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Abstract

We consider a diffuse interface model which describes the motion of an incompressible
isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equa-
tions coupled with a convective nonlocal Cahn-Hilliard equation. Several results were al-
ready proven by two of the present authors. However, in the two-dimensional case, the
uniqueness of weak solutions was still open. Here we establish such a result even in the
case of degenerate mobility and singular potential. Moreover, we show the strong-weak
uniqueness in the case of viscosity depending on the order parameter, provided that the
mobility is constant and the potential is regular. In the case of constant viscosity, on ac-
count of the uniqueness results we can deduce the connectedness of the global attractor
whose existence was obtained in a previous paper. The uniqueness technique can be
adapted to show the validity of a smoothing property for the difference of two trajectories
which is crucial to establish the existence of an exponential attractor.

1 Introduction

In a series of recent papers (see [8, 11, 12, 13, 14]) the following nonlinear evolution system
has been analyzed

¢ +u- Vo =div(m(p)Vp),
p=ap—J*p+F(p),

up — 2div(v(p)Du) + (u - V)u + V1 = pNVe + h(t),
div(u) = 0,

on a bounded domain Q C R¢, d = 2,3, for t > 0. This system describes the evolution of an
isothermal mixture of two incompressible and immiscible fluids through the (relative) concen-
tration ¢ of one species and the (averaged) velocity field u. Here m denotes the mobility, 1 is
the so-called chemical potential, .J is a spatial-dependent interaction kernel and J * ¢ stands
for spatial convolution over 2, a is defined as follows a(x) = [, J(z — y)dy, F is a double-
well potential, v is the viscosity and h is an external force acting on the mixture. The density is
supposed to be constant and equal to one (i.e., matched densities).

Such a system is the nonlocal version of the well-known Cahn-Hilliard-Navier-Stokes system
which has been the subject of a number of papers (cf, e.g., [1, 2, 6, 7, 15, 16, 17, 27, 29]
and references therein, see also the review [26] for modeling and numerical simulation issues).
We recall that the nonlocal term seems physically more appropriate than its approximation, i.e.,
when in place of ap — J ¢ there is —A. For this issue, we refer the reader to the basic papers
[20, 21, 22] (see also [4, 18, 19, 24, 25]). However, from the mathematical viewpoint, the present



system is more challenging since the regularity of ¢ is lower and so the Korteweg force V¢
acting on the fluid can be less regular than the convective term (u - V)u, even in dimension
two (cf. [8, (3.4) and (3.7)]). Therefore, it is not straightforward to extend some of the results
which hold for the Navier-Stokes equations as well as for the standard Cahn-Hilliard-Navier-
Stokes system. This is particularly meaningful in dimension two. In fact, in dimension three,
the only known results are comparable with the standard ones for the Navier-Stokes equations,
namely, the existence of a global weak solution under various assumptions on m and F' and a
generalized notion of attractor (cf. [8, 11, 12, 14]).

In dimension two, under reasonable assumptions on F' which ensure a suitable regularity of
p, it is possible to prove that there exists a weak solution which satisfies the energy identity.
Therefore, such a solution is strongly continuous in time (see [8]). In addition, taking advantage
of the energy identity, it is also possible to prove the existence of a the global attractor for the
corresponding semiflow (cf. [11, 12, 14]). More recently, in [13], assuming constant (in ) v
and m and taking a regular potential ', it has been shown the existence of a (unique) strong
solution and that any weak solution which satisfies the energy identity regularizes in finite time.
This entails some smoothness for the global attractor. Also, the convergence of any weak solu-
tion to a single equilibrium was established through the tojasiewicz-Simon inequality approach.
However, uniqueness of weak solutions was still an open issue in [8, 11, 12, 14].

The main goal of this paper is to prove the uniqueness of weak solutions when v is constant;
while, when v is non constant, we are able to show weak-strong uniqueness. Uniqueness entails
the connectedness of the global attractor. In addition, modifying the uniqueness argument we
can also show the validity of a suitable smoothing property of the difference of two trajectories
(see [9, 10]). This is the basic step to establish the existence of an exponential attractor. The
fractal dimension of the global attractor is thus finite.

As in the previous contributions we take the following boundary and initial conditions

o B
%—O, u=0 ondQ x (0,T), (1.5)
u(0) = uo, (0) =¢o inQ. (1.6)

The plan of the paper is the following. In the next section we recall the basic assumptions and the
related existence of a weak solution. Section 3 is devoted to the uniqueness of weak solutions
for constant viscosity. The strong-weak uniqueness is shown in Section 4. The final Section 5
is concerned with the connectedness of the global attractor and the existence of an exponential
attractor.

2 Functional setup and preliminary results

Let us introduce the classical Hilbert spaces for the Navier-Stokes equations with no-slip bound-
ary condition (see, e.g., [28])

G = [u € Co()7 - diva) =0} ",



and
Vaio == {u € HY}(Q)?: div(u) = 0}.

We set H := L*(2), V := H'(Q), and denote by || - || and (-, -) the norm and the scalar
product, respectively, on both H and Gy;,,. H will also be used for L? spaces of vector or matrix
valued functions. The notation (-, -) will stand for the duality pairing between a Banach space
X and its dual X’. Vy, is endowed with the scalar product

(u,v)v,,, = (Vu, Vv) = 2(Du, Dv), Yu, v € Vi,

where D is the symmetric gradient, defined by Du := (Vu + (Vu)'") /2.

The trilinear form b which appears in the weak formulation of the Navier-Stokes equations is
defined as usual

b(u,v,w) = /(u Vv-w,  Vu,v,w € Vg,
Q

and the associated bilinear operator B from V;, X Vg, into V. is defined by (B(u,v), w) :=
b(u, v, w), for all u,v,w € Vy,. We recall that we have b(u,w,v) = —b(u,v,w), for all
u, v, w € Vg, and that the following estimate holds in dimension two

[, v, w)| < el 2 Vul V2Vl [w]| Vol Ve, v, w € Vi,
In particular we have the following standard estimate in 2D which holds for all u € Vg,

1B(u, u)llvy,, < cllulll[Vul. (2.1)

div

For every f € V' we denote by f the average of f over 2, i.e., f := || 71(f, 1). Here |Q] is
the Lebesgue measure of €). We assume that 92 is smooth enough.

We also need to introduce the Hilbert spaces
Vor={veV:o=0}, Vi:={feV :f=0},
and the operator Ay : V' — V', Ay € L(V, V"), defined by
(Anu,v) = / Vu-Vv  Vu,veV.
Q
We recall that Ay maps V onto V and the restriction By of Ay to Vi maps V; onto V

isomorphically. Further, we denote by B;,l : VO’ — V) the inverse map. As is well known, for
every f € V], By f is the unique solution with zero mean value of the Neumann problem

—Au = f, in 2,
% =0, on 0f).

In addition, we have
(Avu, BY'f) = (f,u), YueV, Vfelj,

(f.By'g) = (9.By'f) = /Q V(BY'f)-V(By'g), VfgelVy.



Furthermore, By can be also viewed as an unbounded linear operator on H with domain
D(By) = {v € H*Q) : 9,v = 00n 00Q}.

If X is a Banach space and 7 € R, we shall denote by Lfb(T, 00; X), 1 < p < o0, the space
of functions f € L7 ([r,00); X) that are translation bounded in L} ([7,00); X), that is,

loc loc
t+1
1 ey =500 [ 17(6) s < o
t>1 Jt

We now recall the result on existence of weak solutions and on the validity of the energy identity
and of a dissipative estimate in dimension two for the nonlocal Cahn-Hilliard-Navier-Stokes
system in the case of constant mobility, nonconstant viscosity and regular potential. This is the
main case we shall deal with in this paper.

Let us list the assumptions (see [8]).

(H1) J e WHYRY), J(x)=J(-x), a>0 ae.inf

(H2) The mobility m(s) = 1 for all s € R, the viscosity v is locally Lipschitz on R and there
exist v1, 5 > 0 such that

1 < v(s) < vy, Vs € R.

(H3) F € 02’1(R) and there exists ¢y > 0 such that

loc

F"(s)+a(x) > ¢, VseR, ae xel

(H4) F € C*(R) and there exist ¢; > 0, co > 0 and ¢ > 0 such that

F'(s) +a(x) >cils]* —cy, Vs€ER, aexcq

(H5) There exist cg > 0, ¢4 > 0 and r € (1, 2] such that
|F'(s)]" < cs|F(s)|+cs, VseR.

Remark 1. Assumption J € TW11(IR?) can be weakened. Indeed, it can be replaced by .J €
Wh(B;s), where Bs := {2z € R? : |z| < §} with § := diam(f2), or also by (see, e.g., [4])

sup/ (|J(z = y)| + |[VJI(z — y)|)dy < oc.
z€Q JQ

Remark 2. Since I is bounded from below, it is easy to see that (H5) implies that F' has
polynomial growth of order p’, where p’ € [2,00) is the conjugate index to p. Namely, there
exist c5 > 0 and cg > 0 such that

|F(3)‘ §C5‘S’pl+06, Vs € R.

