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Abstract

We are considered with three different types of multivariate chi-square distributions.
Their members play important roles as limiting distributions of vectors of test statistics
in several applications of multiple hypotheses testing. We explain these applications and
provide formulas for computing multiplicity-adjusted p-values under the respective global
hypothesis.

1 Introduction

Chi-square distributions play an important role in many areas of inferential statistics, at least
for two reasons. First, chi-square distributions on [0,∞) are (limiting) distributions of quadratic
forms and thus they occur naturally in the context of distance-based statistical methods in Eu-
clidean geometry. One example of this type of application is the chi-square test of goodness-
of-fit, where squared distances of observed and expected counts are evaluated in order to test
the empirical distribution of a data sample against a given one. Second, likelihood ratio statis-
tics in parametric models are under regularity conditions asymptotically chi-square distributed
according to Wilks (1938), at least if nested models are considered.

In many modern application fields, however, several statistical hypotheses have to be tested
simultaneously based on the same sample. This is typically referred to as a multiple test prob-
lem. For instance, one may want to test which genes from a potentially large list of candidates
are associated with a clinically relevant outcome, or one may want to test which vareties of a
certain agricultural product have (on average) the largest gross yield per unit. In such situations,
typically a vector of test statistics is constructed, where every component corresponds to one
(marginal) test problem; we will provide more details in Section 2.1. Hence, under the multiple
testing framework, often vectors of chi-square distributed statistics are objects of interest. Partic-
ularly relevant cases occur if these marginal chi-square statistics exhibit certain dependencies,
leading to the consideration of multivariate chi-square distributions.

In this work, we will be considered with different types of such multivariate chi-square distribu-
tions. We will explain typical multiple test problems in which these distributions play a role as
(limiting) distributions of vectors of test statistics, and we will discuss methods for computing mul-
tivariate chi-square probabilities and, consequently, multiplicity-adjusted p-values correspond-
ing to such multivariate chi-square distributed vectors of test statistics. The paper is organized
as follows. After the preliminary Section 2, we study nonparametric rank-based multiple com-
parisons in Section 3, by exploiting permutational multivariate central limit theorems. Section
4 deals with the simultaneous analysis of several contingency tables, where data from differ-
ent tables are dependent. This has important applications in statistical genetics, in particular
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in genetic association studies. In Section 5, multiple Wald tests (or asymptotically equivalently,
multiple likelihood ratio tests) for dependent endpoints are considered. Section 6 summarizes
computational methods for different types of multivariate chi-square distributions, and we con-
clude with a discussion in Section 7.

2 Preliminaries

2.1 Multiple hypotheses testing

The general setup of multiple testing theory assumes a statistical model (Ω,F , (Pϑ)ϑ∈Θ)
parametrized by ϑ ∈ Θ and is concerned with testing a familyH = (Hi : i ∈ I) of hypotheses
regarding the parameter ϑ with corresponding alternatives Ki = Θ \Hi, where I denotes an
arbitrary index set. In the applications treated in this paper, I will be of finite cardinality m (say),
such that I = {1, . . . ,m} may be assumed without loss of generality. We identify hypotheses
with subsets of the parameter space throughout the paper. Let ϕ = (ϕi : i ∈ I) be a multiple
test procedure for H, meaning that each component ϕi, i ∈ I , is a (non-randomized) test for
the test problem Hi versus Ki in the classical sense.

We restrict our attention to multiple tests which are defined via a family (Ti, i ∈ I) of test
statistics, where each Ti : Ω → R is a measurable mapping. We assume that each Ti tends
to larger values under the respective alternative Ki. Thus, the marginal test ϕi is of the form
ϕi(x) = 1 ⇐⇒ Ti(x) > ci, where the critical values ci, i ∈ I , have to be chosen to ensure
(type I) error control of given form at given level. More specifically, let I0 ≡ I0(ϑ) ⊆ I denote
the index set of true hypotheses inH and V (ϕ) the number of false rejections (type I errors) of
ϕ, i. e., V (ϕ) =

