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WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION CLASSES 
AND APPLICATION TO ADAPTIVE ESTIMATION OF EVOLUTIONARY 

SPECTRA 

Michael H. Neumann.1 and Rainer von Sachs2 

ABSTRACT. We derive minimax rates for estimation in anisotropic smoothness clas-
ses. This rate is attained by a coordinatewise thresholded wavelet estimator based 
on a tensor product basis with separate scale parameter for every dimension. It is 
shown that this basis is superior to its one-scale multiresolution analog, if different 
degrees of smoothness in different directions are present. 
As an important application we introduce a new adaptive wavelet estimator of _the 
time-dependent spectrum of a locally stationary time series. Using this model which 
was recently developed by Dahlhaus, we show that the resulting estimator attains 
nearly the rate, which is optimal in Gaussian white noise, simultaneously over a 
wide range of smoothness classes. Moreover, by our new approach we overcome the 
difficulty of how to choose the right amount of smoothing, i.e. how to adapt to the 
appropriate resolution, for reconstructing the local structure of the evolutionary 
spectrum in the time-frequency plane. 
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1. INTRODUCTION 

There is a wide range of fields in which an observed time series shows a nonstati-
onary behavior (by transients, amplitude or frequency modulation, quasi-oscillating 
behavior, etc.). These can be found, e.g. in many physical phenomena (occurring in 
geophysics, in transmission problems like radio propagation or in speech and sound 
analysis), and from economical data analysis, also. A recent approach for modelling 
certain kinds of these instationarities is by the introduction of the class of locally 
stationary processes (Dahlhaus, 1993) which both controls the departure from stati-
onarity and gives a frame for asymptotic theory. As in the Cramer representation for 
stationary processes the spectrum, which now becomes time dependent, controls the 
evolution of the variance-covariance distribution of the process over frequency and 
over time. 
In the present paper we develop nonlinear wavelet estimators for this kind of time-
varying spectral density: With this we address the problem of finding the right amo-
unt of smoothing of an estimator which should .. adaptively reconstruct the underlying 
structure of the spectrum in the time-frequency plane. Motivated by this problem, we 
study first a question of more general importance. Inference about the spectrum of a 
nonstationary time series is a two-dimensional estimation problem with two particular 
directions, time and frequency, on the plane. If, in this situation and, more generally 
for any multidimensional curve estimation, the underlying curve shows different de-
.grees of smo_othness in the different directions, then the construction of the estimator 
should properly take this into account. Hence, to establish a benchmark for our esti-
mator we derive first minimax rates for estimation in anisotropic smoothness classes. 
Because this question is of general interest, we do not. as sum~ any specific observa-
tion model, but we investigate this problem in Gaussian white noise. For simplicity 
we consider the two-dimensional case and restrict ourselves to anisotropic Sobolev 
classes .. Straightforward generalizations can be thought of for higher dimensions and 
other smoothness classes like Holder and Besov, also. We show that appropriately 
tuned wavelet estimators are able to attain the optimal rate of convergence in these 
classes. These estimators use coordinatewise nonlinear thresholding of empirical wa-
velet coefficients. The rate for the risk can be easily found by analyzing a certain 
complexity functional, which describes the amount of data compression of a basis 
in a given smoothness class. We show that we obtain a suitable higher-dimensional 
basis by taking respective tensor products of the one-dimensional wavelet basis. In 
contrast, the frequently used higher-dimensional multiresolution basis does not opti-
mally compress the signal in anisotropic smoothness classes. This implies that any 
coordinatewise thresholded estimator based on such a basis is not able to attain the 
optimal rate of convergence. 
The second part of this paper is devoted to the particular problem of spectral esti-
mation. Throughout the paper we adopt the model of locally stationary time series 
developed in Dahlhaus (1993). In order to allow least restrictive assumptions on the 
smoothness of the spectrum we further relax the assumptions of Dahlhaus (1994) to 
give a definition of the evolutionary spectrum as a function in the Lrspace over the 
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time-frequency plane. Again, our main goal is to define an estimator that· adapts 
to different degrees of smoothness in time and frequency direction, respectively. In 
contrast to Dahlhaus (1993) and von Sachs and Schneider (1994), who used a local pe-
riodogram on segments of length N = N(T) (with N -7 oo as T -7 oo and N/T -7 0), 
here we define a periodogram-like pointwise statistic which can be considered as an 
empirical version of the local time-dependent spectrum. By this approach we avoid 
a kind of presmoothing in time direction and get rid of the additional smoothing 
parameter N, for which a theoretical approach to its optimal choice is still lacking. 
This overcomes the shortcoming of fixing with N a lower bound for the ratio of the 
resolution in time and in frequency direction. Instead, to decide which degree of smo-
othing is appropriate, we project this time-frequency statistic on a suitable wavelet 
basis and use thresholding of the resulting coefficients. In view of the results in Sec-
tion 2, in this construction, we use a tensor product basis. The appropriate tuning of 
the thresholds requires knowledge about the distribution of the empirical coefficients. 
Using cumulant techniques we prove asymptotic normality in terms of probabilities 
of large deviations. This implies the asymptotic risk equivalence of monotonic esti-
mators to the case of normally distributed empirical coefficients and suggests the use 
of thresholding techniques prescribed by existing theory under Gaussian noise. 
Finally, to obtain a fully defined threshold rule, it is natural to use some initial 
estimator of the standard deviation of the empirical coefficients. We show that rather 
weak assumptions on an initial estimator of the spectral density guarantee near-
optimality of the final estimator. 
The paper is organized as follows. In Section 2 we derive minimax rates in anisotropic 
smoothness classes and examine the two mentioned different kinds of multidimensi-
onal wavelet bases w.r.t. their appropriateness in such function spaces. In Section 3, 
after introducing the model of local stationarity and an Lrgeneralization of the defi-
nition of the evolutionary spectrum, we develop our new estimator and state theorems 
on rates for its risk. The proofs are contained in Section 4. 

2. OPTIMAL ESTIMATION IN ANISOTROPIC SMOOTHNESS CLASSES 

Before we develop a definite estimation method for the spectral density in the next 
section, we first consider a question of more general importance: we search for a basis 
that is appropriate for multidimensional estimation problems in situations, where we 
have possibly different degrees of smoothness in different directions. To do this we 
consider balls in anisotropic Sobolev spaces and derive minimax rates in a Gaussian 
white noise model. For simplicity we only consider the two-dimensional case and 
restrict ourselves to anisotropic Sobolev spaces, although it is obvious that analogous 
results can be obtained in higher dimensions and for other function classes, like 
e.g. anisotropic Besov spaces. We show that thresholded wavelet estimators based 
on a tensor product wavelet basis in 1 2 ([0, 1] x [O, 1]) attain the optimal rate of 
convergence, whereas the one-scale multiresolution basis, which is often used in image 
analysis problems, does not share this property. 
Following Nikol'skii (1975), an anisotropic Sobolev space w;,~2 is defined as 
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In the following we assume that our object of interest f lies in the set 

for any positive constant C. 
Throughout the paper we restrict our considerations to mi~ 1, Pi ~ 1 and mi > l/p;., 
which in particular implies continuity of f. 
Since the problem investigated in this section seems to be of general interest in many 
statistical estimation problems, we do not want to specify any specific observation 
model. Instead, we assume that function-valued observations Y(x1 , x2 ) from the 
Gaussian white noise model 

(2.2) 

are available. Here W is a Brownian sheet ( cf., e.g., Walsh (1986)) and e > 0 is the 
noise level. 

Remark 2.1. In the one-dimensional case it is well-known that the difficulty in esti-
mating f in Gaussian white noise 

Y(t) = la' f(s) ds + eW,, (2.3) 

where Wt is a standard Wiener process, is closely related to the difficulty in estimating 
f in non-Gaussian or non-i.i.d. situations, which is actually the interesting problem. 
Recently, this connection between nonparametric regression and model (2.3) has been 
established in a decision theoretic manner by Brown and Low (1992). The equivalence 
between density estimation and some slightly modified version of (2.3) was ·shown by 
Nussbaum (1994). 
For wavelet estimators this clos·e connection often materializes also at the practical 
level. So it was shown in Neumann and Spokoiny (1995) for non-Gaussian regression 
and in Neumann (1994) for spectral density estimation that the empirical coefficients 
coming from these models are asymptotically normally distributed in a sufficiently 
strong sense. Then, for certain nonlinear wavelet estimators, it was possible to derive 
the risk equivalence between model (2.3) and the abovementioned models. We think 
that the two-dimensional continuous Gaussian model (2.2) will be again an appro-
priate counterpart for many practically relevant estimation problems. 

