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ABSTRACT. Given s ∈ (0, 1), we consider the problem of minimizing the Gagliardo seminorm in Hs

with prescribed condition outside the ball and under the further constraint of attaining zero value in a
given set K .

We investigate how the energy changes in dependence of such set. In particular, under mild regu-
larity conditions, we show that adding a set A to K increases the energy of at most the measure of A
(this may be seen as a perturbation result for small sets A).

Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the
boundary conditions.
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1. INTRODUCTION

This paper deals with an harmonic replacement of nonlocal type with a prescribed zero set. We obtain
energy monotonicity results with respect to the data and the zero set, and some perturbative estimates
with respect to the variation of the zero set.

We fix s ∈ (0, 1), the unit ball B1 ⊆ Rn and a function ϕ : Rn → R such that ϕ ∈ L∞(Rn) and

(1.1)

∫∫
R2n\(Bc

1)2

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dx dy < +∞,

where Bc
1, as usual, denotes the complementary set of B1.

Given (measurable) functions v and w : Rn → R we use the notation

〈v, w〉 :=

∫∫
R2n\(Bc

1)2

(
v(x)− v(y)

)(
w(x)− w(y)

)
|x− y|n+2s

dx dy

and ν(v) :=
√
〈v, v〉 =

√∫∫
R2n\(Bc

1)2

|v(x)− v(y)|2
|x− y|n+2s

dx dy.

(1.2)

This functional setting is naturally compatible with the fractional Laplace operator

(−∆)sv(x) =

∫
Rn

2v(x)− v(x+ y)− v(x− y)

|y|n+2s
dy.

We consider the space

(1.3) Dϕ :=
{
v : Rn → R s.t. v − ϕ ∈ L2(Rn), v = ϕ a.e. in Bc

1 and ν(v) < +∞
}
.
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Also, given a measurable set K ⊆ B1, we set

(1.4) D
ϕ
K :=

{
v ∈ Dϕ s.t. v = 0 a.e. in K

}
.

Roughly speaking, ϕ will play the role of a boundary prescription outside B1, in a sense compatible
with the functional structure introduced in (1.2). We will deal with fractional energy minimizers among
functions that vanish in the set K according to the following definition.

Definition 1.1. Assume that there exists v̄ ∈ D
ϕ
K with ν(v̄) < +∞.

Then we denote by ϕϕK (or simply ϕK when there is no ambiguity) the function that attains the minimal
energy value

(1.5) min
v∈Dϕ

K

ν(v).

Using the direct method in the calculus of variations, in the subsequent Lemma 2.1 we will show
that the minimum in (1.5) indeed exists, so Definition 1.1 is well posed. Notice that when K := ∅
then ϕ∅ is simply the s-harmonic function in B1 that minimizes the fractional Gagliardo seminorm ν
with prescribed datum ϕ outside B1. When K 6= ∅, we are “replacing” such ϕ∅ with a new ϕK that
has the additional prescription to vanish in K , by paying the less possible amount of energy. For this
reason, we call ϕK the “s-harmonic replacement” outside K .

The s-harmonic replacement enjoys a useful monotonicity property.

Theorem 1.2. Let A1, A2 b B1.

Given i ∈ {1, 2}, we define ϕi := ϕ
ϕi,0
Ki

and ϕ̃i := ϕ
ϕi,0
Ki∪Ai (that is: ϕi is the s-harmonic extension

vanishing in Ki with datum ϕi,0, and ϕ̃i is the s-harmonic extension vanishing in Ki ∪ Ai, with the
same datum).

Assume that
0 6 ϕ1,0 6 ϕ2,0, K1 ⊇ K2 and A1 ⊆ A2.

Then
ν2(ϕ̃1)− ν2(ϕ1) 6 ν2(ϕ̃2)− ν2(ϕ2).

Next purpose of our paper is to estimate the energy difference of the s-harmonic replacements of K
and K ∪ A, for a given set A (which can be seen as a “perturbation”) in terms of the Lebesgue
measure of A. The results that we provide are the following:

Theorem 1.3. Let ϕ > 0 and ρ ∈ [1/4, 3/4] and let A := Bρ \K . Then

ν2(ϕK∪A)− ν2(ϕK) 6 C |A| ‖ϕK‖2
L∞(Rn),

for some C > 0 depending on n and s.

Theorem 1.4. Let ϕ > 0, K ⊇ B1/2 and A ⊆ B3/4 \ B1/2. Suppose that A is closed and satisfies
the following density property: there exists c > 0 such that for every x ∈ ∂A and every r ∈ (0, 2),
we have that

(1.6) |A ∩Br(x)| > c |Br|.
Then

ν2(ϕK∪A)− ν2(ϕK) 6 C |A| ‖ϕK‖2
L∞(Rn),

for some C > 0 depending on c, n and s.
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We observe that sets with Lipschitz boundary obviously satisfy the density property in (1.6). Also, we
notice that the geometry of the perturbing set A in Theorem 1.4 is different from the one in Theo-
rem 1.3: namely, in Theorem 1.3 the set A may be thought as “exiting” from K in the interior of B1,
while in Theorem 1.4 the set A “stretches out” from K towards the boundary. Possible pictures for the
geometries of the sets involved in Theorems 1.3 and 1.4 are depicted in Figures A and B respectively.
In both the figures the setK is painted in black andA is the dark gray region (of course, Theorems 1.3
and 1.4 are interesting when A is a “small” perturbation, but for obvious aesthetic reasons the sets A
drawn in the figures are “not so small”).