∑
i∈I0 ϕi. The classical multiple type I error measure in multiple hypothesis

testing is the family-wise error rate, FWER for short, and can (for a given ϑ ∈ Θ) be expressed
as FWERϑ(ϕ) = Pϑ(V (ϕ) > 0). The multiple test ϕ is said to control the FWER in the strong
sense at a pre-defined significance level α, if supϑ∈Θ FWERϑ(ϕ) ≤ α. In terms of the joint
distribution of test statistics and the critical values, we can write

FWERϑ(ϕ) = Pϑ

(⋃
i∈I0

{Ti > ci}

)
= 1− Pϑ

(⋂
i∈I0

{Ti ≤ ci}

)
,

showing that suitable critical values ci, i ∈ I , are given by quantiles of the joint distribution
of test statistics. Let H0 =

⋂
i∈I Hi denote the global (intersection) hypothesis of H, which

is assumed non-empty throughout the remainder. Often, FWER control under H0 (in the weak
sense) entails FWER control in the strong sense, namely, if parameter values in H0 are least
favorable configurations (LFCs) for the FWER of ϕ. Sufficient conditions for the latter have been
provided by Gabriel (1969) and Dickhaus and Stange (2013), among others. In Sections 3 - 5,
we will derive the joint distributions of test statistics only underH0. Even if parameters inH0 are
not LFCs, this joint distribution under H0 can straightforwardly be employed for strong FWER
control by utilizing the closed test principle (cf. Marcus et al. (1976)), provided that the family
(Ti, i ∈ I) is joint in the sense of Gabriel (1969). Letting ti = Ti(x), 1 ≤ i ≤ m, x ∈ Ω,
denote the actually observed values of the test statistics, multiplicity-adjusted p-values are given
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by

pi(x) = Pϑ
(

max
1≤j≤m

Tj > ti

)
, 1 ≤ i ≤ m, (1)

where we will again restrict our attention to parameter values ϑ ∈ H0 in (1).

2.2 Types of multivariate chi-square distributions

There is no general definition of a p-variate chi-square distribution, because there exist a variety
of different ways in which univariate chi-square distributions can be combined by a copula.
Although the stochastic representation of the resulting random vector Q = (Q1, . . . , Qp)

>

(of any of the types considered in this work) only involves standard normal random variables
(and can therefore be simulated straightforwardly), its (joint) distribution is not determined by
the marginal degrees of freedom and the correlation matrix of the components Q1, . . . , Qp,
as analytically proved by Krishnaiah and Rao (1961). To illustrate this fact, let us consider the
following elementary counterexample.

Example 2.1.

(i) Consider four real-valued, centered random variables Z1,1, Z1,2, Z2,1, Z2,2 having a joint
normal distribution on R4, where each Zi,j has unit variance. Let ρ(Zi,j, Zk,`) denote
Pearson’s correlation coefficient of Zi,j and Zk,` for 1 ≤ i, j, k, ` ≤ 2 and assume that
only the correlations ρ(Z1,1, Z2,1) = ρ(Z1,2, Z2,2) = ρ are non-zero. Then, the random
vector Q = (Q1, Q2)>, given by Q1 = Z2

1,1 + Z2
1,2 and Q2 = Z2

2,1 + Z2
2,2, follows a

bivariate chi-square distribution with two degrees of freedom in both marginals and with
Cov(Q1, Q2) = 4ρ2.

(ii) Consider three real-valued, independent and identically distributed (iid.) random variables
Z0, Z1, Z2, where Z0 has the standard normal distribution on R. Let the random vector
Q̃ = (Q̃1, Q̃2)> be given by Q̃1 = Z2

1 + Z2
0 and Q̃2 = Z2

2 + Z2
0 . Then, Q̃ also follows

a bivariate chi-square distribution with two degrees of freedom in both marginals, and it
holds Cov(Q̃1, Q̃2) = Var(Z2

0) = 2.

Letting ρ2 = 1/2 in part (i), we obtain that Cov(Q1, Q2) = Cov(Q̃1, Q̃2) = 2. However,
even for this choice of ρ2 the joint distributions of Q and Q̃ do not coincide, as can be seen
by comparing their Laplace transforms (Lt), which are given by Lt(Q1,Q2)(t1, t2) = [(1 +
2t1)(1 + 2t2) − 4ρ2t1t2)]−1 = [1 + 2(t1 + t2 + t1t2)]−1 in case of ρ2 = 1/2, as well
as Lt(Q̃1,Q̃2)(t1, t2) = [(1+2(t1 + t2))(1+2t1)(1+2t2)]−1/2. In view of testing two hypothe-
ses, notice that, assuming ρ2 = 1/2, the equi-coordinate 95%-quantile of Q approximately
equals 7.0802, while that of Q̃ approximately equals 6.9776.

