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Abstract

We consider a diffuse interface model which describes the motion of an incompressible

isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equa-

tions coupled with a convective nonlocal Cahn-Hilliard equation. Several results were al-

ready proven by two of the present authors. However, in the two-dimensional case, the

uniqueness of weak solutions was still open. Here we establish such a result even in the

case of degenerate mobility and singular potential. Moreover, we show the strong-weak

uniqueness in the case of viscosity depending on the order parameter, provided that the

mobility is constant and the potential is regular. In the case of constant viscosity, on ac-

count of the uniqueness results we can deduce the connectedness of the global attractor

whose existence was obtained in a previous paper. The uniqueness technique can be

adapted to show the validity of a smoothing property for the difference of two trajectories

which is crucial to establish the existence of an exponential attractor.

1 Introduction

In a series of recent papers (see [8, 11, 12, 13, 14]) the following nonlinear evolution system

has been analyzed

ϕt + u · ∇ϕ = div(m(ϕ)∇µ), (1.1)

µ = aϕ− J ∗ ϕ+ F ′(ϕ), (1.2)

ut − 2div(ν(ϕ)Du) + (u · ∇)u+ ∇π = µ∇ϕ+ h(t), (1.3)

div(u) = 0, (1.4)

on a bounded domain Ω ⊂ R
d, d = 2, 3, for t > 0. This system describes the evolution of an

isothermal mixture of two incompressible and immiscible fluids through the (relative) concen-

tration ϕ of one species and the (averaged) velocity field u. Here m denotes the mobility, µ is

the so-called chemical potential, J is a spatial-dependent interaction kernel and J ∗ ϕ stands

for spatial convolution over Ω, a is defined as follows a(x) =
∫

Ω
J(x − y)dy, F is a double-

well potential, ν is the viscosity and h is an external force acting on the mixture. The density is

supposed to be constant and equal to one (i.e., matched densities).

Such a system is the nonlocal version of the well-known Cahn-Hilliard-Navier-Stokes system

which has been the subject of a number of papers (cf., e.g., [1, 2, 6, 7, 15, 16, 17, 27, 29]

and references therein, see also the review [26] for modeling and numerical simulation issues).

We recall that the nonlocal term seems physically more appropriate than its approximation, i.e.,

when in place of aϕ−J∗ϕ there is −∆ϕ. For this issue, we refer the reader to the basic papers

[20, 21, 22] (see also [4, 18, 19, 24, 25]). However, from the mathematical viewpoint, the present
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system is more challenging since the regularity of ϕ is lower and so the Korteweg force µ∇ϕ
acting on the fluid can be less regular than the convective term (u · ∇)u, even in dimension

two (cf. [8, (3.4) and (3.7)]). Therefore, it is not straightforward to extend some of the results

which hold for the Navier-Stokes equations as well as for the standard Cahn-Hilliard-Navier-

Stokes system. This is particularly meaningful in dimension two. In fact, in dimension three,

the only known results are comparable with the standard ones for the Navier-Stokes equations,

namely, the existence of a global weak solution under various assumptions on m and F and a

generalized notion of attractor (cf. [8, 11, 12, 14]).

In dimension two, under reasonable assumptions on F which ensure a suitable regularity of

ϕ, it is possible to prove that there exists a weak solution which satisfies the energy identity.

Therefore, such a solution is strongly continuous in time (see [8]). In addition, taking advantage

of the energy identity, it is also possible to prove the existence of a the global attractor for the

corresponding semiflow (cf. [11, 12, 14]). More recently, in [13], assuming constant (in ϕ) ν
and m and taking a regular potential F , it has been shown the existence of a (unique) strong

solution and that any weak solution which satisfies the energy identity regularizes in finite time.

This entails some smoothness for the global attractor. Also, the convergence of any weak solu-

tion to a single equilibrium was established through the Łojasiewicz-Simon inequality approach.

However, uniqueness of weak solutions was still an open issue in [8, 11, 12, 14].

The main goal of this paper is to prove the uniqueness of weak solutions when ν is constant;

while, when ν is non constant, we are able to show weak-strong uniqueness. Uniqueness entails

the connectedness of the global attractor. In addition, modifying the uniqueness argument we

can also show the validity of a suitable smoothing property of the difference of two trajectories

(see [9, 10]). This is the basic step to establish the existence of an exponential attractor. The

fractal dimension of the global attractor is thus finite.

As in the previous contributions we take the following boundary and initial conditions

∂µ

∂n
= 0, u = 0 on ∂Ω × (0, T ), (1.5)

u(0) = u0, ϕ(0) = ϕ0 in Ω. (1.6)

The plan of the paper is the following. In the next section we recall the basic assumptions and the

related existence of a weak solution. Section 3 is devoted to the uniqueness of weak solutions

for constant viscosity. The strong-weak uniqueness is shown in Section 4. The final Section 5

is concerned with the connectedness of the global attractor and the existence of an exponential

attractor.

2 Functional setup and preliminary results

Let us introduce the classical Hilbert spaces for the Navier-Stokes equations with no-slip bound-

ary condition (see, e.g., [28])

Gdiv := {u ∈ C∞
0 (Ω)d : div(u) = 0}

L2(Ω)d

,
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and

Vdiv := {u ∈ H1
0 (Ω)d : div(u) = 0}.

We set H := L2(Ω), V := H1(Ω), and denote by ‖ · ‖ and (·, ·) the norm and the scalar

product, respectively, on bothH andGdiv.H will also be used for L2 spaces of vector or matrix

valued functions. The notation 〈·, ·〉 will stand for the duality pairing between a Banach space

X and its dual X ′. Vdiv is endowed with the scalar product

(u, v)Vdiv
= (∇u,∇v) = 2(Du,Dv), ∀u, v ∈ Vdiv,

where D is the symmetric gradient, defined by Du := (∇u+ (∇u)tr)/2.

The trilinear form b which appears in the weak formulation of the Navier-Stokes equations is

defined as usual

b(u, v, w) =

∫

Ω

(u · ∇)v · w, ∀u, v, w ∈ Vdiv,

and the associated bilinear operator B from Vdiv ×Vdiv into V ′
div is defined by 〈B(u, v), w〉 :=

b(u, v, w), for all u, v, w ∈ Vdiv. We recall that we have b(u,w, v) = −b(u, v, w), for all

u, v, w ∈ Vdiv, and that the following estimate holds in dimension two

|b(u, v, w)| ≤ c‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2, ∀u, v, w ∈ Vdiv.

In particular we have the following standard estimate in 2D which holds for all u ∈ Vdiv

‖B(u, u)‖V ′

div
≤ c‖u‖‖∇u‖. (2.1)

For every f ∈ V ′ we denote by f the average of f over Ω, i.e., f := |Ω|−1〈f, 1〉. Here |Ω| is

the Lebesgue measure of Ω. We assume that ∂Ω is smooth enough.

We also need to introduce the Hilbert spaces

V0 := {v ∈ V : v = 0}, V ′
0 := {f ∈ V ′ : f = 0},

and the operator AN : V → V ′, AN ∈ L(V, V ′), defined by

〈ANu, v〉 :=

∫

Ω

∇u · ∇v ∀u, v ∈ V.

We recall that AN maps V onto V ′
0 and the restriction BN of AN to V0 maps V0 onto V ′

0

isomorphically. Further, we denote by B−1
N : V ′

0 → V0 the inverse map. As is well known, for

every f ∈ V ′
0 , B−1

N f is the unique solution with zero mean value of the Neumann problem

{
−∆u = f, in Ω,
∂u
∂n

= 0, on ∂Ω.

In addition, we have

〈ANu,B
−1
N f〉 = 〈f, u〉, ∀u ∈ V, ∀f ∈ V ′

0 ,

〈f,B−1
N g〉 = 〈g,B−1

N f〉 =

∫

Ω

∇(B−1
N f) · ∇(B−1

N g), ∀f, g ∈ V ′
0 .

3



Furthermore, BN can be also viewed as an unbounded linear operator on H with domain

D(BN) = {v ∈ H2(Ω) : ∂nv = 0 on ∂Ω}.

If X is a Banach space and τ ∈ R, we shall denote by Lp
tb(τ,∞;X), 1 ≤ p < ∞, the space

of functions f ∈ Lp
loc([τ,∞);X) that are translation bounded in Lp

loc([τ,∞);X), that is,

‖f‖p
Lp

tb(τ,∞;X)
:= sup

t≥τ

∫ t+1

t

‖f(s)‖p
Xds <∞.

We now recall the result on existence of weak solutions and on the validity of the energy identity

and of a dissipative estimate in dimension two for the nonlocal Cahn-Hilliard-Navier-Stokes

system in the case of constant mobility, nonconstant viscosity and regular potential. This is the

main case we shall deal with in this paper.

Let us list the assumptions (see [8]).

(H1) J ∈ W 1,1(Rd), J(x) = J(−x), a ≥ 0 a.e. in Ω.

(H2) The mobility m(s) = 1 for all s ∈ R, the viscosity ν is locally Lipschitz on R and there

exist ν1, ν2 > 0 such that

ν1 ≤ ν(s) ≤ ν2, ∀s ∈ R.

(H3) F ∈ C2,1
loc (R) and there exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω.

(H4) F ∈ C2(R) and there exist c1 > 0, c2 > 0 and q > 0 such that

F ′′(s) + a(x) ≥ c1|s|
2q − c2, ∀s ∈ R, a.e. x ∈ Ω.

(H5) There exist c3 > 0, c4 ≥ 0 and r ∈ (1, 2] such that

|F ′(s)|r ≤ c3|F (s)| + c4, ∀s ∈ R.

Remark 1. Assumption J ∈ W 1,1(Rd) can be weakened. Indeed, it can be replaced by J ∈
W 1,1(Bδ), where Bδ := {z ∈ R

d : |z| < δ} with δ := diam(Ω), or also by (see, e.g., [4])

sup
x∈Ω

∫

Ω

(
|J(x− y)| + |∇J(x− y)|

)
dy <∞.

Remark 2. Since F is bounded from below, it is easy to see that (H5) implies that F has

polynomial growth of order p′, where p′ ∈ [2,∞) is the conjugate index to p. Namely, there

exist c5 > 0 and c6 ≥ 0 such that

|F (s)| ≤ c5|s|
p′ + c6, ∀s ∈ R.

Observe that assumption (H5) is fulfilled by a potential of arbitrary polynomial growth. For ex-

ample, (H3)–(H5) are satisfied for the case of the well-known double-well potential F (s) =
(s2 − 1)2.
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The following result follows from [8, Theorem 1, Corollaries 1 and 2].

Theorem 1. Let h ∈ L2
loc([0,∞);V ′

div), u0 ∈ Gdiv, ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω) and

suppose that (H1)-(H5) are satisfied. Then, for every given T > 0, there exists a weak solution

[u, ϕ] to (1.1)–(1.6) such that

u ∈ L∞(0, T ;Gdiv) ∩ L
2(0, T ;Vdiv), ϕ ∈ L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ), (2.2)

ut ∈ L4/3(0, T ;V ′
div), ϕt ∈ L4/3(0, T ;V ′), d = 3, (2.3)

ut ∈ L2(0, T ;V ′
div), d = 2, (2.4)

ϕt ∈ L2(0, T ;V ′), d = 2 or d = 3 and q ≥ 1/2, (2.5)

and satisfying the energy inequality

E(u(t), ϕ(t)) +

∫ t

0

(
2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2

)
dτ ≤ E(u0, ϕ0) +

∫ t

0

〈h(τ), u〉dτ,

for every t > 0, where we have set

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫

Ω

∫

Ω

J(x− y)(ϕ(x, t) − ϕ(y, t))2dxdy +

∫

Ω

F (ϕ(t)).

If d = 2, then any weak solution satisfies the energy identity

d

dt
E(u, ϕ) + 2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2 = 〈h(t), u〉, (2.6)

In particular we have u ∈ C([0,∞);Gdiv), ϕ ∈ C([0,∞);H) and
∫
Ω
F (ϕ) ∈ C([0,∞)).

Furthermore, if d = 2 and h ∈ L2
tb(0,∞;V ′

div), then any weak solution satisfies also the

dissipative estimate

E(u(t), ϕ(t)) ≤ E(u0, ϕ0)e
−kt + F (m0)|Ω| +K, ∀t ≥ 0, (2.7)

where m0 = (ϕ0, 1) and k, K are two positive constants which are independent of the initial

data, with K depending on Ω, ν, J , F and ‖h‖L2
tb(0,∞;V ′

div).

