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Abstract

A new scheme for supercontinuum generation covering more than one octave and
exhibiting extraordinary high coherence properties has recently been proposed in Phys.
Rev. Lett. 110, 233901 (2013). The scheme is based on two-pulse collision at a group
velocity horizon between a dispersive wave and a soliton. Here we demonstrate that the
same scheme can be exploited for the generation of supercontinua encompassing the
entire transparency region of fused silica, ranging from 300 to 2300nm. At this bandwidth
extension, the Raman effect becomes detrimental, yet may be compensated by using a
cascaded collision process. Consequently, the high degree of coherence does not degrade
even in this extreme scenario.

1 Introduction

White-light supercontinuum (SC) generation [2] is one of the most intriguing phenomena in non-
linear fiber optics and has revolutionized the field of frequency metrology [3]. Moreover, this
process has led to a number of technological advances in various fields, including but not lim-
ited to spectroscopy, optical communications, and medical imaging [4, 5, 6]. Depending on the
fiber and input pulse parameters, spectral broadening during SC generation may be caused by
distinctively different mechanisms. To this end, the most efficient way is given by injection of
the seed pulse into the anomalous dispersion regime. Here the interplay of soliton fission (SF)
[7] and the generation of phase-matched radiation in the normal dispersion regime enables ex-
tremely broad spectra at relatively low input powers. This generic mechanism has already been
studied extensively, and recently new insight into this phenomenon has been brought up with
unexpected analogies to other fields in physics, such as the dynamics of ultracold atoms and
ocean waves [8, 9]. Furthermore, it turned out that the complex transformation processes be-
tween dispersive radiation and solitons have remarkable impact on the spectrum (for a review,
see [10]). Nevertheless, spectral broadening via SF comes with a severe drawback. This mech-
anisms makes the SC highly susceptible to noise in the input pulse. This input noise is amplified
through the modulation instability (MI), which is also always inherently provided in the anoma-
lous dispersion regime [11, 12], even if it may play a subdominant role for SC generation. For
example, the resulting poor spectral coherence was identified as the reason for the observed
temporal incompressibility of these extremely broad spectra [2]. Injection of the seed pulse in
the normal dispersion regime leads to spectral broadening chiefly by self-phase modulation
and the accompanying Raman effect. In this dispersion regime, the sensitivity to input noise
is strongly reduced, and one can achieve stable spectra that are virtually free of the spectral
modulations and fluctuations seen for anomalous dispersion. Therefore, a normally dispersive
seed helps to avoid the complicated quantum noise seeded temporal pulse splitting, yet the
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spectral broadening also appears strongly reduced in comparison to soliton fission. This seem-
ingly unavoidable tradeoff between broadening efficiency and loss of coherence describes the
fundamental dilemma of fiber-based supercontinuum generation.

In Ref. [1], a two-color scheme for SC generation has been presented that first offered a per-
spective towards overcoming the above mentioned dilemma. This method relies on a collision
process between a fundamental soliton and a dispersive wave. The spectral broadening is pro-
vided by a combination of soliton compression in the anomalous dispersion regime and nonlin-
ear frequency conversion in the normal dispersion regime. In contrast to other SC generation
mechanisms, the output spectra exhibit high coherence and homogeneous spectral power den-
sity as the underlying generation mechanism is independent of SF and MI. These favorable
properties make the spectra highly interesting for applications, e.g., the compression into a co-
herent single-cycle pulse, i.e., a topic that remained rather discouraging to date. It is important
to note that the exploited specific resonant interaction is given by XPM between solitons and dis-
persive waves, which, in turn, is inherently contained in the standard SC scenario accompanying
SF [13, 14]. Moreover, this enhanced XPM mechanism does not only support the SC process,
but provides a possibility of its own for SC generation encompassing more than an octave from
the anomalous to the normal dispersion regime between the utilized two seed wavelengths.
This principle is related to an optical analog of the event horizon [15, 16, 17]. This analog relies
on the ubiquitous wave blocking phenomenon known from fluid dynamics [18, 19]. In optics,
exploitation of this principle has first been suggested for a fiber Bragg grating and is known as
the “optical push broom effect” [20, 21]. Recently, this scenario has been revisited from a more
general perspective, with two-beam collision processes [24] or collisions of an optical pulse with
a moving inhomogeneity [22, 23].