Example 2.1 demonstrates that the full joint stochastic representation of a multivariate chi-
square distributed random vector is needed in order to compute its quantiles (and, hence, to
calibrate associated multivariate multiple tests). For different statistical models and associated
families of hypotheses that we are going to discuss in the following sections, these stochas-
tic representations differ, giving rise to different types of multivariate chi-square distributions.
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The “classical“ definition of a p-variate chi-square distribution is provided for instance by Timm
(2002), see his Definition 3.5.7. It is the joint distribution of the diagonal elements of a Wishart-
distributed random matrix S ∼ Wp(ν,Σ). Therefore, we term this distribution a p-variate chi-
square distribution of Wishart-type or a “Wishart-chi-square distribution“ for short. Its standard-
ized form results whenever Σ is a correlation matrix, meaning that all its diagonal elements are
equal to one. The distribution of Q in part (i) of Example 2.1 is a standardized bivariate Wishart-
chi-square distribution. Wishart-chi-square distributions straightforwardly arise if a family of point
hypotheses regarding the marginal variances of a multivariate normal distribution shall be tested
based on an iid. sample; cf. Example 2.2. Multivariate chi-square distributions of Wishart-type
will also play an important role in Examples 2.3 and 2.4, as well as in Section 3. Two different
generalizations of Wishart-chi-square distributions have been introduced by Jensen (1970) (cf.
our Section 4 for an application) and Dickhaus (2012) (see our Definition 5.1). Due to their rele-
vance in many multiple test problems, these three types of multivariate chi-square distributions
are the subject of this work.

On the other hand, the distribution of Q̃ in part (ii) of Example 2.1 was considered by Simes
(1986) and Sarkar and Chang (1997) in connection with the validity of Simes’ global test under
positive dependency, but is of none of the aforementioned three types. Further types of mul-
tivariate chi-square distributions, which are also not considered in this work, are compiled in
Chapter 48 of Kotz et al. (2000).

2.3 Some first examples

Example 2.2 (Multiple tests of Gaussian variances). Assume that one can observe iid. random
vectors X1, . . . ,XN , where X1 ∼ Nm(µ,Σ). Consider the case that the mean vector µ and
the diagonal elements of the covariance matrix Σ = (σij)1≤i,j≤m of each of the observables
are unknown. Assuming that m ≥ 2 and N > m, a suitable estimator of Σ is the empirical
covariance matrix S, given by S = (N − 1)−1

∑
1≤i≤N(Xi− X̄)(Xi− X̄)>, where X̄ is the

vector of component-wise arithmetic means. It is well-known (see, for instance, Corollary 7.2.3.
of Anderson (1984)) that the distribution of S is a Wishart distribution with mean Σ and N − 1
degrees of freedom. Consequently, the joint distribution of the diagonal elements (Sii : 1 ≤
i ≤ m) is anm-variate chi-square distribution of Wishart-type which is scaled by the (unknown)
diagonal elements σii for 1 ≤ i ≤ m. Now, consider the system H = (Hi : 1 ≤ i ≤ m)
of hypotheses, where Hi : {σii = σ∗ii} for fixed, given constants σ∗ii, 1 ≤ i ≤ m, with one-
sided alternatives Ki : {σii > σ∗ii} (the one-sided alternative {σii < σ∗ii} can be treated
analogously and the two-sided alternative {σii 6= σ∗ii} can be represented by two one-sided
ones). A suitable vector of test statistics is then given by (S11/σ

∗
ii, . . . , Smm/σ

∗
mm)>, and the

respective m-variate chi-square distribution of Wishart-type under the global hypothesis H0 =⋂
1≤i≤mHi can be used for calibrating a multivariate multiple test procedure for testingH.