In all the following sections it will be d = 2.

3 Uniqueness of weak solutions (constant viscosity)

In this section we prove that the weak solution of the nonlocal Cahn-Hilliard-Navier-Stokes sys-

tem with constant viscosity ν = 1 is unique and provide a continuous dependence estimate. In

Subsection 3.1 we shall first address the case of constant mobility (m = 1) and regular potential

F . Nevertheless, we shall see in Subsection 3.2 and Subsection 3.3 that the arguments used

for this case can also be applied to the cases of singular potential and constant or degenerate

mobility (see [12] or [14] for the existence).
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3.1 Regular potential and constant mobility

The main result is the following.

Theorem 2. Let d = 2 and suppose that assumptions (H1)–(H5) are satisfied with ν = 1. Take

h ∈ L2
loc([0,∞);V ′

div), u0 ∈ Gdiv and ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω)... Then, the weak

solution [u, ϕ] corresponding to [u0, ϕ0] and given by Theorem 1 is unique. Furthermore, if we

consider two weak solutions zi := [ui, ϕi] corresponding to two initial data z0i := [u0i, ϕ0i],
with hi ∈ L2

loc([0,∞);V ′
div), u0i ∈ Gdiv and ϕ0i ∈ H such that F (ϕ0i) ∈ L1(Ω) and

|ϕ0i| ≤ η for some positive constant η, i = 1, 2, then the following continuous dependence

estimate holds

‖u2(t) − u1(t)‖
2 + ‖ϕ2(t) − ϕ1(t)‖

2
V ′

+

∫ t

0

(c0
2
‖ϕ2(τ) − ϕ1(τ)‖

2 +
ν

4
‖∇

(
u2(τ) − u1(τ)

)
‖2

)
dτ

≤
(
‖u2(0) − u1(0)‖2 + ‖ϕ2(0) − ϕ1(0)‖2

V ′

)
Λ0(t) + |ϕ|Cη

(
E(z02), E(z01)

)
Λ1(t)

+ ‖h2 − h1‖
2
L2(0,T ;V ′

div)Λ2(t), (3.1)

for all t ∈ [0, T ], where Λ0, Λ1 and Λ2 are continuous functions which depend on the norms

of the two solutions and Cη is a positive constant which depends on η and on the energies

E(z02), E(z01).

Proof. Let us start by rewriting the Korteweg force by making explicit the dependence on ϕ.

Indeed, we have

µ∇ϕ =
(
aϕ− J ∗ ϕ+ F ′(ϕ)

)
∇ϕ = ∇

(
F (ϕ) + a

ϕ2

2

)
−∇a

ϕ2

2
− (J ∗ ϕ)∇ϕ.

Hence we can write the Navier-Stokes equation with an extra-pressure π̃ := π − F (ϕ) + aϕ2

2

as follows

ut − ν∆u+ (u · ∇)u+ ∇π̃ − h = −∇a
ϕ2

2
− (J ∗ ϕ)∇ϕ =: K(ϕ).

Let us now consider two weak solutions [ui, ϕi] corresponding to two initial data [u0i, ϕ0i], with

u0i ∈ Gdiv and ϕi0 ∈ H and F (ϕ0i) ∈ L1(Ω), i = 1, 2. Set u := u2−u1 and ϕ := ϕ2−ϕ1.

Then, the difference [u, ϕ] satisfies the system

ϕt = ∆µ̃− u · ∇ϕ1 + u2 · ∇ϕ, (3.2)

µ̃ = aϕ− J ∗ ϕ+ F ′(ϕ2) − F ′(ϕ1), (3.3)

ut − ν∆u+ (u2 · ∇)u2 − (u1 · ∇)u1 + ∇π̃

= −ϕ(ϕ1 + ϕ2)
∇a

2
− (J ∗ ϕ)∇ϕ2 − (J ∗ ϕ1)∇ϕ+ h, (3.4)

where π̃ := π̃2 − π̃1 and h := h2 − h1. We multiply (3.4) by u in Gdiv. After standard

calculations, the following terms (cf. (3.4))

I1 = −
1

2
(ϕ (ϕ1 + ϕ2)∇a, u) , I2 = − ((J ∗ ϕ)∇ϕ2, u) , I3 = − ((J ∗ ϕ1)∇ϕ, u) ,
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can be estimated in this way

I1 ≤
∣∣(ϕ(ϕ1 + ϕ2)∇a, u

)∣∣ ≤ ‖ϕ‖‖ϕ1 + ϕ2‖L4‖∇a‖L∞‖u‖L4

≤ c‖ϕ‖‖ϕ1 + ϕ2‖L4‖∇a‖L∞‖u‖1/2‖∇u‖1/2

≤
c0
10

‖ϕ‖2 + c‖ϕ1 + ϕ2‖
2
L4‖∇a‖2

L∞‖u‖‖∇u‖

≤
c0
10

‖ϕ‖2 +
ν

6
‖∇u‖2 + c‖ϕ1 + ϕ2‖

4
L4‖∇a‖4

L∞‖u‖2, (3.5)

I2 ≤
∣∣(ϕ1, (∇J ∗ ϕ)u

)∣∣ ≤ ‖ϕ1‖L4‖∇J ∗ ϕ‖‖u‖L4

≤ c‖ϕ1‖L4‖∇J‖L1‖ϕ‖‖u‖1/2‖∇u‖1/2

≤
c0
10

‖ϕ‖2 + c‖∇J‖2
L1‖ϕ1‖

2
L4‖u‖‖∇u‖

≤
c0
10

‖ϕ‖2 +
ν

6
‖∇u‖2 + c‖∇J‖4

L1‖ϕ1‖
4
L4‖u‖2, (3.6)

I3 ≤
∣∣((∇J ∗ ϕ2)ϕ, u

)∣∣ ≤ ‖∇J ∗ ϕ2‖L4‖ϕ‖‖u‖L4

≤ c‖∇J‖L1‖ϕ2‖L4‖ϕ‖‖u‖1/2‖∇u‖1/2

≤
c0
10

‖ϕ‖2 + c‖∇J‖2
L1‖ϕ2‖

2
L4‖u‖‖∇u‖

≤
c0
10

‖ϕ‖2 +
ν

6
‖∇u‖2 + c‖∇J‖4

L1‖ϕ2‖
4
L4‖u‖2. (3.7)

Taking such estimates into account, it is easy see that from (3.4) we are led to the following

differential inequality

1

2

d

dt
‖u‖2 +

ν

4
‖∇u‖2 ≤

3

10
c0‖ϕ‖

2 + α‖u‖2 +
1

ν
‖h‖2

V ′

div
, (3.8)

where the function α is given by

α := c‖∇J‖4
L1

(
‖ϕ1‖

4
L4 + ‖ϕ2‖

4
L4

)
+ c‖∇u2‖

2. (3.9)

Since ϕ1, ϕ2 ∈ L∞(0, T ;L2) ∩ L2(0, T,H1)
and L∞(0, T ;L2) ∩ L2(0, T,H1) ↪→ L4(0, T ;L4(Ω)), thanks to the Gagliardo-Nirenberg

inequality, then we have α ∈ L1(0, T ).

Let us now multiply (3.2) by B−1
N (ϕ− ϕ) (notice that we have ϕ = ϕ01 − ϕ02). We get

1

2

d

dt
‖B

−1/2
N (ϕ− ϕ)‖2 + (aϕ+ F ′(ϕ1) − F ′(ϕ2), ϕ) = (J ∗ ϕ, ϕ) + |Ω|ϕµ̃+ I4 + I5,

(3.10)

where

I4 = −
(
u · ∇ϕ2, B

−1
N (ϕ− ϕ)

)
, I5 =

(
u1 · ∇ϕ,B

−1
N (ϕ− ϕ)

)
.

By using assumption (H3), we find

1

2

d

dt
‖B

−1/2
N (ϕ− ϕ)‖2 + c0‖ϕ‖

2 ≤ |(J ∗ ϕ, ϕ)| + |Ω|ϕµ̃+ I4 + I5. (3.11)
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The first term on the right hand side of (3.11) can be controlled as follows

∣∣(J ∗ ϕ, ϕ− ϕ)
∣∣ + |(J ∗ ϕ, ϕ)| ≤

c0
10

‖ϕ‖2 + c‖B
−1/2
N (ϕ− ϕ)‖2 +

c0
4
‖ϕ‖2 + cϕ2,

(3.12)

while the terms I4 and I5 can be estimated as

I4 ≤
∣∣(u · ∇B−1

N (ϕ− ϕ), ϕ2

)∣∣ ≤ ‖u‖L4‖∇B−1
N (ϕ− ϕ)‖‖ϕ2‖L4

≤
ν

8
‖∇u‖2 + c‖ϕ2‖

2
L4‖∇B−1

N (ϕ− ϕ)‖2, (3.13)

and

I5 ≤
∣∣(u2 · ∇B

−1
N (ϕ− ϕ), ϕ)

∣∣ ≤ ‖ϕ‖‖u2‖L4‖∇B−1
N (ϕ− ϕ)‖L4

≤
c0
20

‖ϕ‖2 + c‖u2‖
2
L4‖∇B−1

N (ϕ− ϕ)‖2
L4

≤
c0
20

‖ϕ‖2 + c‖u2‖
2
L4‖∇B−1

N (ϕ− ϕ)‖‖∇B−1
N (ϕ− ϕ)‖H1 . (3.14)

Observe that on D(BN) (recall that φ := B−1
N (ϕ − ϕ) ∈ D(BN)) the H2-norm of φ is

equivalent to the L2-norm of BNφ+ φ. Thus we have

‖∇B−1
N (ϕ− ϕ)‖H1 ≤ ‖B−1

N (ϕ− ϕ)‖H2 ≤ c‖(BN + I)B−1
N (ϕ− ϕ)‖ ≤ c‖ϕ− ϕ‖.

Therefore, from (3.14) we get

I5 ≤
c0
10

‖ϕ‖2 + c‖u2‖
4
L4‖B

−1/2
N (ϕ− ϕ)‖2 + |Ω|ϕ2. (3.15)

Plugging estimates (3.5)–(3.7) and (3.12)–(3.15) into (3.8) and (3.11), we deduce the differential

inequality

1

2

d

dt

(
‖u‖2 + ‖B

−1/2
N (ϕ− ϕ)‖2

)
+
c0
4
‖ϕ‖2 +

ν

8
‖∇u‖2

≤ β
(
‖u‖2 + ‖B

−1/2
N (ϕ− ϕ)‖2

)
+ cϕ2 + |Ω|ϕµ̃+

1

ν
‖h‖2

V ′

div
, (3.16)

where the function β is given by

β := α+ c(1 + ‖ϕ2‖
2
L4 + ‖u1‖

4
L4) ∈ L1(0, T ).

If we consider two weak solutions corresponding to the same initial data and to the same exter-

nal force, then we have ϕ = 0 and h = 0. Therefore, from (3.16) by using Gronwall’s lemma

we get u = 0 and ϕ = 0 on [0, T ] and this proves uniqueness.

If the two weak solutions correspond to different initial data and to different external forces, we

have

|Ω||µ̃| ≤

∫

Ω

(
|F ′(ϕ2)| + |F ′(ϕ1)|

)
≤

∫

Ω

(
|F (ϕ2)| + |F (ϕ1)|

)
+ c

≤ Cη

(
E(z02), E(z01)

)
, ∀t ≥ 0,
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where we have used (H5) (which implies that |F ′(s)| ≤ cF (s) + c, for all s ∈ R) and (2.7).