For our purposes it is important that this kind of interaction between a fundamental soliton and
a dispersive wave is able to induce a frequency shift not only for a weak dispersive wave but
also for a strong fundamental soliton [25]. This particular possibility for influencing the center
frequency of both pulses offers significantly enhanced manipulation of optical pulses [26]. To
this end, however, appropriate material parameters have to be chosen. The induced center
frequency shift then results in adiabatic soliton reshaping, i.e., effectively enables control of peak
power and pulse width of the soliton. Qualitatively similar reshaping behavior results from the
Raman-induced soliton self-frequency shift [27] or from ionization [28], with the former causing
a red-shift and the latter a blue-shift. In our case, however, the frequency shift is induced by the
dispersive wave and may be used to shift the center wavelength to either direction. The resulting
supercontinua exhibit a high degree of coherence.

2 Propagation model in terms of the analytical signal

In this section we outline derivation of the basic propagation equation [29, 30] using the Hamil-
tonian framework [31]. We start with the pulse propagation in a single-mode fiber which is de-
scribed by an effectively one-dimensional propagation equation for the real-valued optical field
E(z, t)

∂2
zE −

1

c2
∂2
t (ε̂E + χ(3)E3) = 0. (1)
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Here c is the speed of light, χ(3) is the third-order nonlinear susceptibility. Both bulk and geo-
metric contributions to the fiber dispersion are encoded in the linear operator ε̂, which is defined
via convolution with some effective dispersion function εeff(ω). For the time being the fiber is
dissipation-free, the Raman effect will be accounted for later on. For the Fourier components
Eω(z) we obtain

∂2
zEω + β2(ω)Eω = −ω

2χ(3)

c2
(E3)ω, (2)

where β2(ω)c2 = ω2εeff(ω), and (E3)ω denotes Fourier transform of the nonlinear terms.
The key idea is to consider Eq. (2) as a system of weakly coupled nonlinear oscillators with
the “frequency” |β(ω)| and to transform the left-hand-side of Eq. (2) to a kind of normal form,
i∂zAω + |β(ω)|Aω, for a suitable normal variable Aω(z). Equation (2) is then treated as a
Hamiltonian one

i∂zAω = − δH

δA∗ω
with H =

∑
ω

|β(ω)|AωA∗ω +Hnonlin(A,A∗), (3)

where Hnonlin generates the nonlinear terms in Eq. (2). Equation (3) provides a z-propagation
version of the standard time-evolution Hamiltonian equation of the form

i∂tak =
δH

δa∗k
with H =

∑
k

ωk|ak|2 +Hnonlin(a, a
∗) (4)

which is usually used to quantize fields. Remarkably, representation (4) is of importance not only
for the second quantization formalism but also for the classical nonlinear waves [31]. In the latter
case the creation and annihilation operators are replaced by complex fields subject to nonlinear
propagation equations. For the situation at hand the complex field A(z, t) is introduced by the
relations

Aω(z) =

√
|β(ω)|
2µ0ω2

[
Eω(z)− i∂zEω(z)

|β(ω)|

]
, Eω =

√
µ0ω2

2|β(ω)|
(Aω +A∗−ω). (5)

It is important to stress that we perform a change of variables which works in both directions as
opposed by the usual envelope definition E(z, t) = Re[Ψ(z, t)e−iω0t], where it is impossible
to express Ψ(z, t) in terms of E(z, t) without further assumptions such as the slowly-varying
envelope approximation (SVEA). Equation (1) is transformed to the form

i∂zAω + |β(ω)|Aω + 2
∑
123|ω

Tω1ω2ω3ωĂω1Ăω2Ăω3 = 0, (6)

where we use short notations

Ăω =
Aω +A∗−ω

2
, Tω1ω2ω3ω4 =

(µ0χ
(3)/c2)|ω1ω2ω3ω4|√

|β(ω1)β(ω2)β(ω3)β(ω4)|
,
∑
123|ω

=
∑

ω1,ω2,ω3
ω1+ω2+ω3=ω

.

