X). Hence, Lemma 19

and Young’s inequality yields a constant c2 > 0 depending on β, m, n and X such that

m∑
k=0

∫ t

ti+1

∫
X

|πk|2κ dσ dλ ≤ c2

(
sup

s∈[ti+1,t]

m∑
k=0

∫
X

|πk(s)|2 dσ +
m∑
k=0

∫ t

ti+1

∫
X

|∇πk|2 dσ dλ

)κ

holds true for every t ∈ [t0 + θ, T ]. Using the definition of πk and Step 10, we end up with

m∑
k=0

∫ t

ti+1

∫
X

|ζ+k |
κp dσ dλ ≤ c2

(
2i+1c1p

2/α0

∫ t

ti

∫
X

(
m∑
k=0

|ζ+k |
p +

m∑
k=1

|∇wk|2
)
dσ dλ

)κ

,

which finishes the proof. �
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Theorem 11 (Uniform positivity). Let the Assumptions 1–7 be satisfied and let u ∈
WE(S;V ) ∩ dom(M) solve problem (P) for the strictly admissible initial value a ∈ U(0).

Then, for every θ ∈
(
0, 1

2

)
there exists a lower bound γ ∈

(
0, 1

2

)
depending on m, n, ν,

α0, β, θ, L, L0, and X, but not on T ≥ 1, such that u(t) ∈ U(γ) for all t ∈ [θ, T ].

Proof. 1. Let κ = 1 + 2/n and α0 = 1
2
(ω0 − n + 2) ∈ (0, 1] be the Hölder exponent

corresponding to ω0 ∈ (n−2, n]. Fixing a time shift θ ∈
(
0, 1

2

)
, we consider t0 ∈ [0, T − θ)

and the sequence (ti) ⊂ [t0, t0 + θ) ⊂ [t0, T ) defined by ti = t0 + θ(1− 2−i) for i ∈ N.

Let a ∈ U(0) be strictly admissible and u ∈ WE(S;V ) ∩ dom(M) be the solution

of (P). Suppose ζ0, ζ1, . . . , ζm to be the corresponding γ-regularized potentials for some

parameter γ ∈ Γβ which will be determined later, and w = PJu+ψ to be the corresponding

interaction potentials.

Now, Lemma 10 plays the role of the inductive step of a Moser-type iteration: There

exists some constant c1 ≥ 1 depending on m, n, ν, α0, β, θ, L0, and X such that for every

t ∈ [t0 + θ, T ] the sequence (bi) ⊂ [1,∞) of quantities

bi = 1 +

∫ t

ti

∫
X

(
m∑
k=0

|ζ+k |
2κi +

m∑
k=1

|∇wk|2
)
dσ dλ for i ∈ N, (25)

satisfies the recursive estimate

bi+1 ≤ bi +
(
2i+1(2κi)2/α0c1bi

)κ
for every i ∈ N.

Hence, we find a constant c2 > 0 depending on m, n, ν, α0, β, θ, L0, and X such that

bi+1 ≤ ci+1
2 bκi for all i ∈ N.

Applying this estimate recursively for j ∈ {0, 1, . . . , i− 1}, we get

bi ≤ c
pi(κ)
2 bκ

i

0 for all i ∈ N,

where we have introduced the polynomial pi(κ) =
∑i−1

j=0(i− j)κj for i ∈ N. Because of

κ−ipi(κ) =
i−1∑
j=0

(i− j)κj−i =
i∑

j=1

jκ−j ≤ κ
(κ − 1)2

for all i ∈ N,

there exists some constant c3 > 0 depending on m, n, ν, α0, β, θ, L0, and X such that

bκ
−i

i ≤ c3b0 for every i ∈ N.

Having in mind the definition (25) of (bi), for every i ∈ N this yields the estimate(
m∑
k=0

∫ t

ti

∫
X

|ζ+k |
2κi dσ dλ

)κ−i

≤ c3

(
1 +

∫ t

t0

∫
X

(
m∑
k=0

|ζ+k |
2 +

m∑
k=1

|∇wk|2
)
dσ dλ

)
.



Evolution of nonlocally interacting particles 29

Passing to the limit i→∞, for all t ∈ [t0 + θ, T ], τ ∈ [t0 + θ, t], k ∈ {0, 1, . . . ,m} we get

‖ζ+k (τ)‖2L∞(X) ≤ c3

(
1 +

∫ t

t0

∫
X

(
m∑
k=0

|ζ+k |
2 +

m∑
k=1

|∇wk|2
)
dσ dλ

)
.

2. Remembering Remark 12, the set where the function ζ+k (s) ∈ V vanishes, for almost

all s ∈ S and every k ∈ {0, 1, . . . ,m} has at least σ-measure βσ(X). Therefore, using

Lemma 18, Lemma 8 as the basis of the Moser-type iteration, and, finally, Remark 6, for

t = min{t0 + 1, T}, every k ∈ {0, 1, . . . ,m} and τ ∈ [t0 + θ, t], it follows that we have

‖ζ+k (τ)‖2L∞(X) ≤ c4

(
1 +

∫ t

t0

∫
X

(
m∑
k=0

|∇ζ+k |
2 +

m∑
k=1

|∇wk|2
)
dσ ds

)

≤ c5

(
1 + ln

β

γ2

(
1

β
+

1

2

)
+

m∑
k=1

∫ t

t0

∫
X

|∇wk|2 dσ dλ

)
≤ c6 ln

3β

γ2

where the constants c4, c5, c6 > 0 depend on m, n, ν, α0, β, θ, L, L0, and X, since the

length of all the time intervals (t0, t) under consideration is uniformly bounded.

3. The properties of logarithmic and quadratic functions yield some γ ∈ Γβ depending

on m, n, ν, α0, β, θ, L, L0, and X such that

c6
(

ln 3β − ln γ2
)
< (ln β − ln γ)2.

Using Step 2, for all k ∈ {0, 1, . . . ,m} and τ ∈ [t0 + θ,min{t0 + 1, T}] this yields(
ln

β

uk(τ) + γ2

)2

≤ c6 ln
3β

γ2
≤
(

ln
β

γ

)2

on X \Nβ−γ2(uk(τ)).

