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Abstract. Nearly all inf-sup stable mixed finite elements for the incompressible Stokes
equations relax the divergence constraint. The price to pay is that a priori estimates for the
velocity error become pressure-dependent, while divergence-free mixed finite elements deliver
pressure-independent estimates. A recently introduced new variational crime using
lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified

Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 velocity 
estimate. Refining this approach, a more sophisticated variational crime employing the
lowest-order BDM element is proposed, which also allows proving an optimal pressure- 
independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the 
improved robustness in the Navier-Stokes case.

1. Introduction

The success of classical mixed finite elements for the incompressible Navier-Stokes equa-
tions relies heavily on the relaxation of the divergence constraint, enabling the construction
of large classes of inf-sup stable finite element pairs for the approximation of velocity and
pressure [BF91]. Unfortunately, this relaxation is not for free. In the simplest case, the
incompressible Stokes equations

(1) ´ ν∆u`∇p “ f , ∇ ¨ u “ 0,

the classical a priori error estimate for the velocity error [BF91, GR86] reads (for homogen-
eous Dirichlet boundary conditions)

(2) ‖u´ uh‖1,h ď C1 inf
wPXh

‖u´wh‖1,h `
C2

ν
inf

qhPQh

‖p´ qh‖0.

Divergence-free mixed finite element methods like the Scott-Vogelius finite element method
deliver the pressure-independent and therefore significantly more robust estimate [GR86,
BL08]

(3) ‖u´ uh‖1,h ď C3 inf
wPXh

‖u´wh‖1,h.

In many physical situations, where the pressure is comparably small w.r.t. the velocity or
approximable by low-order polynomials, the appearance of the pressure in the estimate (2)
is indeed negligible. In general situations, however, mixed methods suffer from so-called
poor mass conservation. The easiest example, where mixed methods reveal their lack of
robustness, is the no-flow example [DGT94, GLBB97, Lin08], where one prescribes f “ ∇φ as
the forcing in (1). For homogeneous Dirichlet boundary conditions, pu, pq “ p0, φq uniquely
solves (1). Obviously, in this example the pressure p “ φ is not small compared to the
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velocity u “ 0. According to (3), divergence-free methods, deliver indeed a discrete velocity
uh “ 0, while mixed methods with a relaxed divergence constraint have a velocity error,
which can be arbitrarily large, only dependent on φ, ν and the applied mixed method. Since
the continuous velocity u “ 0 lies in the approximation space of the discrete method, mixed
methods indeed suffer from a stability problem.

The traditional notion poor mass conservation is derived from conforming mixed methods
like the Taylor-Hood element, where it is accompanied by large divergence errors. This
numerical instability has been observed by several authors in the past. In [DGT94] the
no-flow example was investigated for the first time, seemingly. In [GLBB97] a numerical
Helmholtz decomposition of the forcing f in (1) was applied, in order to get around with
the irrotational part of f . The standard approach for stabilizing poor mass conservation
is the so-called grad-div stabilization [FH88, OR04, OLHL09], which penalizes divergence
errors in an L2 sense. Unfortunately, it can be shown that even in the simplest case of the
incompressible Stokes equations with an optimal choice of the stabilization parameter, the
approach is not completely robust w.r.t. small kinematic viscosities ν [JJRL14]. More in
the spirit of [GLBB97], recently in [Lin14] a new approach has been proposed, in order to
avoid poor mass conservation completely. The approach is based on the observation that the
proper source of the numerical instability is a poor momentum balance, where irrotational
and divergence-free forces interact in a non-physical manner. Due to their L2-orthogonality,
divergence-free and irrotational forces are balanced separately in the continuous equations.
But due to the relaxation of the divergence constraint in mixed methods, this separation
fails in mixed methods, in general.

In [Lin14] it is shown how to reestablish L2-orthogonality between discretely divergence-
free and irrotational vector fields modifying the nonconforming Crouzeix-Raviart element
[CR73] by a variational crime. Here, a velocity reconstruction operator maps discretely
divergence-free test functions onto divergence-free lowest-order Raviart-Thomas functions
[RT77] in the right hand side of the incompressible Stokes equations. Replacing the test
functions by these reconstructions introduces an additional consistency error, but improves
the robustness of the Crouzeix-Raviart element, since one can prove the pressure-independent,
a priori discrete H1 velocity error estimate (3) as done in [Lin14]. Unfortunately, in [Lin14]
the author did not succeed in proving also an optimal a priori L2 error estimate for the
velocity, although numerical experiments show that such an estimate probably holds. The
proof of an optimal L2 velocity error is non-trivial, since divergence-free lowest-order Raviart-
Thomas elements are piecewise constant, only, and the variational crime committed is similar
to the replacement of an exact integration by a numerical quadrature.