(7)
One can check that the Hamiltonian function is given by

H =
∑
ω

|β(ω)|AωA∗ω +
∑

1234|0

Tω1ω2ω3ω4Ăω1Ăω2Ăω3Ăω4 . (8)
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Further simplifications are possible if the dispersion law β = β(ω) does not support the third-
harmonics generation process. Neglecting then all non-resonant terms, one obtains a much
more simple expression

Hnonlin =
3

8

∑
12̄34̄|0

Tω1ω2ω3ω4Aω1A∗ω2
Aω3A∗ω4

(9)

and Eq. (6) is reduced to the form

i∂zAω + |β(ω)|Aω +
3

4

∑
12̄3|ω

Tω1ω2ω3ωAω1A∗ω2
Aω3 = 0, (10)

where
∑

ω1,ω2,ω3
ω1−ω2+ω3=ω

is encoded as
∑
12̄3|ω

.

The above Hamilton equations provide an easy way to derive the constants of motion. For a
sequence of pulses propagating with the time period T the Hamiltonian (8) can be transformed
to the form

H =

∫ T/2

−T/2

[
ε0
2

(
ε̂E +

1

2
χ(3)E3

)
E +

1

2µ0

B2

]
dt

T
, (11)

this conserved quantity is related to the averaged momentum flux. Another conserved quantity

∑
ω

ω|Aω|2 =

∫ T/2

−T/2

EB

µ0

dt

T
= const (12)

is the-time averaged energy flux. If we change from Eq. (6) to Eq. (10), one more constant of
motion appears∑

ω

|Aω|2 =
∑
ω

1

|β(ω)|

(
ε0εeff(ω)|Eω|2

2
+
|Bω|2

2µ0

)
= const (13)

and can be interpreted as the classical photon flux [29]. These constants of motions can be used
to estimate energy and photon transfer between the colliding pulses if the latter are separated
in the frequency domain.

We are in a good position to stress that equations (6) and (10) look like the generalized nonlinear
Schrödinger equations (GNSE) and can be solved in the same way, e.g., with the split-step
method. However, Eq. (6) is an exact reformulation of Eq. (1), the transformation (5) is just a
change of variables. Also a non-resonant dispersion law that is required to derive Eq. (10) is a
weaker assumption than the SVEA. In particular, both (6) and (10) are bidirectional equations.
The standard GNSE is unidirectional, it appears if one additionally applies an unidirectional
approximation. Indeed, let us consider how the differential operator in Eq. (5) acts on a forward
(backward) wave [

1− 1

|β(ω)|
i∂z

]
e±iβ(ω)z−iωt = [1± signω]e±iβ(ω)z−iωt. (14)
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The forward (backward) waves are mapped onto the positive (negative) frequency part ofA(z, t).
If the forward waves dominate, the negative-frequency part of A(z, t) can be neglected. The
complex fieldA(z, t) is then directly related to the analytic signal for the electric field E(z, t)

Aω =

√
|β(ω)|
2µ0ω2

Eω, ω > 0, (15)

where E(z, t) is just a sum of the positive-frequency components of E(z, t).