Assume we have an orthonormal basis of compactly supported wavelets of L2 [0, 1], 
where the functions ef; and 'I/; satisfy, form 2:'.: max{m1 , m 2}, 

(Al) (i) ef; and 'I/; are in cm, 
(ii) J ef;(t) dt == 1, 

(iii) J 'l/;(t)tk dt = 0 for 0 ::; k::; m - 1. 
Such bases are given by Meyer (1991) and Cohen, Daubechies and Vial (1993). 
Let Vj be the subspace of L2 [ 0, 1), which is generated by { ef;ik h. It is known that 

00 

L2([0, 1] x [O, 1]) == LJ Vj 0 Vj, 
i=l 
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which shows the possibility to build a basis of L2 ([0, 1] X [O, 1]) from tensor products 
of functions from a one-dimensional basis {cf>zkh U {1/ljk}j~l;k· Let Wj = span{'i/Jikh· 
We can write Vj~2) = Vj* ® Vj* as 

VjS2
) (Vz EB Wi EB · · · EB Wi*-1) ® (Vz EB Wz EB · · · EB W1*-1) 

Vz ® Vz EB (iffi (Wi iZI Vi)) EB (iffi CVi iZI Wi)) EB ( .iffi1 (Wj, iZI Wn)) (2.4) 
J=l J=l J1,J2=l 

as well as in the form 

j*-1 

vp) = Vz ® Vz EB EB [ ( Vj ® w1) EB ( wj ® Vj) EB ( w1 ® w 1)] . ( 2. s) 
j=l 

According to (2.4) we obtain a basis B of L2([0, 1] x [O, 1]) as 

B = { 4>zk1 ( x1 )4>zk2 ( x2) h1 ,k2 U ( LJ { 1/Ji1k1 ( x1 )<fazk2 ( x2) h1 ,k2) 
i1 ~l 

U (~·~5 <Pck, ( x1}•/ij,i.,( x2)h1.k:i) U CY.,.} 7/ii1k1 ( x1)..Pi2 k, ( x2)h1,k2 ) • (2.6) 

Another construction, which corresponds to decomposition (2.5), is given by 

Note that we can also use different one-dimensional bases to build a two-dimensional 
basis, which is done in Section 3 in view of the special problem considered there. 
It appears that, because of its more appealing structure, basis B is more often used 
for two-dimensional estimation problems, see, e.g., Delyon and Juditsky (1993), Tri-
bouley (1995) and von Sachs and Schneider (1994). Its use seems to be appropriate 
in most frequently considered smoothness classes, like e.g. isotropic Sobolev or Besov 
classes. However, in certain practical problems, for the curve we are interested in 
we could expect different smoothness properties in different directions. We will show 
that under such anisotropic smoothness priors basis B is no longer appropriate. 
For sake of simplicity we slightly abuse the notation and define 1/Jz-l,k := cf>zk . Further, 
by µ 1 we denote the basis functions in B using the mul tiindex I = (j 1 , j 2 , kl, k2 ). 

Let e = {(B1)IE1B1µ1 E .r;~p;i2 }. By Parseval's equality we see that the Lrloss 
11 'E Brµ1 - fll 2 of any estimator f = 'E 8;µ1 in the function space is equal to the 
lrloss 'L,1(B1 - Br)2 in the sequence space, where 
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are the wavelet coefficients of f. We obtain empirical coefficients from the observation 
model (2.2) as · 

(2.8) 

where 6~N(O,1) are i.i.d. 
First we derive a lower bound for the minimax risk in model (2.2) under the assum-
ption that f E :r;::;pr;2 • Since we are only interested in the optimal rate, we can use a 
simple approach developed in Bretagnolle and Huber (1979). First, we establish the 
following lemma, which provides a lower bound for the complexity of the set e. 
Lemma 2.1. Assume {Al). The set 8 contains a hypercube of sidelength 2E 

Ge = {(81) I 81 E [-E, E] for I ET€ and 81 = 0 for I tJ. Te} 
with 

If we now take independent, uniformly distributed priors on [-E, E] for I E Te, due to 
the independence of the B/s we obtain a Bayes risk of order E2 - 2(m1 +m2)/(2m1m2+m1 +m2). 
This implies .the following theorem. 

Theorem 2.1. Denote by f any estimator of a member f E F;;~;,;"2 • Then 

i!l_f s~p { JEjlf - Jll2} ~ 0E219(m1,m2)' 
f fEF~7~;1'2 

where 

To show that this rate is actually attainable, we consider a certain complexity func-
tional fie to be defined further below, which is similar to the modulus of continuity 

D,€(B,:r;:~~7;2 ) = sup {:Emin{E2,8;}} 
f Er;;:~;i2 1 

(2.9) 

considered in Donoho and Johnstone (1994a). There it was shown that [},€ gives an 
almost complete information about uniform rates for diagonal estimators in model 
(2.2). 
Two commonly used rules to treat the coefficients are 

1) hard thresholding 

and 
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2) soft thresholding 

5(s)(B1, A) == (IB1I - A)+ sgn(B1). 

In the following 5(.) is used to (somewhat sloppily) denote either 5(h) or 5(s). 
Following the developments in Donoho and Johnstone (1994a) we can derive an esti-
mator that attains the rate prescribed by the modulus of continuity D.e(B, F;;;r:;2 ) 

up to a factor of log(l/ e). To prove that the rate e219(mi,m2) is exactly attainable, we 
have to modify D.e slightly. First, by Lemma 1 of Donoho and Johnstone (1994a) we 
can prove that the relation 

(2.10) 

holds uniformly in A ~ 0 and 81 E JR, where r.p denotes the standard normal density. 
This motivates us to define the complexity functional 

The essential reason why the modulus of continuity D.e does not immediately provide 
an attainable rate for estimators is that it does not take the possible sparsity of 
the signal into account. In cases, where we have a too large number of potentially 
important coefficients, we lose an additional log-term as we do not know which are the 
really important ones. In contrast, the functional fie penalizes such cases of extreme 
sparsity by the additional terms (AI/E+l)r.p(AI/e), which arise from upper estimates 
of tail probabilities of Gaussian random variables. 
The next lemma shows a particular choice of the vector (A1 ), which provides the rate 
e219(mi,m2) for the ·right-hand side of (2.11). · 

Lemma 2.2. Assume {Al). Let Af,e be such that 

A1,e == 

where 
2i; == €-2/(2m1 +l+mi/m2), 2j; == €-2/(2m2H+m2/m1) 

and Km1 ,m2 > .j2(m1 + m2) log(2) is fixed. Then 

Let the A1 e 's be chosen as in Lemma 2.2 and let , 

(2.12) 
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Using this Lemma 2.2 in conjunction with (2.10) we can immediately derive the 
following theorem, which, together with Theorem 2.1, tells us that h is minimax in 
the class ;:_mi ,m2 • P1,P2 

Theorem 2.2. If {Al) is satisfied, then 

sup {lEJIJ: _ !112} = o(e2t9(m1,m2)). 
Je:F;:71>~2 

Although this theorem provides an interesting theoretical result, it turns out to be of 
limited practical use. The proposed estimator h requires an appropriate tuning of the 
thresholds AJ,e, which strongly depend on the unknown m 1 and m 2 • Even if it would 
be possible to adapt these parameters in our idealized Gaussian white noise model, 
it is often not obvious how to transfer such a procedure to other noise structures (i.e. 
with dependencies, non-Gaussianity) which occur in practically relevant estimation 
problems. One could try to find specific procedures for each particular case, however, 
it seems to be difficult to find a universal recipe. 
An alternative approach that is much less dependent on prior knowledge of m 1 and 
m 2 is proposed in a series of papers by Donoho and Johnstone, also contained in 
Donoho et al. (1995). First, we analyze the analog of the tail-n-widths (see Donoho 
et al. (1995)) in our two-dimensional function classes. 

Lemma 2.3. Assume {Al). Let V1 = E9ii+i2 =1(\ii1 0 Vj2 ). Then 

sup {IJJ - Proh;J Jll 2} = Q (rh(m1,m2,P1,P2)), 
f e:F;:71>~2 

Pi = min{pi., 2}. 

If we now choose le sufficiently large, we are able to obtain 

L e; = 0 ( E2t9(m1,m2)) ' 
I: i1+i2>JI! 

(2.13) 

i.e., the truncation of the wavelet series does not affect the desired rate of the esti-
mator. Define lCe ={I= (j1,j2, ki, k2) I )1 + )2 ~le}· We consider the estimator 

(2.14) 

where 
Ae = e/2 log( #lCe)· 

Using Lemma 2.2, Lemma 2.3 and (2.10) we obtain the following theorem. 

Theorem 2.3. Assume {Al) and 21
1! = O(e-77 ) for any T/ < oo. Then 

sup { 1Ellf, - f 11 2 } = 0 ( ( e2 log(l/ e)).i(m,,m,)) 
Je:F;::;,;2 
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Hence, the estimator fe is minimax up. to a factor of log( 1 / €) over a wide range of 
function classes. 