Observe that assumption (H5) is fulfilled by a potential of arbitrary polynomial growth. For ex-

ample, (H3)—-(H5) are satisfied for the case of the well-known double-well potential F'(s) =
(s —1)2



The following result follows from [8, Theorem 1, Corollaries 1 and 2].

Theorem 1. Leth € L} ([0,00); V}.,), uo € Gaiv, po € H such that F(pg) € LY(Q) and

loc
suppose that (H1)-(H5) are satisfied. Then, for every given I’ > 0, there exists a weak solution
[u, ] to (1.1)—(1.6) such that

u € L®(0,T; Gaw) N L0, T3 Vi), € L%(0,T; L*71(Q)) N L*(0, T3 V),
up € LY3(0,T;Vy,), ¢ € LY3(0,T;V'),  d=3,

w € L*0,T;Vy,), d=2,

0 € L*(0,T;V"), d=2 or d=3andq>1/2,

and satisfying the energy inequality

E(ut)plt) + | (VIR + [Vl dr < Eluoin) + [ (h(r).wbir,

for every t > 0, where we have set

() plt) = 51O+ [ [ I —)etet) - ol dedy+ [ Fle(o),

If d = 2, then any weak solution satisfies the energy identity

d
—E(u,9) +2[ V() Dull* + [ Vul* = (h(t), ), (2.6)

In particular we have u € C([0,00); Gain), ¢ € C([0,00); H) and [, F(¢) € C([0,0)).
Furthermore, if d = 2 and h € L%(0,00; V). ), then any weak solution satisfies also the
dissipative estimate

E(u(t), p(t)) < E(ug, po)e ™ + F(mo)|Q + K, ¥t >0, (2.7)

where my = (o, 1) and k, K are two positive constants which are independent of the initial
data, with K depending on ), v, J, F and ||| 12, (0,00;v )-

In all the following sections it will be d = 2.

3 Uniqueness of weak solutions (constant viscosity)

In this section we prove that the weak solution of the nonlocal Cahn-Hilliard-Navier-Stokes sys-
tem with constant viscosity = 1 is unique and provide a continuous dependence estimate. In
Subsection 3.1 we shall first address the case of constant mobility (m = 1) and regular potential
F'. Nevertheless, we shall see in Subsection 3.2 and Subsection 3.3 that the arguments used
for this case can also be applied to the cases of singular potential and constant or degenerate
mobility (see [12] or [14] for the existence).



3.1 Regular potential and constant mobility

The main result is the following.

Theorem 2. Letd = 2 and suppose that assumptions (H1)—(H5) are satisfied withv = 1. Take
h € L},.([0,00); Vi), wo € Gain and po € H such that F(pg) € LY(RQ2)... Then, the weak
solution [u, | corresponding to [ug, o] and given by Theorem 1 is unique. Furthermore, if we
consider two weak solutions z; := [uz-, gol-] corresponding to two initial data zy; = [um, goOZ-},
with h; € L?OC([O,OO);V;IIW), ug; € Gain and Yo € H such that F((,DOZ) € Ll(Q) and

|@0;| < n for some positive constant n, i = 1,2, then the following continuous dependence
estimate holds

lua®) = w1 + llea(t) = 1D
+ [ (o) = Ol + 51V (1a(r) = (0 ) e

< (lu2(0) = w1 (0)I* + [l2(0) = 1(0)IV) Ao(t) + [BICy (€ (202), € (201)) As (2)
+ e = hllZe oz, A2 (t), (3.1)

forallt € [0,T], where Ay, A1 and Ay are continuous functions which depend on the norms
of the two solutions and C, is a positive constant which depends on 1) and on the energies

E(z02),E(z01)-

Proof. Let us start by rewriting the Korteweg force by making explicit the dependence on .
Indeed, we have

2 2

uVp = (a<p —Jxp+ F/(SO))VSO = V<F(<P) +a%> - Va% — (Jx9)Vep.

Hence we can write the Navier-Stokes equation with an extra-pressure 7 := m — F(¢) + ats

2
as follows
2

u —vAu+ (u-V)u+ V7 —h = —Va%—(J*gp)Vgo =: K(p).

Let us now consider two weak solutions [ui, goi] corresponding to two initial data [uoz, chi], with
ug; € Gaiwand o0 € H and F(ipg;) € L1(Q),7=1,2.Setu := uy —uj and p := @y — ;.
Then, the difference [u, y] satisfies the system

or =Ap—u-Vor +uy- Vo, (3.2)

fo=ap—Jxp+ Fp) = F'e),
up — vAu~+ (uz - V)ug — (ug - V)uy + V7@

Va
= —p(p1 + 802)7 — (Jx©)Vio — (J * 1)V + h, (3.4)

where T := 7y — m and h := ho — hy. We multiply (3.4) by u in Gy;,. After standard
calculations, the following terms (cf. (3.4))

1
I :—é(go(goﬁ—g@)va,u), L=~ ((J*p)Vps,u), Is3 =—((J*p1) Vo,u),



can be estimated in this way

I < |(e(e1 + p2)Va,u)| < lelllen + allza | Vall o< Jull

< cliglllior + pall el Vall oo V2] V)2

< 2l +ellgr + gallEall Valde ul | Vu]

< Zllel? + SIVull* + eligr + eallfal Val (3.5)
Iz<\@h,VJ*w )| < Nl ll VT # ol full 2

< clloul IV Il el lull ) Vu /2

Co
< 7ollel” + VI el Za lull Vel
Co 14
< gollel’ + g IVull® + el VI e [zl (3.6)

Iy < \( VT x a)p,u) | < VT % ol calliolfull s
< eIVl llpzlla ol Va2

Co
< 7ollel” + VI sl za full Vel
Co 14
< gollel’ + g IVul® + el VIl szl (3.7)

Taking such estimates into account, it is easy see that from (3.4) we are led to the following
differential inequality

1d 3
5l + 21Vl < eollgll + adfull + Bl (3.8)
where the function « is given by
a = c| VL (lellze + leallze) + el Vu|*. (3.9)

Since 1, o € L=(0,T; L*) N L*(0,T, H')
and L>(0,T;L?) N L*(0, T, H') — L*0,T;L*(f2)), thanks to the Gagliardo-Nirenberg
inequality, then we have o € L'(0, 7).

Let us now multiply (3.2) by By' (¢ — $) (notice that we have @ = B, — Pys). We get

2 dt” By (0 = D)2 + (ap + F'(¢1) — F'(2), ) = (J % 0, 0) + Qe + L + I,

(3.10)
where
I4 = - (u ' VC,OQ, B]:fl«o - @)) ) [5 = (ul : Vgp,B&l(gp - E)) .
By using assumption (H3), we find
LBy (0 = D) + collpllP < 1) * 0, 9)] + [207F + L+ I (3.11)

th



The first term on the right hand side of (3.11) can be controlled as follows

— _ Co —1/2 _ Co _
[(Jx 0,0 =) +|(Jx0,7)] < 1—0||90||2 +c| By e =PI + ZH@OH2 + cp”,

(3.12)
while the terms I, and I can be estimated as
L < |(u- VB (= 9),¢2)| < l[ullal VB (¢ = D)2l 1
14 _ —
< g IVull? + elleal 241V By (9 = D)1, (3.13)
and
Iy < |(us - VB (¢ = 2), )| < lelllluallal VB (¢ = 2| s
Co _ —
< %HsOIIQ + cllual|74 IV BY (¢ — 2) 174
Co _ _ _ _
< %Hsoll2 +cllusa| 74 VBN (¢ = DNV BR (o — D)l (3.14)

Observe that on D(By) (recall that ¢ := By'(¢ — @) € D(By)) the H?-norm of ¢ is
equivalent to the L2-norm of By ¢ + ¢. Thus we have

IVBy (¢ = D)l < 1By (¢ = B)lluz < cll(By + 1) By' (0 = D) < cllg —Bll.

Therefore, from (3.14) we get
Co

I; < ollel + cllua 21 By (o = DI + 007" (3.15)

Plugging estimates (3.5)—(3.7) and (3.12)—(3.15) into (3.8) and (3.11), we deduce the differential
inequality

1 d 9 _1/2 —\12 Co 2 1% 2
e B _ ) % v
5= (Ilull? + 1850 = 2)12) + Zlell> + S Vul
_ _ . = 1
< 6(||u|!2 + 1By (0 — 90)H2> + @ + Q0@ + — 1Al (3.16)

where the function [ is given by

B=a+c(l+ lgallzs + l[uall74) € L7(0,T).

If we consider two weak solutions corresponding to the same initial data and to the same exter-
nal force, then we have = 0 and h = 0. Therefore, from (3.16) by using Gronwall’s lemma
we get u = 0 and ¢ = 0 on [0, 7] and this proves uniqueness.