E(z, t) =
∑
ω

Eω(z)e−iωt ⇒ E(z, t) = 2
∑
ω>0

Eω(z)e−iωt. (16)

such that E(z, t) = Re[E(z, t)]. The propagation equation for the analytic signal reads

i∂zEω + β(ω)Eω +
ω2χ(3)

8c2β(ω)

[
(E + E∗)3

]
ω

= 0. (17)

where the latter equation applies only for ω > 0 and Eω<0 vanishes by construction. In what
follows, we ignore generation of the third harmonics and simplify Eq. (17) to the form

i∂zEω + β(ω)Eω +
3ω2χ(3)

8c2β(ω)
(|E|2E)ω = 0, ω > 0. (18)

To return to the space-time representation, it is convenient to denote convolution with β(ω)
in the linear term by iβ̂, to approximate β(ω) in the nonlinear term by ωn(ω0)/c for some
reference index of refraction n(ω0), and to use a standard notation for the nonlinear refraction,
n2 = (3/8)χ(3)/n(ω0). Equation (18) yields

∂zE + β̂E +
n2

c
∂t(|E|2E)+ = 0. (19)

where ( )+ denotes the positive-frequency part. The range of applicability of Eq. (19) is similar to
that of the unidirectional forward Maxwell equation [7], but with the benefit of a clear separation
of third-harmonic generation terms. If the Raman effect is important, Eq. (19) is replaced by

∂zE + β̂E +
n2

c
∂t(fK |E|2E + fRE ĥ|E|2)+ = 0, (20)

where fK and fR = 1− fK describe relative contributions of the Kerr and Raman effects and
ĥ denotes a standard convolution with the Raman response function

ĥ|E(z, t)|2 =

∫ ∞
0

h(t′)|E(z, t− t′)|2dt′, h(t′) =
τ 2

1 + τ 2
2

τ1τ 2
2

e−t
′/τ2 sin(t′/τ1) (21)

where we adopted typical values fR = 0.82, τ1 = 12.2 fs and τ2 = 32 fs for silica fibers [2].

Figure 1 depicts an exemplary group delay profile β1 = β′(ω) and related group-velocity dis-
persion profile β2 = β′′(ω) for a 5 micron strand of silica in air [32]. The presence of absorptive
resonances in the ultraviolet as well as vibrational resonances in the infrared generally causes a
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characteristic concave group-velocity dispersion profile, which is modified by the waveguide dis-
persion. For the exemplary case shown here, this results in a zero-dispersion wavelength (ZDW)
located at 997 nmm wavelength. For numerical solution of Eq. (20) we use either a de-aliased
pseudospectral method, with the implementation of the Runge-Kutta integration scheme in the
frequency domain and adaptive step-size control, or a more direct split-step Fourier approach.
Accuracy of the numerical scheme is monitored by tracing the constants of motion. Considering
ultrashort optical pulses with carrier frequencies of several hundreds THz, we use a maximum
temporal discretization step of ∆t = 0.6fs. Sufficiency of the discretization is ensured by ex-
emplary runs that involve a considerably larger number of harmonics.

For the calculation of the coherence properties we generated a total of 512 supercontinua in-
stances, using different quantum noise seeds. Namely, the noise seeds are numerically imple-
mented by adding one photon with random phase per mode to each discrete frequency bin of
the input signal [2].

3 Optical event horizon inducing collisions between disper-
sive waves and solitons

The concave group-velocity profile of solid dielectric materials always enables co-propagation
of a dispersive wave (DW) and a soliton at exactly identical group velocity, see Fig. 1 for the
linear optical contributions. For an exact match, nonlinear contributions to the group velocity
have to be considered. In particular, the group velocity is modified in the immediate vicinity of
the soliton. Launching a DW and a soliton at nearly identical group velocities may then lead
to a condition that has been termed “optical group-velocity horizon”. Once the dispersive wave
reaches the nonlinear index modification induced by the soliton, both pulses remain temporally
locked to each other. Consequently, the effective XPM interaction length between the two pulses
is significantly increased, and any walk-off effect is prevented or at least substantially delayed.