Therefore, for all k ∈ {0, 1, . . . ,m} and τ ∈ [t0 + θ,min{t0 + 1, T}] we obtain

uk(τ) ≥ γ − γ2 on X \Nβ−γ2(uk(τ)).

But, obviously, for every k ∈ {0, 1, . . . ,m} and τ ∈ [t0 + θ,min{t0 + 1, T}] we also get

uk(τ) ≥ β − γ2 ≥ γ − γ2 on Nβ−γ2(uk(τ)).

Since t0 ∈ [0, T − θ) was arbitrarily fixed at the beginning, for every t0 ∈ [0, T − θ)

and τ ∈ [t0 + θ,min{t0 + 1, T}] we end up with uk(τ) ≥ γ(1 − γ) > 0 on X for all

k ∈ {0, 1, . . . ,m}. Because θ ∈
(
0, 1

2

)
yields ∪t0∈[0,T−θ)[t0 + θ,min{t0 + 1, T}] = [θ, T ], the

proof is finished. �

6. Asymptotic convergence of the solution

Throughout the whole section we suppose that all the Assumptions 1–7 are satisfied. Let

u : (0,∞)→ V be the complete trajectory of the solution to problem (P). That means, for

every finite interval S = (0, T ) the restriction u|S ∈ WE(S;V )∩dom(M) is the solution of

system (P) to the strictly admissible initial value a ∈ U(0). We will study the asymptotic

convergence of the trajectory to some stationary point.
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Remark 13. For h ∈ U(γ) and ρ = Jh ∈ dom(F ) the components of the vector-valued

function v = DF (ρ) ∈ L∞ are called grand chemical potential differences.

Due to Remark 4 and 9 the functional F is real analytic in J [U ], whenever U is open

in L∞ and contained in U
(
γ
2

)
. Furthermore, its Fréchet derivative DF : J [U ]→ L∞ is a

real analytic operator.

Remark 14 (Regularity of potentials). Let θ ∈
(
0, 1

2

)
be arbitrarily fixed. We apply

the uniform regularity and positivity results established in Section 4 and 5 to the complete

trajectory u : (0,∞)→ V on subintervals of [θ, T ] for T ≥ 1:

1. Due to Theorem 4 and 7 we find some α ∈ (0, 1] depending on m, n, ν, ω0, θ, L,

L0, and X such that the norm of the restriction u|S0 in C0,α/2(clS0;C)∩C(clS0;C
0,α) is

uniformly bounded for all S0 = (t0, t0 + 1
2
) with t0 ≥ θ.

2. Following Theorem 11 there exists some bound γ ∈
(
0, 1

2

)
depending on m, n, ν, ω0,

θ, β, L, L0, and X such that u(t) ∈ U(γ) for all t ≥ θ.

3. Having in mind Remark 4, 6, 13 and that the particle densities ρ : (0,∞)→ H∗ are

given by ρ(s) = JKu(s) for s ∈ (0,∞), the chemical potentials ζ = DΦ(ρ) : (0,∞)→ V ,

the interaction potentials w = DΨ(ρ) : (0,∞) → V , and, therefore, the grand chemical

potentials v = DF (ρ) : (0,∞)→ V , are correctly defined on the open interval (0,∞) by

ζk = lnuk − lnu0, wk = (Pρ)k + ψk and vk = ζk + wk for k ∈ {1, . . . ,m}.

4. Moreover, the norms of ζ|S0, w|S0 and v|S0 in C0,α/2(clS0;C) ∩ C(clS0;C
0,α) are

uniformly bounded for all S0 = (t0, t0 + 1
2
) with t0 ≥ θ, too.

Remark 15 (Reformulation of the problem). Remarks 4, 5 and 14 enable us to refor-

mulate the problem in relative densities u : (0,∞) → V and grand chemical potentials

v : (0,∞)→ V . For all θ ∈
(
0, 1

2

)
and T ≥ 1 we get that

u|(θ, T ) ∈ WE((θ, T );V ) and v|(θ, T ) ∈ L2((θ, T );V )

satisfy the identity∫ T

θ

〈(Eu)′(s), ϕ(s)〉V dλ(s) +
m∑
k=1

m∑
`=1

∫ T

θ

∫
X

A(Mu)k`∇v` · ∇ϕk dσ dλ = 0 (26)

for all ϕ ∈ L2((θ, T );V ).

Remark 16. Let L∞ = L∞(X;Rm) be the space of essentially bounded and measurable

functions and J [L∞] ⊂ H∗ be its topological image under the duality map J ∈ L(H;H∗).

Moreover, consider the Hilbert sum decomposition H = H1 +H0 into the m-dimensional

subspace H1 ⊂ V ∩ L∞ of constant functions and the closed subspace

H0 =
{
h ∈ H :

∫
X
h dσ = 0

}
.

The annihilator of H1, which coincides with the subspace J [H0] of J [L∞], is defined by

H0
1 =

{
ρ ∈ H∗ : 〈ρ, v〉H = 0 for all v ∈ H1

}
.
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We start with preliminary norm estimates and, more important, with the decay property

of the free energy functional F along trajectories, which, in a first step, ensures the

convergence of the solution along a discrete sequence of points on the time axis.

Lemma 12 (Norm equivalence). There exist two constants c1, c2 > 0 depending on m,

n, ν, α, β, γ, θ, and X such that for all t, τ ∈ [θ, T ] with t < τ the following norm

estimate holds true:

c1

∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s) ≤
m∑
k=1

∫ τ

t

∫
X

|∇vk|2 dσ dλ ≤ c2

∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s). (27)

Proof. 1. To prove the first inequality of (27) we consider the integral identity∫ τ

t

〈(Eu)′(s), ϕ(s)〉V dλ(s) +
m∑
k=1

m∑
`=1

∫ τ

t

∫
X

A(Mu)k`∇v` · ∇ϕk dσ dλ = 0, (28)

and take the supremum over all test functions ϕ ∈ L2((t, τ);V ) in (28) which satisfy the

condition ‖ϕ‖L2((t,τ);V ) = 1. Then the uniform boundedness of the matrix-valued function

Mu gives the result.