If the two weak solutions correspond to different initial data and to different external forces, we
have

0 < [ (@l 41PN < [ (Pl +1FE) +c
S Cn(S(ZOQ),g(Zm», Vit 2 O,



where we have used (H5) (which implies that |F'(s)| < c¢F(s) 4 ¢, forall s € R) and (2.7).
Here, 1) is a constant such that |5,;| < 7, i = 1, 2. Therefore (3.16) can be rewritten as

d 2 -1/2 —\ (12 Co 2V 2
a B _ ) ‘o v
(1l + 18320 = B)IP) + Ll + 21

2

~1/2 — _

< Bl + 1830 = D)) + [BIC (EGon), o)) + SRl - 317)
By using Gronwall’s lemma once more, from (3.17) we deduce

lu()1” + 1 Bx*(0(t) = D)I* < (Ilu(0)]* + | Bx"*((0) = B)|*)To(t)
+[?1C; (E(202), € (201)) T (2) + %FO(t)HhH%Q(O,T;VG{mw (3.18)

where T'y(t) := edo B)ds gnd [y(t) := fot el BT 5 By integrating (3.17) between 0 and ¢
and using (3.18), we have

WP + 137200 =PI+ [ (Fhell+ 51l ar
< (Ju(O)I + 1By "(2(0) = 2)F)T(t) + [1Cy ( (02),E z00)) T (1)

2 2
+ ; (t)HhHL?(O,T;Vd’Z.U)a (3.19)
for all ¢ € [0, T'], where the continuous functions I'; and I'; are given by
t
=1 ‘|—/ 5 FO Fg(t) I:/ ﬁ(S)Fl(S)dS +T.
Finally, from (3.19) we deduce (3.1) by suitably defining the functions Ag, Ay interms of I'g, 'y
and I's. O

3.2 Singular potential and constant mobility

The proof of existence of a weak solution with initial data ug € Gg;, and ¢y € L®(£2) with
F(pg) € LY(Q) is given in [12], where also a nonconstant viscosity is considered. We recall
that in this case the assumption |[@,| < 1 is needed in order to control the average of the
chemical potential. For the assumptions on the singular potential /' we refer the reader to [12].
We recall, in particular, the physically relevant case of the so-called logarithmic potential, that
is, 5 4

F(s) = —5052 + 5((1 + s)log(1 + s) + (1 — s)log(1 — s)), (3.20)
where 0 < 6 < 6., 0 being the absolute temperature and 6. a given critical temperature below

which the phase separation takes place.

It is easy to see that, assuming the viscosity © constant and d = 2, the uniqueness argument
can also be applied to the present case. Indeed, estimates (3.5)-(3.8) obviously still hold. More-
over, considering (3.10) we immediately see that (3.11) still follows from (3.10), since in the case
of singular potential we have

F"(s) +a(x) > ¢, Vse(—=1,1), ¢ >0.



In particular, this assumption is ensured by [12, (A6)]. Therefore, uniqueness is given by

Theorem 3. Let uy € Gin, po € L°(Q) such that F(p) € L'(Q) and [p,| < 1. Sup-
pose that assumptions (A1)—(A8) of [12] are satisfied with v = 1 and that d = 2. Then, the
weak solution [u, ] corresponding to [ug, wo| which is given by [12, Theorem 1] is unique.
Furthermore, if we consider two weak solutions z; := [ui, goi] corresponding to two initial data
20i ‘= [uOi, SOOZ']: withug; € Gy and g; € LOO(Q) such thatF(chi) eL! (Q) and|¢0i| <n
for some constantn € [0, 1), i = 1,2, then estimate (3.1) holds.

3.3 Singular potential and degenerate mobility

This physically relevant case was addressed in [14] to which we refer for all the assumptions on
the degenerate mobility m and on the singular potential F' as well as for the weak formulation.
However, it is worth recalling that a typical situation is m(s) = k;(1 — s?) and F given by
(3.20).

We recall that in [14] the viscosity v was assumed to be constant just to avoid technicalities,
but the results therein also hold for a nonconstant viscosity satisfying (H2). In [14, Theorem 2]
the existence of a weak solution has been established with initial data ug € Gg;, and @y €
L>=(Q) with F(pg) € L'(2) and M(po) € L*(2), where M € C?*(—1,1) is defined by
m(s)M"(s) = 1foralls € (—1,1) and M (0) = M'(0) = 0.

Furthermore, in [14, Proposition 4] uniqueness of the weak solution was proven for the con-
vective nonlocal Cahn-Hilliard equation with degenerate mobility and with a given velocity © €
L2 ([0, 00); Vai, N L=(Q)9) (d = 2, 3). By combining the proof of [14, Proposition 4] with the
arguments of Theorem 2 we can now prove uniqueness of the weak solution for the nonlocal

Cahn-Hilliard-Navier-Stokes system with singular potential and degenerate mobility.

Theorem 4. Let all the assumptions of [14, Theorem 2 and Proposition 4] be satisfied and let
d = 2 and v = 1. Then, the weak solution to system (1.1)-(1.6) (cf. [14, Definition 2]) is unique.

Proof. Arguing as in the first part of the proof of Theorem 2 we can obtain (3.8) that we now
write in the following form
1d
2 dt

where p € [0,1) and g > 0 are some constants which appear in the assumptions on the
singular potential (see [14, Theorem 3]).

v 1
Jul* + §IIVUII2 <71- paollell? + allull?, (3.21)

Regarding the estimates for the difference of the nonlocal Cahn-Hilliard, let us first recall the
approach in the proof of [14, Proposition 4].

Following [22], one can introduce

M) = [ m@F @ M) = [ m@ B @) 1) = [ mie)do

forall s € [—1, 1], and see that the assumptions on m and on F' imply that A; € C*([—1,1])
and 0 < ag < A)(s) < ay for some positive constant ;. The weak formulation of the

10



convective nonlocal Cahn-Hilliard equation with degenerate mobility (cf. [14, Definition 2]) can
then be rewritten as follows

(00, 0) + (VA(, 9), Vi) = (D(9)Va, Vi)
+ (m(p)(eVa — VJ x ), Vip) = (up, Vi), (3.22)
forall ¢ € V, where
Az, s) := Ai(s) + As(s) + a(x)L(s).

Consider now two weak solutions [u1, 1] and [ug, po]. Let us assume for simplicity that the
two initial data are the same (the case of different initial data can be handled without difficulties
and leads to a continuous dependence estimate). Take the difference between the two identities
(8.22), set  := 1 — Y2, U 1= Uy — Uz and choose 1) = BJ_Vlgp as test function in the resulting
identity (notice that © = 0). This yields

5 BRI + (M) = Al ) — (D) = T1)) Ve, VB ')

+ ((m(2) = m(1))(p2Va — VJ x 02) + m(p1)(¢Va — VJ * @), VB p)
= (upr, VBy'¢) + (u2p, VBy'9). (3.23)

All the terms in (3.23) can be estimated as in the proof of [14, Proposition 4], with the exception
of the two terms on the right hand side. These terms have now to be controlled in this way

_ _ 1% _
(wor, VB0 < ullallor 1o IV Bl < 2Vl + i 3V By o, 329

_ - 1 _
(u2p, VBN )| < lualliallell VB @llus < S (1 = plaolloll” + clluzl[24l|V By Iz

(1= pavllell* + cllual 2 VBRIV By @l

(1= p)aolle® + cllual 4| BN el (325)

p-bIHOOIH

Therefore, plugging (3.24), (3.25) into (3.23) and using the estimates for the other terms in (3.23)
written in the proof of [14, Proposition 4], we deduce the following differential inequality

LAy poazgp

3 _
= L= paollgl? < IVulP +CIBY %6, @29)

+ 5

where the function ¢ € L*(0,T') is given by ¢ := ¢(1 + [[¢1]|34 + ||uz||74) and v is the same
as in (3.9). Inequalities (3.26) and (3.21) finally give

d —1/2 v _
= (Il + 183 61?) + (1 = paolliel? + SIVul* < ([l + 1By ¢]1).

where 6 = 2(a+ () € L'(0,T). Uniqueness of the weak solution hence follows from this last
differential inequality by applying the standard Gronwall’s lemma. O

Remark 3. Also in the present case a continuous dependence estimate like (3.1) holds.
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4 Weak-strong uniqueness (nonconstant viscosity)

Here we consider system (1.1)-(1.5) in dimension two with constant mobility, regular potential
and with a nonconstant viscosity ¥ = v/(¢p). In this case we are not able to prove the uniqueness
of weak solutions, due to the poor regularity of o which makes difficult to estimate the difference
of the dissipation term in the Navier-Stokes equations. However, we can prove a weak-strong
uniqueness result. This means that, given a strong solution |11, ¢1] and a weak solution [uz, ¢o]
both corresponding to the same initial datum [uo, <p0] € Vi X HQ(Q), then these two solutions
coincide.

Before proving such result, let us first show that a global strong solution exists. Indeed, we
observe that, while the existence of a weak solution with nonconstant viscosity easily follows
easily from the same result for the constant viscosity case (see [8]), this does not occur as far
as strong solutions are concerned. The difficulty essentially lies in the fact that the classical
results for the Navier-Stokes equations in two dimensions with constant viscosity (see, e.g.,
[28]) cannot be used as in [13] to exploit the improved regularity for the convective term in the
nonlocal Cahn-Hilliard equation.

Before stating the main results of this section we recall the definition of admissible kernel (see
[5, Definition 1]).

1,1
oc

Definition 1. A kernel J € W, . (R?) is admissible if the following conditions are satisfied:

(A1) J € C3(RY\ {0});

(A2) J is radially symmetric, J(x) = J(|z|) and J is non-increasing;

(A3) J"(r) and J'(r) /r are monotone on (0,7, for some o > 0;

(A4) |D3J(z)| < Cylz|~** for some Cy > 0.