The according group velocity dispersion β2 profile and the relative group delay β1 = 1/vg
profile are shown in Fig. 1, together with a selection of three exemplary frequency combinations.
The fiber group index is taken from [32]. Accordingly, for the given situation, we launch two
synchronized pulses with similar pulse parameters

E(z = 0, t) = Es sech(t/ts)e
−iωst + Ep sech(t/tp)e

−iωpt, (22)

where Es,p, ts,p, ωs,p correspond to the initial field, the temporal width, and the center frequency,
respectively. The pulses are injected at an initial time delay of ∆T = 450 fs into the fiber on
either side of the zero dispersion wavelength. For demonstration of the main mechanism, we
first neglect the Raman effect. In principle, such pure Raman-free behavior can be realized in
hollow-core fibers filled with noble gases [28].

An exemplary collision process of a DW at the leading edge of a fundamental soliton is demon-
strated in Fig. 2(a,b). The DW is injected earlier into the fiber at a frequency with a slightly slower
group velocity as the FS, leading to a collision process that induces a blueshift of the soliton cen-
ter frequency and a redshift of the DW [Fig. 2(b)]. Both pulses are accelerated by the collision
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Figure 1: The group velocity dispersion β2 and the relative group delay β1 = 1/vg of a fused
silica fiber, exhibiting three exemplary wavelength combinations [1550,627] nm, [1800,530] nm,
and [2200,428] nm for a soliton and a probe pulse with nearly equal group velocities.
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Figure 2: Time domain and spectral evolution of two pulse collision between a soliton and a dis-
persive wave. (a,b) Enhanced XPM for the “resonant” wavelength combination at [1550,627] nm
representing the scattering process at an effective group-velocity horizon. (c,d) Typical crossing
of two pulses without any repulsion for the standard XPM interaction for wavelength combination
[1550,607] nm.
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[26]. This process has recently also been referred to as diametrically driven self-acceleration
[33]. For a comparison of this enhanced nonlinear interaction and the standard XPM, we illus-
trate the resulting collision process for the latter case, i.e., without the repulsion of the DW in
Fig. 2(c,d). The initial wavelength of the DW is shifted away from the “resonant condition” for
nearly equal group-velocities and is changed from 627 nm to 607 nm. The pulses quickly pass
each other, and only a marginal change of the pulse parameters is observed. However, there
exists a range of DW frequencies that establish a collision process. Given the chosen frequency
of the DW, different collision scenarios can be generated while keeping all other parameters of
both pulses fixed. Moving farther away from the exact resonant condition, only a part of the DW
is reflected. This behavior suggests use of the DW frequency as an effective control param-
eter for all-optical manipulation. Other control parameters are provided by the amplitude and
the width of the DW as well as by the initial time delay between both pulses. Among all these
parameters, the DW amplitude represents the simplest adjustable and the most efficient control
parameter.

The main idea behind the manipulation by the event horizon relies on exploitation of the induced
center frequency shift of the soliton in a suitably chosen dispersion profile. Namely, the soliton
has to be injected into a region with a large β3 coefficient. The elementary collision process is
completely elastic, causing a mutual shift of optical frequencies, yet without transferring pho-
tons from the normal dispersion regime into the soliton regime or vice versa. With the photon
number of the soliton being conserved, the soliton blueshift is automatically accompanied by a
mild energy increase. However, the blue-shifted soliton is located closer to the zero-dispersion
wavelength and therefore also experiences a reduced second-order dispersion after the colli-
sion. Depending on the initial frequency of the soliton, an induced frequency shift of only a few
nm may result in a considerable change of the dispersion parameter, depending on the strength
of the β3 coefficient. Considering that the energy E of a fundamental soliton relates to P0 and
β2 via

E = 2
√
P0|β2|/γ, (23)

the reduction of β2 cannot be compensated by a decrease of E because E is nearly constant
and may even slightly grow due to the increase of photon energy. As γ also does not vary
appreciably with wavelength, Eq. (23) therefore affects a massive growth of P0 as a result of
the blue shift. Moreover, as the pulse energy is nearly conserved, this peak power growth is
automatically accompanied by a decrease in pulse width. In summary, one can understand the
reshaping process of the soliton as an adiabatic compression mechanism that is induced by the
DW via mutual four-wave mixing processes. A reverse scenario where the DW is reflected at the
trailing edge of the soliton also results in the opposite effect. In the latter case both pulses are
decelerated due to their interaction. Consequently, the soliton is not compressed, which renders
this situation unsuitable for SC generation.

