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ABSTRACT. In this work we are considering the behavior of the limit shape of Young diagrams

associated to random permutations on the set {1, . . . , n} under a particular class of multiplica-

tive measures. Our method is based on generating functions and complex analysis (saddle point

method). We show that fluctuations near a point behave like a normal random variable and that

the joint fluctuations at different points of the limiting shape have an unexpected dependence

structure. We will also compare our approach with the so-called randomization of the cycle

counts of permutations and we will study the convergence of the limit shape to a continuous

stochastic process.
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1. INTRODUCTION

The aim of this paper is to study the limit shape of a random permutation under the generalised

Ewens measure with polynomial growing cycle weights and the fluctuations at each point of

the limit shape. The study of such objects has a long history, which started with the papers

of Temperley [24] and Vershik [25]. Later on Young diagrams have been approached under a

different direction, as in the independent works of [26] and [20], which first derived the limit

shape when the underpinned measure on partitions is the so-called Plancherel measure. We

will not handle this approach here, even though it presents remarkable connections with random

matrix theory and random polymers, among others (see for example [10]).

We first specify what we define as the limit shape of a permutation. We denote by Sn the set

of permutations on n elements and write each permutation σ ∈ Sn as σ = σ1 · · · σ` with

σj disjoint cycles of length λj. Disjoint cycles commute and we thus can assume λ1 ≥ λ2 ≥
· · · ≥ λ`. This assigns to each permutation σ ∈ Sn in a unique way a partition of n and this

partition λ = (λ1, λ2, . . . , λ`) is called the cycle type of σ. We will indicate that λ is such

a partition with the notation λ ` n. We define the size |λ| := ∑i λi (so obviously if λ ` n
then |λ| = n). λ features a nice geometric visualisation by its Young diagram Υλ. This is a

left- and bottom-justified diagram of ` rows with the j−th row consisting of λj squares, see

Figure 1(a). It is clear that the area of Υλ is n if λ ` n. After introducing a coordinate system as

(a) The Young diagram (b) The shape function wn(·)

FIGURE 1. Illustration of the Young diagram and the shape of

σ = (3578)(129)(4)(6) ∈ S9

in Figure 1(b), we see that the upper boundary of a Young diagram Υλ is a piecewise constant

and right continuous function wn : R+ →N+ with

wn(x) :=
n

∑
j=1

1{λj≥x}(1.1)
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with the convention that C0 := 0. The cycle type of a permutation becomes a random partition

if we endow the space Sn with a probability measure Pn. What we are then interested in

studying is the now random shape wn(·) as n → +∞, and more specifically to determine its

limit shape. The limit shape with respect to a sequence of probability measures Pn on Sn (and

sequences of positive real numbers An and Bn with An · Bn = n) is understood as a function

w∞ : R+ → R+ such that for each ε, δ > 0

lim
n→+∞

Pn

[{
σ ∈ Sn : sup

x≥δ

|A−1
n wn(Bnx)− w∞(x)| ≤ ε

}]
= 1.(1.2)

The assumption An · Bn = n ensures that the area under the rescaled Young diagram is 1.

One of the most frequent choices is An = Bn = n1/2, but we will see that it’s useful to adjust

the choice of An and Bn to the measures Pn. Equation (1.2) can be viewed as a law of large

numbers for the process wn(·). The next natural question is then whether fluctuations satisfy a

central limit theorem, namely whether

Anwn(Bnx)− w∞(x)

converges (after centering and normalization) in distribution to a Gaussian process on the space

of càdlàg functions, for example. Of course the role of the probability distribution with which we

equip the set of partitions will be crucial to this end.

In this paper, we work with the following measure on Sn:

Pn [σ] =
1

hnn!

`

∏
j=1

ϑλj .(1.3)

where (λ1, . . . , λ`) is the cycle type of σ, (ϑm)m≥1 is a sequence of non-negative weights

and hn is a normalization constant (h0 is defined to be 1). From time to time we will also use

ϑ0 := 0 introduced as convention.

This measure has recently appeared in mathematical physics for a model of the quantum gas in

statistical mechanics and has a possible connection with the Bose-Einstein condensation (see

e.g. [6] and [12]). Classical cases of this measure are the uniform measure (ϑm ≡ 1) and

the Ewens measure (ϑm ≡ ϑ). The uniform measure is well studied and has a long history

(see e.g. the first chapter of [3] for a detailed account with references). The Ewens measure

originally appeared in population genetics, see [14], but has also various practical applications

through its connection with Kingman’s coalescent process, see [18]. The measure in (1.3) also

has some similarities to multiplicative measure for partitions, see for instance [8]. It is clear that

we have to make some assumptions on the sequence (ϑm)m≥1 to be able study the behaviour

as n → +∞. We use in this paper polynomial growing cycle weights ϑm as considered in

the recent work Ercolani and Ueltschi [12] and of Maples, Nikeghbali and Zeindler [22]. More
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precisely, we use the weights

(1.4) ϑm =
mα

Γ(α + 1)
+ O

(
mβ
)

with some α > 0 and 0 ≤ β < α/2. We would like to point out that the requirement 0 ≤
β < α/2 and the normalisation constant Γ(α + 1) are not essential and it only simplifies the

notation and the computations. Our argumentation indeed works also for ϑm ∼ const · mα.

Note that the limit shape and the fluctuations at points of the limit shape with the weights (1.4)

have already been studied by Erlihson and Granovsky in [13] in the context of Gibbs distributions

on integer partitions. However, the approach in this paper is slightly different and allows to

simplify the computations and to get at the same time the behaviour of the cumulants and to

give some large deviation estimates for the fluctuations at the limit shape. We may mention two

popular methods in the literature to study the asymptotic behaviour of the function wn(x) under

such assumptions. The first one is is complex analytic and uses the saddle-point method as

described in Section 4. This method was used in [12] and [22] and an introduction can be found

for instance in [15, Section VIII]. The second one is stochastic and based on randomisation and

was used in [8] and [13]. We present in Section 3 an argumentation similar to [8] and give at

the begin of Section 3 an idea how to deduce the behaviour for n → ∞ from the randomised

setting. It is typically expected that the ‘randomised’ wn(x) has the same asymptotic behaviour

as the ‘unrandomized’ wn(x). We will see here that this is not the case. More precisely, we show

that the ‘randomized’ and the ‘unrandomized’ wn(x) have different limit shapes and different

behaviours of the fluctuations around the limit shape.

Notation. We denote with R+ := R \ (−∞, 0) and with N+ := N \ {0}. With bold fonts

we will always indicate vectors and 〈 ·, ·〉 will be the Euclidean scalar product on R`. M`(R)
is the set of `× ` matrices with real coefficients. L(X) stands for the law of a random variable

X and thus
L→ is the symbol representing convergence in distribution.

2. PRELIMINARIES

We introduce in this section the notation of the cycle counts and the notation of generating

functions.

2.1. Cycle counts. The notation λ = (λ1, λ2, . . . , λ`) is very useful for the illustration of λ

via its Young diagram, but in the computations it is better to work with the cycle counts Ck.

These are defined as

Ck(σ) = Ck := #
{

j ≥ 1; λj = k
}

(2.1)

for k ≥ 1 and λ = (λ1, λ2, . . . , λ`) the cycle type of σ ∈ Sn. We obviously have for k ≥ 1

(2.2) Ck ≥ 0 and
n

∑
k=1

kCk = n.
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It is also clear that the cycle type of permutation (or a partition) is uniquely determined by the

vector (C1, C2, . . . ). The function wn(x) and the measure Pn [ · ] in (1.1) and (1.3) can now

be written as

wn(x) = ∑
k≥x

Ck and Pn [σ] =
1

hnn!

n

∏
k=1

ϑ
Ck
k .(2.3)

Our aim is to study the behaviour of wn(x) as n → ∞. It is thus natural to consider the

asymptotic behaviour of Ck with respect to the measure Pn [ · ].