In the rest of this section we will briefly examine the basis B w.r.t. their capability of 
data compression in anisotropic Sobolev spaces. The following lemma states a result 
on the decay of the modulus of continuity ne for this basis. 

Lemma 2.4. It holds that 

where 
-( ) . { m1 m2 } 13 m1, m2 == min , . 

m1+l m2+l 

It can be easily shown that 19(m1, m2) == 73(m1, m2) if m1 == m2 and 19"(m1, m2) < 
13( m 1, m 2) if m1 =I m 2. The rate 19( mi, m 2) is the usual one for a two-dimensional 
estimation problem in isotropic smoothness classes with degree of smoothness m == 
min{m1,m2}. 
We have already seen that basis B provides an optimal data compression in the sense 
that fie(B, :;=;;~;i2 ) decays at the same rate as the minimax risk in :;=;;~~7712 • To make a 
comparison between the two bases in statistical terms we restrict our consid~ation to 
thresholded diagonal estimators in both cases. Let B == {µ1 } and let Brand Br denote 
the corresponding true and empirical coefficients, respectively. By simple calculations 
we can show that 

irif { E ( "'.) (0 I, ), ) _:_ 0 I r} > G min { €2, 0 I}. (2.15) 

Hence, we will get a lower bound for the risk of thresholded diagonal estimators 
simply by observing the rate of decay of !le. The following theorem is an immediate 
consequence of Lemma 2.4 and (2.15). 

Theorem 2.4. Assume {Al). Then 

sup inf {Ell I: 5(.)(B1, .Xr )µ1 - fll 2} > 0€2fi( 7711
'
7712

). 

JE_r.=1 ,m2 (.\1) 
Pl1P2 

Hence, we get that diagonal estimators based on basis B are never better than those 
based on B, and they are worse if m1 =I m 2. At this point we want to remark 
that there exists an attempt to construct higher-dimensional multiresolution bases 
for anisotropic smoothness classes. Berkolajko and Novikov (1992) obtained such a 
basis by properly connecting levels j 1 and j 2 in dependence on the relation between 
m1 and m 2. However, as this approach depends strongly on the latter relation, it 
does not provide a universal basis which is optimal for a greater range of smoothness 
classes. The adaptive choice of an appropriate basis, which in principle' seems to be 
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possible in view of results by Donoho and Johnstone (1994b ), would call for another 
step in the estimation process. 

3. ADAPTIVE ESTIMATION OF EVOLUTIONARY SPECTRA 

To address the problem of adaptively estimating the time-dependent spectrum of a 
non-stationary time series, we start with citing the definition of a locally stationary 
process, as given in Dahlhaus (1993). Note that this generalizes the Cramer repre-
sentation of a stationary stochastic process (see Priestley, 1981, e.g.). 

Definition 3.1. A sequence of stochastic processes Xt,T ( t = 1, ... , T) is called lo-
cally stationary if there exists a representation • 

(3.1) 

where 
(i) <(w) is a stochastic process on [-7r,7r] with <(w) = <(-w), E<(w) = O and 

orthonormal increments, i.e. cov(d<(w), d<(w')) = S(w - w')dw, 
cum{d<(w1), ... , d<(wk)} = 77(2:1=1 w1) hk(wi, ... ,wk-1) dwl ... dwk, 
where cum{ ... } denotes the cumulant of oder k, lhk(wi, ... ,wk_1)1::; constk 
for all k (with hi= 0, h2(w) = 1) and 77(w) = l:f=_00 S(w + 27rj) is the period 
27r extension of the Dirac delta function. 

(ii) A(u,w) is a function on [O, l]x[-7r,7r] which is 27r-periodicinw, with A(u, -w) = 
A(u,w). 

Remark 3.l. In Dahlhaus (1993) a slightly more general definition of a locally stati-
onary process was given. There, the representation in (3.1) is based on a sequence 
of functions A~,T( w) instead of the function A( u, w ), the difference of which has to 
fulfill: supt,w IA~,T(w)-A(t/T,w)I::; KT-1, for some positive constant K. 
Note that with this, the class of autoregressive processes with time-varying coeffici-
ents now is included in the class of locally stationary processes. 
In our work, for reasons of notational convenience, we do not want to adopt this more 
general definition, noting that all results will continue to hold for the broader class. 

Note that, as in Dahlhaus (1993) and von Sachs and Schneider (1994), for simplicity 
we assume that µ( u) = 0, i.e. we do not treat the problem of estimating the mean of 
the time series. In comparison to Dahlhaus (1993) and (1994), here, our smoothness 
assumptions on A( u, w) are slightly relaxed: Basically we like to impose minimal smo-
othness as being of bounded variation on U x II := [O, 1] x [-7r, 7r] (which is made 
precise in Assumption (A2)). For technical reasons, in order to facilitate proofs, we 
impose an additional smoothness condition on the decay of the Fourier coefficients of 
A( u, w) as a function of w, which implies continuity of A in w. 

Before proceeding with the introduction of both evolutionary spectrum of {Xt,T} 
and a suitable fully adaptive spectral estimate, we gather the assumptions that are 
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necessary to end up with a more general definition of the spectrum and for deriving 
our asymptotic results: 

Definition 3.2. (Total variation on U x II :== [O, 1] x [-7r ,-rr ]): 

TVuxrr(f) :==sup LL lf(ui,wj)- f(ui,Wj-1)- f(ui-1,wj) + f(ui-1,Wj-1)1, 
i j 

where the supremum is to be taken over all partitions of U x II. 
Now we impose the following assumptions: 

(A2) a) A(u,w) has bounded total variation on U x II, i.e. TVuxrr(A) < oo. 
b) supu TV[-71",11"](A(u, .)) < oo and supw TV[o,1](A(.,w)) < oo. 
c) SUPu,w IA(u,w)I < oo. 
d) infu,w IA( u, w )I ~ K, for some K, > 0. 

(A3) Let A(u,s) :== 1/(27r)f A(u,w) exp(iws)dw ,s E Z,u E [O, l]. 
Then: supu:Es jA(u,s)j < oo. 

(A4) a) cf;(u), 'lf;(u), ~(w) and {;(w) have bounded total variation on [O, 1] and 
[-7r, 7r], respe:_tively. ..... 

b) Further, :Es I~( s )I < oo and :Es j{;( s )I < oo . 
(AS) sup191 ~T { :E~, ... ,t1c=l jcum(Xt1 ,T, ... , Xt1c,t)I} :::; Ok( k!)l+.., for all k == 2, 3, ... , 

where r ~ 0. 
Note that these are somewhat minimal conditions part of which might be fulfilled 
simply by restricting A to be member of the specific smoothness class under conside-
ration (anisotropic Sobolev, Holder, ... ). In our case of Sobolev restrictions (A2) (b) 
and ( c) and (A3) are implications of the considered .Sobo.lev smoothness, so are (A4) 
(a) and (b} a consequence of (Al), with m ~ max{m1 , m 2} ~ 1. 
We like to mention that this minimal smoothness of A is sufficient to ensure the lo-
cally stationary behavior of the process, in the sense that we end up with a spectrum 
which is uniquely defined in some L 2 - rather than in an almost everywhere sense. 
However, for reasons of completeness, we like to also give this stronger definition of 
the evolutionary spectrum which, under the appropriate stronger smoothness of A, 
was considered by Dahlhaus (1993): 

Definition 3.3. As evolutionary spectrum of {Xt,T} given in (3.1) we define for u E 
(0,1) 

f ( u, W) = }~ 2~ f cov{ X[uT-s/2],Ti X[uT+•/2],T} exp( -iws ), 
s=-oo 

where the Xt,T's are given by (3.1) with A(t/T,w) = A(O,w) for t < 1 and 
A(t/T,w) == A(l,w) for t > T. 
By Dahlhaus (1993), Theorem 2.2, if A( u, w) is differentiable in u and w (with uni-
formly bounded derivatives), then 

f(u,w) == IA(u,w)j 2
, u E (0, 1) a.e. 1n w. (3.2) 



11 

Whenever this condition on A is fulfilled we shall understand the given limit in (3.2) 
as pointwise in u and w. 
More generally, however, we like to show that, if we turn to the Lrlimit, equation 
(3.2) still holds, in the L2 ( du, dw )-sense on U x II: 

Theorem 3.1. Under assumptions {A2) and {A3), 

lim f
1 

/_?t" { ~ t [cov{X[uT-s/2],T; X[uT+s/2],T} exp(-iws)] - IA(u,w)l 2 }2 dw du= 0. 
T-+oo Jo -?r 27r s=-oo 

An intermediate result, finally, which is in the L2
( dw )-sense, but pointwise in u E 

(0, 1), is given by Dahlhaus (1994), Theorem 2.2, where uniform Lipschitz-continuity 
of A( u, w) in both components with Lipschitz exponent a > 1/2 is needed. 