Figure A: The geometry involved in Theorem 1.3.

Figure B: The geometry involved in Theorem 1.4.

In the local case of the harmonic replacement (i.e. the classical minimization problem of the Dirich-
let energy) the results presented in this paper were obtained in [2]. Theorems 1.3 and 1.4 may be
seen as perturbative statements, namely they estimate the change of energy in terms of the (possibly
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small) set A. It is worth pointing out that the estimates obtained are simply in terms of the Lebesgue
measure of A and only require very mild regularity assumptions on the set (in fact, only the density
assumption (1.6), and no high derivative of the boundary of A comes into play).

We also observe that once Theorems 1.3 and 1.4 are proved for minimizers in a ball (say, B1), then
they hold true for minimizers in any open set Ω: this follows from the fact that one can suppose Ω ⊃ B1

(up to scaling) and obtain from the set inclusions that∫∫
R2n\(Ωc)2

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dx dy −

∫∫
R2n\(Bc

1)2

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dx dy

=

∫∫
(Ω\B1)2

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dx dy + 2

∫∫
Ωc×(Ω\B1)

|ϕ(x)− ϕ(y)|2

|x− y|n+2s
dx dy

and the latter two integral terms do not depend on the values of ϕ in B1: accordingly, a minimizer in a
domain Ω which contains B1 is also a minimizer in B1.

Also, the values 1/4, 1/2 and 3/4 in Theorems 1.3 and 1.4 do not play any role, in the sense that
they can be replaced by some r1, r2 and r3 respectively, with 0 < r1 < r2 < r3 < 1 (but in this case
the constants would depend on r1, r2 and r3).

As for the applications of our result, we notice that, in the local setting, the Dirichlet integral may
be interpreted in terms of the classical heat equation as a sort of thermal energy: in this sense,
the Dirichlet integral of the harmonic replacement with boundary data ϕ > 0 that vanishes in K
represents the insulating energy of a room whose walls are fixed at temperatureϕ and having a “fridge”
at the setK where the temperature is zero. In this framework, we may consider the fractional harmonic
replacement as a nonlocal modification of this problem, in which the classical heat equation is replaced
by a nonlocal one, which is generated by a non-Gaussian diffusive process, see e.g. [9]. Also, harmonic
replacements play an important role in the Perron method and in free boundary problems, see e.g. [5]
and [1].

The paper is organized as follows. In Section 2 we show some properties of the fractional harmonic
replacement. In Section 3 we deal with the monotonicity property given in Theorem 1.2. Finally, Sec-
tions 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4

2. PRELIMINARIES ON THE s-HARMONIC REPLACEMENT

Lemma 2.1. The minimum in (1.5) is attained by a unique minimizer.

Proof. First we prove the existence of the minimum. For this, let vj ∈ D
ϕ
K be a minimizing sequence.

In particular, from (1.1), we may suppose that ν(vj) 6 ν(v̄), which is finite. Set wj := vj − ϕ.
Then wj vanishes outside B1, thus√∫∫

R2n

|wj(x)− wj(y)|2
|x− y|n+2s

dx dy =

√∫∫
R2n\(Bc

1)2

|wj(x)− wj(y)|2
|x− y|n+2s

dx dy

= ν(vj − ϕ) 6 ν(vj) + ν(ϕ) 6 ν(v̄) + ν(ϕ),

which is finite, thanks to (1.1). Therefore (see, e.g. Theorem 7.1 in [3]) we obtain, up to subsequence,
that wj converges in L2(B1) and a.e. in Rn to some w. Accordingly, vj converges in L2(B1) and a.e.
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in Rn to v := w+ ϕ. In particular, v ∈ L2(B1), v = 0 a.e. in K and v = ϕ a.e. in Bc
1. Moreover, by

Fatou Lemma,
ν(v) 6 lim inf

j→+∞
ν(vj),

which says that ν(v) is finite. Thus v ∈ D
ϕ
K and attains the desired minimum.

Now we show that the minimizer is unique. Suppose that u and v are minimizers in D
ϕ
K , i.e.

min
Dϕ
K

ν = ν(u) = ν(v).

Let w(x) := (u(x) + v(x))/2. Notice that w ∈ D
ϕ
K , hence

(2.1) ν2(w) > min
Dϕ
K

ν2 =
1

2
(ν2(u) + ν2(v)).