Lemma 2.1 ([12], Corollary 2.3). Under the condition hn−1/hn → 1 the random variables

Ck converge for each k ∈ N in distribution to a Poisson distributed random variable Yk with

E [Yk] = ϑk
k . More generally for all b ∈N the following limit in distribution holds:

lim
n→+∞

(C1, C2 . . . , Cb) = (Y1, Y2 . . . , Yb)

with Yk independent Poisson random variables with mean E [Yk] = ϑk
k .

One might expect at this point that wn(x) is close to ∑n
k=x Yk. Unfortunately we will see in

Section 4 that the asymptotic behaviour of wn(x) is more complicate.

2.2. Generating functions. The (ordinary) generating function of a sequence (ak)k≥0 of com-

plex numbers is defined as the formal power series

g(z) :=
∞

∑
j=0

akzk.(2.4)

As usual, we define the extraction symbol [zk] g(z) := ak, that is, as the coefficient of zk in

the power series expansion (2.4) of g(z).

A generating function that plays an important role in this paper is

gΘ(t) := ∑
m≥1

ϑm

m
tm.(2.5)

As mentioned in the introduction, we will use ϑm = mα

Γ(α+1) + O
(
mβ
)
. We stress that gener-

ating functions of the type (1− t)−α fall also in this category, and for them we will recover the

limiting shape as previously done in [13]. We will see in particular this case in Section 4.

The reason why generating functions are useful is that it is often possible to write down a gen-

erating function without knowing an explicitly. In this case one can try to use tools from analysis

to extract information about an, for large n, from the generating function. It should be noted that

there are several variants in the definition of generating functions. However, we will use only the

ordinary generating function and thus call it ‘just’ generating function without risk of confusion.

The following well-known identity is a special case of the general Pólya’s Enumeration Theorem

[23, 16, p. 17] and is the main tool in this paper to obtain generating functions.
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Lemma 2.2. Let (am)m∈N be a sequence of complex numbers. We then have as formal power

series in t

∑
n∈N

tn

n! ∑
σ∈Sn

n

∏
j=1

a
Cj
j = ∑

n∈N

tn ∑
λ`n

1
zλ

∞

∏
k=1

aCk
k = exp

(
∑

m≥1

am

m
tm

)

where zλ := ∏n
k=1 kCk Ck!. If one series converges absolutely, so do the others.

We omit the proof of this lemma, but details can be found for instance in [21, p. 5].

2.3. Approximation of sums. We require for our argumentation the asymptotic behaviour of

the generating function gΘ(t) as t tends to the radius of convergence, which is 1 in our case.

Lemma 2.3. Let (vn)n∈N a sequence of postive numbers with vn ↓ 0 as n→ +∞. We have

for all δ ∈ R \ {−1, −2, −3, . . . }
∞

∑
k=1

kδe−kvn = Γ(δ + 1)v−δ−1
n + ζ(−δ) + O(vn).(2.6)

ζ(·) indicates the Riemann Zeta function.

This lemma can proven with Euler Maclaurin summation formula or with the Mellin transforma-

tion. The computations with Euler Maclaurin summation are straightforward and the details of

the proof with the Mellin transformation can be found for instance in [15, Chapter VI.8]. We thus

omit it.

We require also the behaviour of partial sum ∑∞
k=x

θm
m tm as x → ∞ and as t→ 1. We have

Lemma 2.4 (Approximation of sums). Let vn, zn be given with zn → +∞ and znvn = a0 +
a1n−β for β > 0, a0 > 0 and a0, a1 ∈ R. We then have for all δ ∈ R and all q ∈N

∞

∑
k=bznc

kδe−kvn =
(

zn

a0

)δ+1
(

q

∑
k=0

Γ(δ + k + 1, a0)
k!

(
− a1

a0
n−β

)k
+ O

(
n−(q+1)β

))

− B1(zn − bznc)zδ
ne−a0 +

∫ +∞

zn
B1(y− byc)(δ− vny)yδ−1e−vny dy.

with Γ(a, x) :=
∫ +∞

x sa−1e−sds the incomplete Gamma function and B1(x) := x − 1
2 the

first Bernoulli polynomial.

Proof. The proof of this lemma is based on the Euler Maclaurin summation formula, see [2] or

[1, Theorem 3.1]. We use the here the following version: let f : R+ → R have a continuous

derivative and suppose that f and f ′ are integrable. Then

∑
k≥bcc

f (k) =
∫ +∞

c
f (x) dx− B1(c− bcc) f (c) +

∫ +∞

c
B1(x− bxc) f ′(x) dx.(2.7)



7

We substitute f (x) := xδe−xvn , c := zn and notice that f and all its derivatives tend to zero

exponentially fast as x → +∞. Now by the change of variables x := zn
a0

y

∫ +∞

zn
e−vnxxδdx =

(
zn

a0

)δ+1 ∫ +∞

a0

yδe−ye−
a1
a0

n−βydy =

=
(

zn

a0

)δ+1
(

q

∑
k=0

Γ(δ + k + 1, a0)
k!

(
− a1

a0
n−β

)k
+ O

(
n−(q+1)β

))
(2.8)

where we have swapped integral and series expansion of the exponential by Fubini’s theorem.

�

Remark. One can obtain more error terms in the expansion in Lemma 2.4 by using more terms

in the Euler Maclaurin summation formula. We have stated in Appendix A a version of the Euler

Maclaurin summation formula with non-integer boundaries, which is more suitable for this than

the usual one.

3. RANDOMIZATION

We introduce in this section a probability measure Pt [ · ] on
.
∪n≥1 Sn, where

.
∪ denotes the

disjoint union, dependent on a parameter t > 0 with Pt [ · |Sn] = Pn [ · ] and consider the

asymptotic behaviour of wn(x) with respect to Pt [ · ] as t→ 1.

3.1. Grand canonical ensemble. Computations on Sn can turn out to be difficult and many

formulas can not be used to study the behaviour as n→ ∞. A possible solution to this problem

is to adopt to a suitable randomization. This has been successfully introduced by [16] and used

also by [8] as a tool to investigate combinatorial structures, and later applied in many contexts.

The main idea of randomization is to define a one-parameter family of probability measures

on
.
∪n≥1 Sn for which cycle counts turn out to be independent. Then one is able to study

their behavior more easily, and ultimately the parameter is tuned in such a way that randomized

functionals are distributed as in the non-randomized context. Let us see how to apply this in our

work. We define

GΘ(t) = exp
(

gΘ(t)
)

(3.1)

with gΘ(t) as in (2.5). If GΘ(t) is finite for some t > 0, then for each σ ∈ Sn let us define

the probability measure

Pt [σ] :=
1

GΘ(t)
tn

n!

n

∏
k=1

ϑ
Ck
k .(3.2)

Lemma 2.2 shows that Pt is indeed a probability measure on
.
∪n≥1 Sn. The induced distribu-

tion on cycle counts Ck can easily be determined.
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Lemma 3.1. Under Pt [ · ] the Ck’s are independent and Poisson distributed with

Et [Ck] =
ϑk
k

tk.

Proof. From Pólya’s enumeration theorem (Lemma 2.2) we obtain

Et

[
e−sCk

]
= ∑

n≥0
∑

σ∈Sn

e−sCkPt [σ] =
1

GΘ(t) ∑
n≥0

∑
σ∈Sn

tn

n!
(ϑke−s)Ck ∏

j≤n
j 6=k

(ϑj)Cj

=
1

GΘ(t)
exp

(
+∞

∑
j=0

ϑj

j
tj

)
exp

((
e−s − 1

) ϑk
k

tk
)

= exp
((

e−s − 1
) ϑk

k
tk
)

.

Analogously one proves the pairwise independence of cycle counts. �

Obviously the following conditioning relation holds:

Pt [ · |Sn] = Pn [ · ] .

A proof of this fact is easy and can be found for instance in [17, Equation (1)]. We note that

wn(x) is Pt-a.s. finite, since Et [wn(x)] < +∞. Now since the conditioning relation holds

for all t with GΘ(t) < +∞, one can try to look for t satisfying “Pn [ · ] ≈ Pt [ · ]”, which

heuristically means that we choose a parameter for which permutations on Sn weigh as most

of the mass of the measure Pt. We have on Sn

n =
`

∑
j=1

λj =
n

∑
k=1

kCk.