We recall that the Newtonian and Bessel potentials are admissible for all d > 2. Moreover, we
report the following (cf. [5, Lemma 2])

Lemma 1. LetJ be admissible andv = ¥V .J x1). Then, for allp € (1, c0), there exists C,, > 0
such that
IVoll, < Goll¥llze-

The following result on existence of a strong solution generalizes [13, Theorem 2].

Theorem 5. Let (H1)-(H5) be satisfied with d = 2 and either J € W?'(B;) or J admissible.
Assume that uy € Vg, oo € V N L>®(Q) and that h € L7 _(RT; Gai,). Then, for every
T > 0 there exists a solution to (1.1)—(1.6) such that

u € L®(0,T; Vaw) N L20,T; H*(2)?),  uy € L*(0,T; Gaiy), (4.1)
p € L¥(0,T;V)NL¥(Q x (0,T)), pel®0,T;V), ¢ €L*0,T;H).
(4.2)
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Furthermore, suppose in addition that ' € C3(IR) and that ¢y € H?(2). Then, system (1.1)-
(1.6) admits a strong solution on [0, T'] satisfying (4.1), (4.2) and

p € L2(0,T; H*(Q)), (4.3)
@ € L®(0,T; H) N L*(0,T; V).

Remark 4. The assumption (H2) in the statement of Theorem 5 (and subsequent Theorem 6)
can be replaced by a more general one, i.e., it suffices to assume that v is locally Lipschitz on
R and there exists v; > 0 such that

v(s) >, VseR. (4.5)

Indeed, an upper bound for v () (and V' () , respectively) in L= (2 x (0,T)) can be eas-
ily produced on account of the fact that ||¢||L~@x©r) < Cr, forany R > 0 such that
lpoll e < B

Proof. We first need to establish the L°°(V') regularity for 1+ and . The argument used here
differs from the one devised in [13]... Indeed, we cannot take advantage of the regularity u €
L*(H?) as it happens for the constant viscosity case.

We begin with the nonlocal Cahn-Hilliard equation (1.1). First we recall that ¢ is bounded (see
[18, Lemma 2.10], cf. also [13, Theorem 2]). Then we observe that

iz < ell = Ap+ pl® < e(lleel” + llu- Veol?) + Q(R)

< c(lleel® + IullliVulllVelliells:) + Q(R)
< dllellze + clleel® + esllul®IVul* [ Vel* + Q(R). (4.6)

Henceforth we shall denote by () a continuous monotone increasing function of its argument,
and R > (s such that ||| Lo ax(0,r)) < R.

We now control the H>-norm of ¢ (or at least the L*-norm of the second derivatives J;;¢ :=
o)
8zi8xj
(1.2), multiply the resulting identity by 8%@ and integrate on 2. We get

) in terms of the H2-norm of 1. To this aim apply the second derivative operator 8% to

/Q o = / (a+ F"(0))(00)? + / (Diadyp + 0;00:0) 0

+ /(s@é’?ja — 0,05 * @) + / F"(9)3ip0500, 4,5 =1,2.
Q Q
From this identity, by means of (H2) we obtain

collOell* < el dull®
+c(IValL~ + QR) IVl + QR)05all* + 10:(0; ] = )%, (4.7)

and an estimate like this still holds if [|0};[| and ||07; || are replaced by ||| z> and ||| 2,
respectively. By combining (4.6) with (4.7) and choosing 0 > 0 small enough we get

1052l* < clledl® + cllul * I Vul* [ Vel* + Q(R)
+c(IVallze + QUR))IVel® + QRIS all® + ¢l 0:(0; * @) (4.8)
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We now test the nonlocal Cahn-Hilliard equation by p; = (a + F”(go))got —J*xpin H to
deduce

2
ot [ v+ 35190l
- / (a+ F'(0)@% — (0, T % 1) + / (- Vo) + L v = “9)
o 5 2dt

This identity was considered also in [13], but now we must avoid to use the H?-norm of u to
estimate the term coming from convection. This term is then estimated as follows

| [ Vo] < - Veelllull < @Rl Vel
C
gl + Qs (R) a3V 0134
C
< Ll + Qs RNl 1Tl IVl ol

C
< 2l + Qe (R) ([ullPIIVal*) IVl + elll 2, (4.10)
4

IN

for € > 0. Furthermore, we have

|(pe, T o)l < Nlpellve I = oellv < llellv 1 [[wra ]l
Co

< Jled? + el Ty (4.11)

Inserting (4.10), (4.11) into (4.9), using (4.8) together with (H3) and choosing ¢ > 0 small

enough, we get the following differential inequality

d
ZIVaIP + collorl® < Qoo (R) ([ul*IVul*) [Vl + cllul IVl [Vl + Q(R)

+c(IValix + Q(R) Vel + Q(R ZH Hall’

1,j=1

2
+e Y 00057 )17 + el T el (4.12)
ij=1
Moreover, notice that we have

allVel* = Q(R) < [[Vul* < QR)(IVel® +1).

Therefore, from (4.12) by means of Gronwall’s lemma (cf. also Lemma 1), using the initial con-
dition oy € V' and the regularity properties of the weak solution given by the first of (2.2) and
by (2.5), we deduce the following bounds

p € L*(0,T;V), @ € L*0,T;H), peL>0,T;V). (4.13)
Let us now test the Navier-Stokes equations by u; in (G4, to deduce the identity

HutH2 + Z/QI/(@)Du s Duy + b(u, u, uy) = (1, uy), (4.14)
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where the function [ is given by

2

[ = —%Va — (J*x @)V + h.

Notice that, due to the assumption on the external force h and to the regularity property for the
¢ component of a weak solution we have [ € L*(0, T’; G4;,). From (4.14) we obtain

1 d 1
§Hut|\2+—/V(@)IDUPM(u,u,ut) < §HZHQ+/ |Dul*V/(p)pr. (4.15)
Q Q

Observe that

(/QIDUIQV’(sD)% < |V (@)l Dul|7a < Q(R)|| el | Dull || ]| 122
< 8llull32 + Qs(R)|| Dul*[l¢e]*. (4.16)

Furthermore, we have

el + 2l ]| Vul| s

N

1

1b(u, w, ue)| < el + fJu - Vul* <
1

< el + ellellI Vulll Vullllull
1

< Zlwll® + dllulle + cs(lulPIVul) [Vull (4.17)

Plugging (4.16) and (4.17) into (4.15), we get

1 d 1
ZHutH2 + o /Q V()| Dul* < §Hl|!2 + 260 |ull 2 + s ([[ull*|Vull?) | Dul®
+ Qs(R) | Dull?|| ¢, (4.18)

where 6 > 0 will be fixed later. Using (H2) we can write the following estimate which holds for
every u € H?(Q)?> N Gy, and every o € WHP(Q) with 2 < p < oo

llul| g2 < c(||PAu|| + ||u||) < CV1(||Pdiv(y(g0)Du)|| + ||V - Vu|| + ||u||)
< ¢, (I|1Pdiv(v(0) Du) || + [Vl o | Vel o + [Jul])
< ¢y, (|[Pdiv(v(9) Du) || + [Vl o | Vel ¥/ ul 1 + JJul])

1 ) _
< lull gz + e (|Pdiv(v(0) Du)|| + [V |22 [Vl + [[ul),

where 2 < ¢ < ooissuchthatp~! + ¢! = 1/2and P : L*(2)? — Gy, is the Leray
projector. Hence we find

ullzz2 < o, (| Pdiv(v(0) Du)| + [V 7672 ([ Vul| + [ful]) (4.19)
On the other hand, from (1.3) we have

Pdiv(v(¢)Du) = Puy + P((u- V)u) + PL.
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Therefore we deduce

[1Pdiv(v(@) Du)|| < l[wl] + [lull 2l [Vl s + [|1]
1/2
< Yl + ellul IV al (Va2 ull 75 + 11
< luell + ollullzz + collull[|Vul* + 12, (4.20)

where o > 0. Plugging (4.20) into (4.19) and choosing o small enough (i.e., ¢,,0 < 1) we get

2
lulluz < e(lluell + [l Vull® + 120 + IVl IV all + Jull)- (4.21)

We now control Vi in terms of Vi in LP. We then take the gradient of u = ap— Jxp+F'(p),
multiply it by V¢|V<p\p_2 and integrate the resulting identity on 2. We get

/ V|Vl - Vi = / (a+ F(0))| Vel + / (oVa—VJ ) Vel Ve,
Q Q Q
So that, by (H3), we find

ol Vel < IVl IVallee + (IVall = + IV Tl ) olle Vel

c
< §0||Vs0||’£p + Vil + QR)(IVall L= + [V (L),
which yields
IVelr < e[Vl + Q(R). (4.22)

Furthermore, from the nonlocal Cahn-Hilliard equation (1.1) we have
1-2

IV pll e < el Vul>?| V] 52"

1-2 _ _
< eIVl 2Pl 1 < el PP Al 4 |l
< Q(R, |lollv, lluoll) (e =27 + |lu - Ve =27 + 1)

_ 2 1-2

< Q(R, |lpollv, lluoll) (e =27 + [ull i1Vl 17 + 1), (4.23)

where we have used the fact that the /2 —norm of 1 is equivalent to the L?— norm of —Ap+p
(cf. (1.5)) and we have taken into account the improved regularity for @ given by the third of
(4.13). By combining (4.13) with (4.23) we therefore get

2)/2
IVellr < QR ligollv, lluoll) (el + llull fo /0% + 1)
< Q(R. [leollv, lluol) (el + [[ul| =22 Wul =27 1), (4.24)

and inserting this estimate into (4.21) we get

lullz2 < QR llpollv [luoll) (luell + Tl IVall® + 112 + [l || V]
+ [l 7272Vl [Vl + [l (4.25)

16



We can now insert (4.25) into (4.18), take 0 > 0 small enough and then write the following
differential inequality

4
dt Jq

< Q(R, [[¢ollv, lluoll) (IIlll2 + ((lull® + =) IV ul?) [ Dul?