In this contribution, a more sophisticated velocity reconstruction operator is introduced,
which maps discretely divergence-free test functions onto divergence-free vector fields that are
not only elementwise constant but elementwise affine, using the lowest order BDM element
[BF91]. This allows an optimal pressure-independent a priori estimate for the velocity error
in L2.

The remaining parts of this paper are outlined as follows. Section 2 explains the continuous
setting and its discretization with and without reconstructions. Section 3 proves a priori
estimates for the energy error of the velocity and the L2 error of the pressure. Section 4 proves
an optimal L2 error estimate for the reconstructions with BDM functions and sufficiently
smooth exact solutions. Finally, Section 5 compares the modified Crouzeix-Raviart element
with BDM and RT velocity reconstructions with the classical Crouzeix-Raviart element in
four benchmark examples in order to verify the theoretical results.
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2. Continuous and Discrete Setting

This section explains the continuous and the discrete setting for the model problem under
consideration.

2.1. Continuous setting. Given the Sobolev spaces V “ H1
0 pΩq

d, Hpdiv,Ωq and Q :“
L2

0pΩq, the weak solution pu, pq P V ˆQ of the continuous steady incompressible Stokes and
Navier-Stokes problems satisfies the equations

apu,vq ` γ cpu,u,vq ` bpv, pq “ lpvq,

bpu, qq “ 0 for all pv, qq P V ˆQ
(4)

with the multilinear forms defined by

a : V ˆ V Ñ R, apu,vq :“ ν

ż

Ω
∇u : ∇vdx ,

b : V ˆQÑ R, bpu, qq :“ ´

ż

Ω
q∇ ¨ udx ,

c : V ˆ V ˆ V :Ñ R, cpa,u,vq :“

ż

Ω
ppa ¨∇quq ¨ vdx ,

l : V Ñ R, lpvq :“

ż

Ω
f ¨ v.

Within the set of weakly differentiable, divergence-free functions

(5) V0 :“ tv P V : ∇ ¨ v “ 0u,

the saddle point problem (4) becomes an elliptic problem for the velocity alone, i.e., u P V0

such that

(6) apu,vq ` γ cpu,u,vq “ lpvq for all v P V0.

2.2. Notation. In the following, T denotes a regular triangulation of the domain Ω into
triangles for d “ 2 or tetrahedra for d “ 3. For any element T P T , midpT q denotes the
barycenter of T . The set of all simplex faces, i.e., edges of triangles for d “ 2 and faces of
tetrahedra for d “ 3, is denoted by F . The subset FpΩq denotes the set of interior faces,
while FpBΩq denotes the set of boundary faces along BΩ. For any F P F , midpF q denotes the
barycenter of F and nF abbreviates a face normal vector. The orientation of these normal
vectors for the interior faces F P FpΩq are arbitrary, but fixed. The normal vector nF for
boundary faces F P FpBΩq points outwards of the domain Ω. For every simplex T P T ,
FpT q denotes the set of faces of this simplex and nT denotes the outer normal of the simplex
T P T . The function space of PkpT q contains piecewise polynomials of order k with respect
to T . For a piecewise Sobolev function v P H1pT qd and some face F P FpΩq, the notion
rv ¨ nF s denotes the jump of the normal flux over F , while ttv ¨ nF uu denotes the average
value of the normal flux over F . The space of Crouzeix-Raviart velocity trial functions is
given by

CRpT q :“
 

vh P P1pT qd : for all T P T , rvhspmidpF qq “ 0 for all F P FpΩq
& vhpmidpF qq “ 0 for all F P FpBΩq

(

.

The pressure trial function space reads

QpT q :“

"

qh P P0pT q :

ż

Ω
qhdx “ 0

*

.
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The space of Brezzi-Douglas-Marini finite element functions reads

BDMpT q :“ vh P P1pT qd : rvh ¨ nF s “ 0 along all F P F
(

.

Furthermore, consider its subspace of lowest order Raviart-Thomas finite element functions

RTpT q :“
!

vh P BDMpT q : @T P T DaT P Rd, bT P R, vh|T pxq “ aT ` bTx
)

.

The space RTpT q contains exactly the subset of functions with constant normal fluxes v¨nF P

P0pF q on every face F P F [BF91] and any Raviart-Thomas function is uniquely defined by
its face normal fluxes at the face barycenters.

Remark 1. A Crouzeix-Raviart function v P CRpT q is, in general, discontinuous along
element faces F P F except at the face barycenters. Therefore, CRpT q Ć Hpdiv,Ωq and
CRpT q Ć V0. On the contrary, RTpT q Ă BDMpT q Ă Hpdiv,Ωq, because the normal com-
ponents of any v P RTpT q or v P BDMpT q are continuous.