A natural choice for t is thus the solution of

n = Et

[
∞

∑
k=1

kCk

]
=

∞

∑
k=1

ϑktk.(3.3)

which is guaranteed to exist if the series on the right-hand side is divergent at the radius of

convergence (we will see this holds true for our particular choice of weights). We write t = e−vn

and use Lemma 2.3 in our case ϑk =
kα+O(kβ)

Γ(α+1) to obtain

n != (vn)−α−1 + O
(
(vn)−β−1) =⇒ vn = (n∗)−1 + O

(
(n∗)β−α−1)(3.4)

with n∗ := n
1

1+α . We will fix this choice for the rest of the section.

3.2. Limit shape and mod-convergence. In order to derive our main results from the measure

Pt we will use a tool developed by [19], the mod-Poisson convergence.

Definition 3.2. A sequence of random variables (Zn)n∈N converges in the mod-Poisson

sense with parameters (µn)n∈N if the following limit

lim
n→+∞

exp(µn(1− eiu))E
[
eiuZn

]
= Φ(u)
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exists for every u ∈ R, and the convergence is locally uniform. The limiting function Φ is then

continuous and Φ(0) = 1.

This type of converge gives stronger results than a central limit theorem, indeed it implies a CLT

(and other properties we will see below). Our goal will then be to prove the following

Proposition 3.3. Let x ≥ 0 be arbitrary and x∗ := xn∗ with n∗ = n
1

1+α . Furthermore,

let t = e−vn with vn as in (3.4). Then the random variables (wn(x∗))n∈N converge in the

mod-Poisson sense with parameters µn = (n∗)αwr
∞(x) + o

(
(n∗)α/2), where

wr
∞(x) :=

Γ(α, x)
Γ(α + 1)

.(3.5)

Γ(α, x) is the upper incomplete Gamma function.

Proof. We have

Et

[
eiswn(x∗)

]
= Et

[
eis ∑∞

`=bx∗c C`
]

= exp

(eis − 1
) ∞

∑
j=bx∗c

ϑj

j
tj

 .(3.6)

This is the characteristic function of Poisson distribution. We thus obviously have mod-Poisson

convergence with limiting function Φ(t) ≡ 1. It remains to compute the parameter µn. Applying

Lemma 2.3 for x = 0 and Lemma 2.4 for x > 0 together with (3.4) gives

+∞

∑
j=bx∗c

jα−1 + O
(

jβ−1)
Γ(α + 1)

tj = (n∗)α Γ(α, x)
Γ(α + 1)

+ O
(
(n∗)β

)
.(3.7)

Since β < α/2 by assumption, we deduce that λn := (n∗)αwr
∞(x) + o

(
(n∗)α/2). This

completes the proof. �

This yields a number of interesting consequences. In first place we can prove a CLT and detect

the limit shape accordingly.

Corollary 3.4 (CLT and limit shape for randomization). With the notation as above, we have as

n→ ∞ with respect to Pt

w̃r
n(x) :=

wn(x∗)− (n∗)αwr
∞(x)

(n∗)
α
2

L→ N (0, (σr
∞(x))2).(3.8)

Furthermore the limit shape of wn(x) is given by wr
∞(x) (with scaling An = (n∗)α and

Bn = n∗, see (1.2)). In particular, we can choose δ = 0 in (1.2).

Proof. The CLT follows immediately from [19, Prop. 2.4], but also can be deduced easily from

(3.6) by replacing s by s(n∗)−α/2. It is also straightforward to show that wr
∞(x) is the limit

shape. For a given ε > 0, we choose 0 = x0 < x1 < · · · < x` such that wr
∞(xj+1)−
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wr
∞(xj) < ε/2 for 1 ≤ j ≤ `− 1 and wr

∞(x`) < ε/2. It is now easy to see that for each

x ∈ R+

|(n∗)−αwn(x∗)− wr
∞(x)| > ε =⇒ ∃j with |(n∗)−αwn(x∗j )− wr

∞(xj)| > ε/2.

Thus

Pt

[
sup
x≥0
|(n∗)αwn(x∗)− wr

∞(x)| ≥ ε

]
≤

`

∑
j=1

Pt

[
|(n∗)αwn(x∗j )− wr

∞(xj)| ≥ ε/2
](3.9)

It now follows from (3.8) that each summand in (3.9) tends to 0 as n→ ∞. This completes the

proof. �

Another by-product of mod-Poisson convergence of a sequence (Zn)n∈N is that one can ap-

proximate Zn with a Poisson random variable with parameter µn, see [19, Prop. 2.5]. However

in our situation this is trivial since wn(x∗) is already Poisson distributed.

As we are going to do in the next section, we are also interested in the behavior of increments

and their joint behaviour.

Proposition 3.5. For all x, y ∈ R, y > x, set

wn(x, y) := wn(x)− wn(y) and wr
∞(x, y) :=

Γ(α, x)− Γ(α, y)
Γ(α + 1)

.

Then

w̃r
n(x, y) :=

wn(x∗, y∗)− (n∗)αwr
∞(x, y)

(n∗)
α
2
√

wr
∞(x, y)

L→ N (0, 1)(3.10)

as n→ ∞ with x∗ = xn
1

α+1 and with y∗ = yn
1

α+1 .

Furthermore, w̃r
n(x) and w̃r

n(x, y) are asymptotically independent.

Remark. As we will see, the proof of independence relies on the independence of cycles coming

from Lemma 3.1. Therefore it is easy to generalize the above result to more than two points.

Proof. The proof of (3.10) almost the same as the proof of (3.8) and we thus omit it. Since

wn(x, y) =
y∗−1

∑
k=x∗

Ck and wn(y) =
∞

∑
k=y∗

Ck

and all Ck are independent, we have that w̃r
n(x) and w̃r

n(x, y) are independent for each n ∈
N. Thus w̃r

n(x) and w̃r
n(x, y) are also independent in the limit. �
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3.3. Functional CLT. The topic of this section is to prove a functional CLT for the profile wn(x)
of the Young diagram. Similar results were obtained in a different framework by [17, 11] on

the number of cycle counts not exceeding nbxc, and by [5] for Young diagrams confined in a

rectangular box. We show

Theorem 3.6. The process w̃r
n : R+ → R (see (3.8)) converges weakly with respect to Pt

as n → ∞ to a continuous process w̃r
∞ : R+ → R with w̃r

∞(x) ∼ N (0, σr
∞(x)) and

independent increments.

The technique we will exploit is quite standardized (see [17]). We remark that, unlike in this

paper where the Ewens measure is considered, we do not obtain here a Brownian process, as

the variance of w̃r
∞(t)− w̃r

∞(s) for r ≥ s is more complicated than in the case of the Wiener

measure.

We know from Proposition 3.5 the finite dimensional marginals of the process. More specifically

we have for x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0 that

(n∗)−α/2(wn(x∗` ), wn(x∗`−1)− wn(x∗` ), . . . , wn(x∗1)− wn(x∗2)
)
∼ N

(
0, Σ′

)
(3.11)

where Σ′ is a diagonal matrix with

Σ′11 = wr
∞(x`) and Σ′jj = wr

∞(x`−j+1, x`−j+2) for j ≥ 2.

Now all we need to show to complete the proof of Theorem 3.6 is the tightness of the process

w̃r
n. In order to do so, we will proceed similarly to [17], namely we will show that

Lemma 3.7. We have for 0 ≤ x1 < x ≤ x2 < K with K arbitrary

(3.12) Et

[
(w̃r

n(x)− w̃r
n(x1))2(w̃r

n(x2)− w̃r
n(x))2

]
= O

(
(x2 − x1)2

)
with x∗ := xn

1
α+1 , x∗1 := x1n

1
α+1 and x∗2 := x2n

1
α+1 .