Here, η is a constant such that |ϕ0i| ≤ η, i = 1, 2. Therefore (3.16) can be rewritten as

d

dt

(
‖u‖2 + ‖B

−1/2
N (ϕ− ϕ)‖2

)
+
c0
2
‖ϕ‖2 +

ν

4
‖∇u‖2

≤ β
(
‖u‖2 + ‖B

−1/2
N (ϕ− ϕ)‖2

)
+ |ϕ|Cη

(
E(z02), E(z01)

)
+

2

ν
‖h‖2

V ′

div
. (3.17)

By using Gronwall’s lemma once more, from (3.17) we deduce

‖u(t)‖2 + ‖B
−1/2
N (ϕ(t) − ϕ)‖2 ≤

(
‖u(0)‖2 + ‖B

−1/2
N (ϕ(0) − ϕ)‖2

)
Γ0(t)

+ |ϕ|Cη

(
E(z02), E(z01)

)
Γ1(t) +

2

ν
Γ0(t)‖h‖

2
L2(0,T ;V ′

div), (3.18)

where Γ0(t) := e
R t
0 β(s)ds and Γ1(t) :=

∫ t

0
e

R t
s β(τ)dτds. By integrating (3.17) between 0 and t

and using (3.18), we have

‖u(t)‖2 + ‖B
−1/2
N (ϕ(t) − ϕ)‖2 +

∫ t

0

(c0
2
‖ϕ‖2 +

ν

4
‖∇u‖2

)
dτ

≤
(
‖u(0)‖2 + ‖B

−1/2
N (ϕ(0) − ϕ)‖2

)
Γ2(t) + |ϕ|Cη

(
E(z02), E(z01)

)
Γ3(t)

+
2

ν
Γ0(t)‖h‖

2
L2(0,T ;V ′

div), (3.19)

for all t ∈ [0, T ], where the continuous functions Γ2 and Γ3 are given by

Γ2(t) := 1 +

∫ t

0

β(s)Γ0(s)ds, Γ3(t) :=

∫ t

0

β(s)Γ1(s)ds+ T.

Finally, from (3.19) we deduce (3.1) by suitably defining the functions Λ0, Λ1 in terms of Γ0, Γ2

and Γ3.

3.2 Singular potential and constant mobility

The proof of existence of a weak solution with initial data u0 ∈ Gdiv and ϕ0 ∈ L∞(Ω) with

F (ϕ0) ∈ L1(Ω) is given in [12], where also a nonconstant viscosity is considered. We recall

that in this case the assumption |ϕ0| < 1 is needed in order to control the average of the

chemical potential. For the assumptions on the singular potential F we refer the reader to [12].

We recall, in particular, the physically relevant case of the so-called logarithmic potential, that

is,

F (s) = −
θc

2
s2 +

θ

2

(
(1 + s) log(1 + s) + (1 − s) log(1 − s)

)
, (3.20)

where 0 < θ < θc, θ being the absolute temperature and θc a given critical temperature below

which the phase separation takes place.

It is easy to see that, assuming the viscosity ν constant and d = 2, the uniqueness argument

can also be applied to the present case. Indeed, estimates (3.5)-(3.8) obviously still hold. More-

over, considering (3.10) we immediately see that (3.11) still follows from (3.10), since in the case

of singular potential we have

F ′′(s) + a(x) ≥ c0, ∀s ∈ (−1, 1), c0 > 0.

9



In particular, this assumption is ensured by [12, (A6)]. Therefore, uniqueness is given by

Theorem 3. Let u0 ∈ Gdiv, ϕ0 ∈ L∞(Ω) such that F (ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Sup-

pose that assumptions (A1)–(A8) of [12] are satisfied with ν = 1 and that d = 2. Then, the

weak solution [u, ϕ] corresponding to [u0, ϕ0] which is given by [12, Theorem 1] is unique.

Furthermore, if we consider two weak solutions zi := [ui, ϕi] corresponding to two initial data

z0i := [u0i, ϕ0i], with u0i ∈ Gdiv and ϕ0i ∈ L∞(Ω) such that F (ϕ0i) ∈ L1(Ω) and |ϕ0i| ≤ η
for some constant η ∈ [0, 1), i = 1, 2, then estimate (3.1) holds.

3.3 Singular potential and degenerate mobility

This physically relevant case was addressed in [14] to which we refer for all the assumptions on

the degenerate mobility m and on the singular potential F as well as for the weak formulation.

However, it is worth recalling that a typical situation is m(s) = k1(1 − s2) and F given by

(3.20).

We recall that in [14] the viscosity ν was assumed to be constant just to avoid technicalities,

but the results therein also hold for a nonconstant viscosity satisfying (H2). In [14, Theorem 2]

the existence of a weak solution has been established with initial data u0 ∈ Gdiv and ϕ0 ∈
L∞(Ω) with F (ϕ0) ∈ L1(Ω) and M(ϕ0) ∈ L1(Ω), where M ∈ C2(−1, 1) is defined by

m(s)M ′′(s) = 1 for all s ∈ (−1, 1) and M(0) = M ′(0) = 0.

Furthermore, in [14, Proposition 4] uniqueness of the weak solution was proven for the con-

vective nonlocal Cahn-Hilliard equation with degenerate mobility and with a given velocity u ∈
L2

loc([0,∞);Vdiv ∩L
∞(Ω)d) (d = 2, 3). By combining the proof of [14, Proposition 4] with the

arguments of Theorem 2 we can now prove uniqueness of the weak solution for the nonlocal

Cahn-Hilliard-Navier-Stokes system with singular potential and degenerate mobility.

Theorem 4. Let all the assumptions of [14, Theorem 2 and Proposition 4] be satisfied and let

d = 2 and ν = 1. Then, the weak solution to system (1.1)-(1.6) (cf. [14, Definition 2]) is unique.

Proof. Arguing as in the first part of the proof of Theorem 2 we can obtain (3.8) that we now

write in the following form

1

2

d

dt
‖u‖2 +

ν

2
‖∇u‖2 ≤

1

4
(1 − ρ)α0‖ϕ‖

2 + α‖u‖2, (3.21)

where ρ ∈ [0, 1) and α0 > 0 are some constants which appear in the assumptions on the

singular potential (see [14, Theorem 3]).

Regarding the estimates for the difference of the nonlocal Cahn-Hilliard, let us first recall the

approach in the proof of [14, Proposition 4].

Following [22], one can introduce

Λ1(s) :=

∫ s

0

m(σ)F ′′
1 (σ)dσ, Λ2(s) :=

∫ s

0

m(σ)F ′′
2 (σ)dσ, Γ(s) :=

∫ s

0

m(σ)dσ,

for all s ∈ [−1, 1], and see that the assumptions on m and on F imply that Λ1 ∈ C1([−1, 1])
and 0 < α0 ≤ Λ′

1(s) ≤ α1 for some positive constant α1. The weak formulation of the

10



convective nonlocal Cahn-Hilliard equation with degenerate mobility (cf. [14, Definition 2]) can

then be rewritten as follows

〈ϕt, ψ〉 +
(
∇Λ(·, ϕ),∇ψ

)
−

(
Γ(ϕ)∇a,∇ψ

)

+
(
m(ϕ)(ϕ∇a−∇J ∗ ϕ),∇ψ

)
=

(
uϕ,∇ψ

)
, (3.22)

for all ψ ∈ V , where

Λ(x, s) := Λ1(s) + Λ2(s) + a(x)Γ(s).

Consider now two weak solutions [u1, ϕ1] and [u2, ϕ2]. Let us assume for simplicity that the

two initial data are the same (the case of different initial data can be handled without difficulties

and leads to a continuous dependence estimate). Take the difference between the two identities

(3.22), set ϕ := ϕ1−ϕ2, u := u1−u2 and choose ψ = B−1
N ϕ as test function in the resulting

identity (notice that ϕ = 0). This yields

1

2

d

dt
‖B

−1/2
N ϕ‖2 +

(
Λ(ϕ2) − Λ(ϕ1), ϕ

)
−

(
(Γ(ϕ2) − Γ(ϕ1))∇a,∇B

−1
N ϕ

)

+
(
(m(ϕ2) −m(ϕ1))(ϕ2∇a−∇J ∗ ϕ2) +m(ϕ1)(ϕ∇a−∇J ∗ ϕ),∇B−1

N ϕ
)

=
(
uϕ1,∇B

−1
N ϕ

)
+

(
u2ϕ,∇B

−1
N ϕ

)
. (3.23)

All the terms in (3.23) can be estimated as in the proof of [14, Proposition 4], with the exception

of the two terms on the right hand side. These terms have now to be controlled in this way

|
(
uϕ1,∇B

−1
N ϕ

)
| ≤ ‖u‖L4‖ϕ1‖L4‖∇B−1

N ϕ‖ ≤
ν

4
‖∇u‖2 + c‖ϕ1‖

2
L4‖∇B−1

N ϕ‖2, (3.24)

|
(
u2ϕ,∇B

−1
N ϕ

)
| ≤ ‖u2‖L4‖ϕ‖‖∇B−1

N ϕ‖L4 ≤
1

8
(1 − ρ)α0‖ϕ‖

2 + c‖u2‖
2
L4‖∇B−1

N ϕ‖2
L4

≤
1

8
(1 − ρ)α0‖ϕ‖

2 + c‖u2‖
2
L4‖∇B−1

N ϕ‖‖∇B−1
N ϕ‖H1

≤
1

4
(1 − ρ)α0‖ϕ‖

2 + c‖u2‖
4
L4‖B

−1/2
N ϕ‖2. (3.25)

Therefore, plugging (3.24), (3.25) into (3.23) and using the estimates for the other terms in (3.23)

written in the proof of [14, Proposition 4], we deduce the following differential inequality

1

2

d

dt
‖B

−1/2
N ϕ‖2 +

3

4
(1 − ρ)α0‖ϕ‖

2 ≤
ν

4
‖∇u‖2 + ζ‖B

−1/2
N ϕ‖2, (3.26)

where the function ζ ∈ L1(0, T ) is given by ζ := c(1 + ‖ϕ1‖
2
L4 + ‖u2‖

4
L4) and α is the same

as in (3.9). Inequalities (3.26) and (3.21) finally give

d

dt

(
‖u‖2 + ‖B

−1/2
N ϕ‖2

)
+ (1 − ρ)α0‖ϕ‖

2 +
ν

2
‖∇u‖2 ≤ θ

(
‖u‖2 + ‖B

−1/2
N ϕ‖2

)
,

where θ = 2(α+ ζ) ∈ L1(0, T ). Uniqueness of the weak solution hence follows from this last

differential inequality by applying the standard Gronwall’s lemma.

Remark 3. Also in the present case a continuous dependence estimate like (3.1) holds.
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4 Weak-strong uniqueness (nonconstant viscosity)

Here we consider system (1.1)-(1.5) in dimension two with constant mobility, regular potential

and with a nonconstant viscosity ν = ν(ϕ). In this case we are not able to prove the uniqueness

of weak solutions, due to the poor regularity of ϕ which makes difficult to estimate the difference

of the dissipation term in the Navier-Stokes equations. However, we can prove a weak-strong

uniqueness result. This means that, given a strong solution [u1, ϕ1] and a weak solution [u2, ϕ2]
both corresponding to the same initial datum [u0, ϕ0] ∈ Vdiv×H

2(Ω), then these two solutions

coincide.

Before proving such result, let us first show that a global strong solution exists. Indeed, we

observe that, while the existence of a weak solution with nonconstant viscosity easily follows

easily from the same result for the constant viscosity case (see [8]), this does not occur as far

as strong solutions are concerned. The difficulty essentially lies in the fact that the classical

results for the Navier-Stokes equations in two dimensions with constant viscosity (see, e.g.,

[28]) cannot be used as in [13] to exploit the improved regularity for the convective term in the

nonlocal Cahn-Hilliard equation.

Before stating the main results of this section we recall the definition of admissible kernel (see

[5, Definition 1]).

Definition 1. A kernel J ∈ W 1,1
loc (R2) is admissible if the following conditions are satisfied:

(A1) J ∈ C3(Rd \ {0});

(A2) J is radially symmetric, J(x) = J̃(|x|) and J̃ is non-increasing;

(A3) J̃ ′′(r) and J̃ ′(r)/r are monotone on (0, r0) for some r0 > 0;

(A4) |D3J(x)| ≤ Cd|x|
−d−1 for some Cd > 0.

We recall that the Newtonian and Bessel potentials are admissible for all d ≥ 2. Moreover, we

report the following (cf. [5, Lemma 2])

Lemma 1. Let J be admissible and v = ∇J ∗ψ. Then, for all p ∈ (1,∞), there exists Cp > 0
such that

‖∇v‖p ≤ Cp‖ψ‖Lp .

The following result on existence of a strong solution generalizes [13, Theorem 2].

Theorem 5. Let (H1)–(H5) be satisfied with d = 2 and either J ∈ W 2,1(Bδ) or J admissible.