2. Due to Remark 14 and 15, the sum of ζ = DΦ(ρ) and w = DΨ(ρ) yields an admissible

test function v = ζ + w for (28). Introducing the mean value v̄(s) =
∫
X
v(s) dσ ∈ H1 for

s ∈ [t, τ ] and testing (28) with ϕ = v − v̄ ∈ L2((t, τ);V ) we get

m∑
k=1

m∑
`=1

∫ τ

t

∫
X

A(Mu)k`∇v` · ∇vk dσ dλ = −
∫ τ

t

〈(Eu)′(s), v(s)− v̄(s)〉V dλ(s)

≤
∫ τ

t

‖(Eu)′(s)‖V ∗‖v(s)− v̄(s)‖V dλ(s).

Using Young’s and Poincaré’s inequality (43) and the uniform positive definiteness of A

and the matrix-valued function Mu on [θ, T ]×X, see Theorem 11, this yields

m∑
k=1

∫ τ

t

∫
X

|∇vk|2 dσ dλ ≤
c1
2ε

∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s) +
c1ε

2

∫ τ

t

‖v(s)− v̄(s)‖2V dλ(s)

≤ c1
2ε

∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s) + c2ε
m∑
k=1

∫ τ

t

∫
X

|∇vk|2 dσ dλ

for all ε > 0, where c1, c2 > 0 are constants depending on m, n, ν, α, β, γ, θ and X.

Hence, we obtain the second inequality of (27) if we take ε > 0 sufficiently small. �

Theorem 13 (Decay of free energy). The free energy F is bounded, continuous and

decreasing along the trajectory: For all t, τ ∈ [θ, T ] with t < τ we have

F (ρ(t))− F (ρ(τ)) =
m∑
k=1

m∑
`=1

∫ τ

t

∫
X

A(Mu)k`∇v` · ∇vk dσ dλ. (29)
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Consequently, the free energy F converges asymptotically and monotonously decreasing to

an infimum F∗ ∈ R along the trajectory.

Proof. 1. Let t, τ ∈ [θ, T ] with t < τ be arbitrarily fixed. Following Remark 15, the sum

of ζ = DΦ(ρ) and w = DΨ(ρ) yields an admissible test function v = ζ+w for (26), which

leads to∫ τ

t

〈(Eu)′(s), ζ(s) + w(s)〉V dλ(s) +
m∑
k=1

m∑
`=1

∫ τ

t

∫
X

A(Mu)k`∇v` · ∇vk dσ dλ = 0. (30)

2. To prove (29) it remains to calculate the first integral: We apply the chain rule and

integrate by parts to get∫ τ

t

〈(Eu)′(s), ζ(s)〉V dλ(s) =

∫ τ

t

〈(K∗ρ)′(s), DΦ(ρ(s))〉V dλ(s) = Φ(ρ(τ))− Φ(ρ(t)). (31)

3. Now, assume that u ∈ C∞0 (R;V ). Then, the mapping s 7→ ρ(s) = JKu(s) belongs

to C∞0 (R;H∗). Since (Eu)′(s) = Eu′(s) = K∗ρ′(s) holds true for all s ∈ R, we get∫ τ

t

〈(Eu)′(s), (Pρ)(s)〉V dλ(s) =

∫ τ

t

〈K∗ρ′(s), Pρ(s)〉V dλ(s) =

∫ τ

t

〈ρ′(s), KPρ(s)〉H dλ(s).

We use the symmetry of KP ∈ L(H∗;H) and integrate by parts to obtain

2

∫ τ

t

〈(Eu)′(s), (Pρ)(s)〉V dλ(s) =

∫ τ

t

(
〈ρ′(s), KPρ(s)〉H + 〈ρ(s), KPρ′(s)〉H

)
dλ(s)

= 〈ρ(τ), KPρ(τ)〉H − 〈ρ(t), KPρ(t)〉H .

Since the set of restrictions u|(t, τ) and ρ|(t, τ) of smooth functions u ∈ C∞0 (R;V ) and

ρ ∈ C∞0 (R;H∗) are dense in WE((t, τ);V ) and L2((t, τ);H∗), respectively, the identity

2

∫ τ

t

〈(Eu)′(s), (Pρ)(s)〉V dλ(s) = 〈ρ(τ), KPρ(τ)〉H − 〈ρ(t), KPρ(t)〉H

remains true for the solution of problem (26). Additionally, we have∫ τ

t

〈(Eu)′(s), ψ〉V dλ(s) = 〈ρ(τ), Kψ〉H − 〈ρ(t), Kψ〉H

and in view of the representation

Ψ(ρ) = 1
2
〈ρ,KPρ〉H + 〈ρ,Kψ〉H + Ψ(0), w = DΨ(ρ) = Pρ+ ψ for ρ ∈ H∗,

see Remark 6, this yields∫ τ

t

〈(Eu)′(s), w(s)〉V dλ(s) =

∫ τ

t

〈(Eu)′(s), (Pρ)(s) + ψ〉V dλ(s) = Ψ(ρ(τ))−Ψ(ρ(t)).

Together with (30) and (31) this finishes the proof of (29). �

Corollary 14. If there are t, τ ∈ [θ, T ] with t < τ and F (ρ(t)) = F (ρ(τ)), then

there exists a pair (u∗, v∗) ∈ U(γ)×H1 such that ρ∗ = Ju∗ solves the stationary problem

DF (ρ∗) = v∗ and (u(s), v(s)) = (u∗, v∗) holds true for all s ∈ [t, T ].
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Proof. Let t, τ ∈ [θ, T ] with t < τ and F (ρ(t)) = F (ρ(τ)) be given. Then the decay

property (29) and the norm equivalence (27) yields
m∑
k=1

∫ τ

t

∫
X

|∇vk|2 dσ dλ =

∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s) = 0.