Lemma 3.7 together with [7, Theorem 15.6] implies that the process w̃r
n is tight. This and the

marginals in (3.11) prove Theorem 3.6.

Proof of Lemma 3.7. We define

(3.13) E∗ := Et

[
(w̃r

n(x∗)− w̃r
n(x∗1))

2(w̃r
n(x∗2)− w̃r

n(x∗))2
]

.
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Centering with Et [wn(·)] and the independence of the cycle counts leads us to

E∗ =

x∗−1

∑
k=x∗1

(n∗)−α θk
k

tk

 ·(x∗2−1

∑
k=x∗

(n∗)−α θk
k

tk

)
Lem. 2.4∼

(
(n∗)−α

Γ(α + 1)

∫ x∗

x∗1
tα−1e−tdt

)(
(n∗)−α

Γ(α + 1)

∫ x∗2

x∗
tα−1e−tdt

)
=

(
Γ(α, x1)− Γ(α, x)

Γ(α + 1)

)(
Γ(α, x)− Γ(α, x2)

Γ(α + 1)

)
∼ O ((x− x1)(x2 − x)) = O

(
(x2 − x1)2

)
.

Here we have used the fact that Γ(α, ·) is a Lipschitz function and the assumption that x1 <

x ≤ x2 < K. �

4. SADDLE POINT METHOD

The aim of this section is to study the asymptotic behaviour of wn(x) with respect to Pn [·] as

n→ ∞ and to compare the results with the results in Section 3.

There are at least two approaches with which to tackle this problem: one is more probabilistic

and was employed by [13] in their paper. The second one was first developed in [22] from the

standard saddle point method.

The first method to study the asymptotic statistics of wn(x) with respect to Pn [·] as n→ ∞ is

the so called Khintchine method. We illustrate this method briefly with the normalisation constant

hn (see (1.3)). The first step is to write down a Khintchine’s type representation for the desired

quantity. For hn this is given by

hn = t−nexp

(
n

∑
k=1

ϑk
k

tk

)
Pt

[
n

∑
k=1

kCk = n

]
(4.1)

with t > 0 and Pt [ · ] as in Section 3. The second step is to choose the free parameter t in

such a way that Pt [∑n
k=1 kCk = n] gets large. Here one can choose t to be the solution of

the equation ∑n
k=1 ϑktk = n.

This argumentation is very close to the argumentation relying on complex analysis and gener-

ating functions. Indeed, it is easy to see that (4.1) is equivalent to

hn = [tn] [exp (gΘ(t))](4.2)

with gΘ(t) as in (2.5). Furthermore, the choice of t is (almost) the solution of the saddle point

equation tg′Θ(t) = n. We have of course to justify (4.2) (or (4.1)). But this follows immediately

from the definition of hn and Lemma 2.2.

We prefer at this point to work with the second approach. We begin by writing down the gener-

ating functions of the quantities we would like to study.
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Lemma 4.1. We have for x ≥ 0 and s ∈ R

En
[
exp

(
−swn(x)

)]
=

1
hn

[tn]

exp

gΘ(t) + (e−s − 1)
∞

∑
k=bxc

ϑk
k

tk

 .(4.3)

Remark. Although the expressions in Lemmas 4.1 and 4.2 hold in broader generality, starting

from Subsection 4.1 we will calculate moment generating functions on the positive half-line,

namely we can assume all parameters s1, . . . , s` etc to be non-negative, according to [9,

Theorem 2.2].

Proof. It follows from the definitions of Pn [ · ] and wn(x) (see (2.3)) that

hnEn
[
exp

(
−swn(x)

)]
=

1
n! ∑

σ∈Sn

exp

−s
n

∑
k=bxc

Ck

 n

∏
k=1

ϑ
Ck
k(4.4)

=
1
n! ∑

σ∈Sn

bxc−1

∏
k=1

ϑ
Ck
k

∞

∏
m=bxc

(ϑke−s)Ck

Applying now Lemma 2.2, we obtain

∞

∑
n=0

tn

n!
hnEn

[
exp

(
−swn(x)

)]
= exp

bxc−1

∑
k=1

ϑk
k

tk + e−s
∞

∑
k=bxc

ϑk
k

tk

(4.5)

= exp

gΘ(t) + (e−s − 1)
∞

∑
k=bxc

ϑk
k

tk

(4.6)

Equation (4.3) now follows by taking [tn] on both sides. �

We are also interested in the joint behaviour at different points of the limit shape. The results

in Section 3 suggest that the increments of wn(xj+1) − wn(xj) are independent for x` ≥
x`−1 ≥ · · · ≥ x1 ≥ 0. It is thus natural to consider

(4.7) wn(x) =
(
wn(x∗` ), wn(x∗`−1)− wn(x∗` ), . . . , wn(x∗1)− wn(x∗2)

)
.

We obtain

Lemma 4.2. We have for x = (x1, . . . , x`) ∈ R` with x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0 and

s = (s1, . . . , s`) ∈ R`

En
[
exp

(
−〈s, wn(x)〉

)]
=

1
hn

[tn]

exp

gΘ(t) +
`

∑
j=1

(e−sj − 1)
bxj+1−1c

∑
k=bxjc

ϑk
k

tk


(4.8)

with the convention x`+1 := +∞. The proof of this lemma is almost the same as for Lemma 4.1

and we thus omit it.
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4.1. Log-n-admissibility. The approach with which we first addressed the study of the limit

shape is derived from the saddle point method for approximating integrals in the complex plane.

We want to introduce the definition of log-n-admissible function, generalizing the analogous

concept introduced in [22]. We stress that here, in comparison to the definition of log- (or equiv-

alently Hayman) admissibility used there, we consider a family of functions parametrized by n
for which log-admissibility holds simultaneously. The definition is therefore a natural extension.

Definition 4.3. Let
(

gn(t)
)

n∈N
with gn(t) = ∑∞

k=0 gk,ntk be given with radius of conver-

gence ρ > 0 and gk,n ≥ 0. We say that
(

gn(t)
)

n∈N
is log-n-admissible if there exist

functions an, bn : [0, ρ) → R+, Rn : [0, ρ) × (−π/2, π/2) → R+ and a sequence

(δn)n∈N s. t.

Saddle-point: For each n there exists rn ∈ [0, ρ) with

(4.9) an(rn) = n

Approximation: For all |ϕ| ≤ δn we have the expansion

gn(rneiϕ) = gn(rn) + iϕan(rn)−
ϕ2

2
bn(rn) + Rn(rn, ϕ)(4.10)

where Rn(rn, ϕ) = o(ϕ3δ−3
n ).

Divergence: bn(rn)→ ∞ and δn → 0 as n→ ∞.

Width of convergence: We have δ2
nbn(rn)− log bn(rn)→ +∞ as n→ +∞.

Monotonicity: For all |ϕ| > δn, we have

Re
(

gn(rneiϕ)
)
≤ Re

(
g(rne±iδn)

)
.(4.11)

The approximation condition allows us to compute the functions a and b exactly. We have

an(r) = rg′n(r),(4.12)

bn(r) = rg′n(r) + r2g′′n(r)(4.13)

Clearly an and bn are strictly increasing real analytic functions in [0, ρ). The error in the ap-

proximation can similarly be bounded, so that

Rn(r, ϕ) = ϕ3O
(

rg′n(r) + 3r2g′′n(r) + r3g′′′n (r)
)

Having proved Lemma 4.1 we are now able to write down in a more explicit way generating

functions. What we are left with is trying to extract the coefficients of the expansion given therein.

This is the content of

Theorem 4.4. Let
(

gn(t)
)

n∈N
be log-n-admissible with associated functions an, bn and con-

stants rn. Call

Gn := [tn]egn(t).

Then
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1 Gn has the asymptotic expansion

(4.14) Gn =
1√
2π

(rn)−nbn(rn)−1/2egn(rn)(1 + o(1)).

2 Recall hn defined in (1.3). For the class of functions with weights as in (1.4),

hn =
1√

2π(α + 1)n
α+2
1+α

e2n
α

1+α (1 + o(1))

respectively as n→ +∞.