For the particular context of our work, we now restrict to the anisotropic Sobo-
lev class as introduced in Section 2, i.e. we assume that f is a member of this class 
by assuming that A( u, w) is: 

A E :F:::1 ,m2 (C) with m· > 1 p· > 1 and m· > l/p·. p 1 ,p2 i _ , i _ i i 

We note that with this f is in any Lp(U x II) - space (due to the continuity in each 
argument), i.e. in particular in L2 • 

Now we turn to the problem of estimating the evolutionary spectrum f. 

The first step in our inference about f is to transfer the information {X1,r, ... , Xr,T} 
given in the time domain to the time-frequency domain. One possibility, as chosen 
by Dahlhaus (1993) and also in von Sachs and Schn~ider (1994), is to consider a 
localized periodogram, localized by introducing segments of length N = N(T), where 
N --7 oo as T --7 oo but N /T --7 0 . One problem with this approach is that the 
segment length N is an additional parameter, whose optimal choice depends on the 
relation between the smoothness in time and frequency direction. Here we intend 
to develop a fully adaptive approach: By wavelet thresholding the procedure should 
be able to automatically adapt to the right degree of resolution in both time and 
frequency direction. Note that these are, of course, not independent, but stand in a 
reciprocal relationship due to the uncertainty principle: the more accurate we try to 
estimate f ( u, w) in time direction, the less accurate can we estimate it in frequency 
direction and vice versa, cf. Priestley (1981, p. 835). 
To this end, by a straightforward analogy to the definition of the spectral density 
we introduce a periodogram-like statistic lt,T, 1 ~ t ~ T, which is different to the 
localized periodogram of von Sachs and Schneider (1994): 

I,,T( w) = ~ L X[t-•/2],T X[t+• /2] ,T exp( -iw s). ( 3. 3) 
7r ls/2l~min{t-1,T-t} 

Note that lt,r can be considered as a preliminary "estimate" which is even more 
fluctuating than the classical periodogram is. 
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In von Sachs and Schneider (1994) part of the localization was delivered by summa-
tion over certain time points in segments of chosen length N before the actual local 
smoothing was performed by wavelet thresholding. Thus, inherently a lower bound 
was fixed for the resolution in time which obviously had consequences also for the 
performance in frequency direction: The larger N the worse is the time resolution, 
but the better can low-frequency components be detected, and vice versa. Here, in 
our new approach, we avoid a two-fold smoothing: projection of these "rough peri-
odograms" lt,T on an appropriate wavelet basis will do the whole task of adaptive 
local smoothing! 
To give the link to the previous section on anisotropic smoothness classes, with this 
particular task, we are confronted with a two-dimensional estimation problem, where 
the axes have a special meaning, time and frequency, respectively. It seems reasonable 
to design the estimation method in such a way that it takes different degrees of 
smoothness into these two directions into account. 
As we have seen in the preceding section, we obtain an appropriate wavelet basis 
according to the definition of basis B = {µ1( u, w)} . We get such a basis as tensor 
product of two bases, where in time direction we choose a wavelet basis on the in-
terval { <fazkh U { 'l/Jikh~l,k (e.g. boundary-corrected Meyer wavelets, see Meyer (1991 ), 
or those of Cohen, Daubechies, Vial (1993)). In frequency direction a periodic basis 
{~tkh U {-J;ikh~z,k is used (as proposed in Daubechies (1992, Chapter 9.3)). As an 
example, we like to mention the orthogonal periodized Battle-Lemarie spline wave-
lets (as in von Sachs and Schneider (1994)), though these have "numerical compact 
support", only, but our proofs will only slightly change with these. For notational 
convenience we write again 'l/Jz-l,k and ,;r;l-l,k for c/Jzk and ~lk, respectively. Whenever 
it is not misleading, we use the multiindex I = (j1, j2, kl, k2). 
In addition to the "true" wavelet coefficients () 1 of f ( u, w) 

(3.4) 

we define empirical wavelet coefficients as follows: 

_ T J,t/T j?r _ 
()I = :E 'l/Jj1 k1 ( u) du 'l/Ji2k2 ( w )lt,T( W) dw. 

t=l (t-1)/T -?r 

(3.5) 

In the special case of a stationary time series, the advantage of the tensor pro-
duct basis over the multiresolution basis becomes apparent. Then all coefficients 
81 with i1 -I l - 1 are equal to zero, whereas e(l-l,k1,i2,k2) ~ 2-lf2ei2k2 ' where 
Bj2 k2 = J f(w);r;j2 k2 (w) dw are the wavelet coefficients of the (one-dimensional) spec-
tral density J(w) = f(u,w) . In view of the results from Section 2 it is obvious 
that in estimating f ( u, w ), which is constant in u, we can obtain the same rate as in 
Neumann ( 1994) in the stationary case. 
In the following we intend to derive asymptotic normality of the empirical coeffici-
ents by the method of cumulants. It turns out that a simple central limit theorem 
would not be sufficient for proving risk equivalence between our thresholded wavelet 
estimator and the case of Gaussian noise. In view of quite a large number of coeffi-
cients which cannot be a priori neglected in cases of "inhomogeneous smoothness", 
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we have to choose the threshold somewhat higher than the noise level, i.e. of larger 
order than the standard deviation of the empirical coefficients. Accordingly, we need 
some formulation of asymptotic normality, which puts special emphasis on moderate 
and large deviations. 
Let a-J denote the variance of Br. In contrast to a central limit theorem, where it would 
be sufficient to show that cumn( Orf O"f) = o( 1) holds for each particular n 2:: 3 , 
here we need a stronger estimate for the higher order cumulants. For the reader's 
convenience we quote a lemma from Neumann (1994), which provides appropriate 
estimates for general quadratic forms. 

Lemma 3.1. Let 
'T]T = X'MX, 

where 
X = (X1,T, .. · , XT,T )', M = ((Mst))s,t=l, ... ,T, Mst = Mts· 

Further, let 
fr= Y'MY, 

where y ==(Yi, ... 'YT )' rv N(O, Cov(X)). 
Then, under {A 5}, 

holds for n 2:: 2, where 

{i} lcumn(fr )I ::; var(fr )2n-2 (n - 1)! [.Amax (M Cov(X))t-2 

{ii} Rn ::; 2n-2c2n((2n)!)l+'Y rr;~{IMstl} M llMll~- 2 , 

M = ~ mrx{IM,,I}, llMlloo = m;u { ~ JM,,I}. 

In the following ...;.,e are able to show asymptotic normality for all coefficients Br with 
2i1 +i2 == o(T) and j21 = o(l) . 
Fix some E > 0. We define 

(3.6) 

Making use of Lemma 3.1 we obtain the following result for the empirical coefficients. 

Lemma 3.2. Assume {Al) through {A5). Then 

(i) 

{ii} 

(iii) 

- 1/2 JE 8 I = 8 I + o( T- ) , 

var( Br) == 271" r-1 f {f ( u, w) '!/;j1k1 ( u )}2 du ;fi;2k2 ( w) [-zi;;2k2 ( w) + luxrr 
+ ;fi;2k2 ( -w )] &v + o(T-1

) + O(ri2 r-1 
), 

lcumn(B1)I ::; (n!)2+2-ycnr-1(r-1 2Ui+M/2 log(T)t-2 for n 2:: 3 

and appropriate C > 0 uniformly in I E IT. 

Using Lemma 1 in Rudzkis, Saulis and Statulevicius (1978) we now obtain the desired 
version of asymptotic normality. 
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Proposition 3.1. Assume {Al) through {A5). Let 6.T = (log T)A for any fixed 
0 < ). < oo. Then 

p ( ± (BI - e I) I (JI ?_ x) == ( 1 - <I> ( x)) ( 1 + o( 1)) 

holds uniformly in -oo ::; x ::; 6.T and I E TT n {I I 2i2 ?_ TP} for p > 0 
arbitrarily small, where <I>( x) = J~00 cp( t) dt denotes the standard normal cumulative 
distribution function. 

Let 
~ == {I E LT I (j 1' i2) # ( l - 1, l - 1)} . 

We consider the estimator 

f( u, w) == L 5(.)( B1' .A1,T )µ1( u, w ), 
IE4 

where the thresholds .A1,T are specified below. As usually done, we do not shrink 
the coefficients from the coarsest level (j1 ,h) = (l - 1, l - 1) . This seems to be 
reasonable in view of our assumption (A2), d), which implies that the spectrum is 
bounded away from zero. 
In order to establish the equivalence to the case of Gaussian noise, we consider the 
following approximating model for our empirical coefficients: 

[1 = 81 + CJ1e1, I E TT, 
where eJ r-v N(O, 1 ). 
Essentially by integration by parts, due to Proposition 3.1 we obtain the following 
·assertion. 