+ lledPUDul? + [ Vul?). (4.26)

1
v()| Dul” + 2wl

From (4.26), on account of (H2) and of the improved regularity for ¢, given by the second of
(4.13), by means of Gronwall’s lemma (cf. also (4.25)), we obtain

u € L®(0,T; Va,) N LA0,T; H*(Q)?), uy € L2(0,T; Gain). (4.27)

With these regularity properties for u at disposal we can now argue exactly as in the second
step of the proof of [13, Theorem 2] by differentiating (1.1) with respect to time, multiplying the
resulting identity by y; in H and using the assumptions that F' € C3(R) and ¢y € H?(Q) to
deduce

@ € L=(0,T; H)N L*(0, T, V).

From this property, on account of (4.24), (4.22) and the first of (4.27), we get
© € L0, T; WhP(Q)).

Finally, by means of a comparison argument in the nonlocal Cahn-Hilliard equation as in [13]
we get also i € L>(0,T; H*(€2)) and from this we deduce

¢ € L>(0,T; H*(2)).
This ends the proof. O

We can now state the weak-strong uniqueness result for the nonconstant viscosity case.

Theorem 6. Assume that (H1)—(H5) are satisfied and d = 2. Let uy € Gy, oo € L>®(Q)
and let [uy, 1] be a strong solution satisfying (4.1)—4.4) and [us, 2] be a weak solution both
corresponding to [ug, @o|. The existence of a strong solution is ensured by Theorem 5 if, in
addition, ug € Vg, po € H*(Q), F € C3(R) and either J € W?*!(Bjs) or J admissible.
Then Uy = Ug and Y1 = P2.

Proof. Taking the difference between the variational formulation of (1.1) and (1.2) written for
each solution and setting u := u; — U9, p = Y1 — Y2, we get

(ug, v) + 2((V(g01) — v(p2))Duy, Dv) + Q(V(gOQ)Du, Dv) + b(uy, ug,v) — blug, ug, v)

= _%(90(901 + p2)Va,v) — ((J * ©)Ver,v) — ((J * 92)Vip,v), (4.28)
(e, ) + (Vi V) = —(u - Vor, ) + (uz - Vi, 9), (4.29)
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forallv € Vg, and ¢ € V,where p = pig — s = ap — J x o + F'(p1) — F'(p2). Let us
choose v = w and 1) = ¢ as test functions in (4.28) and (4.29), respectively, and adding the
resulting identities. Notice that the contribution from the second term on the right hand side of
(4.29) vanishes due to the incompressibility condition. Hence, we get

5= (lull® + llel*) +2(((1) = v(2)) Dur, Du) + 2(v(2) Du, Du) + b(u, ua, u)
+ (V,u, V(,D) = Il + IQ + ]3 + 14, (4.30)

where I, I, I3 are given again by

1
Li=—2(eler+2)Vau), L=—((Jx)Vei,u), Iy=—((J*¢)Ve,u),
2

while I is given by
]4 = —(U : ngl, 90)

Let us first estimate the terms in (4.30) coming from the Navier-Stokes equations. Due to as-
sumption (H2) we have

2|((v(¢1) = v(2)) Dur, Du) | < Cllgl|zs[| Dua | 4[| V]
1/2 1/2
< Cliel " llelly 1 Du [ V2| Dus || 71 V]
n
< GIVull® + ClIVulllw gl + ClIVu [l el Vel

1% Co
< SIVal? + ZIVel? + L+ [V Pl ) el (4.31)

2(V(g02)Du, Du) > HVuH2,

where henceforth in this proof C' will denote a constant which depends on ||| L=, and on
||uol|- Indeed, recall that, since o € L*°(£2), then we have

il @x o) < Ci = Ci([l@oll L=, [|uol]), fori =1,2.
The term in the trilinear form is standard
b < Vull[[Vus| < 22| Vul? + e V|| ]Jul?
[, uz, w)| < cllull[Vull[Vue|l < 51 Vull® + el Vas | 7[lull,
while the terms I, I5, I3 can now be estimated more easily in this way

I < llelller + @allealVal o ull s

< ZVal + (el + leol2) el
L < [lerl sl Vo el

< IVl + ellerlZallell,

n
Iy < SVl + clleall 7l
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Regarding the terms coming from the nonlocal Cahn-Hilliard equation we have

(Vi, Vo) = ((a+ F"(¢2))V, Vo) 4 (¢Va — VJ ¢, Vi)
+ ((F"(¢1) = F"(2)) Vi1, Vo),

and the last term on the right hand side of this identity can be estimated as

|(F" (1) = F"(02)) Vi1, Vo) | < IIF" (1) = F"(@2) |l Veor || Vo |
< CllellaVerlla Vel < Ol + eIVl YA Ve Y2V i 2 Vel

Co
< ZIIWH2 +C+ Vol el F) ol

Hence, by means of assumption (H3), we get

C
(Vi Vo) = ol Vool = 2V Tl el Ve | — ZOIIVsDII2 = CA+IVerlPlenllzz)llel®
C
> 50||V90||2 = CA+ [Veul?llenllz)lell*.

Finally, the last term in (4.30) coming from the nonlocal Cahn-Hilliard equation can be controlled
as follows

4!
I < Jull s Verllallell < ZIVull® + elledllzallol™ (4.32)

By plugging estimates from (4.31) to (4.32) into (4.30) we are led to the following differential
inequality

1d

124} Co
57 Ul +1el?) + S Ivul” + FIVel® <y (el + lel?),  “39)

where the function -y is given by
v =L+ IVur P lualze + [ Vuell? + leallzs + lleallzs + lerllze + Ve Pllenlle).

and due to the regularity properties of the strong solution [u1, ¢1] and of the weak solution
[us, o] we have v € L'(0, T). Strong-weak uniqueness follows by applying Gronwall’s lemma
to (4.33). In addition, a continuous dependence estimate in L? x L? can also be deduced by
considering two solutions with different initial data. O

5 Global and exponential attractors

In this section we prove two results concerning the asymptotic behavior of the dynamical system
generated by (1.1)—(1.5) in dimension two.

The first result is related to the property of connectedness of the global attractor whose exis-
tence was established in [11] for nonconstant viscosity, constant mobility and regular potential
(see Remark 5 below, however).
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The second result is the existence of an exponential attractor. This will be proven in details when
mobility and viscosity are constant and the potential is regular. This kind of result relies on a
regularization argument devised in [13] and on an abstract theorem (see [10]) which generalizes
a well known result on the existence of exponential attractors in Banach spaces (cf. [9]). A similar
argument will be carried out in the nonconstant viscosity case albeit we will work with strong
solutions.

Let us define the dynamical system in the autonomous case. Take d = 2 and h € V.
Then, as a consequence of Theorem 2, we have that for every fixed n > 0 system (1.1)—(1.5)
generates a semigroup {Sn(t)}tzo of closed operators on the metric space X, given by

X’] = de X yn (5.1)

where
Yy ={peH:F(p)eL(Q), [ <n}.

It is convenient to endow the space X, with the following metric

pr(ea,) = s =l + g2 = al +| [ Plow) = [ Fleon)]

for all z; := [u;, ;] € A&, i = 1,2. Notice that this metric is slightly different from the one
which is naturally associated to the energy £ (the difference is in the exponent in the third term,
see [11]).

A first noteworthy consequence of the uniqueness result for weak solutions is the following

Theorem 7. Let assumptions (H1)—(H5) be satisfied with v = 1 . Suppose d = 2 and that
h € V... Then, the global attractor in X, for the semigroup S,,(t) is connected.

Proof. The conclusion follows immediately by applying [3, Corollary 4.3]. Indeed, the space &,
is (arcwise) connected, thanks to the fact that F' is a quadratic perturbation of a convex function.
Moreover, we have the strong time continuity of each trajectory z = [u, ¢] from [0, 00) to the
metric space A&, (see Theorem 1). Thus Kneser’s property is satisfied thanks to uniqueness. [

Remark 5. Theorem 7 also holds in the case of constant (or degenerate) mobility and singular
potential on account of Theorem 3 and [12, Proposition 4] (or Theorem 4 and [14, Proposition
3]). The argument is similar.

The second result is the existence of an exponential attractor. We first recall its definition.