Remark. As it is explained in [15, Chapter VIII] it is possible to take into account more error

terms in the expansion of gn.

Proof of Theorem 4.4. The proof is exactly the same as in [22, Prop. 2.2] and we thus give only

a quick sketch of it, referring the reader to this paper for more details. As in the well-known

saddle point method, we want to evaluate the integral

1
2πi

∮
γ

exp (gn(z))
dz

zn+1 .

We choose as contour the circle γ := rneiϕ with ϕ ∈ [−π, π]. On ϕ ∈ [−δn, δn] after

changing to polar coordinates we can expand the function g as∫ δn

−δn
exp

(
gn(r) + iϕan(r)− ϕ2

2
bn(r) + o(ϕ3δ−3

n )− inϕ

)
dϕ

We now choose rn such that a(rn) = rng′n(rn) = n in order to cancel the linear terms in n.

This allows us to approximate the integral on the minor arc with a Gaussian. One shows that

away from the saddle point (so for |ϕ| > δn) the contribution is exponentially smaller than on

the minor arc and thus it can be neglected. �

We would like to emphasize also that it will be not always possible to solve the saddle point

equation (4.9) exactly. However it is enough to find an rn such that

(4.15) a(rn)− n = o
(√

b(rn)
)

holds.

4.2. Limit shape for polynomial weights. In this section we will derive the limit shape for

Young diagrams for the class of measures given by the weights. We will not go into all the

details to prove the log-n-admissibility for the most general case, but will try to give a precise

overview of the main steps nonetheless. One important remark we have to make is that our

parameter s will not be fixed, but will be scaled and hence dependent on n. This comes from

the fact that for a fixed s (4.9) becomes a fixed point equation whose solution cannot be given

constructively, but has only an implicit form. We were not able to use this information for our pur-

poses, and hence preferred to exploit a less general, but more explicit parameter to calculate
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asymptotics.

4.2.1. Limit shape. The main goal of this subsection is to prove that the weights (1.4) induce a

sequence of log-n-admissible functions of which we can recover the asymptotics of gn(rn). This

will give us the limit shape of the Young diagram according to Theorem 4.4. More specifically

Theorem 4.5. For the scaling n∗ = n
1

α+1 , x∗ = xn∗ and s∗ := s(n∗)−α/2, define the

functions

ws
∞(x) :=

Γ(α, x)
Γ(α + 1)

,

σ2
∞(x) := − Γ(α + 1, x)2

2Γ(α + 1)Γ(α + 2)
+

Γ(α, x)
Γ(α + 1)

.

Then

w̃s
n(x) :=

wn(x∗)− (n∗)αws
∞(x)

(n∗)α/2
L−→ N

(
0, σ2

∞(x)
)

.

In particular ws
∞(x) is the desired limit shape.

Remark. We note that the limit shape matches the one obtained in [13, Thm. 4.8] and also the

one obtained in the present paper in the randomized case (cf. the definition of wr
∞(x) of Prop.

3.3).

Theorem 4.6. Define the cumulant generating function as

Λ(s) := log En

[
esw̃n(x)

]
= ∑

m≥1
qm

tm

m!
.

We then have for m ≥ 2

qm = κm(1 + o(1)).(4.16)

with

κm = [sm]

(
(n∗)α

α

(
1− s∗

Γ(α + 1, x)
Γ(α + 2)

)−α

+

(
e−s∗ − 1

)
Γ(α + 1) ∑

k≥0

Γ(α + k, x)
k!

(
Γ(α + 1, x)

Γ(α + 2)
s∗
)k
 .(4.17)

We can also determine the behavior of the increments of the function wn(·). We will consider

first the more general case and then give the example of the two-increment case (refer to (4.7)

with ` = 2).
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Theorem 4.7. 1 For ` ≥ 2 and x` ≥ x`−1 ≥ · · · ≥ x1 ≥ 0, let

w̃s
n(x) =

(
w̃s

n(x`), w̃s
n(x`−1)− w̃s

n(x`), . . . , w̃s
n(x1)− w̃s

n(x2)
)
.

Set x`+1 = +∞. For 1 ≤ j < i < ` we have that

w̃s
∞(xi, xj) := lim

n→+∞
Cov

(
w̃s

n(xj)− w̃s
n(xj+1), w̃s

n(xi)− w̃s
n(xi+1)

)
=

(Γ(α + 1, xi)− Γ(α + 1, xi+1))
(
Γ(α + 1, xj)− Γ(α + 1, xj+1)

)
Γ(α + 1)Γ(α + 2)

.

Remark. Let us comment briefly on Thm. 4.7. What we obtained in this result is most unex-

pected: cycle counts are asymptotically independent under very mild assumptions (see

Lemma 2.1). The assumption of the lemma holds in our case as the growth of the parame-

ters ϑn is algebraic. The fact that the increments depend on disjoint sets of cycles would have

suggested the asymptotic independence of wn(y∗) from wn(x∗) − wn(y∗). We are aware

of the work of [4] handling this issue in the case of the Ewens sampling formula, in particular

showing that partial sums of cycle counts need not converge to processes with independent

increments. Our result extends this idea in the sense that it shows the explicit covariance ma-

trix for a whole category of generating functions. It would be interesting to provide a heuristic

explanation for this theorem.

4.2.2. Log-n-admissibility. In order to determine the limit shape we would like to prove the log-

n-admissibility of the function explicited in (4.3). To be more precise, what we have to prove

is

Lemma 4.8. Let s ≥ 0, and recall n∗ = n
1

α+1 , s∗ = s(n∗)α/2. The function

gΘ(t) + (e−s∗ − 1)
∞

∑
k=bx∗c

kα−1 + O
(
kβ−1)

Γ(α + 1)
tk

is log-n-admissible for all x ≥ 0, with gΘ(t) as in (2.5) and

(4.18) rn := e−vn

with

vn := (n∗)−1
(

1− s(n∗)−α/2 Γ(α + 1, x)
Γ(α + 2)

)
.
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Proof of Lemma 4.8. Saddle-point and approximation: We start first with the case β =
0. By doing so one obtains that

a(rn) =
+∞

∑
k=1

kα

Γ(α + 1)
e−kvn + (e−s∗ − 1)

+∞

∑
k=bx∗c

kα

Γ(α + 1)
e−kvn

= (vn)−α−1 + O (1) + (e−s∗ − 1)
Γ(α + 1, x∗vn)

Γ(α + 1)

+(e−s∗ − 1)O
(
v−α

n
)

(4.19)

= n
(

1 + (α + 1)s(n∗)−α/2 Γ(α + 1, x)
Γ(α + 2)

+ O
(
(n∗)−α

))
+n
(
− s

(n∗)α/2 + O
(

s2

(n∗)α

))(
Γ(α + 1, x)
Γ(α + 1)

+ O
(
(n∗)−α/2

))
+O

(
1 + v−α

n (n∗)−α/2
)

= n + O (n∗) .(4.20)

We also have that

(4.21) b(rn) = O

(
+∞

∑
k=1

kα+1

Γ(α + 1)
e−kvn

)
∼ (α + 1)(n∗)α+2 + O (n) .

Therefore (4.15) holds true for all α. In the case where β is turned on, we obtain by

performing similar steps that

a(rn) = n + O
(
(n∗)β+1

)
.

Then (4.15) is satisfied if

(4.22)
β + 1
α + 1

<
α + 2

2(α + 1)
⇐⇒ β <

α

2

which holds by assumption.

Divergence: By the above calculations we set δn := (n∗)−ξ with α+3
3 < ξ < α+2

2 . This

position holds also in the case β > 0.

Monotonicity: In the region |ϕ| = o (1) we wish to show that

(4.23) g
(

rneiϕ
)

= g(rn)(1 + o (1)).