4 SC generation by soliton collision with dispersive waves

The importance of DWs, in particular their initial generation and subsequent transformation by
the solitons, has already been demonstrated in the soliton-fission dominated SC generation,
where it leads to additional spectral broadening [10, 13, 34]. However, the underlying process

8



may also be employed for direct generation of the supercontinuum without the fission process.
To this end, one has to provide a continuous repulsion of dispersive waves at the temporal
location of the soliton. Background radiation with a suitable frequency for a repulsion process
may be created by the dispersion of an intense and ultrashort pulse in the normal dispersion
regime. The time delay between the initial DW and the soliton can then be chosen in such a way
to ensure a reflection of radiation at the soliton edge over longer propagation distances, but one
has to take care that the radiation amplitude is too low for inducing a soliton frequency shift at
any point of the reflection process.
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Figure 3: Supercontinuum generation by two pulse collision for the three frequency combina-
tions marked in Fig. 1. (a,b) Supercontinuum encompassing more than an octave from the
anomalous to the normal dispersion regimes for the wavelength combination [1550,627] nm.
(c,d) Increased spectral bandwidth for the wavelength combination [1800,530] nm. (e,f) Super-
continuum spanning over the whole transparency region of fused silica for [2200,428] nm.

For the three frequency combinations marked in Fig. 1, time domain representations of the
SC propagation dynamics are shown in Fig. 3 together with the corresponding evolution of the
spectra. Detailed pulse parameters are given in Table 1. In all three cases, the width of the
solitons are chosen to display an equal number of cycles at the given wavelength. Scattering
of the background radiation at the edge of the fundamental soliton can be realised over long
propagation distances in all three cases. In parallel, we observe that the constant acceleration
of the soliton leads to a parabolic trajectory in the (t, z)-plane, which is typical for the interaction
behavior at an optical event horizon. However, we have a natural limitation of the acceleration
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Table 1: Pulse parameters for the soliton and dispersive wave.

Soliton Dispersive wave
Figure λ(nm) t0(fs) β2

(fs2/µm)
λ(nm) t0(fs) β2

(fs2/µm)
PDW/PFS

2a,b 1550 45.03 -0.105 628 100 0.0456 0.19
2c,d 1550 45.03 -0.105 608 100 0.0456 0.19
3a,b 1550 15.48 -0.105 628 40 0.0456 0.92
3c,d 1800 17.01 -0.184 530 34 0.060 1.30
3e,f 2200 20.99 -0.372 428 100 0.0894 1.00
4a,b 1800 17.01 -0.184 538 100 0.0595 1.3
4c,d 2200 20.99 -0.372 428 100 0.0894 1.0

process as the group-velocity must not exceed its maximum value given by the minimum of
β1 at the ZDW. At this point the soliton can no longer be accelerated, which terminates soliton
compression. Subsequently, we finally observe a transfer of energy from the soliton into the
normal dispersion regime. This final process also contributes to the SC generation.

The entire SC generation process can therefore be understood as soliton compression in the
anomalous dispersion regime accompanied by the excitation of new frequencies by the reflec-
tion of the DW in the normal dispersion regime. Further contributions stem from self-phase mod-
ulation of the non-reflected part and from the above-mentioned merging of the soliton spectrum
into the normal dispersion regime. Figure 3(a,b) is equivalent to the SC generation demon-
strated in [1], yet for the frequency combination [1550, 627 ]nm. The attainable bandwidth of the
SC is chiefly determined by the initial separation of the two frequencies. The generated spec-
trum exhibits a 20-dB spectral width of 1050 nm, encompassing 1.5 octaves from 570 nm to
1620 nm. In Fig. 3(c,d) we extend the separation of the frequency between the soliton and the
DW from 1800nm to 520nm. To observe the same behavior, we have to increase the energy of
the DW by an increase of the peak intensity or the pulse width. Figure 3(e,f) finally discusses
an expansion of the wavelength separation close to the total available transparency region of
the given strand fiber, i.e., 400–2400nm for fused silica. Also for this limiting example, the entire
bandwidth between the two initial frequencies is continuously excited. In contrast to the SC by
soliton fission, we do observe any limitation of spectral broadening. Consequently, this has to
be considered a huge advantage of our scheme as it enables the generation of a SC over the
whole bandwidth between the resonant absorption in the UV and the mid-infrared.