Definition 2. A compact set M, C X, is an exponential attractor for the dynamical system
(X, Sy (t)) if the following properties are satisfied

(i) positive invariance: S, (t)M,, C M, forallt > 0;

(ii) finite dimensionality: dimp(M.,,, X;)) < oo;
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(iii) exponential attraction: Q) : R™ — R™ increasing and x > 0 such that, for all R > 0
and for all B C X, withsup, . px,(2,0) < R there holds

distx, (S,(t)B,M,) < Q(R)e™™,  Vt>0.

Theorem 8. Let d = 2. Assume that (H1)—(H5) are satisfied with v = 1. Then the dynam-
ical system (X, S,(t)) possesses an exponential attractor M,, which is bounded in Vy;, %
WhP(Q),2 < p < .

The proof of Theorem 8 is based on four lemmas. These lemmas allow us to apply the abstract
result in [10]. For their proof we shall need the following regularization result which is an easy
consequence of [13, Theorem 2 and Proposition 1] and has an independent interest. In the
statement and proof of this result we shall denote by [, = I', (S(zg), 77) a positive constant
depending on a positive time 7, on the energy £(z) of the initial datum zo := [ug, o] of a
weak solution, and on 7, where 17 > 0 is such that [5,| < 7 (I, may of course depend also on
h, F', J, v and Q). The value of I"; may change even on the same line.

Proposition 1. Letd = 2 and h € L?(0, 00; Ga;,). Assume that (H1)—(H5) are satisfied with
v =1, and suppose F' € C3(R). Letug € Gaip, o € H with F(p) € L*(Q) and let [u, ¢]
be the weak solution on (0, 00) to system (1.1)—(1.6) corresponding to [ug, o). Then, for every
7 > 0 there exists I". > 0 such that we have

u € L(7,00; Vi) N Lfb(T, 00; H2(Q)2), u; € Lfb(r, 00; de), (5.2)
RS LOO(T, 00; Wl’p(Q)), 2 < p< oo, @y € L(7,00; H) N L?b(T, oo; V),
(5.3)

with norms controlled by I ;.. In addition, there exists a constant A = A(n) > 0 depending only
onn (andon F', J, v and Q) such that for every initial data zy = [ug, o] € Gain X H with
F(gpo) € LY(Q) and [g,| < n there exists a time t* = t*(€(z)) > 0 starting from which the
weak solution corresponding to zy regularizes, that is,

t+1
IVu(®)l + H@(t)llwwmﬁ/ ()2 0peds < Ay, VE= 1 (5.4)
t

Remark 6. Notice that, differently from [13, Theorem 2], in Proposition 1 we do not require any
further regularity assumption on J in addition to (H1).

Proof. Recalling the proof of [18, Lemma 2.10] and the dissipative estimate (2.7), observe first
that, if zp € X, then for every 7 > 0 there exists I, = I'; (£(z9), 1) such that

lo)|le@) < Try  VE>T. (5.5)

This implies that ||zi(t)]| (@) < I'; forall ¢ > 7, and hence that the Korteweg term Vi €
L3(1,T; L*(Q)?).

We can now repeat exactly the same argument in the proof of [13, Theorem 2], by writing the
same estimates which now hold starting from a positive time, say for ¢ > 7/2 > (0. We recall
that these estimates are obtained by multiplying the nonlocal Cahn-Hilliard by zi; in H and then
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by differentiating the nonlocal Cahn-Hilliard with respect to time and multiplying the resulting
identity bu ;. By doing so we are led to a differential inequality of the following form

d
5«g@+/@+F%ﬂﬁ)§R@@+Mﬂﬂ, Vs>71/2,  (58)
S Q

where 0 = '+ (1 + |lul|%2 + ||w?)and we have o € L'(7/2,T), forall T > 7/2. At
this point we argue a bit differently from the proof of [13, Theorem 2]. Indeed, here we want to
avoid the L2-norm of ¢, in 7/2 which would require the initial condition (7/2) € H? and in
addition would force us to make some further regularity assumptions on the kernel J (like, e.g.,
J € W21, Therefore, we multiply (5.6) by (s — 7/2) and integrate with respect to s between
7/2andt € (7/2,T). We get

(t—%) log <1+/Q(a—|—F"(go))¢f> S/T/zlog <1+/Q(a+F”(<,0))gp,?>ds

]
+ 0o (T = Z) (ol + I0ule o e ran)

-
< FTH(PtH%%T/z,T;H) + I’ (T - 5) (HUHLI(T/ZT) + HSOtH%?(T/Q,T;H))> vt e (1/2,T).

From this inequality, on account of the fact that we have ||¢; || .2(7/2,7;r) < I'7 (this was shown
in the first step of the proof of [13, Theorem 2], before (5.6)) we deduce that

T

pr € L=(r,T; H). (5.7)
This bound, together with the following estimate (cf. proof of [13, Theorem 2])
Vel ST-(1+[l@l727),  2<p <o,
yield
p€e L™ (7’, T, Wl’p(Q)). (5.8)

Finally, arguing as in the proof of [13, Proposition 1] by applying the uniform Gronwall’s lemma,
and taking (5.7), (5.8) (together with the bounds for u on (7, T")) into account, we get (5.2), (5.3)
and (5.4), respectively. O

For the statements and proofs of the following lemmas we shall denote by C'. = C'; (S(ZOZ'), n)
a positive constant depending on a positive time 7, on the energies £(2o1), £(202) of the initial
data 2g1, 202 € X, of two weak solutions, and on 7, where 7 > 0 is such that [@y, |, [Pge| < 7
(of course, C'- will generally depend also on h, F', J, v and §2). The value of C; may change
even within the same line. Furthermore, we shall always set © := us — Uy,  := Py — V1.

Lemma 2. Letd = 2. Assume that (H1)-(H5) are satisfied with v = 1 and that ' € C*(R).
Let up; € Gain, poi € H with F(pg;) € L' () and [u;, ¢;] be the corresponding weak
solutions, i = 1, 2. Then, for every T > ( there exists C'. > 0 such that we have

ua(6) = w ()2 + lpa(t) = o1 (D]
+ [ (19 as) = @I + LIV eals) = er()])ds

< Ot (lua(r) — (D) + o) ~ @ @P). vz 9
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Proof. Let us multiply (3.2) by o in L?(€2). We get

1d

5%“90”2 = —(u- Vo, ) — (Vii, Vo) (5.10)

Taking the gradient of 1z, on account of (3.3) we have

(Vii, V) = / (a+ F"(¢1))|Vol? + (¢Va — VJ % ¢, Vo)
Q

+ ((F"(p2) = F" (1)) Vo2, Vo) > || Vell* = el Vo]
—|F"(¢2) — F" (1) 22| Vg2l s | Vool

Co
> 5IIWII2 — cllell? = Crllll a | Vepal 4 | Vo]
Co
5IIWII2 —cllell® = C-(lell + el 2IIVell?) Vol 1l Vel

Co
ZHWH2 — Cr(L+[[Velfa + [IVellza) Il

v

v

Observe that ‘o
(Vi, V) > ZHWH2 — C-(1+IVeellza) Il (5.11)

Furthermore, we have
v
[(u - Vo, 0)| < ullLal| Vol Lall o]l < ZHWH2 + c||Ve|Zalloll*. (5.12)

Therefore, plugging (5.11) and (5.12) into (5.10), we get
1d
2dt

Adding this last differential inequality to (3.8), we obtain

Co 14
loll? + LIVel? < C- (1 + [Veallia) el + %I Vull

d v c
E(HUH2 +[lell?) + ZHVUW + ZOHVSDH2 <) ([[ull® + lell?), (5.13)

N —

where
Y(t) == alt) + Cr (L4 Vol 1a).

Then, thanks to Proposition 1, for every 7 > 0 there exists C'. > 0 (always depending on T,
n and on the energies &(2p1), £(z02)) such that the following bounds for the solutions z; =
[u;, ;] corresponding to [ug;, o] hold

Hui”LOO(T,oo;de) + HSOZ'HLOO(T,OO;WLP(Q)) S CT) (514)
Hui,t”Lfb(r,oo;de) + HSDi,tHL"O(T,OO;H) < (r, (5.15

Thus we have v(t) < C., forall t > 7 and by applying the standard Gronwall’s lemma to (5.13)
written for £ > 7 we get

@I + e @I < (DI + le(@)lI?)e, vt (5.16)

By integrating (5.13) between 7 and ¢ and using (5.16) we get (5.9). O
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Lemma 3. Let the assumptions of Lemma 2 be satisfied. Let uy; € Ggiv, o;i € H with
F(poi) € LY(Q) and [u;, ¢;] be the corresponding weak solutions, i = 1,2. Then, for every
7 > 0 there exists C. > 0 such that we have

o) = i ®IF + leate) = a0 + | [ Flea(0) = [ Flor(0)
< Oy (o)~ m (D)2 + la(r) — ga(P)2)e™

+ CT/ (luz(s) — wr (I + lo2(s) — or(s)|P)ds, Ve > 7. (5.17)

‘ 2

Proof. By using Poincaré’s inequality for « and the Poincaré-Wirtinger’s inequality for ¢, i.e.,
Mllall* < IVull?, lle =217 < cal Vol (5.18)
from (5.13) we have