We denote δu(x, y) := u(x)− u(y). For any r ∈ Rn, let also f(r) := |r|2. By convexity

(2.2) f(δw(x, y)) = f

(
δu(x, y) + δv(x, y)

2

)
6

1

2

(
f(δu(x, y)) + f(δv(x, y))

)
and

(2.3) strict inequality in (2.2) holds whenever δu(x, y) 6= δv(x, y).

Let Z := {(x, y) ∈ R2n s.t. a strict inequality holds in (2.2)}. We claim that

(2.4) Z is of measure zero.

Indeed, assume by contradiction that Z has positive measure. By dividing by |x − y|n+2s and inte-
grating (2.2), and recalling (2.1), we see that

0 6 ν2(w)− 1

2
(ν2(u) + ν2(v))

=

∫∫
R2n\(Bc

1)2

f(δw(x, y))− 1
2

(
f(δu(x, y)) + f(δu(x, y))

)
|x− y|n+2s

dx dy

=

∫∫
R2n

f(δw(x, y))− 1
2

(
f(δu(x, y)) + f(δu(x, y))

)
|x− y|n+2s

dx dy

=

∫∫
Z

f(δw(x, y))− 1
2

(
f(δu(x, y)) + f(δu(x, y))

)
|x− y|n+2s

dx dy

< 0.

This contradiction establishes (2.4).

By construction, we have that equality holds in (2.2) for every (x, y) ∈ R2n\Z, and therefore, by (2.3),

(2.5) u(x)− u(y) = δu(x, y) = δv(x, y) = v(x)− v(y) for every (x, y) ∈ R2n \ Z.

Now we observe that

there exist ȳ ∈ Rn and V ⊂ Rn such that

|V| = 0, and

(x, ȳ) ∈ R2n \ Z for any x ∈ Rn \ V.

(2.6)
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The proof of (2.6) relies on Fubini’s theorem, we give the details for completeness. For any y ∈ Rn,
let

b(y) :=

∫
Rn
χZ(x, y) dx.

Then b is a nonnegative and measurable function, and∫
Rn
b(y) dy =

∫∫
R2n

χZ(x, y) dx dy = |Z| = 0,

due to (2.4). Accordingly b(y) = 0 for a.e. y ∈ Rn. In particular, we can fix ȳ ∈ Rn such that b(ȳ) =
0, that is ∫

Rn
χZ(x, ȳ) dx = 0.

As a consequence χZ(x, ȳ) = 0 for a.e. x ∈ Rn (say, for every x ∈ Rn \ V, for a suitable V ⊂ Rn

of zero measure). This concludes the proof of (2.6).

Using (2.5) and (2.6) we deduce that u(x) − u(ȳ) = v(x) − v(ȳ) for every x ∈ Rn \ V, that is,
setting c := u(ȳ)− v(ȳ), we have that u(x) = v(x) + c for a.e. x ∈ Rn.

By taking x ∈ Bc
1 such that u(x) = v(x) = ϕ(x), we obtain that c = 0, and therefore u = v a.e.

in Rn. This completes the uniqueness result and ends the proof of Lemma 2.1. �

Lemma 2.2. For any ψ ∈ Hs(Rn) with ψ = 0 a.e. in Bc
1 ∪K we have

(2.7) 〈ϕK , ψ〉 = 0

and

(2.8) ν2(ϕK − ψ)− ν2(ϕK) = ν2(ψ).

Proof. Given ε ∈ (−1, 1), we observe that ϕK + εψ ∈ D
ϕ
K , hence ν(ϕK + εψ) > ν(ϕK), which

gives (2.7). Then, (2.8) easily follows from (2.7), using that

ν2(ϕK − ψ) = ν2(ϕK) + ν2(ψ)− 2〈ϕK , ψ〉. �

Lemma 2.3. We have that (−∆)sϕK(x) = 0 for any x in the interior of B1 \K .

Proof. Let x be in the interior of B1 \K . Then, there exists ρ > 0 such that Bρ(x) ⊂ B1 \K . So, by
Lemma 2.2, for any ψ ∈ C∞0 (Bρ(x)), we have that 〈ϕK , ψ〉 = 0. This says that ϕK is s-harmonic
in B1 \K (in the weak and so in the strong sense, see e.g. [8]). �

Additional properties of the s-harmonic replacement hold true if the datum ϕ has a sign, according to
the next results.

Lemma 2.4. We have that ϕK 6 ‖ϕ‖L∞(Rn). Moreover, if ϕ > 0 then ϕK > 0.

Proof. First we point out that, if u+ := max{u, 0}, then

(2.9) |u+(x)− u+(y)| 6 |u(x)− u(y)|
and

(2.10) |u+(x)− u+(y)|2 6
(
u+(x)− u+(y)

)(
u(x)− u(y)

)
,

see e.g. (8.10) in [4] for a simple proof.
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Now let ψ1 := (−ϕK)+ (if ϕ > 0, otherwise disregard the argument involving ψ1) and ψ2 :=
(ϕK−‖ϕ‖L∞(Rn))

+ (independently from the fact that ϕ > 0). We have that ψ1 = ψ2 = 0 inBc
1∪K .