Example 2.3 (Multiple comparisons of multinomial probabilities). Consider k subpopulations
Ωi, 1 ≤ i ≤ k, and assume that one can observe stochastically independent vectors Ni ∼
Mc(ni, ~pi), 1 ≤ i ≤ k, whereMc(n, ~p) denotes the multinomial distribution with c categories,
sample size n and vector of probabilities ~p. We assume that the sample sizes ni are given
constants and that the vectors ~pi = (pi` : 1 ≤ ` ≤ c)> are unknown. Royen (1984) was
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considered with the problem of multiple comparisons with a control group, i. e., the system
HDunnett = (Hi : 1 ≤ i ≤ k − 1), where Hi : {~pi = ~pk} (group k is the control group), with
two-sided alternatives Ki : {~pi 6= ~pk}. A suitable test statistic for testing Hi is given by

Ti =
c∑
`=1

{
(Ni` − Ei`)2

Ei`
+

(Nk` − Ek`)2

Ek`

}
, Eγ` =

nγ(Ni` +Nk`)

ni + nk
, γ ∈ {i, k}. (2)

Under Hi, Ti is asymptotically (as min{ni : 1 ≤ i ≤ k} → ∞) chi-square distributed
on [0,∞) with c − 1 degrees of freedom. However, the (Ti : 1 ≤ i ≤ k − 1) are corre-
lated, because data from group k are used in all Ti. Let P0 denote any probability measure
on Ω =

⋃k
i=1 Ωi such that the global hypothesis H0 =

⋂
1≤i≤k−1Hi is true. Noticing that

P0(∀1 ≤ i ≤ k − 1 : Ti ≤ cα) = P0(max1≤i≤k−1 Ti ≤ cα), the critical value cα for cali-
brating a simultaneous test procedure in the sense of Gabriel (1969) for FWER control at level
α can be chosen as a quantile of the distribution of max1≤i≤k−1 Ti under H0 (this distribution
is invariant with respect to the parameter values in H0). The latter distribution is a (k − 1)-
variate chi-square distribution of Wishart-type with c − 1 marginal degrees of freedom and an
associated one-factorial correlation matrix (see Section 6 for details) which only depends on the
given sample sizes ni for 1 ≤ i ≤ k. The cdf. of this distribution has been computed by Royen
(1984). We may also mention here that the cdf. of non-central multivariate chi-square distribu-
tions of Wishart-type with associated one-factorial correlation matrices has been computed by
Royen (1995); see also Royen (1997). These non-central distributions play an important role in
connection with power considerations for the simultaneous test procedure.

Furthermore, Royen (1984) also considered the problem of all pairwise group comparisons, i.
e., the system HTukey = (Hij : 1 ≤ i < j ≤ k), where Hij : {~pi = ~pj} with two-sided
alternatives Kij : {~pi 6= ~pj}. A suitable test statistic for testing Hij is given by

Tij =
c∑
`=1

{
(Ni` − Ei`)2

Ei`
+

(Nj` − Ej`)2

Ej`

}
, Eγ` =

nγ(Ni` +Nj`)

ni + nj
, γ ∈ {i, j}. (3)

The distribution of max1≤i<j≤k Tij under
⋂

1≤i<j≤kHij is a generalization of the Gaussian
range distribution to Gaussian random vectors and quantiles of it have been tabulated by Royen
(1989, 1990).

Example 2.4 (Multiple comparisons of vectors of regression coefficients). Consider k ≥ 3
stochastically independent response vectors Yi, 1 ≤ i ≤ k, with values in Rn each, where
n ∈ N denotes the common sample size in every group i. For each 1 ≤ i ≤ k, assume a
linear model for Yi of the form

Yi = Xβi + εi, (4)

where the given (n× p) design matrix X is the same for all k groups and is assumed to have
rank p < n. Royen (1995), Section 6, was considered with multiple comparisons regarding the
vectors βi : 1 ≤ i ≤ k. Differences between these vectors indicate that the influence of the
covariates encoded by X on the (mean) response is different across groups. Assuming that all
vectors εi, 1 ≤ i ≤ k, of error terms are identically distributed asNn(0, σ2In), the (in general
unknown) error variance σ2 can be estimated by the pooled estimator S2 with ν = k(n − p)
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degrees of freedom, and it holds νS2/σ2 ∼ χ2
ν . Now, consider for illustration the problem of

multiple comparisons with control group k, i. e., the system of hypotheses HDunnett = (Hi :
1 ≤ i ≤ k − 1), where Hi : {βi = βk}. The usual least squares estimator of βi is given
by β̂i = (X>X)−1X>Yi, leading to β̂i − β̂k = (X>X)−1X>(Yi − Yk) with covariance
matrix Cov(β̂i − β̂k) = 2σ2(X>X)−1. Hence, if σ2 would be known, the normalized squared
difference