I//\1 C0|Q|_2

d 2 2
= (Jul® + llol?) + o

Co
— Il + 2o o lel* < 2v@) (lull* + llel*) +

which yields

d
2 (el +11ell?) + E(lul® + lIel?) < C-(llull® + llell®), (5.19)
where k := min(\v, ¢o/cq)/2 and C; is a positive constant such that 2y(t) + ¢o/2cq < C;

for all ¢ > 7. By using Gronwall’'s lemma we immediately see from (5.19) that ||u||* + ||]|? is
controlled by the right hand side of (5.17). Furthermore, we also have

’/ el —/F(%(t))\SCTHw(t)H, Vt > T,

Hence, the proof of (5.17) is complete. O

Lemma 4. Let the assumptions of Lemma 2 be satisfied. Let uy; € Gaiy, ©oi € H with
F(poi) € LY(Q2) and [u;, @;] be the corresponding weak solutions, i = 1,2. Then, for every
7 > 0 there exists C. > 0 such that

[uz, — Ul,t||%2(7,t;v(;w) + [lp2,e — 901,15”%2(7—,15;D(BN)’)
< Cre (lua(r) = w (1) + lpa(r) — en (D?),  VE=>7. (5.20)

Proof. Consider the variational formulation of (3.2) and (3.3), namely,

(o, 0) = =(VIi, V) — (u- Vr,9) — (ue - Ve, 00), Yy ev, (5.21)

and take ¢ € D(By). Then, for every 7 > 0 we see that there exists C;; > 0 such that

(Vi V)| = (1 By)| < el ey < Crllellldlomy, — VE=7. (6.22)

Moreover, we have
[(u- Vo, )| = [(u- VY, 1) < | Vullllei|l[[¥piy) < CIVulllldlpeyy,
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where in this case it is enough to use the dissipative estimate (2.7) and therefore the constant
C' does not depend on T but depends on h, £(z1) and 7 only. Concerning the last term on the
right hand side of (5.21) we have

|(u2 - Voo, ) = [(uz- Vb, )| < el Vuallllelll¥ll oy < Crllelllvlipeyy, — VE=T

(5.23)
Plugging (5.22)—(5.23) into (5.21), we get
ledllpmyy < Co(llell + [Vull), Ve (5.24)
Therefore, taking also (5.9) into account, we have
leell2ranmyy) < Cre (lu(m)ll + (), vt =7 (5.25)

In order to obtain an estimate for us ; — 11 ; let us consider the difference of the Navier-Stokes
equations written for two weak solutions in the variational formulation, i.e.,

(ug,v) = —v(Vu, Vu) — b(ug, us, v) + b(uq, ug, v)
1
— 5 (Vaw(pr + ¢2),0) = ((J+ ) V2, 0) = ((J 5 92)Vip,v), Vv € Vi (526)

Thanks to (5.14) the last three terms on the right hand side can be easily estimated as follows

—\ (Vap(pr + ¢2),0)| < c|[Valli=llellllor + pall= o]l < Crllellvllv,.

!((J* P)Vie2,0)| = [(VT % 0)p,0)| < cllVI[allellllallze o] < Crllellvllva,
(T * 02) Vi, 0)| = [(VT * @2)0,0) | < eV ||allgzll=llelllvll < Crllelvllv,,

for all ¢ > 7. Furthermore, the trilinear form can be controlled by using (2.1), that is,

|b(ug, ug, v) — b(uy, ut,v)| = |b(ug, u,v) + b(u, uy, v)|
< c(IVur || + [Vu | ) IVull IV < CH[Vull[Vol|, Yt >

Combining the last four estimates with (5.26) we obtain
luellvy, < C-(IIVull +llell),  VE=,
Thus, recalling (5.9), we deduce
lwell L2 ev, ) < CTecft(Hu(T)H - Hgo(T)H), vVt > 1. (5.27)
Finally, (5.25) and (5.27) yield (5.20). O

Lemma 5. Let the assumptions of Lemma 2 be satisfied. Let uy; € Ggin, o;i € H with
F(po) € L*(Q) i = 1,2. Then, for every 7 > 0 and every T > 0 there exists C.p > 0
depending also on 1" such that

pac, (Sn(t2)202, Sy(t1)z01) < Crr(pa, (Sy(7)202, Sy(T)201) + [t2 — t1]/?),  (5.28)

forallty,ty € [1,7 + T}, where zy; := [uo;, poi], t = 1, 2.
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Proof. Setting S, (t)zo; := [wi(t), pi(t)], i = 1,2, we have
P, (Sy(t2)zo1, Sy(t1)zo1)
= [Jur(te) —ur(t)[| + [le1(t2) — 1 ()l + ’/QF(wl(tz)) - /QF(@l(tl))’

< Nlwrell 2ty t0:6a0) 102 — ty]'/% 4+ 1.l oo (7,00 [t2 — 1| + Crll1,t] Loo (7,001 [t2 — ]
< CT7T|t2 — t1|1/2, Viti,to € [7’,7‘ + T], (5.29)

where we have used (5.15). Furthermore we have
px, (Sy(t2)z02, Sy(t2)z01)
= lualta) = wa () + llpa(t2) = er(t2)] + | [ Pleatta)) = [ Plin(ta)]

< Cre T (lug (1) — ur (7)]| + ll2(7) — 1(T)]1) < Crrpa, (Sy(7)z02, Sn(T)z01)-
(5.30)

From (5.29) and (5.30) we get (5.28). O

We now recall the following abstract result on the existence of exponential attractors [10, Propo-
sition 3.1]. This result, together with the lemmas above, will be used to prove Theorem 8.

Proposition 2. Let H be a metric space (with metric py;) and let V', V; be two Banach spaces
such that the embedding V, — < V is compact. Let B be a bounded subset of H and let
S : B — B be a map such that

pr (Swoa, Swor) < vpr(woz, wor) + K||Twey — Tworlly,  Vwer, woz € B, (5.31)
wherey < 1/2, K > 0and7 : B — V) is a globally Lipschitz continuous map, i.e.,
| Twoz — Tworllv, < Lpw(woz, wor), Vwoy, woe € B, (5.32)

for some L > (. Then, there exists a (discrete) exponential attractor M, C B for the (time
discrete) semigroup {S™ },—0.1.2,.. onB (with the topology of H induced on B).

Proof of Theorem 8. Let B, be abounded absorbing setin X, . The existence of such a bounded
absorbing set has been proven in [11]. Indeed, it is immediate to check that the argument of [11,
Proposition 4] still applies with our choice for the metric p, ... Let £y = to(By) > 0 be a time
such that S, (t)By C By for all t > t,. Due to (5.4) we can fix t* = t*(B;) > t, such that
Sy(t)By C Bzp(0,A(n)) forallt > t*, where Bz» (0, A(n)) is the closed ball in ZF with ra-
dius A(n) and A(n) a positive constant which depends only on 7). The (complete) metric space
ZP is given by

2P = Vo x {p € W2(Q) : [p] <),
endowed with the metric

dzf;(zz, 21) = HVuz - VU1|| + ||902 - <P1HWLP(Q)7 Vz; = [%’; 901;] € Zf,)a i =1,2.
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Note that the terms in the integrals of F(cp_l), F(¢2) are omitted in the metric since, for p > 2,
we have the embedding W'?(Q) — C(Q).

Let us now set
Bl = U Sn(t>Bo
t>t*

Then, B; is bounded in ZP and positively invariant for S, (t). Itis easy to see that it is also ab-
sorbing in &),. Indeed, if B is a bounded subset of X, and t, = t((B) is such that 5, (ty) B C
By, then we have S, (1) B C U;»= S, (T + to) B C Ursy S,y (1) By =: By, forall t > to + t*.
Furthermore, we set

B:= Sn(l)Bl

Then, B C Bzr(0, A(n)) is positively invariant and still absorbing in .
By choosing 7 = 1 in Lemma 3, then (5.17) can be written as follows

P, (Sy(t) 202, Sp(t)z01) < Cre ™2 px (Sy(1)202, Sy(1)z01)
+ C1[S5(-) 202 — Sn(+) 201 || L2(1,4:G 050 x 1) » vt > 1, Vo1, 202 € &y, (5.33)

where C'; > 0 depends only on £(zp1), £(z02) and 1. From (5.33) we therefore get

pa, (Sn(t — Dwoz, Syt — Dwer) < Ole_kt/szn (wo2, wo1)
+ C1][Sy (- )woz — Sy(-)wor || L2(0,4-1:G s x H) vt > 1, Vwor, wee € B, (5.34)

Observe that, since wy; = S(1)z20;, with zo; € By, i = 1,2, and B; is bounded in Zb, then Cy
does not depend on w1, Wpsa.
Choosing 7 = 1 also in Lemma 2 and in Lemma 4, and combining (5.9) with (5.20) we can
write

155(-) 202 = Sy () 2011721 4517400 vy + 106S(-) 202 = DSy ()z01 | Ze1.vs x DB

S C’lecltpfyn(Sn(l)zog, Sn(l)Z(]l), Vit Z 1, VZ()l, 202 € XW'

Thus we find
155 (-)woz — Sy(-)wor 7204150, xvy + 10685 (w02 = ey (YworllT204—1:v7 % D(BAY)
< C1eclt/??\en (wog,wo1),  Vt>1,  Vwe,we €B, (5.35)

where, as pointed out above, the constant C'; does not depend on w1, Wos.
Let us now introduce the following spaces
H .= X’] = de X ym
V) = L*(0,T; Vg, x V)N HY0,T;Vy,, x D(By)'),
V= L*0,T; Gy x H),
with 7' > 0 fixed such that C;e*"+1)/2 < 1/2 where C; and k are the same constants

that appear in the first term on the right hand side of (5.34). Notice that, due to the Aubin-Lions
lemma, V; is compactly embedded into V.
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Then, take S := 5, (T") and define amap 7 : B — V) in the following way: for every wy € B
we set Twy := w := S, (-)wo, i.e., w € V; is the (strong) solution corresponding to the initial
datum wy.