The spectral width can be adjusted by the frequency combination and the energy contents of
both pulses. In general, there appears a disadvantage of the less effective spectral broadening
in the normal dispersion regime [2]. However, in our case the spectral broadening depends
on both pulses, and the spectral width and shape can be adjusted in different ways. It is also
possible to excite only a part of the spectrum between the two pump wavelengths with high
brightness in the normal dispersion regime.

Without the Raman effect, the main limitation for the obtainable spectral bandwidth is just dic-
tated by the transparency region of the material, i.e., more than 2.5 octaves for fused silica.
Depending on the material of the fiber, even broader SC may be generated, reaching into the
mid-infrared if one chooses,e.g., fluoride glasses or chalcogenides.
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Apart from the possibility for multi-octave SC generation, the resulting spectra exhibit extraor-
dinary coherence properties [1]. In the normal dispersion regime, non-deterministic temporal
pulse splitting is typically inherently avoided. Such behavior could translate into spectral modu-
lation, and fluctuations are avoided. Markedly in the anomalous dispersion regime, our scheme
does neither exhibit a pronounced susceptibility to noise. Usually noise is amplified in the in-
put pulse through the modulation instability. In our case, this degeneration process is suitably
avoided as the soliton pulse width becomes extremely short, which, in turn, substantially re-
duces the impact of the MI [12].

5 Supercontinuum generation under consideration of the Ra-
man effect

The discussed scattering processes in the event horizon have previously reported to also ap-
pear in the presence of the Raman effect [15, 35, 8, 36, 37, 38] and the same process may
therefore exploited for SC generation. For the particular frequency combination [1550,627] nm,
we previously demonstrated that a SC with a similarly high degree of coherence is generated
[1]. One has to justify that the properties of the DW may readily serve to pre-compensate the
Raman induced soliton-self-frequency-shift (SSFS) [39]. Such pre-compensation requires only
minor adjustment of input parameters. As control parameters one may use the peak power, the
pulse width of the DW, or the time delay between the DW and the soliton. As only the low inten-
sity parts of the DW are reflected, the intensity and the width of the initial DW need to be chosen
such that a suitable low level background is built up by DW broadening. It should be noted that
higher intensities of the DW effectively cross the trajectory of the soliton, with an accordingly
smaller reflected part. Temporal broadening of the DW can easily be controlled by choosing an
appropriate time delay between the soliton and the DW. At the same time, however, the inten-
sity of the DW segments have to be high enough at any interaction point to compensate and
overcome the counteracting deceleration by the self-frequency shift. This naturally implies that
the group velocities of both pulses should not be chosen too close to each other, effectively lim-
iting the range of the resonant condition for the reflection process. For further extension of the
bandwidth between the two initial frequencies, compensation of the SSFS becomes increasingly
difficult. Figure 4 depicts simulations that include the Raman effect for the wavelength combina-
tion [1800,530] nm and [2200,428] nm. For the spectrum that ranges from 520 nm to 1800 nm
[Fig. 4(a,b)], filling the gap between the two input wavelengths with the same mechanism turns
out to be possible. However, in order to do so, we need careful adjustments of several parame-
ters. Apart from a suitable combination of the peak intensity, the width of the DW and the time
delay between the DW and the soliton, we also find an adequate modulation of the DW center
frequency necessary.