Proposition 3.2. Assume (Al) through/ A5). Then, for arbitrary nonrandom thres-
holds .A1,T = O(r-1/ 2 .jlog(T)) , 

L IE(8(·)(B1,A1,T) - 81)2 = (1 + o(l)) L IE(8(.)({i,.A1,T) - 81)2 + O(T-t9(mi,m2 )). 

lEIT lEIT 

This asymptotic risk equivalence enables us to derive the following theorem. Re-
call that .a(m1 , m2) was defined in Theorem 2.1 and !(mi, m2,p1 ,p2) in Lemma 2.3, 
respectively. 

Theorem 3.2. Assume {Al) through {A5) and (1-8) r(m1 ,m2,pi,p2 ) ?_ .a(m1,m2 ) 

with 8 as in {3.6). 
Further, assume that, J or some /'T ~ 1} 

/'T0"1V2 log( #I¥) ::; .A1,T ::; cr-1!2 .jlog(T) 

holds for I E If, If~ T¥, where #('I¥\ If)== O(T1- 19(mi,m2 )). Then 

IE llf - f lli2 ([0,l]x[-?r,7r]) == 0 ( (log(T)/Ttt9(mi,m2
)) • 
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There are many possibilities for m1, in2, P1 and P2 to fulfill 1( m1, m2, P1, P2) > 
1J(m1, m 2), for example, if mi 2:: 2/Pi· Then we can find some sufficiently small 
5 > 0, such that the assumption of Theorem 3.2 is satisfied. Hence, our estimator is 
simultaneously nearly optimal over a wide range of smoothness classes. 
Although Theorem 3.2 is of certain theoretical interest, it is not very helpful for 
practical purposes, because the definition of the estimator f depends on the unknown 
quantities err. It is a natural idea to use some initial estimates of the:,:i to construct 
a fully adaptive procedure. Let Xr be any random thresholds and f be the same 
estimator as f with these random thresholds. The next theorem characterizes the 
performance of such an estimator under a weak assumption on the random thresholds. 

Theorem 3.3. Assume {Al) through {A5). Let(l-8) 1(m1,m2,p1,P2) 2:: 1J(m1,m2). 
Assume that, for some {T ~ 1, 

2:: E(J~ + l)J c~I ff_ [/Tur../2log(#'I9r), cr-112..jlog(T)J) 
IE~ 

Then 

Remark 3.2. 
(i) By Cauchy-Schwarz, (3. 7) is obviously satisfied, if 

holds for I E Ir , where #(Tj. \I;,) = O(T1-t9(m1,m2)) . 

O(T-t9(m1,m2)). 
(3.7) 

(ii) If the assumptions of the Theorems 3.2 and 3.3 are to hold uniformly, then all 
assertions will hold uniformly in the class .r;:~~';2 • 

To end up with a fully automatic estimator, we still have to find a practicable rule 
for the thresholds )..1 . All we need are asymptotic majorants of crn/2 log( #I'd:) , 
which are also of order T-1/ 2 /log(T) . This can be achieved by plugging in some 
consistent preliminary estimate J into the asymptotic formula for the variance of the 
empirical coefficients, which is given in Lemma 3.2. Then we can use the thresholds 
X1 = &1 j2 log( #I¥) , with (i"J as in Lemma 3.2(ii). It turns out that (3. 7) will be 
satisfied under weak assumptions on the time series and the estimator J. 
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4. PROOFS 

Proof of Lemma 2.1. Let j; and ii be chosen such that 

2j~ < CoE-2m2/(2m1m2+m1 +m2) < 2j~+l, 
2i; < Co€-2mi/(2m1m2+m1 +m2) < 2i;+i 

hold for some C0 chosen at the end of this proof. Define 

Ie = { J = (j 1 , j 2, ki , k2) I (j 1 , j 2) = (j;, j;) } · 
It is obvious that Ie satisfies 

It remains to show that, for an appropriate choice of C0 , the relation 8e ~ e holds. 
Let f = ~ 81µ1 be arbitrary with (81) E 8e. Then we obtain 

llfllPi S llflloo S CE2U;+i;)/2 S CCoE2m1m2/(2mim2+mi+m2) (4.1) 

and 

For Co small enough we obtain f E :r;::;.p7;2 , which implies 8e ~ e. D 

Proof of Lemma 2.2. Let Ie be chosen as in the proof of Lemma 2.1 and let 

8* - { E, l -. Q 
if I E Ie 
otherwise 

We have seen in the proof of Lemma 2.1 that (Bj) E. e holds, which implies 

n (B :F:.:':1,m2) > €2#I. > C €219(m1,m2). 
e ' P11P2 - € -

Since ne(B, :r;:::p';2) s fie(B, :r;::,~';2 ), we have a lower bound for fie(B, .r;:~2 ). 
Let now f E :F:!"P 1p'm2 be arbitrary. 11 2 

Let ji ~ l and X(j1 ,ki) E supp( 'l/;j1 k1 ). Then, by Taylor's formula, 

j 'l/Ji1k1 (x1)f(x1, x2) dx1 

J [1x1 (x1 - z)m1-l am1 ] 
'l/Ji1k1 (x1) ( - )' a m1 f(z, x2) dz dx1 

xcii.1ci) m 1 1 . x 1 

0 (2-ii(mi-1>) j l'l/Ji1k1(x1)I dx1 J. 18
8

: 1 f(z, x2)1 dz 
supp( t/J;i 1c1 ) X1 

_ o ( 2-ii(m1-1/2)) !. I a:l f( z, x2) I dz, 
supp( t/Jii 1c1 ) 8x1 
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which implies, since every basis function µ1 overlaps only with a finite number of 
basis functions from the same scale (J'1 , j 2 ), that 

( 4.3) 

for p ::; p1 . By analogous calculations we can show that 

( 4.4) 

holds for i2 ~ l, p ::; P2· 
Let j; and ji be such that 2i; = E-2/(2mi+l+mi/m2) and 2i; = c 2/(2m2+1+m2/m1) . 
We decompose the set :J = {(j1, j2) I J1 ~ l, j2 ~ l} into the following three sets: 

Then, 

:11 = {(j1,j2) E :JI J1::; j; and J2::; j;}, 
:12 - {(j1, i2) E :JI J1m1 ::; )2m2 and J2 > ji}, 
J3 {(j1,j2) E :JI )1m1 > J·2m2 and J1 > j;}. 

L L E
2 C1

·' + 1) cp( ),~·') + min{>.},., on 
(i1 ,j2) E .11 k1 ,k2 E 

= Q ( €22i;+i;) = Q ( €219(m1,m2)) . ( 4.5) 
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Further, 

:E :E €2 ( AJ,e + l) cp( A1,e) 
U1 ,j2 )E:h kl ,k2 € € 

:E :E O (2i1+h€2Vj2 _ j~ exp {- K!1,m2(j2 - Ji)}) 
. .• . . <. 2m1 12>12 11 :11 m1 _12m2 

e22;;(mi +m,)/mi .L. 0 (exp { (log(2)(m1 + m2) - K!,,m,/2) (i2 - i;J/m1} ,/i2 - j2) 
12>12 

_ Q ( €22j;(m1+m2)/m1) = Q ( €219(m1,m2)) . ( 4.6) 

Here the last but one equality follows due to the convergence of the geometric series. 
Let (j1,j2) E :12 be fixed. We choose p = 1 if P2 = 1 or 1 < p < 2, p ~ P2 if P2 > 1. 
By ( 4.4) we obtain 

# {( k k ) \ j() j > ). } = Q (>. -p2-hm2p2(i1 +i2)(1-p/2)) 1, 2 (jd2k1k2) I,e I,e ' 

which implies that 

:E min { >.~,€) ei} 
kl,k2 

t.:
2# { (ki, k2) j 1e(jd2k1k2)I > "A1,e} + · :E >.~,e 

(k1 ,k2):i8(i1hlc1lc2)1::;>.1,1r 

Q (>. 2-p2-i2m2p2(i1 +i2)(1-p/2)) 
I,e . 

_ Q ( €2-p(j2 _ j;)l-p/22-j2m2p2(i1 +i2 )(1-p/2)) . 

By m2 > 1/p we obtain that [m1m 2 + (m1 + m2)(p/2 - 1)] > 0, which yields 

:E :E min { >. L, en 
(i1 ,j2) E.72 kl ,k2 

E2-p2-i;m2p :E :E 0 ( (j2 _ j;)1-p/22 u;-i2)m2p2(j1 +h)(1-p/2)) 

i2>i; i1:i1m1::;i2m2 

€2-p2 -i;Cmr m~!~2 )p :E 0 ( u
2 

_ i;)1-p;22u;-M[m1m2+(m1 +m2)(p/2-1)]/m1) 

i2>i; 

(4.7) 

The sum over :13 can be treated analogously to ( 4.6) and ( 4. 7), which finishes the 
proof. D . 