The discrete setting employs the broken gradient ∇h : CRpT q Ñ L2pΩqdˆd and the broken
divergence ∇h ¨ p¨q : CRpT q Ñ L2pΩq in the sense that

p∇hvhq|T :“ ∇pvh|T q, p∇h ¨ vhq|T :“ ∇ ¨ pvh|T q for all T P T .

The discrete energy norm for the space CRpT q reads

(7) ‖vh‖1,h :“

ˆ
ż

Ω
ν∇hvh : ∇hvhdx

˙1{2

“ ‖ν1{2∇hvh‖0.

2.3. Interpolation operators. The usual Crouzeix-Raviart interpolation operator πCR :
V Ñ CRpT q is defined by

pπCR vqpmidpF qq “
1

|F |

ż

F
vds for all F P F .

The Raviart-Thomas interpolation operator πRT : V Y CRpT q Ñ RTpT q is defined by

nF ¨ pπ
RT vqpmidpF qq “

1

|F |

ż

F
v ¨ nF ds for all F P F .

Note that, due to continuity in the face barycenters, this is well-defined also for v P CRpT q.
Moreover, it holds the identity πRT πCR v “ πRT v for any v P V .

We introduce a BDM interpolation operator πBDM : V YCRpT q Ñ BDMpT q defined such
that, for all ph P P1pF q on a face F P F ,

ż

F
pπBDM vq ¨ nF phds “

#

ş

F ttv ¨ nFuu phds for all F P FpΩq
ş

F pπ
RT vq ¨ nF phds for all F P FpBΩq.

At the domain boundary BΩ the BDM interpolation equals the RT interpolation to ensure
that πBDM vh ¨ n for vh P CRpT q vanishes along the complete boundary BΩ. With this, the
boundary integral in the integration by parts formula,

ż

Ω
pπBDM vhq∇pdx “

ż

Ω
∇ ¨ pπBDM vhqpdx `

ż

BΩ
pπBDM vhq ¨ n pds,

disappears and enables L2-orthogonality of πBDM vh on gradients of all functions p P H1pΩq
for any discretely divergence-free vh P CRpT q. For any v P V0, it immediately follows
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∇ ¨ πBDM v “ 0, ∇ ¨ πRT v “ 0 and ∇h ¨ π
CR v “ 0 by Gauss’ theorem. Furthermore, there

are the well-known stability and approximation properties

‖πCR v‖1,h ď ‖∇v‖0 for all v P V,(8)

‖v ´ πCR v‖ ď Ch‖v ´ πCR v‖1,h for all v P V,(9)

‖v ´ πCR v‖1,h ď Ch|v|2 for all v P V XH2pΩqd,(10)

‖v ´ πRT v‖0 ď Ch‖v‖1,h for all v P V Y CRpT q,(11)

‖v ´ πBDM v‖0 ď Ch‖v‖1,h for all v P V Y CRpT q,(12)

‖v ´ πBDM v‖0 ď Ch2|v|2 for all v P H2pΩqd,(13)

where the generic constants C depend only on the shape of the simplices in the triangulation
T but not on their size [BF91, AD99, CGR12].

Remark 2. Note, that the proofs of the estimates (11) and (12) are extendable to func-
tions v P CRpT q. For the proof of (12), let ΠBDM denote the element-wise projector onto
BDMpT q, and πBDM as above. A triangle inequality shows

‖v ´ πBDM v‖0,T ď ‖v ´ΠBDMv‖0,T ` ‖ΠBDMv ´ πBDM v‖0,T

and, since ΠBDM preserves constants (even linear polynomials) and is bounded on H1pT q,
the first term is bounded by h‖∇v‖0,T . The second term is a vector-valued linear polynomial
on T . By a scaling argument we get

‖ΠBDMv ´ πBDM v‖0,T ď Ch1{2‖ν ¨ pΠBDMv ´ πBDM vq‖0,BT

Since
∣∣ν ¨ pΠBDMv ´ πBDM vq|F

∣∣ “ ∣∣ν ¨ rπL2pF qvsF {2
∣∣ for each facet F Ă BT with the L2pF q-

orthogonal projector πL2pF q onto P 1pF q, we observe

‖ΠBDMv ´ πBDMv‖0,T ď Ch1{2‖rvs‖0,BT .

For v P V Y CRpT q and the face patch ωF :“
Ť

TPT ,FĂBT T , the last term is bounded by

‖rvs‖L2pF q ď Ch1{2‖∇hv‖0,ωF .

2.4. The finite element scheme with and without divergence-free reconstruction.
The discrete weak formulation of the model problem employs the multilinear forms

ah : CRpT qˆCRpT q Ñ R, ahpuh,vq :“ ν

ż

Ω
∇huh : ∇hvhdx ,

bh : CRpT qˆQÑ R, bhpuh, qhq :“ ´

ż

Ω
qh∇h ¨ uhdx ,

ch : CRpT qˆCRpT qˆCRpT q :Ñ R, chpah,uh,vhq :“

ż

Ω
ppah ¨∇hquhq ¨ vhdx ,

lh : CRpT q Ñ R, lhpvhq :“

ż

Ω
f ¨ vhdx .