Also, by (2.9), ν(ψi) 6 ν(ϕK) < +∞ and ‖ψi‖L2(B1) 6 ‖ϕK‖L2(B1) + ‖ϕ‖L2(B1) < +∞,
thus ψ ∈ Hs(Rn).

Therefore, by (2.7),

〈ϕK , ψ1〉 = 〈ϕK , ψ2〉 = 0.

Furthermore, using (2.10) with u := −ϕK , we have

|ψ1(x)− ψ1(y)|2 6 −
(
ψ1(x)− ψ1(y)

)(
ϕK(x)− ϕK(y)

)
and so

(2.11) ν2(ψ1) 6 −〈ψ1, ϕK〉 = 0.

Similarly, using (2.10) with u := ϕK − ‖ϕ‖L∞(Rn), we have

|ψ2(x)− ψ2(y)|2 6
(
ψ2(x)− ψ2(y)

)(
ϕK(x)− ϕK(y)

)
,

which gives

(2.12) ν2(ψ2) 6 〈ψ2, ϕK〉 = 0.

By (2.11) and (2.12) we conclude that ψ1 and ψ2 vanish identically, which implies the desired result.
�

Lemma 2.5. If ϕ > 0 then

min
v∈Dϕ

K

ν(v) = min
v∈D0,ϕ

K

ν(v),

where1

(2.13) D
0,ϕ
K :=

{
v ∈ Dϕ s.t. v 6 0 a.e. in K

}
.

Proof. Since D
ϕ
K ⊆ D

0,ϕ
K , we have that

min
v∈Dϕ

K

ν(v) > min
v∈D0,ϕ

K

ν(v).

Viceversa, given v ∈ D
0,ϕ
K , from (2.9) we have that ν(v+) 6 ν(v). Also, v+ = 0 in K and v+ =

max{ϕ, 0} = ϕ in Bc
1, therefore v+ ∈ D

ϕ
K . It follows that

min
v∈Dϕ

K

ν(v) 6 min
v∈D0,ϕ

K

ν(v). �

Lemma 2.6. If ϕ > 0 then, for any ψ ∈ Hs(Rn) with ψ > 0 a.e. in B1 and ψ = 0 a.e. in Bc
1,

〈ϕK , ψ〉 6 0.

Proof. Given ε > 0 we set ψε := ϕK − εψ. By construction ψε ∈ D
0,ϕ
K and so ν(ψε) > ν(ϕK),

thanks to Lemma 2.5, which gives the desired result. �

1Clearly, the difference between (1.4) and (2.13) is in the fact that functions in D
0,ϕ
K are allowed to take also negative

values in K .
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Now we consider ϕK∪A, for some measurable set A b B1. For this, we introduce the set

(2.14) A
ϕ
K,A :=

{
v ∈ Hs(Rn) s.t. v = 0 a.e. in Bc

1 ∪K and v > ϕK a.e. in A
}
.

Notice that

(2.15) A
ϕ
K,A ⊆ ϕK −D

0,ϕ
K∪A

and

(2.16) ϕK −D
ϕ
K∪A ⊆ A

ϕ
K,A.

Lemma 2.7. If ϕ > 0, we have that

ν2(ϕK∪A)− ν2(ϕK) = inf
ψ∈AϕK,A

ν2(ψ).

Proof. By Lemma 2.5, (2.15) and (2.8), we have that

ν2(ϕK∪A)− ν2(ϕK) = inf
v∈D0,ϕ

K∪A

ν2(v)− ν2(ϕK)

= inf
ψ∈ϕK−D0,ϕ

K∪A

ν2(ϕK − ψ)− ν2(ϕK)

6 inf
ψ∈AϕK,A

ν2(ϕK − ψ)− ν2(ϕK)

= inf
ψ∈AϕK,A

ν2(ψ).

Viceversa, using (2.8) and (2.16), we have that

ν2(ϕK∪A)− ν2(ϕK) = inf
v∈Dϕ

K∪A

ν2(v)− ν2(ϕK)

= inf
ψ∈ϕK−Dϕ

K∪A

ν2(ϕK − ψ)− ν2(ϕK)

> inf
ψ∈AϕK,A

ν2(ψ).

By combining the two inequalities, we obtain the desired result. �

3. MONOTONICITY PROPERTY AND PROOF OF THEOREM 1.2

In the light of the lemmata discussed in Section 2, we can now prove the monotonicity property of
s-harmonic replacements:

Proof of Theorem 1.2. We let v̄ minimize ν among all the functions v such that v − ϕ̃2 ∈ Hs(Rn),
with v = ϕ̃2 a.e. inK1∪Bc

1. Notice that ϕ̃2 is an admissible competitor for this definition, and ν(ϕ̃2) <
+∞, hence the minimum defining v̄ is attained by direct methods (see Lemma 2.1).