Assume that u0 ∈ Vdiv, ϕ0 ∈ V ∩ L∞(Ω) and that h ∈ L2
loc(R

+;Gdiv). Then, for every

T > 0 there exists a solution to (1.1)–(1.6) such that

u ∈ L∞(0, T ;Vdiv) ∩ L
2(0, T ;H2(Ω)2), ut ∈ L2(0, T ;Gdiv), (4.1)

ϕ ∈ L∞(0, T ;V ) ∩ L∞(Ω × (0, T )), µ ∈ L∞(0, T ;V ), ϕt ∈ L2(0, T ;H).
(4.2)
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Furthermore, suppose in addition that F ∈ C3(R) and that ϕ0 ∈ H2(Ω). Then, system (1.1)-

(1.6) admits a strong solution on [0, T ] satisfying (4.1), (4.2) and

ϕ ∈ L∞(0, T ;H2(Ω)), (4.3)

ϕt ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (4.4)

Remark 4. The assumption (H2) in the statement of Theorem 5 (and subsequent Theorem 6)

can be replaced by a more general one, i.e., it suffices to assume that ν is locally Lipschitz on

R and there exists ν1 > 0 such that

ν(s) ≥ ν1, ∀ s ∈ R. (4.5)

Indeed, an upper bound for ν (ϕ) (and ν ′ (ϕ) , respectively) in L∞(Ω × (0, T )) can be eas-

ily produced on account of the fact that ‖ϕ‖L∞(Ω×(0,T )) ≤ CR, for any R > 0 such that

‖ϕ0‖L∞ ≤ R.

Proof. We first need to establish the L∞(V ) regularity for µ and ϕ. The argument used here

differs from the one devised in [13]... Indeed, we cannot take advantage of the regularity u ∈
L2(H2) as it happens for the constant viscosity case.

We begin with the nonlocal Cahn-Hilliard equation (1.1). First we recall that ϕ is bounded (see

[18, Lemma 2.10], cf. also [13, Theorem 2]). Then we observe that

‖µ‖2
H2 ≤ c‖ − ∆µ+ µ‖2 ≤ c

(
‖ϕt‖

2 + ‖u · ∇ϕ‖2
)

+Q(R)

≤ c
(
‖ϕt‖

2 + ‖u‖‖∇u‖‖∇ϕ‖‖ϕ‖H2

)
+Q(R)

≤ δ‖ϕ‖2
H2 + c‖ϕt‖

2 + cδ‖u‖
2‖∇u‖2‖∇ϕ‖2 +Q(R). (4.6)

Henceforth we shall denote by Q a continuous monotone increasing function of its argument,

and R > 0 is such that ‖ϕ‖L∞(Ω×(0,T )) ≤ R.

We now control the H2-norm of ϕ (or at least the L2-norm of the second derivatives ∂2
ijϕ :=

∂2ϕ
∂xi∂xj

) in terms of the H2-norm of µ. To this aim apply the second derivative operator ∂2
ij to

(1.2), multiply the resulting identity by ∂2
ijϕ and integrate on Ω. We get

∫

Ω

∂2
ijµ∂

2
ijϕ =

∫

Ω

(a+ F ′′(ϕ))(∂2
ijϕ)2 +

∫

Ω

(∂ia∂jϕ+ ∂ja∂iϕ)∂2
ijϕ

+

∫

Ω

(ϕ∂2
ija− ∂i(∂jJ ∗ ϕ)∂2

ijϕ+

∫

Ω

F ′′′(ϕ)∂iϕ∂jϕ∂
2
ijϕ, i, j = 1, 2.

From this identity, by means of (H2) we obtain

c0‖∂
2
ijϕ‖

2 ≤ c‖∂2
ijµ‖

2

+ c
(
‖∇a‖2

L∞ +Q(R)
)
‖∇ϕ‖2 +Q(R)‖∂2

ija‖
2 + ‖∂i(∂jJ ∗ ϕ)‖2, (4.7)

and an estimate like this still holds if ‖∂2
ijϕ‖ and ‖∂2

ijµ‖ are replaced by ‖ϕ‖H2 and ‖µ‖H2 ,

respectively. By combining (4.6) with (4.7) and choosing δ > 0 small enough we get

‖∂2
ijϕ‖

2 ≤ c‖ϕt‖
2 + c‖u‖2‖∇u‖2‖∇ϕ‖2 +Q(R)

+ c
(
‖∇a‖2

L∞ +Q(R)
)
‖∇ϕ‖2 +Q(R)‖∂2

ija‖
2 + c‖∂i(∂jJ ∗ ϕ)‖2. (4.8)
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We now test the nonlocal Cahn-Hilliard equation by µt =
(
a + F ′′(ϕ)

)
ϕt − J ∗ ϕt in H to

deduce
∫

Ω

ϕtµt +

∫

Ω

(u · ∇ϕ)µt +
1

2

d

dt
‖∇µ‖2

=

∫

Ω

(a+ F ′′(ϕ))ϕ2
t − (ϕt, J ∗ ϕt) +

∫

Ω

(u · ∇ϕ)µt +
1

2

d

dt
‖∇µ‖2 = 0. (4.9)

This identity was considered also in [13], but now we must avoid to use the H2-norm of u to

estimate the term coming from convection. This term is then estimated as follows

∣∣∣
∫

Ω

(u · ∇ϕ)µt

∣∣∣ ≤ ‖u · ∇ϕ‖‖µt‖ ≤ QJ(R)‖ϕt‖‖u · ∇ϕ‖

≤
c0
4
‖ϕt‖

2 +Qc0,J(R)‖u‖2
L4‖∇ϕ‖2

L4

≤
c0
4
‖ϕt‖

2 +Qc0,J(R)‖u‖‖∇u‖‖∇ϕ‖‖ϕ‖H2

≤
c0
4
‖ϕt‖

2 +Qc0,J,ε(R)
(
‖u‖2‖∇u‖2

)
‖∇ϕ‖2 + ε‖ϕ‖H2 , (4.10)

for ε > 0. Furthermore, we have

|(ϕt, J ∗ ϕt)| ≤ ‖ϕt‖V ′‖J ∗ ϕt‖V ≤ ‖ϕt‖V ′‖J‖W 1,1‖ϕt‖

≤
c0
4
‖ϕt‖

2 + c‖J‖2
W 1,1‖ϕt‖

2
V ′ . (4.11)

Inserting (4.10), (4.11) into (4.9), using (4.8) together with (H3) and choosing ε > 0 small

enough, we get the following differential inequality

d

dt
‖∇µ‖2 + c0‖ϕt‖

2 ≤ Qc0,J(R)
(
‖u‖2‖∇u‖2

)
‖∇ϕ‖2 + c‖u‖2‖∇u‖2‖∇ϕ‖2 +Q(R)

+ c
(
‖∇a‖2

L∞ +Q(R)
)
‖∇ϕ‖2 +Q(R)

2∑

i,j=1

‖∂2
ija‖

2

+ c
2∑

i,j=1

‖∂i(∂jJ ∗ ϕ)‖2 + c‖J‖2
W 1,1‖ϕt‖

2
V ′ . (4.12)

Moreover, notice that we have

c0‖∇ϕ‖
2 −Q(R) ≤ ‖∇µ‖2 ≤ Q(R)

(
‖∇ϕ‖2 + 1

)
.

Therefore, from (4.12) by means of Gronwall’s lemma (cf. also Lemma 1), using the initial con-

dition ϕ0 ∈ V and the regularity properties of the weak solution given by the first of (2.2) and

by (2.5), we deduce the following bounds

ϕ ∈ L∞(0, T ;V ), ϕt ∈ L2(0, T ;H), µ ∈ L∞(0, T ;V ). (4.13)

Let us now test the Navier-Stokes equations by ut in Gdiv to deduce the identity

‖ut‖
2 + 2

∫

Ω

ν(ϕ)Du : Dut + b(u, u, ut) = (l, ut), (4.14)
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where the function l is given by

l := −
ϕ2

2
∇a− (J ∗ ϕ)∇ϕ+ h.

Notice that, due to the assumption on the external force h and to the regularity property for the

ϕ component of a weak solution we have l ∈ L2(0, T ;Gdiv). From (4.14) we obtain

1

2
‖ut‖

2 +
d

dt

∫

Ω

ν(ϕ)|Du|2 + b(u, u, ut) ≤
1

2
‖l‖2 +

∫

Ω

|Du|2ν ′(ϕ)ϕt. (4.15)

Observe that

∣∣∣
∫

Ω

|Du|2ν ′(ϕ)ϕt

∣∣∣ ≤ ‖ν ′(ϕ)‖L∞‖ϕt‖‖Du‖
2
L4 ≤ Q(R)‖ϕt‖‖Du‖‖u‖H2

≤ δ‖u‖2
H2 +Qδ(R)‖Du‖2‖ϕt‖

2. (4.16)

Furthermore, we have

|b(u, u, ut)| ≤
1

4
‖ut‖

2 + ‖u · ∇u‖2 ≤
1

4
‖ut‖

2 + 2‖u‖2
L4‖∇u‖2

L4

≤
1

4
‖ut‖

2 + c‖u‖‖∇u‖‖∇u‖‖u‖H2

≤
1

4
‖ut‖

2 + δ‖u‖2
H2 + cδ

(
‖u‖2‖∇u‖2

)
‖∇u‖2. (4.17)

Plugging (4.16) and (4.17) into (4.15), we get

1

4
‖ut‖

2 +
d

dt

∫

Ω

ν(ϕ)|Du|2 ≤
1

2
‖l‖2 + 2δ‖u‖2

H2 + cδ
(
‖u‖2‖∇u‖2

)
‖Du‖2

+Qδ(R)‖Du‖2‖ϕt‖
2, (4.18)

where δ > 0 will be fixed later. Using (H2) we can write the following estimate which holds for

every u ∈ H2(Ω)2 ∩Gdiv and every ϕ ∈W 1,p(Ω) with 2 < p <∞

‖u‖H2 ≤ c
(
‖P∆u‖ + ‖u‖

)
≤ cν1

(
‖Pdiv(ν(ϕ)Du)‖ + ‖∇ϕ · ∇u‖ + ‖u‖

)

≤ cν1

(
‖Pdiv(ν(ϕ)Du)‖ + ‖∇ϕ‖Lp‖∇u‖Lq + ‖u‖

)

≤ cν1

(
‖Pdiv(ν(ϕ)Du)‖ + ‖∇ϕ‖Lp‖∇u‖2/q‖u‖

1−2/q

H2 + ‖u‖
)

≤
1

2
‖u‖H2 + cν1

(
‖Pdiv(ν(ϕ)Du)‖ + ‖∇ϕ‖

p/(p−2)
Lp ‖∇u‖ + ‖u‖

)
,

where 2 < q < ∞ is such that p−1 + q−1 = 1/2 and P : L2(Ω)2 → Gdiv is the Leray

projector. Hence we find

‖u‖H2 ≤ cν1

(
‖Pdiv(ν(ϕ)Du)‖ + ‖∇ϕ‖

p/(p−2)
Lp ‖∇u‖ + ‖u‖

)
. (4.19)

On the other hand, from (1.3) we have

Pdiv(ν(ϕ)Du) = Put + P
(
(u · ∇)u

)
+ Pl.
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Therefore we deduce

‖Pdiv(ν(ϕ)Du)‖ ≤ ‖ut‖ + ‖u‖L4‖∇u‖L4 + ‖l‖

≤ ‖ut‖ + c‖u‖1/2‖∇u‖1/2‖∇u‖1/2‖u‖
1/2

H2 + ‖l‖

≤ ‖ut‖ + σ‖u‖H2 + cσ‖u‖‖∇u‖
2 + ‖l‖, (4.20)

where σ > 0. Plugging (4.20) into (4.19) and choosing σ small enough (i.e., cν1σ < 1) we get

‖u‖H2 ≤ c
(
‖ut‖ + ‖u‖‖∇u‖2 + ‖l‖ + ‖∇ϕ‖

p/(p−2)
Lp ‖∇u‖ + ‖u‖

)
. (4.21)

We now control ∇ϕ in terms of ∇µ inLp. We then take the gradient of µ = aϕ−J∗ϕ+F ′(ϕ),

multiply it by ∇ϕ|∇ϕ|p−2 and integrate the resulting identity on Ω. We get

∫

Ω

∇ϕ|∇ϕ|p−2 · ∇µ =

∫

Ω

(a+ F ′′(ϕ))|∇ϕ|p +

∫

Ω

(ϕ∇a−∇J ∗ ϕ) · ∇ϕ|∇ϕ|p−2.