Further increase of the gap between the initial frequencies of DW and the soliton, now for
the combination [2200,428] nm, makes it even more difficult to fill all frequencies in the gap
as a compensation of the Raman effect is no longer possible for the whole necessary range
[Fig. 4(c,d)]. Consequently, the interaction length between the DW and the soliton does not
suffice anymore for the generation of a SC over the entire spectral range that was previously
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Figure 4: Evolution of the supercontinuum in the time domain and the spectral domain by
two-pulse collision with the impact of the Raman effect for (a,b) the wavelength combination
[1800,538] nm, and (c,d) [2200,428] nm.

discussed in the absence of the Raman effect. Including the Raman effect, the soliton trajectory
is strongly influenced by the self-frequency shift. This effect pushes the soliton back towards
the red, leading to adverse temporal broadening and deceleration of the soliton. Consequently,
in comparison to the Raman free-case, the amplitude of the DW has always to be higher at
the reflection point as the SSFS has to be compensated. For longer propagation distances,
interaction of a DW with a FS may be enforced by an increase of the initial pulse width and peak
intensity. However, there is another important limiting issue as the DW induced blueshift of the
soliton also affects the resonance condition implied by the dispersion properties. A rapid soliton
frequency sweep therefore quickly terminates effective interaction.

One possibility to overcome this obstacle is suggested in Fig. 5(a,b), where our scheme is
used in a cascaded way. We inject now two DWs at different frequencies into the fiber. The
wavelength of the first injected DW exhibits a centre wavelength at 470nm that is adjusted to be
in resonance with soliton at a center wavelength closer to the ZDW. Despite of being injected
first, this DW only interacts with the soliton after having been blue-shifted by the other primary
DW. Once the effective interaction with this primary DW has come to an end, the secondary DW
takes over and thereby expands the duration of effective nonlinear interaction with the soliton.
In this way the whole spectrum in the transparency region can be excited as the Raman effect
is compensated over longer distances. Cascaded interaction of the soliton and several DWs
at different frequencies does not only enable generation of broader SCs, but also opens up a
perspective for conveniently realising the necessary pulse parameters.

One of the advantages of the SC generated by two-pulse collision relates to their superior
coherence properties. In the cascaded scheme, there are also no detrimental effects that could
cause a degradation of the coherence properties, as MI and pulse splitting are still avoided.
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To demonstrate this, we calculate the measure of the SC phase stability by the modulus of the
complex degree of first-order coherence at each wavelength [40]

|g12(λ, t1 − t2)| =

∣∣∣∣∣ 〈E∗1(λ, t1)E2(λ, t2)〉√
〈|E1(λ, t1)|2〉〈|E2(λ, t2)|2〉

∣∣∣∣∣ . (24)

The angular brackets denote an ensemble average over independently generated pairs of SC
spectra [E1(λ, t), E2(λ, t)] obtained from 512 simulations.

Figure 6(a) displays single-shot spectra for selected values of z of the fiber, using the same
parameters as in Fig. 5(b). The corresponding degree of coherence [Fig. 6(b)] reflects the ex-
pected insensitivity to noise. We observe similar coherence properties for a SC that covers the
whole transparency region as was previously reported for an only 1.5 octave spanning SC in
Ref. [1]. The only notable degradation is found in the vicinity of the zero dispersion wavelength.
Otherwise, wide spectral segments exhibit favorable coherence properties, both in the normal
and anomalous dispersion regime.

6 Conclusion

We presented a novel scheme for generating a multi-octave supercontinua. This scheme is
based on the strong pulse reshaping at an optical event horizon, and it consists of the com-
bination of different mechanisms for each dispersive regime. Namely, these mechanisms are
soliton compression and frequency conversion due to the reflection of dispersive waves at the
effective horizon of a soliton in the anomalous and the normal dispersion regime, respectively.
Our scheme bears several possibilities for tailoring properties of the SC, which enables adaption
to different applications and demands. Apart from the possibility to generate different spectral
coverage ranges, favorable coherence properties may be achieved, in particular also in the
anomalous dispersion regime.
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