Also, for any g ∈ Hs(Rn), with g = 0 a.e. inK1∪Bc
1, we have that v̄+εg is an admissible competitor

with respect to the minimizing property of v̄, therefore (see Lemma 2.2)

(3.1) 〈v̄, g〉 = 0

and therefore

(3.2) ν2(v̄ − g)− ν2(g) = ν2(v̄)− 2〈v̄, g〉 = ν2(v̄).
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Now we let h := (ϕ1− v̄)+. By construction, a.e. inBc
1 we have that ϕ1− v̄ = ϕ1,0−ϕ2,0 6 0. Also,

a.e. inK1 it holds that ϕ1− v̄ = 0−ϕ̃2 6 0, thanks to Lemma 2.4, and therefore h = (ϕ1− v̄)+ = 0
in K1 ∪Bc

1. So we can apply (3.1) with g := h. We obtain that

〈v̄, h〉 = 0.

From this and recalling (2.10) with u := ϕ1 − v̄, we obtain that

ν2(h) 6
∫∫

R2n\(Bc
1)2

(
h(x)− h(y)

)(
(ϕ1 − v̄)(x)− (ϕ1 − v̄)(y)

)
|x− y|n+2s

dx dy

= 〈h, ϕ1〉 − 〈h, v̄〉
= 〈h, ϕ1〉.

But the latter term also vanish, thanks to (2.7): therefore we conclude that ν2(h) 6 0 and so h
vanishes identically.

This says that ϕ1 6 v̄. Accordingly, if η := v̄ − ϕ̃2, we have that

(3.3) η > ϕ1 − ϕ̃2.

Also, since A1 ⊆ A2, we have that ϕ̃2 = 0 a.e. in A1 and so (3.3) gives that η > ϕ1 in A1.

Moreover, by definition of v̄, we have that η = 0 a.e. in K1 ∪Bc
1, and so, by (2.14),

η ∈ A
ϕ1,0

K1,A1
.

As a consequence, by Lemma 2.7

(3.4) ν2(ϕ̃1)− ν2(ϕ1) = inf
ψ∈A

ϕ1,0
K1,A1

ν2(ψ) 6 ν2(η).

On the other hand, v̄ = ϕ̃2 = ϕ2,0 a.e. in Bc
1. Also, K2 ⊆ K1, so a.e. in K2 we have that v̄ = ϕ̃2 =

0. Accordingly, v̄ is an admissible competitor for the minimizing property of ϕ2, and we obtain

(3.5) ν2(ϕ2) 6 ν2(v̄).

Now we point out that, by the definitions of η and v̄, we see that η = 0 a.e. in K1 ∪ Bc
1, so we may

use (3.2) with g := η. We conclude that

ν2(ϕ̃2)− ν2(η) = ν2(v̄ − η)− ν2(η) = ν2(v̄).

This and (3.5) give that

ν2(ϕ̃2)− ν2(ϕ2) > ν2(ϕ̃2)− ν2(v̄) = ν2(η).

By comparing this with (3.4), we obtain

ν2(ϕ̃2)− ν2(ϕ2) > ν2(ϕ̃1)− ν2(ϕ1). �

4. RADIAL ANALYSIS AND PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. First we prove Theorem 1.3 in the particular case
in which ϕ is constant, K := Br and A := Bρ \ Br, for some r < ρ, namely we have the following
result:
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Lemma 4.1. Let ρ ∈ [1/4, 3/4], r ∈ (0, ρ) and co > 0. Assume that ϕ(x) = co for any x ∈ Rn.
Then

(4.1) ν2(ϕBρ)− ν2(ϕBr) 6 C |Bρ \Br| ‖ϕBr‖2
L∞(Rn),

for some C > 0 depending on n and s.

Proof. If co = 0 then both ϕBρ and ϕBr vanish identically and the result is obvious. Hence, possibly
dividing by co, we suppose that

(4.2) co = 1.

We set µ := ρ− r. Notice that

|Bρ \Br| = C̄(ρn − rn) = C̄(ρ− r)(ρn−1 + ρn−2r + · · ·+ ρrn−2 + rn−1)

> C̄(ρ− r) ρn−1 > C̃(ρ− r) = C̃µ,
(4.3)

for suitable constants C̄ , C̃ > 0.

Also, we fix a function ϕo ∈ C∞(Rn) with ϕo = 1 = co in Bc
1 and ϕo = 0 in B3/4, so we

write C0 := ν2(ϕo). In particular, from (4.2) and Lemma 2.4, we obtain

(4.4) ν2(ϕo) = C0c
2
o = C0‖ϕBr‖2

L∞(Rn).

Also, by construction, ϕo = 0 in Bρ ⊇ Br, hence the minimizing properties of ϕBρ and ϕBr , together
with (4.4), give that

(4.5) both ν2(ϕBρ) and ν2(ϕBr) are less than or equal to C0‖ϕBr‖2
L∞(Rn).

Now, for any t > 0 we define

a(t) :=

 −ρ−1µt if t ∈ [0, ρ],
(1− ρ)−1µ(t− 1) if t ∈ (ρ, 1],

0 if t > 1.