So that, by (H3), we find

c0‖∇ϕ‖
p
Lp ≤ ‖∇ϕ‖p−1

Lp ‖∇µ‖Lp + (‖∇a‖L∞ + ‖∇J‖L1)‖ϕ‖Lp‖∇ϕ‖p−1
Lp

≤
c0
2
‖∇ϕ‖p

Lp + c‖∇µ‖p
Lp +Q(R)(‖∇a‖L∞ + ‖∇J‖L1)p,

which yields

‖∇ϕ‖Lp ≤ c‖∇µ‖Lp +Q(R). (4.22)

Furthermore, from the nonlocal Cahn-Hilliard equation (1.1) we have

‖∇µ‖Lp ≤ c‖∇µ‖2/p‖∇µ‖
1−2/p

H1

≤ c‖∇µ‖2/p‖µ‖
1−2/p

H2 ≤ c‖∇µ‖2/p(‖∆µ‖1−2/p + ‖µ‖1−2/p)

≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖ϕt‖

1−2/p + ‖u · ∇ϕ‖1−2/p + 1
)

≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖ϕt‖

1−2/p + ‖u‖
1−2/p
Lq ‖∇ϕ‖

1−2/p
Lp + 1

)
, (4.23)

where we have used the fact that theH2−norm of µ is equivalent to theL2− norm of −∆µ+µ
(cf. (1.5)) and we have taken into account the improved regularity for µ given by the third of

(4.13). By combining (4.13) with (4.23) we therefore get

‖∇ϕ‖Lp ≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖ϕt‖

1−2/p + ‖u‖
(p−2)/2

L2p/(p−2) + 1
)

≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖ϕt‖

1−2/p + ‖u‖(p−2)2/2p‖∇u‖1−2/p + 1
)
, (4.24)

and inserting this estimate into (4.21) we get

‖u‖H2 ≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖ut‖ + ‖u‖‖∇u‖2 + ‖l‖ + ‖ϕt‖‖∇u‖

+ ‖u‖(p−2)/2‖∇u‖2 + ‖∇u‖ + ‖u‖
)
. (4.25)
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We can now insert (4.25) into (4.18), take δ > 0 small enough and then write the following

differential inequality

d

dt

∫

Ω

ν(ϕ)|Du|2 +
1

8
‖ut‖

2

≤ Q(R, ‖ϕ0‖V , ‖u0‖)
(
‖l‖2 +

(
(‖u‖2 + ‖u‖p−2)‖∇u‖2

)
‖Du‖2

+ ‖ϕt‖
2‖Du‖2 + ‖∇u‖2

)
. (4.26)

From (4.26), on account of (H2) and of the improved regularity for ϕt given by the second of

(4.13), by means of Gronwall’s lemma (cf. also (4.25)), we obtain

u ∈ L∞(0, T ;Vdiv) ∩ L
2(0, T ;H2(Ω)2), ut ∈ L2(0, T ;Gdiv). (4.27)

With these regularity properties for u at disposal we can now argue exactly as in the second

step of the proof of [13, Theorem 2] by differentiating (1.1) with respect to time, multiplying the

resulting identity by µt in H and using the assumptions that F ∈ C3(R) and ϕ0 ∈ H2(Ω) to

deduce

ϕt ∈ L∞(0, T ;H) ∩ L2(0, T, V ).

From this property, on account of (4.24), (4.22) and the first of (4.27), we get

ϕ ∈ L∞(0, T ;W 1,p(Ω)).

Finally, by means of a comparison argument in the nonlocal Cahn-Hilliard equation as in [13]

we get also µ ∈ L∞(0, T ;H2(Ω)) and from this we deduce

ϕ ∈ L∞
(
0, T ;H2(Ω)

)
.

This ends the proof.

We can now state the weak-strong uniqueness result for the nonconstant viscosity case.

Theorem 6. Assume that (H1)–(H5) are satisfied and d = 2. Let u0 ∈ Gdiv, ϕ0 ∈ L∞(Ω)
and let [u1, ϕ1] be a strong solution satisfying (4.1)–(4.4) and [u2, ϕ2] be a weak solution both

corresponding to [u0, ϕ0]. The existence of a strong solution is ensured by Theorem 5 if, in

addition, u0 ∈ Vdiv, ϕ0 ∈ H2(Ω), F ∈ C3(R) and either J ∈ W 2,1(Bδ) or J admissible.

Then u1 = u2 and ϕ1 = ϕ2.

Proof. Taking the difference between the variational formulation of (1.1) and (1.2) written for

each solution and setting u := u1 − u2, ϕ := ϕ1 − ϕ2, we get

〈ut, v〉 + 2
(
(ν(ϕ1) − ν(ϕ2))Du1, Dv

)
+ 2

(
ν(ϕ2)Du,Dv

)
+ b(u1, u1, v) − b(u2, u2, v)

= −
1

2

(
ϕ(ϕ1 + ϕ2)∇a, v

)
−

(
(J ∗ ϕ)∇ϕ1, v

)
−

(
(J ∗ ϕ2)∇ϕ, v

)
, (4.28)

〈ϕt, ψ〉 + (∇µ,∇ψ) = −(u · ∇ϕ1, ψ) + (u2 · ∇ϕ, ψ), (4.29)
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for all v ∈ Vdiv and ψ ∈ V , where µ = µ1 − µ2 = aϕ − J ∗ ϕ + F ′(ϕ1) − F ′(ϕ2). Let us

choose v = u and ψ = ϕ as test functions in (4.28) and (4.29), respectively, and adding the

resulting identities. Notice that the contribution from the second term on the right hand side of

(4.29) vanishes due to the incompressibility condition. Hence, we get

1

2

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+ 2

(
(ν(ϕ1) − ν(ϕ2))Du1, Du

)
+ 2

(
ν(ϕ2)Du,Du

)
+ b(u, u2, u)

+ (∇µ,∇ϕ) = I1 + I2 + I3 + I4, (4.30)

where I1, I2, I3 are given again by

I1 = −
1

2

(
ϕ(ϕ1 + ϕ2)∇a, u

)
, I2 = −

(
(J ∗ ϕ)∇ϕ1, u

)
, I3 = −

(
(J ∗ ϕ2)∇ϕ, u

)
,

while I4 is given by

I4 = −(u · ∇ϕ1, ϕ).

Let us first estimate the terms in (4.30) coming from the Navier-Stokes equations. Due to as-

sumption (H2) we have

2
∣∣((ν(ϕ1) − ν(ϕ2))Du1, Du

)∣∣ ≤ C‖ϕ‖L4‖Du1‖L4‖∇u‖

≤ C‖ϕ‖1/2‖ϕ‖
1/2
V ‖Du1‖

1/2‖Du1‖
1/2

H1 ‖∇u‖

≤
ν1

12
‖∇u‖2 + C‖∇u1‖‖u1‖H2‖ϕ‖2 + C‖∇u1‖‖u1‖H2‖ϕ‖‖∇ϕ‖

≤
ν1

12
‖∇u‖2 +

c0
4
‖∇ϕ‖2 + C(1 + ‖∇u1‖

2‖u1‖
2
H2)‖ϕ‖2, (4.31)

2
(
ν(ϕ2)Du,Du

)
≥ ν1‖∇u‖

2,

where henceforth in this proof C will denote a constant which depends on ‖ϕ0‖L∞ , and on

‖u0‖. Indeed, recall that, since ϕ0 ∈ L∞(Ω), then we have

‖ϕi‖L∞(Ω×(0,T ) ≤ Ci = Ci

(
‖ϕ0‖L∞ , ‖u0‖

)
, for i = 1, 2.

The term in the trilinear form is standard

|b(u, u2, u)| ≤ c‖u‖‖∇u‖‖∇u2‖ ≤
ν1

12
‖∇u‖2 + c‖∇u2‖

2‖u‖2,

while the terms I1, I2, I3 can now be estimated more easily in this way

I1 ≤ ‖ϕ‖‖ϕ1 + ϕ2‖L4‖∇a‖L∞‖u‖L4

≤
ν1

12
‖∇u‖2 + c

(
‖ϕ1‖

2
L4 + ‖ϕ2‖

2
L4

)
‖ϕ‖2,

I2 ≤ ‖ϕ1‖L4‖∇J‖L1‖ϕ‖‖u‖L4

≤
ν1

12
‖∇u‖2 + c‖ϕ1‖

2
L4‖ϕ‖2,

I3 ≤
ν1

12
‖∇u‖2 + c‖ϕ2‖

2
L4‖ϕ‖2.
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Regarding the terms coming from the nonlocal Cahn-Hilliard equation we have

(∇µ,∇ϕ) =
(
(a+ F ′′(ϕ2))∇ϕ,∇ϕ

)
+

(
ϕ∇a−∇J ∗ ϕ,∇ϕ

)

+
(
(F ′′(ϕ1) − F ′′(ϕ2))∇ϕ1,∇ϕ

)
,

and the last term on the right hand side of this identity can be estimated as

∣∣((F ′′(ϕ1) − F ′′(ϕ2))∇ϕ1,∇ϕ
)∣∣ ≤ ‖F ′′(ϕ1) − F ′′(ϕ2)‖L4‖∇ϕ1‖L4‖∇ϕ‖

≤ C‖ϕ‖L4‖∇ϕ1‖L4‖∇ϕ‖ ≤ C(‖ϕ‖ + ‖ϕ‖1/2‖∇ϕ‖1/2)‖∇ϕ1‖
1/2‖∇ϕ1‖

1/2
V ‖∇ϕ‖

≤
c0
4
‖∇ϕ‖2 + C(1 + ‖∇ϕ1‖

2‖ϕ1‖
2
H2)‖ϕ‖2.

Hence, by means of assumption (H3), we get

(∇µ,∇ϕ) ≥ c0‖∇ϕ‖
2 − 2‖∇J‖L1‖ϕ‖‖∇ϕ‖ −

c0
4
‖∇ϕ‖2 − C(1 + ‖∇ϕ1‖

2‖ϕ1‖
2
H2)‖ϕ‖2

≥
c0
2
‖∇ϕ‖2 − C(1 + ‖∇ϕ1‖

2‖ϕ1‖
2
H2)‖ϕ‖2.

Finally, the last term in (4.30) coming from the nonlocal Cahn-Hilliard equation can be controlled

as follows

I4 ≤ ‖u‖L4‖∇ϕ1‖L4‖ϕ‖ ≤
ν1

12
‖∇u‖2 + c‖ϕ1‖

2
H2‖ϕ‖2. (4.32)

By plugging estimates from (4.31) to (4.32) into (4.30) we are led to the following differential

inequality

1

2

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+
ν1

2
‖∇u‖2 +

c0
4
‖∇ϕ‖2 ≤ γ

(
‖u‖2 + ‖ϕ‖2

)
, (4.33)

where the function γ is given by

γ = c
(
1 + ‖∇u1‖

2‖u1‖
2
H2 + ‖∇u2‖

2 + ‖ϕ1‖
2
L4 + ‖ϕ2‖

2
L4 + ‖ϕ1‖

2
H2 + ‖∇ϕ1‖

2‖ϕ1‖
2
H2

)
,

and due to the regularity properties of the strong solution [u1, ϕ1] and of the weak solution

[u2, ϕ2] we have γ ∈ L1(0, T ). Strong-weak uniqueness follows by applying Gronwall’s lemma

to (4.33). In addition, a continuous dependence estimate in L2 × L2 can also be deduced by

considering two solutions with different initial data.

5 Global and exponential attractors

In this section we prove two results concerning the asymptotic behavior of the dynamical system

generated by (1.1)–(1.5) in dimension two.

The first result is related to the property of connectedness of the global attractor whose exis-

tence was established in [11] for nonconstant viscosity, constant mobility and regular potential

(see Remark 5 below, however).
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The second result is the existence of an exponential attractor. This will be proven in details when

mobility and viscosity are constant and the potential is regular. This kind of result relies on a

regularization argument devised in [13] and on an abstract theorem (see [10]) which generalizes

a well known result on the existence of exponential attractors in Banach spaces (cf. [9]). A similar

argument will be carried out in the nonconstant viscosity case albeit we will work with strong

solutions.

Let us define the dynamical system in the autonomous case. Take d = 2 and h ∈ V ′
div.

Then, as a consequence of Theorem 2, we have that for every fixed η ≥ 0 system (1.1)–(1.5)

generates a semigroup {Sη(t)}t≥0 of closed operators on the metric space Xη given by

Xη := Gdiv × Yη (5.1)

where

Yη := {ϕ ∈ H : F (ϕ) ∈ L1(Ω), |ϕ| ≤ η}.

It is convenient to endow the space Xη with the following metric

ρXη(z2, z1) = ‖u2 − u1‖ + ‖ϕ2 − ϕ1‖ +
∣∣∣
∫

Ω

F (ϕ2) −

∫

Ω

F (ϕ1)
∣∣∣,

for all zi := [ui, ϕi] ∈ Xη, i = 1, 2. Notice that this metric is slightly different from the one

which is naturally associated to the energy E (the difference is in the exponent in the third term,

see [11]).