Proof of Lemma 2.3. It is easy to see that 

I: :Ee;< I: I: e; + I: I: e;, 
i1+i2>1-2 kl,k2 (i1,i2)E.74 kl,k2 (ii.i2)E:lr, kl,k2 
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where 

J4 {(j1,J2) I L1)1 ~ L2)2 and J1 > (J - 2)L2/(L1 + L2)}, 
:ls {(j1,J2) I LiJ1 < L2)2 and J2 > (J - 2)Li/(L1 + L2)} 

with 
.L1 = m1 - lffti + l/p2, L2 = m2 - l/p2 + l/p1. 

For the sake of a clear presentation we introduce the following notation 

e(,P,j1,k1),(r/J,j2,k2) =ff '1/Ji1k1(x1)rPi2k2(x2)f(x1,x2)dx1 dx2. (4.8) 

Now we get by Parseval's equality, Jensen's inequality and ( 4.3) that 

I: I: e; 
1"2: i2 ~jl L1 I L2 k1 ,k2 

II Proj (Wit ®VfitL1/L2+11) f II 2 

L B(1/J,j1,k1 ),(r/J,[i1Li/ L2+1],k2) 
k1,k2 

( ) 

2/pi 

< 2.:: lec,µ,jl ,k1),(<P,[i1L11 L2+1J.k2) lp
1 

k1,k2 
Q ( r2i1m12U1 +i1Li/ L2)(2/'P1-1)) 

Q ( 2-ji[2m1m2+m1 +m.2-2m1/Pr2m2/pi]/L2) . 

Since [2m1m2 + m1 + m2 - 2m1/P2 - 2m2/P1] > 0, we have 
. L 2.:: e; = 0 (2-J[2m1m.2+mt+m2-2m1/'P2-2m2/pi]/(L1+L2)) =-0 (2-J-y(m1,m2,P11P2)). 
(i1 .i2 ) E :J4 k1 ,k2 

The sum over :f5 can be treated analogously, which proves the assertion. D 

Proof of Theorem 2.3. Using (2.10), Lemma 2.2 and Lemma 2.3 we obtain, with 82 = 
E2 log(l/E), that 

D 

Ellf - fll 2 

2.:: E ( 5C·\81, Ae) - B1 r + L e; 
IE/CE !~ICE 

0 (#K.,€2 
( J21og( #K.) + 1) cp( J21og( #K.)) + I: min{ 52

, on) 
lE/Ct! 

+ Q ( 2-Jt!-y(m1,m2,p1,P2)) 

0 ( ( €2 J21og( #K,) + Do(B, .r;:~,;~")) + €
2'9(m,,m,)) 

0 ( ( €2 log(l/ €) r9(m1 ,m2)) . 
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Proof of Lemma 2.4. Let, w.l.o.g., m1 :::; m2. Let j* be such that 2i* :::; CoE-l/(mi+l) < 
2i*+i. To get a lower bound for f2e(B, F;:~/;2 ) consider the function 

We have 

and 

fe,1(x1,x2) = E~2j"/2 '1j;3··,k1 (x1). 
k1 

am2 

a m 2 fe,l = 0, 
X2 

which implies that fe,1 E F;:y,r;2 for an appropriate choice of Ca. With the exception 
of a negligible number of boundary wavelets we have, using notation ( 4.8), 

ec1/J,j*,ki).c<1>,j•,k2) =GE, 

which implies that 

Let now f E F.PmiP,m2 be arbitrary. Then we have 
i, 2 

By ( 4.3) we get 

.# {(k1, k2) \ 1ec1/J,j,k1).c<1>.i.k2)I > E} 
which, by ( m 1 + 1 )p1 > 2, implies that 

( 4.9) 

~ E2# { (k1, k2) I 1ec1/J,j,k1),c<1>.i.k2)I > E} + ~ ~ e(1/J,j,k1 ),(<1>,j,k2 ) 

j>j* j>j* (k1 ,k2):l8(1/J,j,1t1 ),(ip,j,1t2 ) l::;e 
~ Q ( E2-p12-j((m1+1)P1-2]) 

j>j* 

Q ( E2-p12-j*[(m1+1)p1-2]) = Q ( E2:;9(m1,m2)). ( 4.11) 

The terms corresponding to the basis functions cPiki (x1)'fik2 (x2) as well as to 'fik1 (x1)'fik2 (x2) 
can be treated analogously. O 
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Proof of Theorem 3.1. Let g(u,w) :== IA(u,w)l 2
• Neglecting the factor 1/(27r) we 

show that 
rl j?T' 00 RT:== Jo { L cT(u, s) exp(-iws) - g(u,w)} 2 du dw ~ O 
O -?T' s=-oo 

as T ~ oo, 

where 

ex( u, s) := cov{X[uX-•/2],Xi X[uX+s/2],X} = I: A([uT-s/2]/T, >.) A([uT + s/2]/T, >.) exp(i>.s) d). 

Using the relation l:s exp( i( A - w )s) == 5( A - w) we obtain 

Rx= f L {"~"" j[A([uT-s/2]/T, >.) A([uT + s/2]/T, >.)-g(u, >.)] exp(i(>.-w)s) d>.}2 du dw. 

Proceeding quite simiiarly as in the proof of Lemma 3.2(i) (on the rate of the bias), 
we have to estimate two terms of similar form. Hence, we only treat the first one 
which is 

with 

with 

and 

Lis( u, s) = J .6.s( u, A) exp( i.Xs) d,X, 

.6.s(u, .X) :== {A([uT - s/2]/T, .X) - A(u, .X)} A(u, .X) : 

j j I~>~.( u, s) exp( -iws) 
2 

dw du 

J du L L Lis( u, s) LS.11 ( u, v) j exp(-iw(s - v )) dw 
s 1J . 

= L f
1

dujLS.s(u,s)l 2 ~ !&) +R~)' 
s Jo 

R~) = L l du i.6..(u,s)J2 
, 

isl>2T 0 

where ST :== !sl/(2T), 0 ~ isl ~ 2T. 
Similarly to the proof of Lemma 3.2(i) we can show that 

!sl sup iLS..s(u,s)I 
uE[(n-l)sT 1nsT] 

< C1 [supjA(u,-X)I +sup TV[-?T',?T'](A(u,·))] sup TVrn(sT) (A(·,-X)) 
u,>. u >. 

+ C2 sup{IA(u,-X)l}TV[_?T',?T'] {TVrn(sT)(A(·,·))}, 
u,>. 
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where 0 1 and 0 2 denote some positive constants and where, on the right-hand side, 
the supu istakenover uEin(sy):=[(n-l)sy-1/T,(n+l)sy] andthe sup>. 
over .:\ E [-7r ,'iT] . 
Note that 

[s;;1]+1 
L sup ILis(u,s)I = O(!sl-1

), 
n=l uEln(sT) 

due to (A2) (a),(b),(c) (as L:n TV!n(sT) (A(·,.:\)) :S TV(o,1] (A(·,.:\))) . 
Hence, 

Further, 

IR~)I = 0 ( 2.: s-2
) = O(T-1

), 

isl>2T 
as, by Definition (3.3) for lsl > 2T, 6.s(u,.:\) = {A(O,.:\)A(l,.:\)- IA(u,.:\)1 2} inde-

- . -1 pendent of s, hence, sup0<u<1 l6.s(u,s)I = O(lsl ). D --

Proof of Lemma 3.2. 
(i) We show that Ri := jJEB1 - thl .= 0(2U1 +i2 )/

2T-1 log(T)) . By (3.1) and with 
At(.:\) := A(t/T, .:\),neglecting the factor l/27r, 

IEit,T(w) = 2.: cov(X[t-s/2],TiX[t+s/2],T)exp(-iws) 
ls/2l~min{t-1,T-t} 

L j7r A[t-s/2](.:\)A[t+s/2](.:\) exp(i(.:\-w)s) d.:\. 
ls/2l~min{t-1,T-t} -'11" 

Let ty := min{t - 1, T - t}. According to the decomposition 

A[t-s/21(.:\)A[t+s/21(.:\) - At(.:\)At(.:\) 
= [A[t-s/2](.:\) - At(.:\)] At(.:\) + A[t-s/21(.:\) [A[t+s/2](.:\) - At(.:\)] 

we have RT = R~) + R~) with 

R¥) = z;, t:~:)/T du ,P;,k, ( u) .t j_: d!.AJ ,j;;,i,, (w) j_)A,(>.)12 - f( u, >.)}exp( i(>. - w )s) o 

r/T J - J - L Jr du 'l/;j1k1 (u) L dw'l/;j2 k2 (w) exp(-iws) IAt(.:\)j 2 exp(i.:\s) d.:\ 
t (t-1)/T is/2l>tT 

R(1,1) + R(1,2) 
- T T ' 



and 

L, l/T du ,P;1 k, ( u) L, j dw-f.n"2(w) exp(-iws) * 
t (t-l)/T is/2i9T 

* j At(-X) [Art-s/2JP) - At(-X)] exp(i-Xs) d.\ 

where with R5}) we only treat the first part of two similar differences, w.l.o.g. 
Now, by (A2)(b ), (A3) and (A4) b ), 

and 

(11) J - it/T IRr' I < dw l1/Ji2k2(w)I L ( ) du l1/7i1k1(u)I TV[(t-1)/T,t/TJU(·,w)) 
t t-1 /T 

< 2-i2 l22jif2r-1 sup TV[0,1i(f (-, w)) 
w 

-< sup{l1/7i1k1(u)l}T-1 L L l~i2k2(s)I sup lf(t/T,s)I 
u t is/2i>tT t 

o(2ji12r-1) I: I: o(2h12 s-2) 
t is/2i>tT 

0(2U1+i2)l2r-11og(T)) . 