Consequently, both u and v are constant in time on the interval [t, τ ]. Since the spatial

gradients ∇vk also vanish, v is even constant in time and space on [t, τ ] × X. Hence,

we have found a pair (u∗, v∗) ∈ U(γ) × H1, which satisfies (u(s), v(s)) = (u∗, v∗) for all

s ∈ [t, τ ]. Since DF (ρ(s)) = v(s) and ρ(s) = Ju(s) for s ∈ [t, τ ], this yields DF (ρ∗) = v∗

for ρ∗ = Ju∗. Obviously, (u∗, v∗) is a solution of the evolution system (26) on the time

interval [t, T ], too. Due to the uniqueness of the solution to the problem, this means that

the trajectory rests at this stationary point (u∗, v∗) ∈ U(γ)×H1. �

Theorem 15 (Convergence of a subsequence). There exists an increasing sequence

(tl) ⊂ N such that (u(tl), v(tl)) converges for l→∞ to (u∗, v∗) ∈ U(γ)×H1 in the sense

lim
l→∞
‖u(tl)− u∗‖L∞ = 0, lim

l→∞
‖v(tl)− v∗‖L∞ = 0, lim

t→∞
F (ρ(t)) = F (ρ∗),

where ρ∗ = Ju∗ solves the stationary problem DF (ρ∗) = v∗.

Proof. 1. Let v̄(s) =
∫
X
v(s) dσ ∈ H1 denote the mean value of v for s ≥ θ. We will prove

by contradiction that the following convergence result holds true:

lim
l→∞
‖v(l)− v̄(l)‖H = 0. (32)

Otherwise we could find some ε > 0 and an increasing sequence (li) ⊂ N with

‖v(li)− v̄(li)‖2H ≥ 2ε for all i ∈ N.

Since v − v̄ is Hölder continuous in time, see Theorem 4 and 7, we have

‖[v(s1)− v̄(s1)]− [v(s2)− v̄(s2)]‖H ≤ c0|s1 − s2|α/2 for all s1, s2 ≥ θ, |s1 − s2| ≤ 1
2
,

and some c0 > 0. Therefore, we could find some τ ∈
(
0, 1

2

)
satisfying

‖v(s)− v̄(s)‖2H ≥ ε for all s ∈ [li, li + τ ] and i ∈ N.

Hence, integrating over the time interval (li, li+τ) and applying Poincaré’s inequality (43),

the decay property (29) for all i ∈ N would give

F (ρ(li))− F (ρ(li + τ)) =
m∑
k=1

m∑
`=1

∫ li+τ

li

∫
X

A(Mu)k`∇v` · ∇vk dσ dλ ≥ c1ετ,

where c1 > 0 is some suitable constant depending m, n, ν, α, β, γ, θ and X. Having in

mind that li + τ ≤ li+1 and summing up over i ∈ {1, . . . , j} this would lead to

F (ρ(l1))− F (ρ(lj + τ)) ≥
j∑
i=1

[F (ρ(li))− F (ρ(li + τ))] ≥ c1ετj for all j ∈ N,
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which contradicts to the boundedness of the range of the free energy functional F on its

effective domain dom(F ) = J [U(0)]. Hence, (32) holds true.

2. Since the sequence (u(l)) ⊂ U(γ) is bounded in C0,α and, therefore, precompact

in L∞, we find some accumulation point u∗ ∈ U(γ) and an increasing subsequence (tl) ⊂ N
such that liml→∞ ‖u(tl)−u∗‖L∞ = 0. We get liml→∞ ‖ρ(tl)−ρ∗‖J [L∞] = 0 for ρ∗ = Ju∗ and

liml→∞ F (ρ(tl)) = F (ρ∗). This yields limt→∞ F (ρ(t)) = F (ρ∗) = F∗ applying Theorem 13.

Using v(tl) = DF (ρ(tl)) ∈ L∞ for l ∈ N and setting v∗ = DF (ρ∗) ∈ L∞ we also have

liml→∞ ‖v(tl)− v∗‖L∞ = 0. Remembering (32) and the notation v̄∗ =
∫
X
v∗ dσ ∈ H1, in

‖v∗ − v̄∗‖H ≤ ‖v∗ − v(tl)‖H + ‖v(tl)− v̄(tl)‖H + ‖v̄(tl)− v̄∗‖H ,

each of the three terms on the right hand side tends to zero, when passing to the limit

l→∞, which means that v∗ ∈ H1 is constant. �

Remark 17 (Regularity of stationary states). Let (u∗, v∗) ∈ U(γ)×H1 be a pair such

that ρ∗ = Ju∗ solves the stationary problem v∗ = DF (ρ∗). Following Assumption 6 we

obtain w∗ = DΨ(ρ∗) ∈ W 1,2,ω0 and, hence, v∗ − w∗ = DΦ(ρ∗) ∈ W 1,2,ω0 . Using the

representation (11) of the relative densities

u∗k =
exp(v∗k − w∗k)

1 +
∑m

`=1 exp(v∗` − w∗` )
for every k ∈ {1, . . . ,m},

see Remark 5, this yields u∗ ∈ W 1,2,ω0 as a regularity result.

In the case of strong convexity of the functional F the whole trajectory (u, v) converges

to the uniquely determined limit (u∗, v∗) ∈ U(γ)×H1. However, in general F is not con-

vex, and we cannot apply this standard argument. Instead of this we follow the ideas of

Miranville and Rougirel [31, Theorem 2.1, Lemma 2.1] using the differential prop-

erties, especially, the real analyticity, of the free energy functional collected in Remark 4, 9

and 13. The proof is based on a refined version of the  Lojasiewicz–Simon gradient inequal-

ity established by Gajewski and Griepentrog [8, Theorem 6]. There, the gradient

inequality found in Feireisl, Issard-Roch and Petzeltova [5] was generalized to

the case of minimization problems for analytic functionals with affine constraints to bring

into play the conservation of particle number:

Theorem 16 ( Lojasiewicz–Simon gradient inequality). Let the set U be open in L∞

and contained in U
(
γ
2

)
and assume that (ρ∗, v∗) ∈ J [U ]×H1 is a solution of the stationary

problem DF (ρ∗) = v∗. Then, we find constants δ, λ > 0 and ϑ ∈
(
0, 1

2

]
such that for all

ρ ∈ J [U ] which satisfy ρ− ρ∗ ∈ H0
1 and ‖ρ− ρ∗‖H∗ ≤ δ we have

|F (ρ)− F (ρ∗)|1−ϑ ≤ λ inf
{
‖DF (ρ)− ṽ‖H : ṽ ∈ H1

}
.