A first noteworthy consequence of the uniqueness result for weak solutions is the following

Theorem 7. Let assumptions (H1)–(H5) be satisfied with ν = 1 . Suppose d = 2 and that

h ∈ V ′
div. Then, the global attractor in Xη for the semigroup Sη(t) is connected.

Proof. The conclusion follows immediately by applying [3, Corollary 4.3]. Indeed, the space Xη

is (arcwise) connected, thanks to the fact that F is a quadratic perturbation of a convex function.

Moreover, we have the strong time continuity of each trajectory z = [u, ϕ] from [0,∞) to the

metric space Xη (see Theorem 1). Thus Kneser’s property is satisfied thanks to uniqueness.

Remark 5. Theorem 7 also holds in the case of constant (or degenerate) mobility and singular

potential on account of Theorem 3 and [12, Proposition 4] (or Theorem 4 and [14, Proposition

3]). The argument is similar.

The second result is the existence of an exponential attractor. We first recall its definition.

Definition 2. A compact set Mη ⊂ Xη is an exponential attractor for the dynamical system

(Xη, Sη(t)) if the following properties are satisfied

(i) positive invariance: Sη(t)Mη ⊆ Mη for all t ≥ 0;

(ii) finite dimensionality: dimF (Mη,Xη) <∞;
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(iii) exponential attraction: ∃Q : R
+ → R

+ increasing and κ > 0 such that, for all R > 0
and for all B ⊂ Xη with supz∈B ρXη(z, 0) ≤ R there holds

distXη(Sη(t)B,Mη) ≤ Q(R)e−κt, ∀t ≥ 0.

Theorem 8. Let d = 2. Assume that (H1)–(H5) are satisfied with ν = 1. Then the dynam-

ical system (Xη, Sη(t)) possesses an exponential attractor Mη which is bounded in Vdiv ×
W 1,p(Ω), 2 < p <∞.

The proof of Theorem 8 is based on four lemmas. These lemmas allow us to apply the abstract

result in [10]. For their proof we shall need the following regularization result which is an easy

consequence of [13, Theorem 2 and Proposition 1] and has an independent interest. In the

statement and proof of this result we shall denote by Γτ = Γτ

(
E(z0), η

)
a positive constant

depending on a positive time τ , on the energy E(z0) of the initial datum z0 := [u0, ϕ0] of a

weak solution, and on η, where η ≥ 0 is such that |ϕ0| ≤ η (Γτ may of course depend also on

h, F , J , ν and Ω). The value of Γτ may change even on the same line.

Proposition 1. Let d = 2 and h ∈ L2
tb(0,∞;Gdiv). Assume that (H1)–(H5) are satisfied with

ν = 1, and suppose F ∈ C3(R). Let u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and let [u, ϕ]
be the weak solution on (0,∞) to system (1.1)–(1.6) corresponding to [u0, ϕ0]. Then, for every

τ > 0 there exists Γτ > 0 such that we have

u ∈ L∞(τ,∞;Vdiv) ∩ L
2
tb

(
τ,∞;H2(Ω)2

)
, ut ∈ L2

tb

(
τ,∞;Gdiv

)
, (5.2)

ϕ ∈ L∞
(
τ,∞;W 1,p(Ω)

)
, 2 < p <∞, ϕt ∈ L∞(τ,∞;H) ∩ L2

tb(τ,∞;V ),
(5.3)

with norms controlled by Γτ . In addition, there exists a constant Λ = Λ(η) > 0 depending only

on η (and on F , J , ν and Ω) such that for every initial data z0 := [u0, ϕ0] ∈ Gdiv × H with

F (ϕ0) ∈ L1(Ω) and |ϕ0| ≤ η there exists a time t∗ = t∗
(
E(z0)

)
≥ 0 starting from which the

weak solution corresponding to z0 regularizes, that is,

‖∇u(t)‖ + ‖ϕ(t)‖W 1,p(Ω) +

∫ t+1

t

‖u(s)‖2
H2(Ω)2ds ≤ Λ(η), ∀t ≥ t∗. (5.4)

Remark 6. Notice that, differently from [13, Theorem 2], in Proposition 1 we do not require any

further regularity assumption on J in addition to (H1).

Proof. Recalling the proof of [18, Lemma 2.10] and the dissipative estimate (2.7), observe first

that, if z0 ∈ Xη, then for every τ > 0 there exists Γτ = Γτ

(
E(z0), η

)
such that

‖ϕ(t)‖L∞(Ω) ≤ Γτ , ∀t ≥ τ. (5.5)

This implies that ‖µ(t)‖L∞(Ω) ≤ Γτ for all t ≥ τ , and hence that the Korteweg term µ∇ϕ ∈
L2(τ, T ;L2(Ω)2).

We can now repeat exactly the same argument in the proof of [13, Theorem 2], by writing the

same estimates which now hold starting from a positive time, say for t ≥ τ/2 > 0. We recall

that these estimates are obtained by multiplying the nonlocal Cahn-Hilliard by µt in H and then
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by differentiating the nonlocal Cahn-Hilliard with respect to time and multiplying the resulting

identity bu µt. By doing so we are led to a differential inequality of the following form

d

ds
log

(
1 +

∫

Ω

(
a+ F ′′(ϕ)

)
ϕ2

t

)
≤ Γτ

(
σ(s) + ‖ϕt‖

2
)
, ∀s ≥ τ/2, (5.6)

where σ = Γτ

(
1 + ‖u‖2

H2 + ‖ut‖
2
)
and we have σ ∈ L1(τ/2, T ), for all T > τ/2. At

this point we argue a bit differently from the proof of [13, Theorem 2]. Indeed, here we want to

avoid the L2-norm of ϕt in τ/2 which would require the initial condition ϕ(τ/2) ∈ H2 and in

addition would force us to make some further regularity assumptions on the kernel J (like, e.g.,

J ∈ W 2,1). Therefore, we multiply (5.6) by (s − τ/2) and integrate with respect to s between

τ/2 and t ∈ (τ/2, T ). We get

(
t−

τ

2

)
log

(
1 +

∫

Ω

(
a+ F ′′(ϕ)

)
ϕ2

t

)
≤

∫ T

τ/2

log
(
1 +

∫

Ω

(
a+ F ′′(ϕ)

)
ϕ2

t

)
ds

+ Γτ

(
T −

τ

2

)(
‖σ‖L1(τ/2,T ) + ‖ϕt‖

2
L2(τ/2,T ;H)

)

≤ Γτ‖ϕt‖
2
L2(τ/2,T ;H) + Γτ

(
T −

τ

2

)(
‖σ‖L1(τ/2,T ) + ‖ϕt‖

2
L2(τ/2,T ;H)

)
, ∀t ∈ (τ/2, T ).

From this inequality, on account of the fact that we have ‖ϕt‖L2(τ/2,T ;H) ≤ Γτ (this was shown

in the first step of the proof of [13, Theorem 2], before (5.6)) we deduce that

ϕt ∈ L∞(τ, T ;H). (5.7)

This bound, together with the following estimate (cf. proof of [13, Theorem 2])

‖∇µ‖Lp ≤ Γτ

(
1 + ‖ϕt‖

1−2/p
)
, 2 < p <∞,

yield

ϕ ∈ L∞
(
τ, T ;W 1,p(Ω)

)
. (5.8)

Finally, arguing as in the proof of [13, Proposition 1] by applying the uniform Gronwall’s lemma,

and taking (5.7), (5.8) (together with the bounds for u on (τ, T )) into account, we get (5.2), (5.3)

and (5.4), respectively.

For the statements and proofs of the following lemmas we shall denote by Cτ = Cτ

(
E(z0i), η

)

a positive constant depending on a positive time τ , on the energies E(z01), E(z02) of the initial

data z01, z02 ∈ Xη of two weak solutions, and on η, where η > 0 is such that |ϕ01|, |ϕ02| ≤ η
(of course, Cτ will generally depend also on h, F , J , ν and Ω). The value of Cτ may change

even within the same line. Furthermore, we shall always set u := u2 − u1, ϕ := ϕ2 − ϕ1.

Lemma 2. Let d = 2. Assume that (H1)–(H5) are satisfied with ν = 1 and that F ∈ C3(R).

Let u0i ∈ Gdiv, ϕ0i ∈ H with F (ϕ0i) ∈ L1(Ω) and [ui, ϕi] be the corresponding weak

solutions, i = 1, 2. Then, for every τ > 0 there exists Cτ > 0 such that we have

‖u2(t) − u1(t)‖
2 + ‖ϕ2(t) − ϕ1(t)‖

2

+

∫ t

τ

(ν

4
‖∇(u2(s) − u1(s))‖

2 +
c0

4
‖∇(ϕ2(s) − ϕ1(s))‖

2
)
ds

≤ eCτ t
(
‖u2(τ) − u1(τ)‖2 + ‖ϕ2(τ) − ϕ1(τ)‖2

)
, ∀t ≥ τ. (5.9)
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Proof. Let us multiply (3.2) by ϕ in L2(Ω). We get

1

2

d

dt
‖ϕ‖2 = −(u · ∇ϕ2, ϕ) − (∇µ̃,∇ϕ) (5.10)

Taking the gradient of µ̃, on account of (3.3) we have

(∇µ̃,∇ϕ) =

∫

Ω

(
a+ F ′′(ϕ1)

)
|∇ϕ|2 + (ϕ∇a−∇J ∗ ϕ,∇ϕ)

+
(
(F ′′(ϕ2) − F ′′(ϕ1))∇ϕ2,∇ϕ

)
≥ c0‖∇ϕ‖

2 − c‖ϕ‖‖∇ϕ‖

− ‖F ′′(ϕ2) − F ′′(ϕ1)‖L4‖∇ϕ2‖L4‖∇ϕ‖

≥
c0
2
‖∇ϕ‖2 − c‖ϕ‖2 − Cτ‖ϕ‖L4‖∇ϕ2‖L4‖∇ϕ‖

≥
c0
2
‖∇ϕ‖2 − c‖ϕ‖2 − Cτ

(
‖ϕ‖ + ‖ϕ‖1/2‖∇ϕ‖1/2

)
‖∇ϕ2‖L4‖∇ϕ‖

≥
c0
4
‖∇ϕ‖2 − Cτ

(
1 + ‖∇ϕ2‖

2
L4 + ‖∇ϕ2‖

4
L4

)
‖ϕ‖2.

Observe that

(∇µ̃,∇ϕ) ≥
c0
4
‖∇ϕ‖2 − Cτ

(
1 + ‖∇ϕ2‖

4
L4

)
‖ϕ‖2. (5.11)

Furthermore, we have

|(u · ∇ϕ2, ϕ)| ≤ ‖u‖L4‖∇ϕ2‖L4‖ϕ‖ ≤
ν

4
‖∇u‖2 + c‖∇ϕ2‖

2
L4‖ϕ‖2. (5.12)

Therefore, plugging (5.11) and (5.12) into (5.10), we get

1

2

d

dt
‖ϕ‖2 +

c0
4
‖∇ϕ‖2 ≤ Cτ

(
1 + ‖∇ϕ2‖

4
L4

)
‖ϕ‖2 +

ν

4
‖∇u‖2.

Adding this last differential inequality to (3.8), we obtain

1

2

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+
ν

4
‖∇u‖2 +

c0
4
‖∇ϕ‖2 ≤ γ(t)

(
‖u‖2 + ‖ϕ‖2

)
, (5.13)

where

γ(t) := α(t) + Cτ

(
1 + ‖∇ϕ2‖

4
L4

)
.