First remember that gn
(
rnei±δn

)
= O ((n∗)α) by Lemma 2.3. Thus here we have:

1 if ϕ = o (vn), then by a change of variable t (vn − iϕ)t

∑
k≥bx∗c

kα−1

Γ(α + 1)
e−k(vn−iϕ)

∼ (vn − iϕ)−α

Γ(α + 1)

∫ +∞

x
tα−1e−tdt =

Γ(α, x)
Γ(α + 1)

(vn − iϕ)−α

which is asymptotic to (n∗)α. Considering the factor e−s∗ − 1 we obtain that the

summand is negligible with respect to Re
(

g(rne±iδn)
)
.
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2 If ϕ 6= o (vn), then

∑
k≥bx∗c

kα−1

Γ(α + 1)
e−k(vn−iϕ)

∼ (vn − iϕ)−α

Γ(α + 1)

∫ +∞

x−ixϕn∗+o(1)
tα−1e−tdt =

Γ(α, x− ixϕn∗)
Γ(α + 1)

(vn − iϕ)−α

and afterwards use the fact that Γ(α, x + iy) = O
(
yα−1) for |y| large. Hence

the RHS of (4.24) becomes

O
(
(n∗)α−1

)
(vn − iϕ)1−α = O

(
(n∗)α−1ϕ−1

)
As ϕ 6= o (vn), we obtain that O

(
(n∗)α−1ϕ−1) = O ((n∗)α) o (1) which is

enough to show (4.23).

3 To conclude we consider the case |ϕ| > C: the function gn
(
rneiϕ) is bounded

there by a constant uniform in n, and then by bounding gn
(
rneiϕ) through its

modulus we have

Re
(

gn(rneiϕ)
)
≤ Re

(
g(rne±iδn)

) (
1 + O

(
(n∗)−α/2

))
.(4.24)

�

In order to show Thms. 4.5, 4.6 and 4.7 we need to prove first an auxiliary proposition.

Proposition 4.9. For the scaling n∗ := n
1

α+1 , x∗ := xn∗ and s∗ := s(n∗)−α/2 the equality

(e−s∗ − 1) ∑
k≥bx∗c

kα−1rk
n

=
(
−s(n∗)α/2Γ(α, x) +

s2

2
Γ(α, x)− Γ(α + 1, x)2

Γ(α + 2)
s2
)

+ o (1)(4.25)

holds asymptotically as n→ +∞.

Proof. We apply Lemma 2.4 with

f (t) := tα−1e−tvn ,

zn = xn∗, vn =
1

n∗

(
1− s(n∗)−α/2 Γ(α + 1, x)

Γ(α + 2)

)
and

znvn = x− sx
(n∗)α/2

Γ(α + 1, x)
Γ(α + 2)

.

The first term of the expansion is

(e−s∗ − 1) (n∗)α Γ(α, x)

= −s(n∗)α/2Γ(α, x) +
s2

2
Γ(α, x) + o (1)
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because (s∗)3(n∗)α = o (1). If β > 0 instead we obtain

(e−s∗ − 1) (n∗)α Γ(α, x)

= −s(n∗)α/2Γ(α, x) +
s2

2
Γ(α, x) + o (1)

To calculate the expansion up to a O (1) term it is sufficient to consider for k = 1

(e−s∗ − 1) (n∗)α
(

Γ(α + 1, x)
Γ(α + 2)

sn−β

)
= −Γ(α + 1, x)

Γ(α + 1, x)
Γ(α + 2)

s2 + o (1)

This tells us that

(e−s∗ − 1) ∑
k≥bx∗c

kα−1rk
n

=
(
−s(n∗)α/2Γ(α, x) +

s2

2
Γ(α, x)− Γ(α + 1, x)2

Γ(α + 2)
s2
)

+ o (1)(4.26)

As for the remainder, we can find an a priori bound on the Bernoulli polynomials independent of

n on x ∈ [0, 1]. Furthermore,

(e−s∗ − 1) f (bx∗c) = O
(

s(n∗)−α/2
)

(bxn∗c)α−1e−x+o(1) = O
(

s(n∗)
α−2

2

)
,

which is small compared to the magnitude of the leading coefficient in s. Moreover∫ +∞

xn∗
B1(x′ − bx′c) f ′(x′)dx′(4.27)

≤ C
∫ +∞

xn∗
| f ′(x′)|dx′ = C

∫ +∞

xn∗
e−x′vn(−vn(x′)α−1

+(α− 1)(x′)α−2)dx′.(4.28)

With the same substitution x′ := zn
a0

y we can interchange limit and integral by the dominated

convergence theorem to obtain

(4.28) = O

((
zn

a0

)α/2

Γ(1 + α, a0)

)
.

Combining this with the first order expansion of (e−s∗ − 1) we obtain

(4.27) = O
(

s(n∗)α/2−α/2
)

= s O (1) .

�

Proof of Thms. 4.5 and 4.6. To determine the behavior of Gn we would like to use Lemma 4.1.

By (4.3)

En
[
exp

(
−s∗wn(x∗)

)]
=

1
hn

[tn]

exp

gΘ(t) + (e−s∗ − 1)
+∞

∑
k=bx∗c

ϑk
k

tk

 .
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We have shown that gn(t) = gΘ(t) + (e−s∗ − 1) ∑+∞
k=bx∗c

ϑk
k tk is log-n-admissible. There-

fore Thm. 4.4 tells us how Gn behaves, and we have more precisely to recover three terms. In

first place we collect the terms for the asymptotic of egn(rn): one is

gΘ(rn) ∼
Γ(α)

Γ(α + 1)
v−α

n =
(n∗)α

α

(
1− s(n∗)−α/2 Γ(α + 1, x)

Γ(α + 2)

)−α

=
(n∗)α

α
+ (n∗)α/2 sΓ(α + 1, x)

Γ(α + 2)

+
s2Γ(α + 1, x)2

2Γ(α + 2)Γ(α + 1)
+ O

(
(n∗)β

)

given by Lemma 2.3. The other is ∑k≥bx∗c
kα−1+O(kβ−1)

Γ(α+1) rk
n which we can approximate through

Prop. 4.9. Secondly we obviously have

−n log(rn) = (n∗)α − (n∗)α/2s
Γ(α + 1, x)

Γ(α + 2)
.

Thirdly the behavior of b(rn) was determined in (4.21). All in all

eg(rn)−n log(rn) = exp
(

(n∗)α

(
1 +

1
α

)
+ s(n∗)α/2 Γ(α, x)

Γ(α + 1)

+
s2

2

(
− Γ(α + 1, x)2

2Γ(α + 1)Γ(α + 2)
+

Γ(α, x)
Γ(α + 1)

)
+s3O

(
(n∗)−3α/2 (1 + (n∗)α)

))
.(4.29)

Theorem 4.4 yields the behavior of hn, and the same theorem allows us to conclude plugging

in (4.14) the expressions obtained in (4.21), (4.29) and hn of (2) therein. It is also clear that ws
∞

is the limit shape, in the same fashion the result followed in the proof of Corollary 3.4.

For cumulants what we have to do is considering the logarithm of the expansion

(rn)−nb(rn)−1/2egn(rn)−n log(rn). We claim that it suffices to consider simply the logarithm

of the expression (4.29). In fact,

log(b(rn)) = log

(
O

(
(n∗)α+2

(
1− s∗

Γ(α, x)
Γ(α + 1)

)−α−2
))

= C1 log(n) + C2 ∑
k≥0

sk(n∗)
kα
2

whilst each coefficient of sk in gn(rn) − n log(rn) is of order (n∗)
α(2−k)

2 (compare (4.29)).

This confirms that the main contribution stems from (4.29). �
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Proof of Thm. 4.7. For multiple increments repeating the proof of Thm. 4.5 tells us that for a

vector wn(x∗) as in (4.7) with length ` > 2 we can set

vn := (n∗)−1

(
1− (n∗)−α/2

Γ(α + 2)
(s`Γ(α + 1, x`)

+
`−1

∑
k=1

s`−k (Γ(α + 1, x`−1−k)− Γ(α + 1, x`−k))

))
.