For any x ∈ Rn \ {0} let also

β(x) :=
x

|x|
a(|x|) and α(x) := x+ β(x).

We observe that
|a(t)|+ |a′(t)| 6 2

(
ρ−1 + (1− ρ)−1

)
µ 6 16µ

and therefore

(4.6) |Dα− In| = |Dβ| 6 C1µ,

where In is the identity matrix and C1 > 0 a suitable constant. In particular

(4.7) | detDα| > 1− C2µ,

if µ is small enough.

Furthermore

(4.8) α(Bρ) ⊆ Br and α(Bc
1) ⊆ Bc

1.

To check this, first take x ∈ Bc
1. Then β(x) = 0 and thus |α(x)| = |x| > 1, so α(x) ∈ Bc

1. Now
take x ∈ Bρ. Then

β(x) = −ρ−1µx =
r − ρ
ρ

x
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and so

α(x) = x+
r − ρ
ρ

x =
r

ρ
x

hence |α(x)| < r and so α(x) ∈ Br in this case. This proves (4.8).

So, we set ϕ?(x) := ϕBr(α(x)). From (4.8), we have that ϕ? vanishes a.e. in Bρ and ϕ? = ϕ a.e.
in Bc

1.

Accordingly, the minimizing property of ϕBρ implies that

(4.9) ν2(ϕBρ) 6 ν2(ϕ?).

Now we observe that

|α(x)− α(y)| 6 |x− y|+ |β(x)− β(y)| 6 (1 + C3µ)|x− y|,

thanks to (4.6), and so, if µ is small enough,

ν2(ϕ?) =

∫∫
R2n\(Bc

1)2

|ϕBr(α(x))− ϕ(α(y))|2

|x− y|n+2s
dx dy

6 (1 + C3µ)n+2s

∫∫
R2n\(Bc

1)2

|ϕBr(α(x))− ϕ(α(y))|2

|α(x)− α(y)|n+2s
dx dy

6 (1− C2µ)−2(1 + C3µ)n+2s

∫∫
R2n\(Bc

1)2

|ϕBr(x?)− ϕ(y?)|2

|x? − y?|n+2s
dx? dy?,

where we have used (4.7) and the change of variable x? := α(x), y? := α(y). Hence, if µ is
sufficiently small,

(4.10) ν2(ϕ?) 6 (1 + C4µ) ν2(ϕBr).

By using (4.5) into (4.10), we conclude that

ν2(ϕ?) 6 ν2(ϕBr) + C0C4 µ‖ϕBr‖2
L∞(Rn).

So, recalling (4.3), we obtain, for small µ,

ν2(ϕ?) 6 ν2(ϕBr) + C5 |Bρ \Br| ‖ϕBr‖2
L∞(Rn).

This and (4.9) complete the proof of (4.1) when µ is sufficiently small, say µ ∈ [0, c) for some suitable
constant c ∈ (0, 1).

On the other hand, when µ > c, we can prove (4.1) directly from the competitor ϕo introduced above.
More precisely, if µ > c, we infer from (4.5) that

ν2(ϕBρ)− ν2(ϕBr) 6 ν2(ϕBρ)

6 C0‖ϕBr‖2
L∞(Rn)

6 c−1C0 µ ‖ϕBr‖2
L∞(Rn).

This and (4.3) say that (4.1) holds true also when µ > c and this completes the proof of Lemma 4.1.
�

Lemma 4.1 may be generalized to sets that are not necessarily rotationally symmetric, thanks to a
rearrangement argument. The details go as follows:
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Corollary 4.2. Let ρ ∈ [1/4, 3/4] and co > 0. Assume that ϕ(x) = co for any x ∈ Rn. LetK ⊆ Bρ

and A := Bρ \K . Then

ν2(ϕK∪A)− ν2(ϕK) 6 C |A| ‖ϕK‖2
L∞(Rn),

for some C > 0 depending on n and s.

Proof. We take r > 0 such that |Br| = |K|. Let also ψ := co − ϕK . Then ψ = 0 in Bc
1 and ψ =

co = maxRn ψ in K , thanks to Lemma 2.4. Then, its spherical rearrangement ψ? satisfies ψ? = 0
in Bc

1 and ψ? = co in Br. Accordingly, co − ψ? is a competitor against ϕBr and so

ν2(ϕBr) 6 ν2(co − ψ?) = ν2(ψ?).

On the other hand, spherical rearrangements decrease the Gagliardo seminorm (see e.g. [6]), there-
fore

ν2(ψ?) =

∫∫
R2n

|ψ?(x)− ψ?(y)|2

|x− y|n+2s
dx dy 6

∫∫
R2n

|ψ(x)− ψ(y)|2

|x− y|n+2s
dx dy = ν2(ψ).

We obtain that

ν2(ϕBr) 6 ν2(ψ) = ν2(ϕK).