Then, thanks to Proposition 1, for every τ > 0 there exists Cτ > 0 (always depending on τ ,

η and on the energies E(z01), E(z02)) such that the following bounds for the solutions zi =
[ui, ϕi] corresponding to [u0i, ϕ0i] hold

‖ui‖L∞(τ,∞;Vdiv) + ‖ϕi‖L∞(τ,∞;W 1,p(Ω)) ≤ Cτ , (5.14)

‖ui,t‖L2
tb(τ,∞;Gdiv) + ‖ϕi,t‖L∞(τ,∞;H) ≤ Cτ , (5.15)

Thus we have γ(t) ≤ Cτ , for all t ≥ τ and by applying the standard Gronwall’s lemma to (5.13)

written for t ≥ τ we get

‖u(t)‖2 + ‖ϕ(t)‖2 ≤
(
‖u(τ)‖2 + ‖ϕ(τ)‖2

)
eCτ t, ∀t ≥ τ. (5.16)

By integrating (5.13) between τ and t and using (5.16) we get (5.9).
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Lemma 3. Let the assumptions of Lemma 2 be satisfied. Let u0i ∈ Gdiv, ϕ0i ∈ H with

F (ϕ0i) ∈ L1(Ω) and [ui, ϕi] be the corresponding weak solutions, i = 1, 2. Then, for every

τ > 0 there exists Cτ > 0 such that we have

‖u2(t) − u1(t)‖
2 + ‖ϕ2(t) − ϕ1(t)‖

2 +
∣∣∣
∫

Ω
F

(
ϕ2(t)

)
−

∫

Ω
F

(
ϕ1(t)

)∣∣∣
2

≤ Cτ

(
‖u2(τ) − u1(τ)‖2 + ‖ϕ2(τ) − ϕ1(τ)‖2

)
e−kt

+ Cτ

∫ t

τ

(
‖u2(s) − u1(s)‖

2 + ‖ϕ2(s) − ϕ1(s)‖
2
)
ds, ∀t ≥ τ. (5.17)

Proof. By using Poincaré’s inequality for u and the Poincaré-Wirtinger’s inequality for ϕ, i.e.,

λ1‖u‖
2 ≤ ‖∇u‖2, ‖ϕ− ϕ‖2 ≤ cΩ‖∇ϕ‖

2, (5.18)

from (5.13) we have

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+
νλ1

2
‖u‖2 +

c0
2cΩ

‖ϕ‖2 ≤ 2γ(t)
(
‖u‖2 + ‖ϕ‖2

)
+
c0|Ω|

2cΩ
ϕ2,

which yields

d

dt

(
‖u‖2 + ‖ϕ‖2

)
+ k

(
‖u‖2 + ‖ϕ‖2

)
≤ Cτ

(
‖u‖2 + ‖ϕ‖2

)
, (5.19)

where k := min(λ1ν, c0/cΩ)/2 and Cτ is a positive constant such that 2γ(t)+ c0/2cΩ ≤ Cτ

for all t ≥ τ . By using Gronwall’s lemma we immediately see from (5.19) that ‖u‖2 + ‖ϕ‖2 is

controlled by the right hand side of (5.17). Furthermore, we also have

∣∣∣
∫

Ω

F
(
ϕ2(t)

)
−

∫

Ω

F
(
ϕ1(t)

)∣∣∣ ≤ Cτ‖ϕ(t)‖, ∀t ≥ τ.

Hence, the proof of (5.17) is complete.

Lemma 4. Let the assumptions of Lemma 2 be satisfied. Let u0i ∈ Gdiv, ϕ0i ∈ H with

F (ϕ0i) ∈ L1(Ω) and [ui, ϕi] be the corresponding weak solutions, i = 1, 2. Then, for every

τ > 0 there exists Cτ > 0 such that

‖u2,t − u1,t‖
2
L2(τ,t;V ′

div) + ‖ϕ2,t − ϕ1,t‖
2
L2(τ,t;D(BN )′)

≤ Cτe
Cτ t

(
‖u2(τ) − u1(τ)‖

2 + ‖ϕ2(τ) − ϕ1(τ)‖
2
)
, ∀t ≥ τ. (5.20)

Proof. Consider the variational formulation of (3.2) and (3.3), namely,

〈ϕt, ψ〉 = −(∇µ̃,∇ψ) − (u · ∇ϕ1, ψ) − (u2 · ∇ϕ, ψ), ∀ψ ∈ V, (5.21)

and take ψ ∈ D(BN). Then, for every τ > 0 we see that there exists Cτ > 0 such that

|(∇µ̃,∇ψ)| = |(µ̃, BNψ)| ≤ ‖µ̃‖‖ψ‖D(BN ) ≤ Cτ‖ϕ‖‖ψ‖D(BN ), ∀t ≥ τ. (5.22)

Moreover, we have

|(u · ∇ϕ1, ψ)| = |(u · ∇ψ, ϕ1) ≤ c‖∇u‖‖ϕ1‖‖ψ‖D(BN ) ≤ C‖∇u‖‖ψ‖D(BN ),
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where in this case it is enough to use the dissipative estimate (2.7) and therefore the constant

C does not depend on τ but depends on h, E(z01) and η only. Concerning the last term on the

right hand side of (5.21) we have

|(u2 ·∇ϕ, ψ)| = |(u2 ·∇ψ, ϕ)| ≤ c‖∇u2‖‖ϕ‖‖ψ‖D(BN ) ≤ Cτ‖ϕ‖‖ψ‖D(BN ), ∀t ≥ τ.
(5.23)

Plugging (5.22)–(5.23) into (5.21), we get

‖ϕt‖D(BN )′ ≤ Cτ

(
‖ϕ‖ + ‖∇u‖

)
, ∀t ≥ τ. (5.24)

Therefore, taking also (5.9) into account, we have

‖ϕt‖L2(τ,t;D(BN )′) ≤ Cτe
Cτ t

(
‖u(τ)‖ + ‖ϕ(τ)‖

)
, ∀t ≥ τ. (5.25)

In order to obtain an estimate for u2,t − u1,t let us consider the difference of the Navier-Stokes

equations written for two weak solutions in the variational formulation, i.e.,

〈ut, v〉 = −ν(∇u,∇v) − b(u2, u2, v) + b(u1, u1, v)

−
1

2

(
∇aϕ(ϕ1 + ϕ2), v

)
−

(
(J ∗ ϕ)∇ϕ2, v

)
−

(
(J ∗ ϕ2)∇ϕ, v

)
, ∀v ∈ Vdiv. (5.26)

Thanks to (5.14) the last three terms on the right hand side can be easily estimated as follows

1

2

∣∣(∇aϕ(ϕ1 + ϕ2), v
)∣∣ ≤ c‖∇a‖L∞‖ϕ‖‖ϕ1 + ϕ2‖L∞‖v‖ ≤ Cτ‖ϕ‖‖v‖Vdiv

,
∣∣((J ∗ ϕ)∇ϕ2, v

)∣∣ =
∣∣((∇J ∗ ϕ)ϕ2, v

)∣∣ ≤ c‖∇J‖L1‖ϕ‖‖ϕ2‖L∞‖v‖ ≤ Cτ‖ϕ‖‖v‖Vdiv
,∣∣((J ∗ ϕ2)∇ϕ, v

)∣∣ =
∣∣((∇J ∗ ϕ2)ϕ, v

)∣∣ ≤ c‖∇J‖L1‖ϕ2‖L∞‖ϕ‖‖v‖ ≤ Cτ‖ϕ‖‖v‖Vdiv
,

for all t ≥ τ . Furthermore, the trilinear form can be controlled by using (2.1), that is,

|b(u2, u2, v) − b(u1, u1, v)| = |b(u2, u, v) + b(u, u1, v)|

≤ c
(
‖∇u1‖ + ‖∇u2‖

)
‖∇u‖‖∇v‖ ≤ Cτ‖∇u‖‖∇v‖, ∀t ≥ τ.

Combining the last four estimates with (5.26) we obtain

‖ut‖V ′

div
≤ Cτ

(
‖∇u‖ + ‖ϕ‖

)
, ∀t ≥ τ,

Thus, recalling (5.9), we deduce

‖ut‖L2(τ,t;V ′

div) ≤ Cτe
Cτ t

(
‖u(τ)‖ + ‖ϕ(τ)‖

)
, ∀t ≥ τ. (5.27)

Finally, (5.25) and (5.27) yield (5.20).

Lemma 5. Let the assumptions of Lemma 2 be satisfied. Let u0i ∈ Gdiv, ϕ0i ∈ H with

F (ϕ0i) ∈ L1(Ω) i = 1, 2. Then, for every τ > 0 and every T > 0 there exists Cτ,T > 0
depending also on T such that

ρXη(Sη(t2)z02, Sη(t1)z01) ≤ Cτ,T

(
ρXη(Sη(τ)z02, Sη(τ)z01) + |t2 − t1|

1/2
)
, (5.28)

for all t1, t2 ∈ [τ, τ + T ], where z0i := [u0i, ϕ0i], i = 1, 2.
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Proof. Setting Sη(t)z0i := [ui(t), ϕi(t)], i = 1, 2, we have

ρXη(Sη(t2)z01, Sη(t1)z01)

= ‖u1(t2) − u1(t1)‖ + ‖ϕ1(t2) − ϕ1(t1)‖ +
∣∣∣
∫

Ω
F (ϕ1(t2)) −

∫

Ω
F (ϕ1(t1))

∣∣∣

≤ ‖u1,t‖L2(t1,t2;Gdiv)|t2 − t1|
1/2 + ‖ϕ1,t‖L∞(τ,∞;H)|t2 − t1| + Cτ‖ϕ1,t‖L∞(τ,∞;H)|t2 − t1|

≤ Cτ,T |t2 − t1|
1/2, ∀t1, t2 ∈ [τ, τ + T ], (5.29)

where we have used (5.15). Furthermore we have

ρXη(Sη(t2)z02, Sη(t2)z01)

= ‖u2(t2) − u1(t2)‖ + ‖ϕ2(t2) − ϕ1(t2)‖ +
∣∣∣
∫

Ω
F (ϕ2(t2)) −

∫

Ω
F (ϕ1(t2))

∣∣∣

≤ Cτe
Cτ (τ+T )

(
‖u2(τ) − u1(τ)‖ + ‖ϕ2(τ) − ϕ1(τ)‖

)
≤ Cτ,T ρXη(Sη(τ)z02, Sη(τ)z01).

(5.30)

From (5.29) and (5.30) we get (5.28).

We now recall the following abstract result on the existence of exponential attractors [10, Propo-

sition 3.1]. This result, together with the lemmas above, will be used to prove Theorem 8.

Proposition 2. Let H be a metric space (with metric ρH) and let V ,V1 be two Banach spaces

such that the embedding V1 ↪→↪→ V is compact. Let B be a bounded subset of H and let

S : B → B be a map such that

ρH
(
Sw02,Sw01

)
≤ γρH(w02, w01) +K‖T w02 − T w01‖V , ∀w01, w02 ∈ B, (5.31)

where γ < 1/2, K ≥ 0 and T : B → V1 is a globally Lipschitz continuous map, i.e.,

‖T w02 − T w01‖V1 ≤ LρH(w02, w01), ∀w01, w02 ∈ B, (5.32)

for some L ≥ 0. Then, there exists a (discrete) exponential attractor Md ⊂ B for the (time

discrete) semigroup {Sn}n=0,1,2,... on B (with the topology of H induced on B).

Proof of Theorem 8. LetB0 be a bounded absorbing set inXη. The existence of such a bounded

absorbing set has been proven in [11]. Indeed, it is immediate to check that the argument of [11,

Proposition 4] still applies with our choice for the metric ρXη ... Let t0 = t0(B0) ≥ 0 be a time

such that Sη(t)B0 ⊂ B0 for all t ≥ t0. Due to (5.4) we can fix t∗ = t∗(B0) ≥ t0 such that

Sη(t)B0 ⊂ BZ
p
η
(0,Λ(η)) for all t ≥ t∗, where BZ

p
η
(0,Λ(η)) is the closed ball in Zp

η with ra-

dius Λ(η) and Λ(η) a positive constant which depends only on η. The (complete) metric space

Zp
η is given by

Zp
η := Vdiv × {ϕ ∈ W 1,p(Ω) : |ϕ| ≤ η},

endowed with the metric

dZp
η
(z2, z1) = ‖∇u2 −∇u1‖ + ‖ϕ2 − ϕ1‖W 1,p(Ω), ∀zi := [ui, ϕi] ∈ Zp

η , i = 1, 2.
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Note that the terms in the integrals of F (ϕ1), F (ϕ2) are omitted in the metric since, for p > 2,

we have the embedding W 1,p(Ω) ↪→ C(Ω).

Let us now set

B1 :=
⋃

t≥t∗

Sη(t)B0.

Then, B1 is bounded in Zp
η and positively invariant for Sη(t). It is easy to see that it is also ab-

sorbing in Xη. Indeed, if B is a bounded subset of Xη and t0 = t0(B) is such that Sη(t0)B ⊂
B0, then we have Sη(t)B ⊂ ∪τ≥t∗Sη(τ + t0)B ⊂ ∪τ≥t∗Sη(τ)B0 =: B1, for all t ≥ t0 + t∗.