We deduce from this that

gΘ(rn) ∼
v−α

n
α

=
(n∗)α

α
− (n∗)α/2

Γ(α + 2)(
s`Γ(α + 1, x`) +

`−1

∑
k=1

(s`−k−1(Γ(α + 1, x`−k−1)− Γ(α + 1, x`−k))

)

+
1

2Γ(α + 2)Γ(α + 1)
(s`Γ(α + 1, x`)

+
`−1

∑
k=1

(s`−k−1(Γ(α + 1, x`−k−1)− Γ(α + 1, x`−k))

)2

+o (1) .(4.30)

Since the coefficients of the form
(

e−s∗j − 1
)

∑
x∗j+1−1
k=x∗j

ϑk
k rk

n do not give a contribution to co-

variances, the mixed terms will stem from the expansion of the square in (4.30). In particular we

see that the coefficient of sisj, for 1 ≤ j < i < `, is

(Γ(α + 1, xi)− Γ(α + 1, xi+1))
(
Γ(α + 1, xj)− Γ(α + 1, xj+1)

)
2Γ(α + 1)Γ(α + 2)

.

�

4.3. Functional CLT for wn(·). As in the randomized setting, a functional CLT can be obtained

here too. Unlike the previous case though we do not have the independence of cycle counts,

hence we will have to show the tightness of the fluctuations as in Sec. 3.3 in two steps (cf. [17]).

The result we aim at is, precisely as before,

Theorem 4.10. The process w̃s
n : R+ → R (see Thm. 4.5) converges weakly with respect

to Pn as n → ∞ to a continuous process w̃s
∞ : R+ → R with w̃s

∞(x) ∼ N (0, (σs
∞(x))2)

and whose increments are not independent. The covariance structure is given in Thm. 4.7.

Proof. We will proceed as in the proof of Thm. 3.6. Having shown already the behavior of the

increments in Thm. 4.7 what we have to tackle now is their tightness. The proof’s goal is again,

analogoulsy as Lemma 3.7. However the evaluation of the LHS of (3.12) is more difficult this

time; one possible approach is present in [11] and is based on Pólya’s enumeration lemma and

the calculation of factorial moments of cycle counts. We prefer rather to follow again [17]. We

will proceed in two main steps.
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i) We define for 0 < t < 1 the measure Pt as in Section 3. By repeating the proof of [17,

Lemma 2.1] we see that

Pt
[
∑ kCk = n

]
= tnhnegΘ(t).

Mimicking Hansen’s strategy one can also prove that for arbitrary functions Ψ : S→ C,

where S := ∪nSn and Ψn : Sn → C s. t. Ψn = Ψ(C1, . . . , Cn, 0, 0, . . .)

(4.31) Et [Ψ] egΘ(t) = ∑
n≥1

tnhnE [Ψn] + Ψ(0, 0, 0, . . .).

ii) As a formal power series identity (4.31) holds for |t| < 1, thus we decide to set, for

x1, x2 as in the assumptions,

Ψ(k1, k2, . . .) :=

=

n−γ
x∗

∑
i=x∗1+1

(
ki −

ϑi

i
ri

n

)2(
n−γ

x∗2

∑
j=x∗+1

(
k j −

ϑj

j
rj

n

))2

=

n−γ
x∗

∑
i=x∗1+1

ki −
ϑi

i
ti + n−γ

x∗

∑
i=x∗1+1

ϑi

i

(
ti − e−ivn

)2

(
n−γ

x∗2

∑
j=x∗+1

k j −
ϑj

j
tj + n−γ

x∗2

∑
j=x∗+1

ϑj

j

(
tj − e−jvn

))2

for γ > 0 to be tuned appropriately later. We now calculate, using the independence of

cycle counts under the randomized measure and the fact that VarPt [Ci] = Et [Ci] =
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ϑi
i ti,

Et [Ψ] = n−4γ

 x∗

∑
i=x∗1+1

ϑi

i
ti

( x∗2

∑
j=x∗+1

ϑj

j
tj

)

+n−4γ

 x∗

∑
i=x∗1+1

ϑi

i
(ti − e−ivn)

2(
x∗2

∑
j=x∗+1

ϑj

j
(tj − e−jvn)

)2

+2n−4γ

 x∗

∑
i=x∗1+1

ϑi

i
ti

 x∗

∑
i=x∗1+1

ϑi

i

(
ti − e−ivn

)
·
(

x∗2

∑
j=x∗+1

ϑj

j
(tj − e−jvn)

)2

+ . . .

+2n−4γ

 x∗

∑
i=x∗1+1

ϑi

i
ti

( x∗2

∑
j=x∗+1

ϑj

j
tj

) x∗

∑
i=x∗1+1

ϑi

i

(
ti − e−ivn

)
·
(

x∗2

∑
j=x∗+1

ϑj

j
(tj − e−jvn)

)

=: G(1)
Θ (t, n) + G(2)

Θ (t, n) + . . . + G(9)
Θ (t, n).

Let us define gb
a(z) := ∑b

j=a
ϑj
j zj. From (4.31) we obtain

E [Ψn] =
1
hn

[tn]
(

egΘ(t)G(1)
Θ (t, n)

)
+ . . . +

1
hn

[tn]
(

egΘ(t)G(9)
Θ (t, n)

)
.

We therefore obtain several terms and we will analyze them one by one.

0.1 1
hn

[tn]
(

egΘ(t)G(1)
Θ (t, n)

)
. One has

n−4γ

hn
[tn]

(
egΘ(t)gx∗

x∗1+1(t)gx∗2
x∗+1(t)

)
=

n−4γ

hn
[tn]

(
e

gΘ(t)+log
(

gx∗
x∗1+1(t)

)
+log

(
g

x∗2
x∗+1(t)

))
(4.32)

We want to apply the saddle-point method to the sequence of functions gn(t) :=

e
gΘ(t)+log

(
gx∗

x∗1+1(t)
)

+log
(

g
x∗2
x∗+1(t)

)
to extract coefficients. Our first target is to

show the log-n-admissibility. We consider again the radius rn := e−vn with vn :=
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(n∗)−1. In this case as in (4.20)

a(rn) =
+∞

∑
k=1

kα

Γ(α + 1)
e−kvn +

∑x∗
x∗1+1

kα

Γ(α+1) e−kvn

gx∗
x∗1+1(rn)

+
∑

x∗2
x∗+1

kα

Γ(α+1) e−kvn

gx∗2
x∗+1(rn)

=

= (vn)−α−1 + O (1) +
∑x∗

x∗1+1
kα

Γ(α+1) e−kvn

∑x∗
x∗1+1

kα−1
Γ(α+1) e−kvn

+
∑

x∗2
x∗+1

kα

Γ(α+1) e−kvn

∑
x∗2
x∗+1

kα−1
Γ(α+1) e−kvn

= n +
(vn)−α−2Cα+1, x, x1

v−α−1
n Cα, x, x1

+
(vn)−α−2Cα+1, x, x2

v−α−1
n Cα, x, x2

= n + O
(

v−1
n

)
.

where Cα+1, x, x1 , Cα, x, x1 , Cα+1, x, x2 and Cα, x, x2 are constants independent of

n. Very little changes also in the computions for b(rn) which lead to b(rn) =
O
(
(n∗)α+2), yielding the saddle point equation (4.15). As far as monotonic-

ity is concerned, heuristically one can prove it using the fact that the order of

log
(

gx∗
x∗1+1(t)

)
is smaller that that of the leading term gΘ(t) (as one can al-

ready notice for example in the computations for a(rn) and b(rn) above). Since

calculations are straightforward we omit them. Then by Thm. 4.4 one has that (re-

call that hn = [tn]egΘ(t))

n−4γ

∣∣∣∣ 1
hn

[tn]egn(t)
∣∣∣∣ =

∣∣∣gx∗
x∗1+1(rn)gx∗2

x∗+1(rn)(1 + o (1))
∣∣∣ =

≤ Cn−4γ
∣∣(vn)−α (Γ(α, x)− Γ(α, x1)) (vn)−α (Γ(α, x2)− Γ(α, x))

∣∣
≤ Cn−4γ(vn)−2α |(x− x1) (x2 − x)|

= O ((x− x1)(x2 − x)) = O
(
(x2 − x1)2

)
provided that n−4γ(n∗)2α = O (1) iff γ := α

2(α+1) . We highlight that in this case

nγ is precisely the variance of the process (cf. Thm. 4.5). Here we have also used

the fact that the incomplete Gamma function is continuous on a compact [0, K]
for some K large.