Given one of the three interpolation operators above πdiv P tπCR,πRT,πBDMu, the dis-
crete Navier-Stokes problem seeks puh, phq P CRpT qˆQpT q such that

ahpuh,vhq ` γ chpπ
div uh,uh,π

div vhq ` bhpv, phq “ lhpπ
div vhq,

bhpuh, qhq “ 0 for all pvh, qhq P CRpT qˆQpT q.

(14)
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The choice πdiv “ πCR leads to the classical Crouzeix-Raviart nonconforming finite ele-
ment method in the spirit of [CR73], while πdiv “ πRT or πdiv “ πBDM constitute a vari-
ational crime that maps discretely divergence-free test functions to divergence-free functions
in Hpdiv,Ωq. The benefits of these divergence-free reconstructions are discussed below.

Remark 3. The use of πdiv vh in the trilinear form ch in (14) is needed for stability reasons,
because also the nonlinear term pu ¨∇qu may have a large irrotational part in the sense of
the Helmholtz decomposition [Lin09].

Like the continuous incompressible Stokes and Navier-Stokes equations, also the discret-
ization (14) can be formulated as an elliptic problem [Tem91, GR86] within the space of
discretely divergence-free functions

(15) V0,h :“ tvh P CRpT q : bpvh, qhq “ 0 for all qh P QpT qu.
Then, uh P V0,h is uniquely defined by

(16) ahpuh,vhq ` γ chpπ
div uh,uh,π

div vhq “ lhpπ
div vhq for all vh P V0,h.

Remark 4. The pair CRpT qˆQpT q satisfies the discrete inf-sup condition

0 ă β :“ inf
qhPQpT qzt0u

sup
vhPCRpT q zt0u

ş

Ω qh∇h ¨ vhdx

‖vh‖1,h‖q‖0
.(17)

The inf-sup constant β for the Crouzeix-Raviart element is independent of the mesh and of
the reconstruction πdiv.

3. A Priori Error Estimates

This section presents a priori finite element error estimates for the modified Crouzeix-
Raviart discretization of the incompressible Stokes equations (14). The analysis is based on
the estimates of the consistency error in [AD99], which apply the Raviart-Thomas interpol-
ation to the best advantage and avoid the use of a trace inequality. However, some slight
changes due to the divergence-conforming reconstruction deliver fundamentally improved
results, since the scheme (14) allows for an error estimate of the discrete velocity that is
independent of the pressure.

Lemma 1. For πdiv “ πRT or πdiv “ πBDM, it holds
ˇ

ˇ

ˇ

ˇ

ż

Ω
∇hv : ∇hw `∆v ¨ πdiv wdx

ˇ

ˇ

ˇ

ˇ

ď Ch|v|2‖w‖1,h for all v P V XH2pΩqd,w P V YCRpT q .

Proof. The proof can be found in [Lin14] for πdiv “ πRT and is the same for πdiv “ πBDM.
For the sake of completeness and convenience, it is repeated here in a shortened form.

Let ΠRT denote the rowwise Raviart-Thomas interpolator and Π0 the L2 projection onto
P0pT qd. Since the normal fluxes pΠRT ∇vq ¨ nF are continuous for all F P F and constant
on the boundary faces F P FpBΩq and w is zero at least at the centers of any F P FpBΩq, it
holds

ÿ

TPT

ż

BT
ΠRT ∇v ¨ nwds “ 0.

An elementwise integration by parts and the commutation property ∇¨pΠRT ∇vq “ Π0p∆vq,
show

ż

Ω
ΠRT ∇v ¨∇hw `Π0p∆vq ¨wdx “ 0.
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This and elementary calculations reveal
ż

Ω
∇hv : ∇hwh `∆v ¨ πdiv whdx

“

ż

Ω

`

∇hv ´ΠRT ∇v
˘

: ∇hwhdx `

ż

Ω
p∆v ´Π0p∆vqq ¨wdx `

ż

Ω
∆v ¨

´

πdiv w ´w
¯

dx .

The first integral is estimated with a Cauchy-Schwarz inequality and the rowwise version
of (11), while the third integral is estimated by a Cauchy-Schwarz inequality and (11) (for
πdiv “ πRT) or (12) (for πdiv “ πBDM). The second integral is estimated with the L2

orthogonality of ∆v ´Π0p∆vq and w ´Π0w w.r.t. P0pT qd by
ż

Ω
p∆v ´Π0p∆vqq ¨wdx “

ż

Ω
p∆v ´Π0p∆vqq ¨ pw ´Π0wqdx ď ‖∆v‖0‖w ´Π0w‖0.