Further, with s being even, w .l.o.g., 

. . . 
such that, by (A2)(a), (b), (c), for some positive·constant C, 
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IR¥)1 ::::; OI:l~(s)i supl'l/Ji1k1(u)I r-1 isl/2 lsi-l [sup{IA(u,-X)I} sup TV[o,1] (A(·,-X))+ 
s u u,.A .A 

+ sup{IA(u, -X)I} TVuxrr(A) +sup TV[-71",71"] (A(u, ·)) sup TV(o,1] (A(·,.\))] 
u,.A u .A 

o(2i1122j2/2r-1 ). 

The proof of the last estimate (for R¥)) is delivered by some lengthy, but straightfor-
ward algebra using elementary generalizations of total variation estimates and partial 
summation. Roughly speaking, we proceed as follows: The integral w.r.t. ,\ delivers 
s /2 terms which are all of order 0( s-1 ), as for each of the differences labeled by n 
we use estimates like ( cf. Edwards (1979), p. 34f.) 

j .6.t(A) exp(i.\s) d,\ ~ L .6.t(Ak){gs(.Ak)-gs(Ak-1)} ~ - L{.6.t(Ak+i)-.6.t(Ak)}9s(Ak) 
k k 

with .6.t(A) := At(A) (At(A) - At-1(-X)), 9s(.A) := exp(i-Xs)/(is) and with a 
sufficiently fine partition (-Xk)k of [-7r)Ir]. Note that g5 (,\) = O(s-1 ). 
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The sum overt can be bounded from above by the bounded total variation of .6.t(.A) 
as a function of u. Putting both (simultaneously) together, in order to strictly bound 
all occurring terms, we need Assumptions (A2)(a), (b) and (c), as .6.t(.A) is a product 
of two functions of time and frequency. 

(ii) To apply cumulant techniques we write Br as a quadratic form with a symmetric 
matrix Nr: 

Br = X'NrX, 

where, Nr =(Mr+ Mr)/2 and, with Wj1 k1 (t/T) := T JtL~)/T'ljli1 k1 (u)du and ---Wj2k2 ( s) := -Ji2k2 ( s) = (27r )-1 f~-rr -Ji2k2 ( w) exp( -iws) dw , 

if t + v even 
if t + v odd 

In the following, for reasons of notational convenience, we use Wj1 k 1 ( ;~t) to denote 
Wj1 k1 ( [(s+t~l)/21 ). Note that, by the approximations used in the course of the proof, 
this does not lead to any problems. 
Since ~ and {l are of bounded variation, we get by integration by parts 

w i2 k2 ( t - v) = 0 ( 2-i2 I 2 /\ ( 2i2 I 21 t - v 1-1)) ' 

which implies that 

(Nr)tv = 0 (T-12i1/2 [ri2/2 /\ (2i2/2lt - vl-1)]). 

Hence, we obtain the estimates 

and 
Nr = Lmfx{l(N1)stl} = 0 (2-ii/22-h/2). 

s 

Let Y rv N(O, Cov(X)). Since 

max{l(Nr)tvl}Nr = 0 (T-1ri2
), t,v 

we obtain by Lemma 3.1 that 

var( 01 ) = var(Y' N1 Y) + O(ri2 T-1 ). ( 4.12) 

Now, with 

var(Y1N1Y) = 2 tr(Nr'ETNr°'ET) (4.13) 
= 1/2 [ tr(Mr'ETMr'ET) + tr(M r'ETM r'ET) + 2 tr(M 1'ETM1'ET)] , 



we have to show that 

and 

tr(M I~TMI~T) 

= 27r r-1 f {! ( u, w) 7/Ji1k1 ( u) }2 du ·:fi2 k2 ( w) {;i2k2 ( w) dw + o(T-1 ) luxrr 

tr(M1~TM1~T) = tr(M1~TM1~T) 

= 27r r-1 f {f ( u, w) 7/Ji1 k1 ( u) }2 du {;i2 k2 ( w) {;i2 k2 ( -w) dw + o(T-1) . luxrr 
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As this runs quite analogously for all terms under consideration, we restrict to treat 
the first one, only: 

tr(M I~TMI~T) 
L (MI )vw(~T )ws(M1 )st(~T )tv 

s,v,w,t 

where we use the convention given in the beginning of our proof which allows to 
proceed regardless to the parity of the arguments of Wj1 ku 

and where ~T = Cov(X) = (cT(·, ·)) with 

Note that with this, cT(f:};, t - v) = cov {Xt,Ti Xv,T }. 
Further, let E = ( c(., ·)) with c( ~, n) := (27r t 1 J~1r f ( ~,)..) exp( i>.n) d>.. For smooth 
A, cT(~, n) = c(~, n) + c'(-T, n) O(n/T) with both supt/T En le(~, n)I < oo, and 
SUPt/T Ln lc'(~,n)j < 00. 

If A is not smooth, but fulfills assumptions (A2) and (A3), then we proceed as in the 
proof of part (i) of this lemma, with the same quality of approximation (i.e. same 
resulting rates). 
In the following, for sake of notational simplicity, we give the proof of (ii) only for 
functions A( u, ).. ) and 7/Jiiki ( u ), which are smooth in u. 
To motivate the idea how to derive the leading term of the asymptotic variance, we 
briefly sketch the stationary situation (for details, cf. Gao (1993, page 19), but note 
the missing symmetrization of the Hermitian matrix Min that reference, which leads 
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to a slight mistake in the resulting asymptotic expression for the whole variance): 

r-2 L Wjk(w - v) Wjk(s - t) c(s - w) c(t - v) 
s,t,w,v 
r-2 LWjk(i) Wjk(m) L c(s) c(s + l - m) + o(T-1

) 
l,m s 

27rT-1 L: f 2(w) ~}k(w) dw + o(T-1
) 

(similarlyto E;=-T~(s) c(s)-f-fjk(w) f(w) dw = Lisl>T~(s) c(s) = O(T-1
)). 

To treat all of the occurring remainders, we use estimates like 
En lwj2 k2 (n)I = 0(2i2 f 2 ) (due to (A4) b)) and Ln jc(u,n)I < oo uniformly in 
u E [0,1] (due to (A3)). 
Note in particular that Ln lnl lli(n)I ll2(n)I < oo, where li(n) is any of w(n),c(·,n) 
or even of Lw w(w - v) c(s - w) = l(s - v), say, with again En ll(n)I < oo. 

Our proof proceeds by three different approximations: The first is replacing cT( ~, n) 
by c( ~, n) with an error of order 0( n / T) (see above). The second one is to replace 
c(si°Tw, ·)by c( 2;,, ·) + O(w/T) and Wj1k1 (w2"i,v) by Wj1 k1 ( 2~) + 0(2i1/2 w/T). With 
this, 

tr( M 1 "EM1 "E) 
2 '"""''"""' '"""' v . /2 w - s w r- LtL.tL.t [wi1k1(2T) + 0(211 T)] wi2k2(w-v) [c( 2T,s-w) + O(T)] 

s v w 

L [ w;,k, ( 2; l + 0(2ii12 ;l l w;,i,, (s - t) [ c( 2;, t - v l + o(; n 
t . . 

The leading term of tr(M 1"EM1"E) turns out to be 

r-2 L L Wj1k1 (2~) Wj1k1 (2~) I I dA d~ !(2~' A) /(2~ ))-fj2k2(A) ~j2k2(~) exp(i(s-v )(A-
s v 

The occurring remainders of both first (i.e. replacing cT(·, ·) by c(·, ·)) and second 
approximation are of the following kind (or even of higher order): 
r-2 Ls,v,w,t Wj1k1 ( 2~) Wj1k1 ( 2~) Wj2k2 ( w-v) Whk2 (s-t) c(2;,' s-w) c'( 2T' t-v) 0( ~) . 