Furthermore, we set

B := Sη(1)B1.

Then, B ⊂ BZ
p
η
(0,Λ(η)) is positively invariant and still absorbing in Xη.

By choosing τ = 1 in Lemma 3, then (5.17) can be written as follows

ρXη

(
Sη(t)z02, Sη(t)z01

)
≤ C1e

−kt/2ρXη

(
Sη(1)z02, Sη(1)z01

)

+ C1‖Sη(·)z02 − Sη(·)z01‖L2(1,t;Gdiv×H), ∀t ≥ 1, ∀z01, z02 ∈ Xη, (5.33)

where C1 > 0 depends only on E(z01), E(z02) and η. From (5.33) we therefore get

ρXη

(
Sη(t− 1)w02, Sη(t− 1)w01

)
≤ C1e

−kt/2ρXη

(
w02, w01

)

+ C1‖Sη(·)w02 − Sη(·)w01‖L2(0,t−1;Gdiv×H), ∀t > 1, ∀w01, w02 ∈ B. (5.34)

Observe that, since w0i = S(1)z0i, with z0i ∈ B1, i = 1, 2, and B1 is bounded in Zp
η , then C1

does not depend on w01, w02.

Choosing τ = 1 also in Lemma 2 and in Lemma 4, and combining (5.9) with (5.20) we can

write

‖Sη(·)z02 − Sη(·)z01‖
2
L2(1,t;Vdiv×V ) + ‖∂tSη(·)z02 − ∂tSη(·)z01‖

2
L2(1,t;V ′

div×D(BN )′)

≤ C1e
C1tρ2

Xη
(Sη(1)z02, Sη(1)z01), ∀t ≥ 1, ∀z01, z02 ∈ Xη.

Thus we find

‖Sη(·)w02 − Sη(·)w01‖
2
L2(0,t−1;Vdiv×V ) + ‖∂tSη(·)w02 − ∂tSη(·)w01‖

2
L2(0,t−1;V ′

div×D(BN )′)

≤ C1e
C1tρ2

Xη
(w02, w01), ∀t ≥ 1, ∀w01, w02 ∈ B, (5.35)

where, as pointed out above, the constant C1 does not depend on w01, w02.

Let us now introduce the following spaces

H := Xη := Gdiv × Yη,

V1 := L2(0, T ;Vdiv × V ) ∩H1(0, T ;V ′
div ×D(BN)′),

V := L2(0, T ;Gdiv ×H),

with T > 0 fixed such that C1e
−k(T+1)/2 < 1/2, where C1 and k are the same constants

that appear in the first term on the right hand side of (5.34). Notice that, due to the Aubin-Lions

lemma, V1 is compactly embedded into V .
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Then, take S := Sη(T ) and define a map T : B → V1 in the following way: for every w0 ∈ B

we set T w0 := w := Sη(·)w0, i.e., w ∈ V1 is the (strong) solution corresponding to the initial

datum w0.

It is now easy to see that choosing the spaces H,V ,V1, the set B, and the maps S , T as

above, then the conditions of Proposition 2 are satisfied. Indeed, (5.31) and (5.32) follow from

(5.17) and (5.35), respectively, both written for t = T + 1...

Therefore, Proposition 2 entails the existence of a (discrete) exponential attractor Md
η ⊂ B for

the (time discrete) semigroup {Sn}n=0,1,2,... on B (with the topology of H induced on B). Since

B is absorbing in H, then the basin of attraction of Md
η is the whole phase space H.

In order to prove the existence of the exponential attractor Mη for (Xη, Sη(t)) with continuous

time we observe first that (5.28) written with τ = 1 (the time T is chosen as above) yields

ρXη(Sη(t2 − 1)w02, Sη(t1 − 1)w01) ≤ C1,T

(
ρXη(w02, w01) + |t2 − t1|

1/2
)
,

for all w01, w02 ∈ B and for all t1, t2 ∈ [1, 1 + T ]. Hence

ρXη(Sη(t
′′)w02, Sη(t

′)w01) ≤ C1,T

(
ρXη(w02, w01) + |t′′ − t′|1/2

)
,

for all w01, w02 ∈ B and for all t′′, t′ ∈ [0, T ]. Therefore, the map [t, z] 7→ Sη(t)z is uniformly

Hölder continuous (with exponent 1/2) on [0, T ]×B, where B is endowed with the H−metric.

Therefore, the exponential attractor Mη for the continuous time case can be obtained by the

classical expression

Mη =
⋃

t∈[0,T ]

Sη(t)M
d
η,

and this concludes the proof of the theorem.

We conclude by proving a the existence of exponential attractors when the viscosity ν is not

constant and satisfies the assumption (4.5) in Remark 4. In view of Theorems 5 and 6 we can

define a dynamical system for the strong solutions. Indeed, taking d = 2 and h ∈ Gdiv, we

have that for every fixed η ≥ 0 system (1.1)–(1.5) generates a semigroup {Zη(t)}t≥0 of closed

operators on the metric space Kη given by

Kη := Vdiv × {ϕ ∈ H2 (Ω) : |ϕ| ≤ η},

endowed with the (weaker) metric

%(z2, z1) = ‖u2 − u1‖ + ‖ϕ2 − ϕ1‖, ∀zi := [ui, ϕi] ∈ Kη, i = 1, 2.

We are now ready to state and prove the following.

Theorem 9. Assume (H1), (H3)-(H5) and (4.5). Consider either J ∈ W 2,1(Bδ) or J admissible.

The dynamical system (Kη, Zη(t)) possesses an exponential attractor Eη which is bounded in

Vdiv ×H2 (Ω) such that the following properties are satisfied:

� positive invariance: Zη(t)Eη ⊆ Eη for all t ≥ 0;
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� finite dimensionality: dimF (Eη, Gdiv ×H) <∞;

� exponential attraction: ∃Q : R
+ → R

+ increasing and κ > 0 such that, for all R > 0
and for all B ⊂ Kη with supz∈B ρ(z, 0) ≤ R there holds

distKη(Zη(t)B, Eη) ≤ Q(R)e−κt, ∀t ≥ 0.

Proof. Step 1. We will briefly show that a dissipative estimate like (5.4) still holds for the strong

solution of (1.1)–(1.5) under the assumptions of the theorem. More precisely, the following esti-

mate holds

‖∇u(t)‖ + ‖ϕ(t)‖H2(Ω) +

∫ t+1

t

‖u(s)‖2
H2(Ω)2ds ≤ Λ(η), ∀t ≥ t∗, (5.36)

for some positive constant Λ independent of the initial data and time, and some time t∗ > 0
which depends only E(z0). In order to get this estimate, first we recall estimate (2.7) by Theorem

1 which also holds for nonconstant viscosity. The proof of (5.36) follows immediately from the

proof of Theorem 5. Indeed, we observe preliminarily that (5.5) and (5.7) already hold uniformly

with respect to time and initial data in the nonconstant case, i.e., there exists a time t# > 0,

depending only on E(z0), such that

ϕ ∈ L∞ (t#,∞;L∞ (Ω) ∩ V ) ∩W 1,2 (t#,∞;H) . (5.37)

In particular, this regularity allows us to obtain µ ∈ L∞ (t#,∞;L∞ (Ω) ∩ V ) and

l ∈ L2(t#,∞;L2 (Ω)2) uniformly. This can be done by arguing exactly in the same fash-

ion as in the derivation of estimates (4.7)-(4.13), with the exception that the constant R > 0
is such that ess supt∈(t#,∞) ‖ϕ (t)‖L∞ ≤ R. Then, we can employ the same procedure as in

(4.16)-(4.26) (with a function Q = Q (R) > 0 which is now independent of the initial data, by

(5.37)) to deduce by virtue of the uniform Gronwall lemma (see [28, Chapter III, Lemma 1.1])

that

u ∈ L∞(t∗,∞;Vdiv) ∩ L
2(t∗,∞;H2(Ω)2), ut ∈ L2(t∗,∞;Gdiv),

for some t∗ ≥ 1 depending only on t#. Finally, arguing exactly as in the proof of Theorem

5 we deduce ϕ ∈ L∞
(
t∗,∞;H2(Ω)

)
uniformly with respect to time and the data. Note that

estimate (5.36) entails the existence of a bounded absorbing set B2 ⊂ Kη for the semigroup

Zη(t).

Step 2. As in the proof of Theorem 8, it will be sufficient to construct the exponential attractor

for the restriction of Zη(t) on this set B2. Thus, it suffices to verify the validity of Lemmas 3 and

4 for the difference u = u1 − u2, ϕ = ϕ1 − ϕ2, where (ui, ϕi) is a (given) strong solution

and i = 1, 2. The first one is an immediate consequence of estimate (4.33) (see the proof of

Theorem 6) and the application of Poincaré-type inequalities (5.18) (see the proof of Lemma 3).

Indeed, in the nonconstant case we have

‖u(t)‖2 + ‖ϕ(t)‖2

≤ C
(
‖u(τ))‖2 + ‖ϕ(τ)‖2

)
e−kt + C

∫ t

τ

(
‖u(s)‖2 + ‖ϕ(s)‖2

)
ds, ∀t ≥ τ, (5.38)
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for some constant C = Cτ > 0, where (ui (τ) , ϕi (τ)) ∈ B2 for each i = 1, 2. For the

second one, we observe that in order to estimate ut := u2,t − u1,t, we have

〈ut, v〉 = −(ν (ϕ2)∇u,∇v) − ((ν (ϕ1) − ν (ϕ2))∇u1,∇v)

− b(u2, u2, v) + b(u1, u1, v)

−
1

2

(
∇aϕ(ϕ1 + ϕ2), v

)
−

(
(J ∗ ϕ)∇ϕ2, v

)
−

(
(J ∗ ϕ2)∇ϕ, v

)
, (5.39)

for all v ∈W := H2+ε (Ω)2∩Vdiv and some ε > 0 (such that the embeddingH2+ε ⊂ W 1,∞

holds). While all the terms on the right-hand side of (5.39), with the exception of the first two,

can be word by word estimated exactly as in the proof of Lemma 4, we notice that assumption

(4.5) and the essential L∞-bound on ϕ yield

|(ν (ϕ2)∇u,∇v)| ≤ C ‖∇u‖ ‖∇v‖ ,

|((ν (ϕ1) − ν (ϕ2))∇u1,∇v)| ≤ C ‖ϕ‖ ‖∇u1‖ ‖v‖H2+ε .

Thus, we easily get

‖ut‖W ′ ≤ C (‖∇u‖ + ‖ϕ‖) , ∀t ≥ τ,

which together with (4.33) and (5.24) yields the following estimate

‖ut (t) ‖2
L2(τ,t;W ′) + ‖ϕt||

2
L2(τ,t;D(BN )′) ≤ CeCt

(
‖u(τ)‖2 + ‖ϕ(τ)‖2

)
, ∀t ≥ τ. (5.40)

Estimates (5.38) and (5.40) convey that a certain smoothing property holds for the difference of

any two strong solutions associated with any two given initial data in B2.

Step 3. It is now not difficult to finish the proof of the theorem, using the abstract scheme of

Proposition 2 by arguing in a similar fashion as in the proof of Theorem 8. The differences are

quite minor and so we leave them to the interested reader.

Remark 7. On account of [13, Proofs of Proposition 1 and Lemma 3] and (4.21), using uniform

Gronwall’s lemma (see [28, Chapter III, Lemma 1.1]), it is possible to show that any weak solu-

tion becomes a strong solution in finite time. We remind that this property is based on the validity

of the energy identity (2.6). Indeed, estimate (5.36) ensures that, given a weak trajectory z start-

ing from z0 ∈ Xη (cf. (5.1)), there exists a time t∗ = t∗(z0) ≥ 0 such that z(t) ∈ B1(Λ(η)) for

all t ≥ t∗, where B1(Λ(η)) is the closed ball in the space Vdiv ×H2(Ω) with radius Λ(η) and

constraint |ϕ| ≤ η. Let us briefly mention some consequences of this property. First, the global

attractor of the generalized semiflow on Xη generated by the problem with nonconstant viscos-

ity (see [12]) is bounded in Vdiv × H2(Ω). Therefore we can show the validity of a smoothing

property (cf. (5.38) and (5.40)) on the global attractor and deduce that it has finite fractal di-

mension. Moreover, the regularizing effect also allows to prove the precompactness of (weak)

trajectories (see [13, Lemma 3]). This is an essential ingredient to establish the convergence of

a weak solution to a single equilibrium which can be done along the lines of [13, Section 5].
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