An elementwise Poincaré inequality concludes the proof. �

The estimate of the consistency error is a corollary to Lemma 1.

Lemma 2 (Consistency error estimate). Given the solution pu, pq P H2pΩqdˆH1pΩq of the
continuous Stokes equations (4) and πdiv “ πRT or πdiv “ πBDM, it holds

1

ν
sup

whPV0`V0,h

ˇ

ˇahpu,whq ´ lhpπ
div whq

ˇ

ˇ

‖wh‖1,h
ď Ch|u|2

holds.

Proof. For all 0 “ wh P V0 ` V0,h, (4) and
ş

ω ∇p : πdiv wdx “ 0 show

1

ν

ˇ

ˇ

ˇ
ahpu,whq ´ lhpπ

div whq

ˇ

ˇ

ˇ
“

1

ν

ˇ

ˇ

ˇ

ˇ

ż

Ω
ν∇hu : ∇hwh ´ f ¨ πdiv whdx

ˇ

ˇ

ˇ

ˇ

“
1

ν

ˇ

ˇ

ˇ

ˇ

ż

Ω
ν∇hu : ∇hwh ` pν∆u´∇pq ¨ πdiv whdx

ˇ

ˇ

ˇ

ˇ

(18)

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
∇hu : ∇hwh `∆u ¨ πdiv whdx

ˇ

ˇ

ˇ

ˇ

.

Lemma 1 concludes the proof. �

Remark 5. Note that Lemma 2 does not hold for πdiv “ πCR, since in (18) ∇p and πCR wh

for wh P V0 ` V0,h are not orthogonal in the L2 scalar product.

The estimate of the consistency error leads to the following a priori estimates.

Theorem 1. For the solution pu, pq P H2pΩqd ˆH1pΩq of the continuous Stokes equations
(4) and the discrete solution puh, phq of (14) with πdiv “ πRT or πdiv “ πBDM, it holds

iq ‖u´ uh‖1,h ď Ch |u|2 ,

iiq ‖p´ ph‖0 ď C h pν |u|2 ` |p|1q .

Proof of i). Formulation (16) and wh :“ uh ´ vh for an arbitrary vh P V0,h yield

ν‖wh‖2
1,h “ ahpwh,whq

“ ahpuh ´ vh,whq

“ ahpuh ´ vh,whq ` ahpuh,whq ´ apuh,whq

“ ahpuh ´ vh,whq ` lhpπ
div whq ´ ahpuh,whq

ď ν‖uh ´ vh‖1,h‖wh‖1,h `

ˇ

ˇ

ˇ
ahpuh,whq ´ lhpπ

div whq

ˇ

ˇ

ˇ
.
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The triangle inequality for ‖u´uh‖1,h “ ‖pu´vhq´wh‖1,h produces Strang’s second lemma
in the form

‖u´ uh‖1,h ď 2 inf
vhPV0,h

‖u´ vh‖1,h `
1

ν
sup

whPV0,h

ˇ

ˇahpu,whq ´ lhpπ
div whq

ˇ

ˇ

‖wh‖1,h
.

The first error term can be bounded with (10) by

inf
vhPV0,h

‖u´ vh‖1,h ď ‖u´ πCR u‖1,h ď Ch|u|2.

Note, that C is independent of the discrete inf-sup-constant β from (17), since πCR u P V0,h.
The second error term is estimated with Lemma 2. �

Proof of ii). For the pressure estimate, the Pythagoras theorem shows

‖p´ ph‖2
0 “ ‖p´ π0p‖2

0 ` ‖π0p´ ph‖2
0.

Obviously, the first term is bounded by

‖p´ π0p‖0 ď Ch |p|1 .

Due to the discrete inf-sup stability (17), we can estimate the second term by

‖π0p´ ph‖0 ď
1

β
sup

vhPCRpT q

bhpvh, π0p´ p´ hq

‖vh‖1,h
.

The term in the numerator of this expression consists of the two parts

bhpvh, π0p´ phq “ bhpvh, π0p´ phq ` bhpvh, p´ phq.

The first term can be estimated by

|bhpvh, π0p´ phq| ď
?
d ‖vh‖1,h‖ph ´ π0p‖0 ď Ch |p|1 ¨ ‖vh‖1,h.

For the second term, one computes

bhpvh, p´ phq “ bhpvh, pq ` ahpuh,vhq ´ lhpπ
div vhq

“ ahpuh ´ u,vhq `

ż

Ω

!

ν∇hu : ∇hvh ´ p∇h ¨ vh ´ f ¨ πdiv vh

)

dx

“ ahpuh ´ u,vhq `

ż

Ω
ν
!

∇hu : ∇vh `∆u ¨ πdiv vh

)

dx ,

since
ż

Ω

!