Having in mind Remark 10, we impose the less restrictive Assumption 6 on the in-

teraction functional Ψ compared with the work of Londen and Petzeltova in [28,

Section 5] or Gal and Grasselli in [12, Section 4]. Nevertheless, due to Theorem 4, 7,
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and 11, we have at hand the uniform Hölder continuity and the uniform positivity of the

solution to (26), which enables us to give an elementary convergence proof in the spirit of

Miranville and Rougirel [31, Theorem 2.1, Lemma 2.1].

Theorem 17 (Convergence of the whole trajectory). The solution (u, v) of the evolu-

tion system (26) converges for t→∞ to a limit (u∗, v∗) ∈ U(γ)×H1 in the sense

lim
t→∞
‖u(t)− u∗‖C0,α′ = 0, lim

t→∞
‖v(t)− v∗‖C0,α′ = 0, lim

t→∞
F (ρ(t)) = F (ρ∗),

where α′ ∈ (0, α) and ρ∗ = Ju∗ solves the stationary problem DF (ρ∗) = v∗.

Proof. 1. Let the set U be open in L∞ and U(γ) ⊂ U ⊂ U(γ
2
). Applying Theorem 15 we

choose an increasing sequence (tl) ⊂ N such that (u(tl), v(tl)) converges for l → ∞ to a

pair (u∗, v∗) ∈ U(γ)×H1 in the sense

lim
l→∞
‖u(tl)− u∗‖L∞ = 0, lim

l→∞
‖v(tl)− v∗‖L∞ = 0, lim

t→∞
F (ρ(t)) = F (ρ∗),

where ρ∗ = Ju∗ solves the stationary problem DF (ρ∗) = v∗ and, hence, u∗ ∈ W 1,2,ω0 due

to Remark 17. To prove the convergence of the whole trajectory we consider two cases:

2. If there are points t, τ ∈ [θ,∞) with t < τ and F (ρ(t)) = F (ρ(τ)), then Corollary 14

yields (u(s), v(s)) = (u∗, v∗) for all s ≥ t, in other words, the trajectory has arrived at the

stationary point in finite time.

3. To consider the alternative case, from now on we assume that F strictly decreases

along the trajectory. That means,

F (ρ(t)) > F (ρ(τ)) > F (ρ∗) for all t, τ ∈ [θ,∞) with t < τ. (33)

Due to Remark 4, 9 and 13 and Theorem 11 the  Lojasiewicz–Simon gradient inequality

is applicable to the solution of problem (26): Using Theorem 16, there are constants δ,

λ > 0 and 0 < ϑ ≤ 1
2

such that for every s ≥ θ with ‖ρ(s)− ρ∗‖H∗ ≤ δ we have

|F (ρ(s))− F (ρ∗)|1−ϑ ≤ λ inf
{
‖v(s)− ṽ‖H : ṽ ∈ H1

}
= λ‖v(s)− v̄(s)‖H , (34)

since the infimum over ṽ ∈ H1 is attained at the mean value v̄(s) =
∫
X
v(s) dσ ∈ H1.

Moreover, the condition ρ(s)−ρ∗ ∈ H0
1 is satisfied for all s ≥ θ, since the particle number

is conserved due to Remark 7.

4. The next step is to find some constant c1 > 0 depending on m, n, ν, α, β, γ, θ, ϑ

and X such that the estimate∫ τ

t

‖(Eu)′(s)‖V ∗ dλ(s) ≤ c1[F (ρ(t))− F (ρ∗)]ϑ (35)

holds true, whenever the points t, τ ∈ [θ,∞) with t < τ fulfil the condition

‖ρ(s)− ρ∗‖H∗ ≤ δ for all s ∈ [t, τ ]. (36)
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To do so, assume that (36) is satisfied for t, τ ∈ [θ,∞) with t < τ . Starting with s0 = θ,

we define an increasing sequence of points sl ≥ θ with liml→∞ sl =∞ by

F (ρ(sl))− F (ρ∗) = 2[F (ρ(sl+1))− F (ρ∗)] for l ∈ N, (37)

which consecutively halfs the remaining excess of free energy. This is possible due to the

continuity of F along the trajectory. To prove (35) we distinguish between two cases:

5. Let t, τ ∈ [sl, sl+1] with t < τ for some l ∈ N. Applying Poincaré’s inequality (43)

to (34), the norm equivalence (27) leads to

|F (ρ(s))− F (ρ∗)|1−ϑ ≤ λ‖v(s)− v̄(s)‖H ≤ c2‖(Eu)′(s)‖V ∗ for λ-almost all s ∈ [t, τ ],

where c2 > 0 is some suitable constant m, n, ν, α, β, γ, θ and X. Together with (33) and

0 < ϑ ≤ 1
2

this yields∫ τ

t

‖(Eu)′(s)‖V ∗ dλ(s) ≤ c2

∫ τ

t

[F (ρ(s))− F (ρ∗)]ϑ−1‖(Eu)′(s)‖2V ∗ dλ(s)

≤ c2[F (ρ(τ))− F (ρ∗)]ϑ−1
∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s).

Using (33) and (37) we estimate the energy difference in the first factor by

F (ρ(τ))− F (ρ∗) ≥ F (ρ(sl+1))− F (ρ∗) = 1
2
[F (ρ(sl))− F (ρ∗)] ≥ 1

2
[F (ρ(t))− F (ρ∗)].

Having in mind 0 < ϑ ≤ 1
2

we get∫ τ

t

‖(Eu)′(s)‖V ∗ dλ(s) ≤ 2c2[F (ρ(t))− F (ρ∗)]ϑ−1
∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s).

Using (27) and (29) we find some constant c3 > 0 depending on m, n, ν, α, β, γ, θ and X

such that the integral on the right hand side can be estimated by∫ τ

t

‖(Eu)′(s)‖2V ∗ dλ(s) ≤ c3[F (ρ(t))− F (ρ(τ))],

which yields∫ τ

t

‖(Eu)′(s)‖V ∗ dλ(s) ≤ 2c2c3[F (ρ(t))− F (ρ∗)]ϑ−1[F (ρ(t))− F (ρ(τ))].