In each of these remainders use estimates like 
Ls Lt~ lwi2k2 (s - t)I lc'( 2T, t - s )I = o(2i2 f 2 ), and respectively, 

r-2 L L .EI Wj,k, ( 2;) w;,k.(2;) l(s - v) ~ W;,k, (s - t) c'(2~, t - s) I 
s v t 

= 0(2U1 +i2)r-2) = o(T-1 ). 

Finally, the third approximation, which is 
v - s - . - s - v v s . ·1 s - v 

f(2T'A) == J(2T'A)+J'(T,A) 0(-r-) and Wj1k1(2T) = Wj1k1(2T)+w;.1k1(T) 0(21 2-r-: 
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delivers a leading term, with n := s - v, 

r- 2 2: 2:: wj1k1( 2;)[j j d:Ad~;j;i2k2(A){;i2k2(~)f( 2;,:A)J( 2;)) exp(in(:A-~))+ s lnJ::;T 

with 

l:IR~)(n)I = l::~lf(-,n)l 2 = 0(2i2r-1), 
n n T 

where f ( ·, n) = J {;i2k2 (A) f (·,A) exp( in A) d:A is again absolutely summable as a fun-
ction of n, uniformly in its first argument, and with r-2 Es WJ1k1 ( 2;,) = 0(2i1 r-1 ). 

We finish the proof by a technique similar to the proof of part (i), i.e., replacing 
°Elnl::;T .. · by E:=-oo ... , noting that °Elnl~cT IF(·,n)j2 = O(T-1

). 

Hence we end up with the following overall leading term of tr(M /EM1'E) , 
. -2""""' 2 ( s ) J -2 ( ) 2 s 27r T L.J wi1k1 2T d:A 'lj;hk2 A f ( 2T' :A) 

s 

= 21!" r 1 [du ,Pj,k,( u) j~ d>. ~J2.,.,(>.) J2( u, >.) + O(T-22U1 +hl), 

due to the bounded total variation of all occurring functions. 
The proof of (ii) ends by applying the same techniques to the remaining two terms 
of the sum in ( 4.13). 

(iii) This ca:ri be shown simply by .using Lemma 3.1 with,. by (A5), 

Amax (M1 Cov(X)) < l!Mrll II Cov(X)ll 

0 ( r-12Cii+h)/2 1og(T)) sup {2= cov(Xs, Xt)} 
19::;T s 

0 ( r-12U1 +i2)/2)og(T)) 

and the estimates for maxu,v{l(Mr )uv I} and llM1ll 00 derived in the proof of (ii). D 

Proof of Proposition 3.1. By (ii) of Lemma 3.2 we get, in conjunction with (A2)c) 
and d), that G'J ::::< r-1/ 2 for TP ~ 2i2 . Hence, we obtain by (iii) of Lemma 3.2, for 
appropriate µ > 0 , 

I cumn(Bi/a1)I ~ (n!)2+2'Y (cr-1l 22Ui+M/2 1og(T)r-
2 ~ (n!)2+2-Y(CTµr(n- 2) 

( 4.14) 

for all n 2:: 3, which implies by Lemma 1 in Rudzkis, Saulis and Statulevicius (1978) 
that 

P (±(Br -rlB1)/a1 '?_ x) = (1 - <I>(x))(l + o(l)) (4.15) 

holds uniformly in 0 ~ x ~ Til for some rJ > 0. 
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With !:11 :== (JE81 - 81)/0'1 == o(l) we g~t 

P (±(Br - Br)/O'J?:. x) == (1 - ~(x))(l + o(l)) + 0 (l~(x) - ~(x + !:11)1). 

Fix any c > 1. For x :::; c, obviously 

~(x) - ~(x + Ll1) == o(l - ~(x)). (4.16) 

Let w.l.o.g. !:11?:. 0. Using the formula (1 - 1/x2 )cp(x)/x :::; (1 - ~(x)) we obtain 
for x > c that 

l~(x) - ~(x + l:ir)I == l:11cp(x) == o(l - ~(x)), 

which, in conjunction with ( 4.15) and ( 4.16), completes the proof. D 

( 4.17) 

Proof of Proposition 3.2. First, let I E IT n {J I 2i2 > TP} . Since 5(.) is monotonic 
in its first argument, there exists some 11 such that 

8(.)(Br, 'A1,T) ?:. Br, if 01 - Br > 11, 
5(.)(B1, Al,T) :::; B1, if B1 - B1 < /l· 

W.l.o.g. we assume that 8~·)(B1, AJ,T) ?:. fh , if B1 - B1 == /l . 
Let 'T/T == CT-1! 2 jlog(T) for some appropriate C. Then 

. lE ( 5C·)(B1, 'A1,T) - B1)2 

EI (11:::; 81 - B1 < 'T/T) (8C·)(B1, >i1,T) - 81)
2 

+EI (~TJT < 81-_81 <11) (5C·)(B1,"A1,T) - 81)2 

+ lEJ (IB1 - B1I?:. 'T/T) (8C·)(B1, 'A1,T) - 81)2 
- S1 + S2 + S3. 

Applying integration by parts w.r.t. x, we obtain by Proposition 3.1 that 

S1 - j [1 (11 ~ cr1x < 1/T) ( s<·l(lh + cr1x, >.1,T) - B1) 
2

] d {P((01 - B1)/ cr1 ::::: x)} 

j { P((01 - B1)/cr1::::: x)} d [1 (r1 ~ cr1x < 1/T) (s(.)(BI+ cr1x, >.1,T) - 81) 
2

] 

+P((B1-81)/0'1 ?:.11) (5(.)(B1+11,'A1,T) - 81)2 

< GT{! {1 - 'P(x )} d [1 (/1 ~ CT1X < 1/T) ( s<·l(BI+ CT1X, >.1,T) - 81) 
2

] 

+ P( (~I - 81 )/ CT1 ::::: 'YI) ( 8(.)( BI+ /1, >.1,T) - 81 )2} 
CTJEI(!1:::; <r-Br < TJT) (s(.)(<1,'A1,T) - 81)2 (4.18) 

holds uniformly in I E IT n {JI 2i2 > TP} for some GT~ 1 . The term S2 can be 
estimated analogously. 



29 

Using Lemma 3.2 we obtain, for arbitrary even n, that 

which implies, by Cauchy-Schwarz, that 

if G is chosen large enough. ~ 

As 15(.)(81, >.1,T) - thl :::; >.1,T + 181 - B1I , the terms with 2i2 :::; TP contribute to 
the risk a term of order O(TP-1 log(T)) , which is O(T-"9(mi,m2)) , if p is chosen 
sufficiently small. D 

Proof of Theorem 3.2. Using Parseval's identity we infer from Proposition 3.2 and by 
15(.)(81, >.) - 811 :::; >. + 181 - 811 that 

Elli - fll 2 == I: JE ( 5<·)(81, >.1,T) - a1)2 + I: e; 
IEIT Irf.IT 
(1 + o(l)) L E(5<·)({i,>.1,T) - 81)2 + o(r-"9(mi,m2 )) 

IEIT 
"""' ( 2 - 2) + L..J 2). I,T + 21E( th - B1) ( 4.20) 

IEIT\I!r 
+ Q ( r-(l-oh(~1,m2,p1,P2)) . 

From(2.10) we see that the first term on the right-hand side of ( 4.20) can be estimated 
by 

G L (a; (>.I,T + 1) cp( >.1,T) + min{>.;,T, en) + 0 ( r-"9(m1,m2)) 
IEI* a1 a1 

T 

< G I: min{aJlog(T),BH + o (r-19(m1,m2)) 
IEIT 

\ 

The remaining terms on the right-hand side of ( 4.20) are also of order O(T-i9(mi,m2) log(T)), 
which finishes the proof. D 

Proof of Theorem 3.3. Since 5(.) is monotonic in the second argument, we have for 
any random threshold ~I satisfying >.1,1 :::; ~I :::; >.1,2 that 15(·)( 81, ~I) - 811 :::; 
max{l8<·)(81, >.1,1)-Brl, 15(.)(Br, >.1,2)-B1I}. For CT-1l2Jlog(T) ~ 1Ta1J21og(#I~), 
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both the nonrandom thresholds >..r,T = !TCJr)2 log( #I¥) as well as 
CT-1!2 jlog(T) provide the desired rate for the risk. Hence we obtain 

~ IE ( 5(.)(Br)) - Br )2 
lE~ 

< L Yl ( 5(.)(ffi, /TOJJ21og( #T'i )) 
lE~ 

+ L r, ( o<·l(ifr, cr-112J1og(T)) - er)2 
lE~ 

+ L u (:>:<le (rTorJ21og(#'L'i), cr-1!2J1og(T)l) (20~ + wn 
lE~ 

0 ( (log(T)/Ttt9(m1,m2)) . 

).IT , 

From the proof of Theorem 3.2 we know that the risk arising from the estimation of 
Br, I r/:. I¥, is also of order 0 ((log(T)/Ttt9(mi,m2)) , which·,finishes the proof. D 
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