It is now easy to see that choosing the spaces H, V, V), the set B, and the maps S, 7 as
above, then the conditions of Proposition 2 are satisfied. Indeed, (5.31) and (5.32) follow from
(5.17) and (5.35), respectively, both written for t = 1"+ 1...

Therefore, Proposition 2 entails the existence of a (discrete) exponential attractor j\/lfl] C B for
the (time discrete) semigroup {S" },,—0.1 2,... on B (with the topology of H induced on B). Since
B is absorbing in H, then the basin of attraction of ./\/lg is the whole phase space H.

In order to prove the existence of the exponential attractor M,, for (X, S, (t)) with continuous
time we observe first that (5.28) written with 7 = 1 (the time 1" is chosen as above) yields

pa, (Sy(tz — Dwoz, Sy(t1 — Dwer) < Crr(pa, (o, wor) + [t2 — t1|1/2)7

for all woy, woe € B and for all t1, ¢y € [1,1 + T. Hence

P, (S (t")woz, Syt we) < C1,T(px,, (woa, wor1) + [t — t’|1/2)7

for all w1, we2 € B and for all t”, " € [0, T']. Therefore, the map [t, 2| — S, (t)z is uniformly
Hélder continuous (with exponent 1/2) on [0, 7] x B, where B is endowed with the H —metric.
Therefore, the exponential attractor MM,, for the continuous time case can be obtained by the
classical expression
Mn = U S’?(t)Mz7
t€[0,T7]

and this concludes the proof of the theorem. O

We conclude by proving a the existence of exponential attractors when the viscosity v is not
constant and satisfies the assumption (4.5) in Remark 4. In view of Theorems 5 and 6 we can
define a dynamical system for the strong solutions. Indeed, taking d = 2 and h € Gy, we
have that for every fixed 7 > 0 system (1.1)—(1.5) generates a semigroup { Z,(t) }+>0 of closed
operators on the metric space K, given by

Ky = Vi x {p € H*(Q) = [7] <1},
endowed with the (weaker) metric
0(z2,21) = [[uz —wil| + llp2 — @ull, Vzi = [ui, il € Ky, i =1,2.

We are now ready to state and prove the following.

Theorem 9. Assume (H1), (H3)-(H5) and (4.5). Consider either J € W*'(B;) or J admissible.
The dynamical system (K,,, Z, (t)) possesses an exponential attractor £, which is bounded in
Vigiw X H? (€2) such that the following properties are satisfied:

W positive invariance: Z, ()&, C &, forallt > 0;
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W finite dimensionality: dimp (&, Gaipy X H) < 00;

B exponential attraction: 3Q) : R™ — R™ increasing and x > 0 such that, for all R > 0
and for all B C IC,, with sup,g p(z,0) < R there holds

distx, (Z,(t)B,E,;) < Q(R)e™™, Vi >0.

Proof. Step 1. We will briefly show that a dissipative estimate like (5.4) still holds for the strong
solution of (1.1)—(1.5) under the assumptions of the theorem. More precisely, the following esti-
mate holds

t+1
IVu(®)]] + Hw(t)llmmﬁ/ ()2 peds < Am), ¥t >t (5.36)
t

for some positive constant A independent of the initial data and time, and some time ¢, > 0
which depends only £(z). In order to get this estimate, first we recall estimate (2.7) by Theorem
1 which also holds for nonconstant viscosity. The proof of (5.36) follows immediately from the
proof of Theorem 5. Indeed, we observe preliminarily that (5.5) and (5.7) already hold uniformly
with respect to time and initial data in the nonconstant case, i.e., there exists a time ¢, > 0,
depending only on &(zy), such that

© € L™ (ty,00; L= (Q)NV) N W2 (ty, 00, H). (5.37)

In particular, this regularity allows us to obtain u € L™ (ty,00;L>(Q)NV) and
| € L*(ty,o0; L? (Q)Q) uniformly. This can be done by arguing exactly in the same fash-
ion as in the derivation of estimates (4.7)-(4.13), with the exception that the constant & > 0
is such that ess SUD,¢ (1 00) lo (t)]| ; < R.Then, we can employ the same procedure as in

(4.16)-(4.26) (with a function Q = @ (R) > 0 which is now independent of the initial data, by
(5.37)) to deduce by virtue of the uniform Gronwall lemma (see [28, Chapter Ill, Lemma 1.1])
that

u € L™®(t,,00; Viin) N L2(t,, 00; H*(Q)?), w, € L*(ts, 00; Gain),

for some ¢, > 1 depending only on t.. Finally, arguing exactly as in the proof of Theorem
5 we deduce p € L™ (t,,00; H*(Q)) uniformly with respect to time and the data. Note that
estimate (5.36) entails the existence of a bounded absorbing set B, C K, for the semigroup
Zn(t).

Step 2. As in the proof of Theorem 8, it will be sufficient to construct the exponential attractor
for the restriction of Zn(t) on this set By. Thus, it suffices to verify the validity of Lemmas 3 and
4 for the difference u = u; — ug, @ = Y1 — P2, Where (u;, @;) is a (given) strong solution
and ¢ = 1, 2. The first one is an immediate consequence of estimate (4.33) (see the proof of
Theorem 6) and the application of Poincaré-type inequalities (5.18) (see the proof of Lemma 3).
Indeed, in the nonconstant case we have

lu(®)11* + lle )]

< Cllu(m)I + llp(r)|*)e ™ + C/ (lu(s)II? + le(s)|*)ds,  ve>7,  (538)
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for some constant C' = C,. > 0, where (u; (1), ; (7)) € By for each i = 1,2. For the
second one, we observe that in order to estimate u; := us; — u1 ¢, we have

(ug, v) = =V (2) Vu, Vv) = (v (p1) — v (p2)) Vur, Vo)
— b(ug, ug,v) + b(uy, ui,v)

— %(Vaso(sol + ©2),0) — ((J % ©)Via,v) — ((J * ©2) Ve, v), (5.39)

forallv € W := H?¢ (Q)* NV, and some € > 0 (such that the embedding H2t¢ C T/
holds). While all the terms on the right-hand side of (5.39), with the exception of the first two,
can be word by word estimated exactly as in the proof of Lemma 4, we notice that assumption
(4.5) and the essential L°°-bound on ¢ yield

(v (p2) Vu, Vo) | < C [Vl [ Vo],
(v (1) = v (02)) Vur, Vo) | < Clel [V o]l g2+ -

Thus, we easily get
[welly < C(IVull +[lell), V=,

which together with (4.33) and (5.24) yields the following estimate

lue () 122wy + el 22 in sy < Ce (luDI” + lle(T)I?), vt =7 (5.40)

Estimates (5.38) and (5.40) convey that a certain smoothing property holds for the difference of
any two strong solutions associated with any two given initial data in Bs.

Step 3. It is now not difficult to finish the proof of the theorem, using the abstract scheme of
Proposition 2 by arguing in a similar fashion as in the proof of Theorem 8. The differences are
quite minor and so we leave them to the interested reader. O

Remark 7. On account of [13, Proofs of Proposition 1 and Lemma 3] and (4.21), using uniform
Gronwall’s lemma (see [28, Chapter Ill, Lemma 1.1]), it is possible to show that any weak solu-
tion becomes a strong solution in finite time. We remind that this property is based on the validity
of the energy identity (2.6). Indeed, estimate (5.36) ensures that, given a weak trajectory z start-
ing from zy € X, (cf. (5.1)), there exists a time t* = t*(zy) > 0 such that z(t) € B1(A(n)) for
allt > t*, where B1(A(n)) is the closed ball in the space Vy;,, x H?(SY) with radius A(n) and
constraint |p| < 1. Let us briefly mention some consequences of this property. First, the global
attractor of the generalized semiflow on X, generated by the problem with nonconstant viscos-
ity (see [12]) is bounded in Vg, x H?(Q). Therefore we can show the validity of a smoothing
property (cf. (5.38) and (5.40)) on the global attractor and deduce that it has finite fractal di-
mension. Moreover, the regularizing effect also allows to prove the precompactness of (weak)
trajectories (see [13, Lemma 3]). This is an essential ingredient to establish the convergence of
a weak solution to a single equilibrium which can be done along the lines of [13, Section 5].
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