Notice also that K ∪ A = Bρ, hence, using Lemmata 4.1 and 2.4, we obtain that

ν2(ϕK∪A)− ν2(ϕK) = ν2(ϕBρ)− ν2(ϕK)

6 ν2(ϕBρ)− ν2(ϕBr)

6 C |Bρ \Br| ‖ϕBr‖2
L∞(Rn)

= C |Bρ \Br| ‖ϕK‖2
L∞(Rn)

= C |Bρ \K| ‖ϕK‖2
L∞(Rn). �

Now we are ready for the proof of Theorem 1.3:

Proof of Theorem 1.3. We set ϕ] := ‖ϕ‖L∞(Rn), K] := K ∩ Bρ and A] := Bρ \K]. We are now
under the assumptions of Corollary 4.2, which gives that

ν2(ϕK]∪A])− ν2(ϕK]) 6 C |A]| ‖ϕK]‖2
L∞(Rn),

By construction

A] = Bρ \K] = Bρ ∩ (K ∩Bρ)
c = Bρ ∩Kc = A.

Also, ϕ 6 ϕ] and K] ⊆ K : therefore, by Theorem 1.2,

ν2(ϕK∪A)− ν2(ϕK) 6 ν2(ϕK]∪A])− ν2(ϕK]).

By collecting the above estimates, and recalling Lemma 2.4, we complete the proof of Theorem 1.3.
�
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5. INTEGRAL CALCULATIONS AND PROOF OF THEOREM 1.4

Here we prove Theorem 1.4 in the particular case in which K := B1/2 and ϕ is constant (the general
case then will follow from Theorem 1.2).

Lemma 5.1. Let co > 0, A ⊆ B3/4 \ B1/2. Assume that ϕ(x) = co for any x ∈ Rn and that A is
closed and satisfies the following density property: there exists c > 0 such that for every x ∈ ∂A and
every r ∈ (0, 2), we have that

(5.1) |A ∩Br(x)| > c|Br|.

Then

ν2(ϕB1/2∪A)− ν2(ϕB1/2
) 6 C |A| ‖ϕB1/2

‖2
L∞(Rn).

Proof. Notice that if ‖ϕB1/2
‖L∞(Rn) = 0, then both ϕB1/2

and ϕB1/2∪A vanish identically and so the
result is obvious. Hence, without loss of generality, we assume that ‖ϕB1/2

‖L∞(Rn) = 1/4.

We claim that

(5.2) ϕB1/2
∈ Cs(Rn),

and ‖ϕB1/2
‖Cs(Rn) is bounded by a constant that depends only on n and s. For this we take η ∈

C∞(Rn) such that η = 0 in B1/2 and η = 1/4 in Bc
1. We define η̃ := ϕB1/2

− η. We observe
that |(−∆)sη̃| = |(−∆)sη| 6 C1 in Ω := B1 \ B1/2 and η̃ = 0 in Ωc. Hence, we deduce
from Proposition 1.1 of [7] that ‖η̃‖Cs(Rn) 6 Co, for a universal Co > 0 and so ‖ϕB1/2

‖Cs(Rn) 6
‖η‖Cs(Rn) + Co, ending the proof of (5.2).

Now we define d(x) to be the distance function from the closed set A (with the standard convention
that d = 0 in A and d > 0 in Ac), and we set v(x) := min{d(x), ϕB1/2

(x)}. We observe that
if x ∈ Bc

1 then d(x) > 1/4, since A is contained in B3/4, therefore

d(x) > ‖ϕB1/2
‖L∞(Rn) > ϕB1/2

(x).

Accordingly, v(x) = ϕB1/2
(x) in Bc

1 and v = 0 in B1/2 ∪ A, so it is an admissible competitor
for ϕB1/2∪A, and we conclude that

(5.3) ν(ϕB1/2∪A) 6 ν(v).

Moreover

(5.4) v(x) 6 ϕB1/2
(x) 6

1

4
.

Now we show that

(5.5) for any x ∈ {d < ϕB1/2
} we have |v(x)− v(y)|2 − |ϕB1/2

(x)− ϕB1/2
(y)|2 6 |x− y|2.

To prove (5.5) we distinguish three cases:

either y ∈ {ϕB1/2
< d} and ϕB1/2

(y) < d(x),(5.6)

or y ∈ {ϕB1/2
< d} and ϕB1/2

(y) > d(x),(5.7)

or y ∈ {ϕB1/2
> d}.(5.8)
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First we deal with the case in (5.6). For this, we notice that, in this circumstance, ϕB1/2
(x) > d(x) >

ϕB1/2
(y) and so

|v(x)− v(y)| = |d(x)− ϕB1/2
(y)| = d(x)− ϕB1/2

(y)

< ϕB1/2
(x)− ϕB1/2

(y) = |ϕB1/2
(x)− ϕB1/2

(y)|.

Accordingly,

|v(x)− v(y)|2 6 |ϕB1/2
(x)− ϕB1/2

(y)|2

and so (5.5) follows in this case.

Now we deal with the case in (5.7). Here we have that d(y) > ϕB1/2
(y) > d(x), hence

|v(x)− v(y)| = |d(x)− ϕB1/2
(y)| = ϕB1/2

(y)− d(x) < d(y)− d(x) 6 |x− y|.