Ti =
1

2σ2
(Yi −Yk)

>X(X>X)−1X>(Yi −Yk)

would be a suitable test statistic for testing Hi, for 1 ≤ i ≤ k − 1. The joint distribution of
(T1, . . . , Tk−1)> under the global hypothesis H0 is a (k − 1)-variate chi-square distribution
of Wishart-type, cf. Example 2.3. In the practically relevant case of unknown σ2, Studentization
with S leads to the modified test statistics

T̃i =
1

2S2
(Yi −Yk)

>X(X>X)−1X>(Yi −Yk), 1 ≤ i ≤ k − 1.

Up to scaling with the degrees of freedom, the joint distribution of (T̃1, . . . , T̃k−1)> under H0 is
a multivariate extension of Fisher’sF -distribution the cdf. of which can be obtained by integrating
the cdf. of (T1, . . . , Tk−1)> with respect to the distribution of S2/σ2. This results in a null
distribution for the calibration of the multiple test based on (T̃1, . . . , T̃k−1)> for FWER control
at level α, see the derivations in Section 6 of Royen (1995). There, one can also find asymptotic
expansions for large degrees of freedom of S2 to avoid the additional integration over the density
of S2/σ2, which can be used in the same way for the central multivariate F -distribution.

3 Multivariate nonparametric multiple comparisons

Puri and Sen (1971), Section 5.4, worked out a multivariate extension of the Kruskal-Wallis
test. Assume that one can observeN stochastically independent vectors X1, . . . ,XN , each of
which takes values in Rp, and that the corresponding N observational units belong to c distinct
groups, where nk denotes the sample size for group 1 ≤ k ≤ c such that N =

∑c
k=1 nk. The

(global) null hypothesisH0 (say) that Puri and Sen (1971) were concerned with states that there
are no group differences, i. e., that X1, . . . ,XN are identically distributed. For testing H0, they
proposed a rank-based method which works as follows. For every coordinate 1 ≤ i ≤ p, all
N observational units are ranked. Let R(k)

i` denote the resulting rank of the `-th observational
unit within group k in coordinate i, where 1 ≤ ` ≤ nk. The scaled rank average of group k in
coordinate i is given by T (k)

N,i = (N + 1)−1n−1
k

∑nk
`=1 R

(k)
i` . Notice that one can equivalently

write T (k)
N,i = (N + 1)−1n−1

k

∑N
`=1 Ri`1{group is k}(`), where the index ` now runs over all N

observational units and (Ri` : 1 ≤ ` ≤ N) denotes the pooled vector of ranks among all

observational units in coordinate i. Both representations immediately entail that EH0 [T
(k)
N,i ] =

1/2. Letting T (k)
N = (T

(k)
N,1, . . . , T

(k)
N,p), a reasonable test statistic for testing H0 is given by

LN =
c∑

k=1

nk

[(
T

(k)
N −

1

2
1

)
V −1(R∗N)

(
T

(k)
N −

1

2
1

)>]
,
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where the (p× p)-matrix V (R∗N) has elements

vii′(R
∗
N) = [N(N + 1)2]−1

c∑
k=1

nk∑
`=1

R
(k)
i` R

(k)
i′` − 1/4

and is assumed to be invertible for ease of presentation. It is easy to check that, in the case
of p = 1, the statistic LN equals NH/(N − 1), where H is the test statistic for the Kruskal-
Wallis test (see Kruskal and Wallis (1952)). Puri and Sen (1971) proved that, under H0, the
permutational distribution of LN converges weakly to a chi-squared distribution with p(c − 1)

degrees of freedom. For their proof, joint asymptotic normality of the statistics T (k)
N,i for 1 ≤ i ≤

p and 1 ≤ k ≤ c − 1 under the permutation distribution plays a crucial role. The latter can
elegantly be deduced from the considerations by Sen (1983). We let LNik = T