´p∇h ¨ vh ´∇p ¨
´

πdiv vh

¯)

dx “

ż

Ω

!

´p∇h ¨ vh ` p∇ ¨
´

πdiv vh

¯)

dx “ 0.

Eventually, this results in the estimate

bhpv, p´ phq ď Cνh |u|2 ‖vh‖1,h.

The combination of all estimates leads to

‖p´ ph‖0 ď C

"

1

β
ν |u|2 `

ˆ

1`
1

β

˙

|p|1

*

h. �
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4. Optimal L2-convergence

For convex domains, the new discretization scheme (14) with πdiv “ πBDM allows an
additional optimal L2 error estimate for the discrete velocity, see Theorem 2 below.

Lemma 3. Given a right-hand side g P L2pΩqd, let ug P V0 denote the solution of

apug,vq “ pg,vq for all v P V0,

and let ug,h P V0,h denote the solution of

ahpug,h,vhq “ pg,π
div vhq for all vh P V0,h

Then, for the solutions u from (4) and uh from (14), it holds

‖u´ uh‖0 ď sup
gPL2pΩqd,‖g‖0“1

!

ν‖u´ uh‖1,h‖ug ´ ug,h‖1,h

`

ˇ

ˇ

ˇ
ahpu´ uh,ugq ´

´

g,πdiv pu´ uhq

¯ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
ahpu,ug ´ ug,hq ´

´

f ,πdiv pug ´ ug,hq

¯
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

´

g, pu´ uhq ´ πdiv pu´ uhq

¯ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

´

f ,ug ´ πdiv ug

¯ˇ

ˇ

ˇ

)

.

Proof. The proof is based on the duality argument

‖u´ uh‖0 “ sup
gPL2pΩqd

pg,u´ uhq {‖g‖0.

Elementary algebra yields

pg,u´ uhq “ ahpuh,ug,hq ´ ahpu,ugq ` pg,u´ uhq `

´

f ,ug ´ πdiv ug,h

¯

“ ´ahpu´ uh,ug,hq ´ ahpu,ug ´ ug,hq

` pg,u´ uhq `

´

f ,ug ´ πdiv ug,h

¯

“ ahpu´ uh,ug ´ ug,hq

´ ahpu´ uh,ugq `

´

g,πdiv pu´ uhq

¯

´ ahpu,ug ´ ug,hq `

´

f ,πdiv pug ´ ug,hq

¯

`

´

g, pu´ uhq ´ πdiv pu´ uhq

¯

`

´

f ,ug ´ πdiv ug

¯

.

Triangle and Cauchy-Schwarz inequalities conclude the proof. �

Theorem 2. For a convex domain Ω the exact solution pu, pq P H2pΩqd ˆ H1pΩq of the
continuous Stokes equations (4) and the discrete solution puh, phq of (14) for πdiv “ πBDM

satisfy an optimal L2 error estimate for the discrete velocity, i.e.,

‖u´ uh‖0 ď C h2 |u|2 .

Proof. Since Ω is convex, classical regularity results for the incompressible Stokes equations
imply ug P H

2pΩqd and the a priori estimate

(19) ν
`

|ug|2 ` ‖∇ug‖0

˘

ď C‖g‖0 for all g P L2pΩqd.
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Figure 1. Initial mesh for the numerical examples

The rest of the proof uses this estimate to bound the five terms in the estimate of Lemma
3. For the first term, Theorem 1 and (19) show

ν‖u´ uh‖1,h‖ug ´ ug,h‖1,h ď ν pCh |u|2q ¨
`

Ch |ug|2

˘

ď Ch2 |u|2 ‖g‖0.

The second term is estimated by the consistency error from Lemma 2, Theorem 1 and (19),
ˇ

ˇahpu´ uh,ugq ´
`

g,πBDM pu´ uhq
˘ˇ

ˇ ď νCh |ug|2 ‖u´ uh‖1,h ď Ch2 |u|2 ‖g‖0.

Similar arguments yield
ˇ

ˇahpu,ug ´ ug,hq ´
`

f ,πBDM pug ´ ug,hq
˘ˇ

ˇ ď νCh |u|2 ‖ug ´ ug,h‖1,h

ď νCh2 |u|2 |ug|2

ď Ch2 |u|2 ‖g‖0.

Theorem 1 bounds the fourth term by
ˇ

ˇ

`

g, pu´ uhq ´ πBDM pu´ uhq
˘ˇ

ˇ ď Ch‖u´ uh‖1,h‖g‖0 ď Ch2 |u|2 ‖g‖0.