Applying the elementary inequality ϑbϑ−1(b − d) ≤ bϑ − dϑ to b = F (ρ(t)) − F (ρ∗) and

d = F (ρ(τ))− F (ρ∗), we obtain∫ τ

t

‖(Eu)′(s)‖V ∗ dλ(s) ≤ 2c2c3
ϑ

(
[F (ρ(t))− F (ρ∗)]ϑ − [F (ρ(τ))− F (ρ∗)]ϑ

)
. (38)

6. Otherwise we find l, j ∈ N with t ∈ [sl, sl+1) and τ ∈ (sl+j, sl+j+1]. Considering the

finite decomposition

[t, τ ] = [t, sl+1] ∪ · · · ∪ [si, si+1] ∪ · · · ∪ [sl+j, τ ],



Evolution of nonlocally interacting particles 37

the result of Step 5 holds true for each of these subintervals. Summing up consecutively, we

get estimate (38) for the whole interval [t, τ ], too. In both cases, the desired estimate (35)

follows immediately, whenever t, τ ∈ [θ,∞) satisfy t < τ and condition (36).

7. Let ε ∈
(
0, δ

2

)
be arbitrarily fixed. Following Step 1 there is some l(ε) ∈ N with

‖ρ(tl)− ρ∗‖H∗ ≤ ε for all l ∈ N, l ≥ l(ε).

In view of ρ ∈ BC([0,∞);H∗), for every l ∈ N, l ≥ l(ε) we define t∗l (ε) ∈ [θ,∞] by

t∗l (ε) = sup
{
t∗ ≥ θ : ‖ρ(t)− ρ∗‖H∗ ≤ ε for all t ∈ [tl, t

∗]
}
.

We will prove by contradiction that there exists some l∗(ε) ∈ N, l∗(ε) ≥ l(ε) such that

t∗l (ε) = ∞ holds true for all l ∈ N with l ≥ l∗(ε): Otherwise we could find an increasing

sequence (τl) ⊂ [θ,∞) of points τl > tl satisfying liml→∞ τl =∞ and

‖ρ(τl)− ρ∗‖H∗ > ε, ‖ρ(t)− ρ∗‖H∗ ≤ δ for all t ∈ [tl, τl] and l ≥ l(ε). (39)

Hence, condition (36) holds true on the interval [tl, τl]. Together with the relation

‖K∗ρ(τl)−K∗ρ(tl)‖V ∗ ≤
∫ τl

tl

‖(Eu)′(s)‖V ∗ dλ(s),

for l ≥ l(ε) estimate (35) yields

‖K∗ρ(τl)−K∗ρ∗‖V ∗ ≤ ‖K∗ρ(τl)−K∗ρ(tl)‖V ∗ + ‖K∗ρ(tl)−K∗ρ∗‖V ∗

≤ c1[F (ρ(tl))− F (ρ∗)]ϑ + ‖K∗ρ(tl)−K∗ρ∗‖V ∗ .

Due to K∗ ∈ L(H∗;V ∗) and, applying Step 1, liml→∞ ‖ρ(tl) − ρ∗‖H∗ = 0, we obtain

liml→∞ ‖K∗ρ(τl)−K∗ρ∗‖V ∗ = 0. Following Theorem 4 and 7, the sequence (u(τl)) ⊂ U(γ)

is bounded in C0,α. Hence, (ρ(τl)) is precompact in H∗, and there exists a subsequence of

(ρ(τl)) converging to some limit ρ̂ ∈ H∗ in H∗. Using again K∗ ∈ L(H∗;V ∗) this yields

K∗ρ̂ = K∗ρ∗ ∈ V ∗, which means

〈ρ̂, Kϕ〉H = 〈K∗ρ̂, ϕ〉V = 〈K∗ρ∗, ϕ〉V = 〈ρ∗, Kϕ〉H for all ϕ ∈ V .

Since K ∈ L(V ;H) is the continuous and dense embedding of V in H, we obtain ρ̂ = ρ∗.

Hence, the above mentioned subsequence of (ρ(τl)) converges to ρ∗ in H∗ in contradiction

to assumption (39). Therefore, we have shown that for every ε ∈
(
0, δ

2

)
there exists some

l∗(ε) ∈ N such that

‖ρ(t)− ρ∗‖H∗ ≤ ε for all t ≥ tl and l ∈ N, l ≥ l∗(ε),

in other words, the desired result limt→∞ ‖u(t)− u∗‖H = 0.

8. Due to Remark 14 the set {u(t) : t ≥ θ} ⊂ U(γ) is bounded in C0,α and, therefore,

precompact in C0,α′ for every exponent α′ ∈ (0, α). Assume that we could find some ε > 0

and an increasing sequence (τl) ⊂ [θ,∞) which satisfies liml→∞ τl =∞ and

‖u(τl)− u∗‖C0,α′ ≥ ε for all l ∈ N. (40)
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Because the sequence (u(τl)) is precompact in C0,α′ and converges to u∗ in H due to

Step 7, we could find a subsequence of (u(τl)) converging to u∗ in C0,α′ , which contradicts

to assumption (40). In view of Remark 14 we end up with

lim
t→∞
‖u(t)− u∗‖C0,α′ = 0 and lim

t→∞
‖v(t)− v∗‖C0,α′ = 0,

since we have v(t) = DF (ρ(t)) ∈ C0,α′ for t ≥ θ and v∗ = DF (ρ∗) ∈ C0,α′ . Finally, due

to Assumption 6 we get P ∈ L(J [L∞];W 1,2,ω0) and w∗ = DΨ(ρ∗) = Pρ∗ + ψ ∈ W 1,2,ω0

which yields limt→∞ ‖w(t)− w∗‖W 1,2,ω0 = 0. �

7. Simulation results for phase separation processes

We present simulation results for phase separation processes in ternary systems of colored

particles occupying a domain X ⊂ Rn with Lipschitz boundary. For the sake of numerical

simplicity, we consider the special case, where the nonlocal potential operator of self-

interaction and the contribution, due to external forces, can be described by means of the

inverse of a linear second order elliptic operator having appropriate regularity properties.