Consequently

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2 6 |v(x)− v(y)|2 6 |x− y|2,

and so (5.5) follows in this case.

Finally, we take care of the case in (5.8): we have

|v(x)− v(y)| = |d(x)− d(y)| 6 |x− y|

and then (5.5) follows.

Having completed the proof of (5.5), we use it together with (5.4) to deduce that, for any x ∈ {d <
ϕB1/2

}, we have

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2 6 m(x− y),

where m(x) := min{1, |x− y|2}. As a consequence, for any x ∈ {d < ϕB1/2
},∫

Rn

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dy 6

∫
Rn

m(x− y)

|x− y|n+2s
dy

=

∫
Rn

m(y)

|y|n+2s
dy = C,

for a suitable C > 0.

Therefore

(5.9)

∫
{d<ϕB1/2

}

∫
Rn

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dx dy 6 C |{d < ϕB1/2

}|.

Now we observe that if x, y ∈ {d > ϕB1/2
}

v(x)− v(y) = ϕB1/2
(x)− ϕB1/2

(y).
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Using this and the fact that v and ϕB1/2
coincide outside B1, we conclude that

ν2(v)− ν2(ϕB1/2
)

=

∫∫
R2n

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dx dy

=

∫
{d<ϕB1/2

}

∫
{d<ϕB1/2

}

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dx dy

+2

∫
{d<ϕB1/2

}

∫
{d>ϕB1/2

}

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dx dy.

In particular

ν2(v)− ν2(ϕB1/2
) 6 3

∫
{d<ϕB1/2

}

∫
Rn

|v(x)− v(y)|2 − |ϕB1/2
(x)− ϕB1/2

(y)|2

|x− y|n+2s
dx dy.

Thus, recalling (5.3) and (5.9), we obtain

(5.10) ν2(ϕB1/2∪A)− ν2(ϕB1/2
) 6 ν2(v)− ν2(ϕB1/2

) 6 3C |{d < ϕB1/2
}|.

Now we show that

(5.11) |{d < ϕB1/2
}| 6 C ′ |A|

for some C ′ > 0. The proof of (5.11) follows from the density property in (5.1) and a covering argu-
ment. Indeed, first of all we observe that

(5.12) {d < ϕB1/2
} ⊆ B1/2

c
.

To prove it, notice that if x ∈ {d < ϕB1/2
} we have that

0 6 d(x) < ϕB1/2
(x),

so (5.12) follows from the fact that ϕB1/2
vanishes in B1/2. Thanks to (5.12), for any x ∈ {d <

ϕB1/2
} \ A we can denote by y(x) its projection onto A and by z(x) its projection onto B1/2, hence

|x− y(x)| = d(x) < ϕB1/2
(x) = ϕB1/2

(x)− ϕB1/2
(z(x)) 6 C?|x− z(x)|s,

where C? is a positive constant, whose existence is warranted by (5.2). That is, for any x ∈ {d <
ϕB1/2

} \ A,

|x− y(x)| 6 δ(x)

6
,

where
δ(x) := 6C?|x− z(x)|s.

We write such estimate as

S := {d < ϕB1/2
} \ A ⊆

⋃
x∈S

Bδ(x)/5(y(x)).

Hence, by the Vitali covering theorem, we have that there exists a subcollection of disjoint balls such
that

S ⊆
⋃
i∈N

Bδ(xi)(y(xi))
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and so

(5.13) |S| 6
∑
i∈N

|Bδ(xi)(y(xi))|.

Using (5.1), we have that
|A ∩Bδ(xi)(y(xi))| > c |Bδ(xi)(y(xi))|.

So we can fix N ∈ N, sum up this estimate and use that the balls are disjoint: we obtain that

|A| >

∣∣∣∣∣A ∩
(

N⋃
i=1

Bδ(xi)(y(xi))

)∣∣∣∣∣ =
N∑
i=1

|A ∩Bδ(xi)(y(xi))| > c

N∑
i=1

|Bδ(xi)(y(xi))|.

Now we send N → +∞ and we recall (5.13), to establish that

|A| > c |S|.
Since {d < ϕB1/2

} ⊆ S ∪ A, this implies (5.11).

Then, the claim of Theorem 1.4 follows from (5.10) and (5.11). �

With the above results, we can now complete the proof of Theorem 1.4:

Proof of Theorem 1.4. We set ϕ] := ‖ϕ‖L∞(Rn) and K] := B1/2. We are now under the assump-
tions of Lemma 5.1 which gives that

ν2(ϕK]∪A)− ν2(ϕK]) 6 C |A| ‖ϕ‖2
L∞(Rn).

Notice also that K] ⊆ K and ϕ] > ϕ, thus Theorem 1.2 implies that

ν2(ϕK∪A)− ν2(ϕK) 6 ν2(ϕK]∪A)− ν2(ϕK]),

so the claim of Theorem 1.4 readily follows. �
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