For the last term, ´ν∆u`∇p “ f and (13) show
ˇ

ˇ

`

f ,ug ´ πBDM ug

˘ˇ

ˇ “
ˇ

ˇ

`

´ν∆u,ug ´ πBDM ug

˘ˇ

ˇ ď Cν|u|2‖ug ´ πBDM ug‖0

ď Ch2ν|u|2|ug|2

ď Ch2|u|2‖g‖0.

The sum of all previous estimates concludes the proof. �

5. Numerical Results

This section reports on some numerical results. All examples are computed on a series of
unstructured triangulations of the unit square. The initial mesh is depicted in Figure 1.

5.1. First Example. The first benchmark example concerns the Stokes problem for the
stream function ξ “ x2p1´ xq2y2p1´ yq2 with u “ rotξ P P7pΩq

2 X V and p “ x3 ` y3 ´ 1{2
on the unit square Ω “ p0, 1q2. For given viscosity ν, the volume force equals f :“ ´ν∆u`∇p.
Figure 2 displays the exact velocity u and the pressure p.

Tables 1-3 compare the results of the three methods under consideration for ν “ 10´2.
While the error in the pressure is only slightly smaller, the H1 error in the velocity is more
than two magnitudes smaller for the methods with a divergence-free reconstruction. This is
exactly the influence of the 1{ν |p|1 contribution in the classical velocity error estimate (2).
However, in this example there seems to be no additional benefit when πBDM is employed
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Figure 2. Vector plot of u and contour plot of p from the benchmark prob-
lem of Section 5.1.

ndof ‖u´ uh‖0 pπCR
q ‖u´ uh‖0 pπRT

q ‖u´ uh‖0 pπBDM
q

10176 1.462715e-02 5.738088e-05 6.475907e-05
40488 3.714616e-03 1.468924e-05 1.651350e-05

162152 9.311043e-04 3.655164e-06 4.117682e-06
646376 2.346116e-04 9.201573e-07 1.036546e-06

2585272 5.889322e-05 2.299916e-07 2.589664e-07

Table 1. L2-error for the velocity in the benchmark problem of Section 5.1.

ndof ‖u´ uh‖1,h pπCR
q ‖u´ uh‖1,h pπRT

q ‖u´ uh‖1,h pπBDM
q

10176 1.333391 6.189144e-03 6.184352e-03
40488 6.688239e-01 3.115982e-03 3.115428e-03

162152 3.349285e-01 1.556097e-03 1.556023e-03
646376 1.682897e-01 7.801799e-04 7.801701e-04

2585272 8.432380e-02 3.899851e-04 3.899841e-04

Table 2. Energy error for the velocity in the benchmark problem of Section 5.1.

ndof ‖p´ ph‖0 pπCR
q ‖p´ ph‖0 pπRT

q ‖p´ ph‖0 pπBDM
q

10176 1.293413e-02 1.270086e-02 1.270086e-02
40488 6.371610e-03 6.297825e-03 6.297825e-03

162152 3.174234e-03 3.147287e-03 3.147287e-03
646376 1.590767e-03 1.579164e-03 1.579164e-03

2585272 7.960010e-04 7.904408e-04 7.904408e-04

Table 3. L2-error for the pressure in the benchmark problem of Section 5.1.

instead of πRT. Moreover, the convergence speed of the L2-error in the velocity is optimal
also for πRT.

5.2. Second Example. The second example concerns the Navier-Stokes problem with the
exact solution from the first example for ν “ 10´2 and f :“ ´ν∆u`∇p` pu ¨∇qu.
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Figure 3. Isolines for the first component of the discrete solution u of Sec-
tion 5.2 for πdiv “ πCR (left), πdiv “ πRT (middle) and πdiv “ πBDM (right).

Figure 3 displays the isolines tx P Ω : u1pxq “ ˘0.005nun“1,...,4 of the first component
of the discrete velocity on the second refinement level. The pollutive effect of the pressure-
dependence of the velocity discretization in the unreconstructed method (πdiv “ πCR) is
clearly visible in the left subfigure. The visible oscillations must be related to the poor
momentum balance and not to dominant convection.

Tables 4-6 compare the results of the three methods. The observations appear similar to
the ones in the first example. The methods with a divergence-free reconstruction are clearly
superior to the original Crouzeix-Raviart discretization, but there is no additional gain from
the utilization of πBDM instead of πRT also in this example.

ndof ‖u´ uh‖0 pπCR
q ‖u´ uh‖0 pπRT

q ‖u´ uh‖0 pπBDM
q

10176 1.461456e-02 5.627152e-05 6.379470e-05
40488 3.714998e-03 1.442375e-05 1.627764e-05

162152 9.313632e-04 3.588727e-06 4.059383e-06
646376 2.346806e-04 9.033673e-07 1.021663e-06

2585272 5.890854e-05 2.257938e-07 2.552337e-07

Table 4. L2-error for the velocity in the benchmark problem of Section 5.2.