For nonsmooth coefficients b belonging to the set

B =
{
b ∈ L∞(X) : ν ≤ b(x) ≤ 1/ν for λn-almost all x ∈ X

}
,

we consider the family of operators L(b) ∈ L
(
W 1,2(X); [W 1,2(X)]∗

)
given by

〈L(b)w,ϕ〉W 1,2(X) =

∫
X

(
b∇w · ∇ϕ+ wϕ

)
dλn for ϕ ∈ W 1,2(X). (41)

For b, d ∈ B, according to Assumption 5, we introduce the elliptic operators

Pk` = κk`L(b)−1 ∈ L
(
[W 1,2(X)]∗;W 1,2(X)

)
for k, ` ∈ {0, 1, 2},

and the external potentials φk = L(d)−1fk ∈ W 1,2(X) for right-hand sides fk ∈ [W 1,2(X)]∗

defined by

〈fk, ϕ〉W 1,2(X) =

∫
X

gkϕdλ
n +

∫
∂X

hkϕdλ∂X for ϕ ∈ W 1,2(X), k ∈ {0, 1, 2}, (42)

where gk ∈ L∞(X) and hk ∈ L∞(∂X) are external volume and boundary forces.

Using the above setting, we prescribe constant intensities κk` = κ`k of interaction forces

between particles of type k and ` ∈ {0, 1, 2}. The cases κk` > 0, κk` < 0, and κk` = 0

represent the repulsive interaction, attractive interaction, and no interaction, respectively.

According to Remark 6, we consider the corresponding operator P ∈ L(H∗;V ) and

the element ψ ∈ V , where H = L2(X;R2) and V = W 1,2(X;R2). In general, in the

nonsmooth situation described above the interaction potentials w = Pρ+ ψ ∈ V are not

Lipschitz continuous. Hence, the assumptions formulated in the work [11] of Gajewski

and Zacharias, in the papers [28, 29] of Londen and Petzeltova and in the recent

contribution [12] of Gal and Grasselli are too strong.

In fact, as a sharp result, the regularity theory for nonsmooth elliptic boundary value

problems of Griepentrog and Recke, see [18, 19], applied to (41) and (42), just
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Figure 1. Phase separation process in a ternary system for an initial value

which is constant in vertical direction. The stripe pattern is preserved

during the whole evolution. The final state is a local minimizer of the free

energy under the constraint of conservation of particle number, see Fig. 3.

Figure 2. Phase separation process in a ternary system for a mirror-

symmetric, slightly different initial value. There occur metastable states.

Finally, the phases are separated by a straight line and two circular arcs,

joining in a triple point. The final state is a global minimizer of the free

energy under the constraint of conservation of particle number, see Fig. 3.

ensure that there exists a constant ω0 > n− 2 such that the restriction of P is a bounded

linear operator from J [L∞] into the Sobolev–Morrey space W 1,2,ω0 and that the external

potentials ψ belongs to W 1,2,ω0 . Our example represents a natural and desirable situation

of nonsmooth data. At the same time this is the limit case, where Assumption 6 on the

regularity of interaction is just satisfied, which proves this assumption to be minimal.

Note that the natural regularity of solutions to elliptic boundary value problems of the

above type was implicitly used already in the papers [9, 10] of Gajewski and Skrypnik.

Again, for the sake of numerical simplicity, only, we consider the case of constant

coefficients b = r2 and d = %2, where Green’s functions to the corresponding elliptic

operators are rapidly decreasing kernels of Bessel type, which decay exponentially outside

their effective ranges r > 0 and % > 0, respectively.

For our simulations we have used the dissipative discretization scheme of Gärtner

and Gajewski, see [6]. It combines a Crank–Nicholson-type discretization in time with

a Voronoi finite volume scheme on boundary-conforming Delaunay meshes in space.

Phase separation in ternary systems. Figures 1 and 2 show numerical results for two

simulations of three-component phase separation processes in a square with uniform in-

teraction intensities κkk = −κ < 0 (attraction), κk` = κ > 0 (repulsion) for k, ` ∈ {0, 1, 2}
with k 6= ` in a homogeneous environment without external forces. This models the phase
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Figure 3. Comparison of both the three-component phase separation pro-

cesses with regard to the decay of free energy (left) and the dissipation rate

along the trajectory (right). The free energy approaches a local minimum

under the constraint of conservation of particle number at the final state

shown in Fig. 1 (dashed lines), whereas it reaches its global minimum at

the final state depicted in Fig. 2 (solid lines).

separation in an incompressible body consisting of a ternary system of equally treated

components.

Note that in both cases the slightly different initial configurations contain equal numbers

of black, white, and gray particles, respectively. Obviously, the final states do not depend

only on these integral quantities. After initial diffusion, the particles start to agglomerate

or to grain until they reach fully separated states. Going on further, we see coarsening of

phases or occurence of metastable states still being far from equilibrium. The final states

are reached after quite different periods of time depending on the symmetry of the initial

value. A comparison of both simulations in Fig. 3 shows major differences with respect

to the decay of the free energy and the dissipation rate along the trajectories.

Phase separation in a binary system with damage diffusion. The evolution process changes

completely in Fig. 4, when the initial configuration is a randomly chosen distribution of

10 % black (k = 0), 45 % white (k = 1), and 45 % gray (k = 2) particles, and the (black)

voids neither interact with themselves nor with white or gray particles; we have modified

κ0` = κk0 = 0 for k, ` ∈ {0, 1, 2} in the above setting. Here, we describe the phase

separation of white and gray particles in a compressible body, which has 90 % of the unit

density. The rest is filled up with voids. We have further modified the regime by applying

stationary external forces at two boundary parts. The lower half of the left and the upper

half of the right part are loaded equally to press the white and gray particles inwards.

According to (42), this corresponds to g0 = 0, g1 = 0, g2 = 0, and h0 = 0, h1 6= 0, h2 6= 0.

During the evolution, after initial diffusion, both the white and gray components show

agglomeration, graining, and slight denting at the pressure zones. White and gray particles
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Figure 4. Phase separation process in a binary system with inward pres-

sure for an initial value of randomly distributed particles. The lower half of

the left and the upper half of the right part are loaded equally to press the

white and gray particles inwards. The process starts with diffusion, grain-

ing of particles, and a slight denting at the pressure zones. After the phases

are fully separated, voids concentrate at interfaces between the phases. The

coarsening and hardening of phases is accompanied by the thickening and

concentration of damage channels. Finally, both phases are separated by a

straight channel of shear damage which connects both the pressure zones.

reach the state of full separation and compression. They leave room for the voids to

concentrate as damage channels at the interfaces between white and gray phases, which

show strong resistance, obstructing inward pressure. Further coarsening and hardening of

phases leads to the thickening of damage channels and significant denting at the pressure

zones. The process arrives at metastable states, still being far from equilibrium. Whenever

the number of connected phases is reduced by the separation process, there occurs a narrow

peak in the dissipation rate, see Fig. 5. In the final state both the white and the gray

phases are completely separated from each other by a straight channel of shear damage

which connects both the pressure zones.