0.2 1
hn

[tn]
(

egΘ(t)G(j)
Θ (t, n)

)
, 2 ≤ j ≤ 9. We want to show that all these terms

are O
(
(x2 − x1)2) as well. We take for example G(3)

Θ (t, n) :=
(

∑x∗
j=x∗1+1

ϑj
i

(tj − e−jvn)
)2
(

∑
x∗2
j=x∗+1

ϑj
j tj
)

. We define the auxiliary function hb
a(t) :=

∑b
j=a

ϑj
j (tj − e−jvn). We wish to apply again the saddle point method. In fact

we decompose h as

hx∗
x∗1+1(t) = gx∗

x∗1+1(t)−
x∗

∑
x∗1+1

ϑj

j
e−jvn .
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We now have

G(3)
Θ (t, n) =

(
gx∗

x∗1+1(t)
)2

gx∗2
x∗+1(t)− 2gx∗

x∗1+1(t)gx∗2
x∗+1(t)

 x∗

∑
x∗1+1

ϑj

j
e−jvn


+

 x∗

∑
x∗1+1

ϑj

j
e−jvn

2

gx∗2
x∗+1(t).

It is clear then that in the first-order asymptotics G(3)
Θ (as well as all other terms

involving tj − rj
n) will not give any contribution, because G(3)

Θ (rn, n) = 0. We

ask then ourselves if admissibility holds true for each one of these terms, but this is

fairly easy because of the previous computations. Indeed we can start for example

with the middle one. We have already shown in (a) that

n−4γ 1
hn

[tn]
(

egΘ(t)gx∗
x∗1+1(t)gx∗2

x∗+1(t)
)

is log-n-admissible and the term
(

∑x∗
x∗1+1

ϑj
j e−jvn

)
is a constant independent of

t. Both the other two summands are log-n-admissible with rn = e−vn := e−1/n∗ :

calculations can be performed in the same fashion as (a) and since they are direct

we skip them.

�

4.4. Large deviations estimates. We are able to prove large deviations estimates for wn(·)
thanks to our method as well. In fact, knowing the behavior of the Laplace transform enables us

to compute the asymptotics of the Young diagram in the limit. More precisely, let σn be the limit

variance as in Thm. 4.5. Define the normalized moment generating function and its logarithm

as

M(s) := E

[
exp

(
s
(wn(x)− (n∗)αws

∞(x)
σn

)]
,

Λ(s) := log M(s).

The strategy we adopt was first exploited in [22, Theorem 4.1], and relies on the fact that

Proposition 4.11. There exist functions ξ(n) = O ((n∗)α), σ(n) = O
(
(n∗)α/2) such that

for all s = O (σ(n)) we obtain

Λ(s) =
s2

2
+ O

(
ξ(n)σ(n)−3

)
s3.

It follows than that

Λ′(s) = O
(

ξ(n)σ(n)−3
)

s2,

Λ′′(s) = O
(

ξ(n)σ(n)−3
)

s.
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From this we derive

Proposition 4.12. For all a = O (σn) let δ := O
(
ξ(n)σ(n)−3). Then we have

P

[∣∣∣∣ (wn(x)− (n∗)αws
∞(x)

σn
− a
∣∣∣∣ < ε

]
=
(

1− ε−2(1 + δ)
)

exp
(
−a2/2 + O (δ + εa)

)
.

The error terms are absolute.

Proof. The proof can be performed analogously as [22], as we know that (4.29) holds. �

At this juncture we would like to apply our method to a simple but illustrative case.

4.5. An example: the case gΘ(t) = (1− t)−1. We would like to begin by the easiest case,

in other words to derive the limit shape for one point. We remark that here all our computations

were performed using the function gΘ(t) = t(1− t)−1. This does not affect the computations

of the limit shape as it will “only” make a constant appear, which will be later simplified in all

calculations.

Proposition 4.13. For all x ∈ R+

wn(x
√

n)−
√

ne−x

n1/4
L→ N

(
0, e−x

(
1− 1

2
e−x(x + 1)2

))
In particular, the limit shape is ws

∞(x) := e−x (cf. Thm. 4.5 plugging in α = 1).

We now pass to the joint behavior of (wn(x1), . . . , wn(x`)) which can be recovered from

Proposition 4.14. Let ` ∈N+. For all x1, . . . , x` ∈ R+, set x∗k := xk n1/2; then we have(
wn
(
x∗k
)
− n1/2e−xk

n1/4

)
k=1, ..., `

L→ N (0, Σ)

with Σ ∈ M`(R) defined through

(4.33)
Σk, k = −1

2 e−xk
(
e−xk xk

2 + 2 e−xk xk + e−xk − 1
)

Σk, j = −1
2 e−xk

(
e−xj xkxj + e−xj xk + e−xj xj + e−xj − 1

)
, j 6= k.
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APPENDIX A. EULER MACLAURIN FORMULA WITH NON INTEGER BOUNDARIES

We prove in this section a slight extension of Euler Maclaurin formula, which allows to deal also

with non-integer summation limits.
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Theorem A.1. Let f : R→ R be a smooth function, Bk(x) be the Bernoulli polynomials and

c < d with c, d ∈ R. We then have for p ∈N

∑
bcc≤k<d

f (k) =
∫ d

c
f (x) dx− B1(d− bdc) f (d)− B1(c− bcc) f (c)(A.1)

+
p

∑
k=1

(−1)k+1 Bk+1(d− bdc) f (k)(d)− Bk+1(c− bcc) f (k)(c)
k!

+
(−1)p+1

(p + 1)!

∫ d

c
Bp+1(x− bxc) f (p+1)(x) dx

Proof. The proof of this theorem follows the same lines as the proof of the Euler-Maclaurin

summation formula with integer summation limits, see for instance [1, Theorem 3.1]. We give it

here though for completeness. Our proof considers only the case d /∈ Z. The argumentation for

d ∈ Z is completely similar. One possible definition of the Bernoulli polynomials is by induction:

B0(y) ≡ 1,(A.2)

B′k(y) = kBk−1(y) and
∫ 1

0
Bk(y) dy = 1 for k ≥ 1.(A.3)

In particular, we have B1(y) = y− 1
2 . We now have for m ∈ Z∫ m+1

m
f (y) dy =

∫ m+1

m
B0(y−m) f (y) dy

= [B1(y−m) f (y)]|m+1
y=m −

∫ m+1

m
B1(y−m) f ′(y) dy

=
1
2

f (m) +
1
2

f (m + 1)−
∫ m+1

m
B1(y− byc) f ′(y) dy.

since B1(0) = −1
2 and B1(1) = 1

2 . We obtain

bdc

∑
k=bcc

f (k) =
∫ bdc
bcc

f (x) dx +
1
2

f (bcc) +
1
2

f (bdc) +
∫ bdc
bcc

B1(y− byc) f ′(y) dy.

Furthermore, we use∫ d

bdc
f (y) dy =

1
2

f (bdc) + B1(d− bdc) f (d)−
∫ d

bdc
B1(y− byc) f ′(y) dy.

and get

bdc

∑
k=bcc

f (k) =
∫ d

bcc
f (x) dx +

1
2

f (bcc)− B1(d− bdc) f (d) +
∫ d

bcc
B1(y− byc) f ′(y) dy.

The argumentation for replacing bcc by c is similar. One gets

∑
bcc≤k<d

f (k) =
∫ d

c
f (x) dx− B1(c− bcc) f (c)− B1(d− bdc) f (d)

+
∫ d

c
B1(y− byc) f ′(y) dy.
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The theorem now follows by successive partial integration of
∫ d

c B1(y− byc) f ′(y) dy. �
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