ndof ‖u´ uh‖1,h pπCR
q ‖u´ uh‖1,h pπRT

q ‖u´ uh‖1,h pπBDM
q

10176 1.333839 6.188967e-03 6.184106e-03
40488 6.688321e-01 3.115955e-03 3.115408e-03

162152 3.349292e-01 1.556094e-03 1.556020e-03
646376 1.682898e-01 7.801796e-04 7.801695e-04

2585272 8.432380e-02 3.899850e-04 3.899841e-04

Table 5. Energy error for the velocity in the benchmark problem of Section 5.2.

ndof ‖p´ ph‖0 pπCR
q ‖p´ ph‖0 pπRT

q ‖p´ ph‖0 pπBDM
q

10176 1.292384e-02 1.269931e-02 1.269931e-02
40488 6.370451e-03 6.297503e-03 6.297503e-03

162152 3.174027e-03 3.147346e-03 3.147346e-03
646376 1.591016e-03 1.579546e-03 1.579546e-03

2585272 7.968145e-04 7.913264e-04 7.913264e-04

Table 6. L2-error for the pressure in the benchmark problem of Section 5.2.
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ndof ‖u´ uh‖0 pπCR
q ‖u´ uh‖0 pπRT

q ‖u´ uh‖0 pπBDM
q

10176 0 1.149124e-04 1.428228e-05
40488 0 1.777836e-05 1.835523e-06

162152 0 2.240175e-06 2.202933e-07

Table 7. L2-error for the velocity in the benchmark problem of Section 5.3.

ndof ‖u´ uh‖1,h pπCR
q ‖u´ uh‖1,h pπRT

q ‖u´ uh‖1,h pπBDM
q

10176 0 7.319293e-03 7.146433e-04
40488 0 1.904265e-03 1.433772e-04

162152 0 4.778662e-04 2.428478e-05

Table 8. Energy error for the velocity in the benchmark problem of Section 5.3.

ndof ‖p´ ph‖0 pπCR
q ‖p´ ph‖0 pπRT

q ‖p´ ph‖0 pπBDM
q

10176 0 6.968692e-03 1.426464e-03
40488 0 1.661379e-03 2.524422e-04

162152 0 4.130402e-04 4.430947e-05

Table 9. L2-error for the pressure in the benchmark problem of Section 5.3.

5.3. Third Example. The third example concerns the Navier-Stokes problem for the affine
exact solution upx, yq “ p2`3x`5y, 13`17x´3yq and p ” 0 for ν “ 1 and f “ ´∆u`pu¨∇qu.

Tables 7-9 compare the results of the three methods. Note, that u P CRpT qXBDMpT q
but u R RTpT q. While uh ” u for πdiv “ πCR, the discrete solution cannot equal the
exact solution in case πdiv “ πRT. However, the BDM interpolation πdiv “ πBDM yields
less interpolation errors, which positively affects the overall performance. All errors for
πdiv “ πBDM are about one magnitude smaller than the errors for πdiv “ πRT. The
remaining error for πdiv “ πBDM stems from the nonoptimal interpolation πBDM u “ πRT u
on the edges FpBΩq along the boundary BΩ of the domain.
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+0

Figure 4. Plot of u from the benchmark problem of Section 5.4 for s “ 2.
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5.4. Fourth Example. The last example studies the influence of the regularity of the solu-
tion on the L2-error convergence rate and considers the Stokes problem for p ” 0 and

upx, yq “ rotpxs logpxq ` ys logpyqq{5 P Hs´1pΩqzHspΩq

from Figure 4 on Ω “ p0, 1q2 with right-hand side f ” ´∆u and ν “ 1.
Figure 5 shows the convergence history of the L2 error for s “ 2 and s “ 3 for all three

methods. The convergence speed clearly depends on the regularity of the solution and the
employed reconstruction operator. For s “ 2 the reconstruction with πBDM leads to better
results and, more importantly, to a better convergence rate than the reconstruction with πRT.
For s “ 3 the results show similar but milder differences between the two reconstructions.
As predicted by Theorem 2, the reconstruction with πBDM leads to an optimal L2 error
convergence rate, while the Raviart-Thomas reconstruction πRT seems slightly suboptimal.
Tables 10-15 show the computed values for all norms and allow similar conclusions for the
other norms.

Since p ” 0, the results of the unmodified Crouzeix-Raviart method for πdiv “ πCR are
the best. The benefits of the reconstructions in case of nonzero pressure can be seen in
Examples 5.1 and 5.2 above.

104 105 106
10´7

10´6

10´5

10´4

10´3
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πRT

πBDM

104 105 106
10´7

10´6
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s “ 3

πCR

πRT

πBDM

Figure 5. Convergence history of the L2 error for the velocity in the bench-
mark problem of Section 5.4 for s “ 2 (left) and s “ 3 (right).
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