Appendix A. Some variants of Sobolev–Poincaré inequalities

Here we collect variants of Sobolev inequalities for functions vanishing on a given subset

F of the domain X ⊂ Rn with Lipschitz boundary.

Lemma 18. Let X ⊂ Rn be a domain with Lipschitz boundary. Then, there exists a

constant c1 > 0 depending on n and X such that for every β ∈ (0, 1] and all measurable

subsets F ⊂ X satisfying σ(F ) ≥ βσ(X), the following inequality holds true for all v ∈
W 1,2(X) vanishing σ-almost everywhere on F :∫

X

|v|2 dσ ≤ c1
β

∫
X

|∇v|2 dσ.

Proof. 1. The norm ‖ ‖V in V = W 1,2(X) is defined by ‖v‖2V = ‖v‖2H + [v]2V for all v ∈ V ,

where the norm ‖ ‖H in H = L2(X) and the seminorm [ ]V in V are given by

‖v‖2H =

∫
X

|v|2 dσ for v ∈ H, [v]2V =

∫
X

|∇v|2 dσ for v ∈ V .
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Figure 5. Decay of free energy (left) and dissipation rate along the tra-

jectory (right) of the phase separation process in the binary system with

damage diffusion shown in Fig. 4. Due to the randomly chosen initial con-

figuration the final state is reached after quite a long time, and there occur

many metastable states. The disappearance of these states shows up in the

dissipation rate with narrow peaks.

Note that the subspace V1 = {v ∈ V : [v]V = 0} of V is the space of constant func-

tions, because X ⊂ Rn is connected. Since for every domain X ⊂ Rn with Lipschitz

boundary there exists a bounded linear extension operator from W 1,2(X) to W 1,2(Rn),

see Giusti [16], the embedding of V into H is completely continuous. Consequently, due

to a result [35, Lemma 4.1.3] of Ziemer, we find a constant c1 > 0 depending on n and

X such that for every projector Π ∈ L(V ;V1) from V onto V1 we have the generalized

Sobolev–Poincaré inequality

‖v − Πv‖H ≤ c1‖Π‖L(V ;V1)[v]V for all v ∈ V .

2. Let β ∈ (0, 1] and some measurable subset F ⊂ X satisfying σ(F ) ≥ βσ(X) be

given. We consider the projector Π ∈ L(V ;V1) from V to its subspace V1 of constant

functions defined by the mean value

Πv =

∫
F

v dσ =
1

σ(F )

∫
F

v dσ for v ∈ V .

Then, for every v ∈ V Cauchy’s inequality yields∫
X

|Πv|2 dσ =

∫
X

∣∣∣∣ 1

σ(F )

∫
F

v dσ

∣∣∣∣2 dσ ≤ σ(X)

σ(F )

∫
X

|v|2 dσ.

Hence, we obtain ‖Π‖2L(V ;V1)
≤ 1/β and together with Step 1 this leads to

‖v − Πv‖2H ≤
c21
β

[v]2V for all v ∈ V . (43)

Having in mind the definition of Π, this finishes the proof. �
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Lemma 19. Let S ⊂ R be an open interval and X ⊂ Rn be a domain with Lipschitz

boundary. Then for every β ∈ (0, 1] there exists a constant c2 > 0 depending on β, n and

X such that for all functions v ∈ L2(S;W 1,2(X)) ∩ L∞(S;L2(X)) with the property that

v(s) ∈ W 1,2(X) for λ-almost all s ∈ S vanishes on a measurable subset Fs ⊂ X satisfying

σ(Fs) ≥ βσ(X), the inequality∫
S

∫
X

|v|2κ dσ dλ ≤ c2

(
esssup
s∈S

∫
X

|v(s)|2 dσ
)κ−1 ∫

S

∫
X

|∇v|2 dσ dλ

holds true, where κ = 1 + 2/n.

Proof. 1. For all v ∈ L2(S;W 1,2(X)) ∩ L∞(S;L2(X)) Hölder’s inequality yields∫
S

∫
X

|v|2κ dσ dλ ≤
∫
S

(∫
X

|v(s)|2n/(n−2) dσ
)(n−2)/n(∫

X

|v(s)|2 dσ
)2/n

dλ(s).

Due to the continuous embedding of W 1,2(X) into L2n/(n−2)(X) we find a constant c0 > 0

depending on n and X such that(∫
X

|v(s)|2n/(n−2) dσ
)(n−2)/n

≤ c0

∫
X

(
|v(s)|2 + |∇v(s)|2

)
dσ

holds true for λ-almost all s ∈ S, which yields∫
S

∫
X

|v|2κ dσ dλ ≤ c0

∫
S

(∫
X

(
|v(s)|2 + |∇v(s)|2

)
dσ

)(∫
X

|v(s)|2 dσ
)κ−1

dλ(s),

and, therefore,∫
S

∫
X

|v|2κ dσ dλ ≤ c0

(
esssup
s∈S

∫
X

|v(s)|2 dσ
)κ−1 ∫

S

∫
X

(
|v|2 + |∇v|2

)
dσ dλ.

2. If, additionally, there exists some β > 0 such that the function v(s) ∈ V for λ-almost

all s ∈ S vanishes on a measurable subset Fs ⊂ X with σ(Fs) ≥ βσ(X), then, applying

Lemma 18, we end up with∫
S

∫
X

|v|2κ dσ dλ ≤ c0

(
1 +

c1
β

)(
esssup
s∈S

∫
X

|v(s)|2 dσ
)κ−1 ∫

S

∫
X

|∇v|2 dσ dλ,

which gives the desired result. �

References

[1] D. Bothe: On the Maxwell–Stefan equations to multicomponent diffusion. – In: Parabolic Problems.

Progress in Nonlinear Differential Equations and Their Applications, 80, 81–93. Basel: Birkhäuser-
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