(k)
N,i − 1/2 and

represent this centered (under H0) statistic as LNik =
∑N

`=1(c`,k − c̄k)Ri`/(N + 1) with
regression coefficients

c`,k = n−1
k 1{group is k}(`), c̄k = N−1

N∑
`=1

c`,k = 1/N,

which do not depend on the coordinate i. Following Sen (1983), we obtain that under H0, it
asymptotically (as min{nk : 1 ≤ k ≤ c} → ∞) holds

(LNik : 1 ≤ i ≤ p, 1 ≤ k ≤ c− 1) ∼ Np(c−1)(0, VN ⊗ CN) (5)

for the joint permutational distribution of (LNik : 1 ≤ i ≤ p, 1 ≤ k ≤ c−1), where the entries
in the matrix VN ∈ Rp×p are given by

vN,i,i′ = (N − 1)−1

N∑
`=1

(
Ri`

N + 1
− 1

2

)(
Ri′`

N + 1
− 1

2

)

=
N

N − 1

(
1

N(N + 1)2

N∑
`=1

Ri`Ri′` −
1

4

)
, i, i′ = 1, . . . , p,

and

CN =
N∑
`=1

[
(c`,1, . . . , c`,c−1)−

(
1

N
, . . . ,

1

N

)][
(c`,1, . . . , c`,c−1)−

(
1

N
, . . . ,

1

N

)]>
=

(
δk,k′

nk
− 1

N

)
k,k′=1,...,c−1

(6)

with values in R(c−1)×(c−1).

Now, assume that group differences (if any) are to be localized in the sense that one is in-
terested in inferring which of the p marginal distributions are heterogeneous between the c
groups. For addressing this multiple test problem, a suitable vector of test statistics is given by
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H = (H1, . . . , Hp)
>, where each Hi is a coordinate-specific statistic of Kruskal-Wallis type, i.

e.,

Hi =
12

N(N + 1)

c∑
k=1

nk

(
R̄

(k)
i −

N + 1

2

)2

=
12(N + 1)

N

c∑
k=1

nkL
2
Nik (7)

= v−1
N,i,i

c∑
k=1

nkL
2
Nik, 1 ≤ i ≤ p.

In (7), R̄(k)
i = n−1

k

∑nk
`=1 R

(k)
i` denotes the (unscaled) rank average of group k in coordinate i.

Theorem 3.1. As min{nk : 1 ≤ k ≤ c} → ∞, the joint permutational distribution of H =
(H1, . . . , Hp)

> is underH0 asymptotically a multivariate chi-square distribution of Wishart-type
with associated correlation matrix

WN =

(
vN,i,i′√

vN,i,ivN,i′,i′

)
1≤i,i′≤p

.

Proof. Throughout the proof, we assume that H0 holds true. First, we notice that we can ex-
press LNic = −n−1

c

∑c−1
k=1 nkLNik, leading to

Hi = v−1
N,i,i

(
c−1∑
k=1

nkL
2
Nik +

1

nc

c−1∑
k=1

c−1∑
k′=1

nknk′LNikLNik′

)

= v−1
N,i,iL

>
Ni

(
nkδk,k′ +

nknk′

nc

)
k,k′=1,...,c−1

LNi

= L>Ni
(
v−1
N,i,iC

−1
N

)
LNi,

where LNi = (LNi1, . . . , LNi(c−1))
> for 1 ≤ i ≤ p andC−1

N =
(
nkδk,k′ +

nknk′
nc

)
k,k′=1,...,c−1

is the inverse of CN from (6) (assuming invertibility of the latter). Hence, Hi = ‖Zi‖2
2, where

Zi = v
−1/2
N,i,i C

−1/2
N LNi is asymptotically standard normal on Rc−1 due to the limiting distribu-

tional result in (5) for (LNik : 1 ≤ i ≤ p, 1 ≤ k ≤ c − 1). Finally, it is easy to check that the
full (conditional) covariance matrix of (Z>1 , . . . ,Z

>
p )> is asymptotically given by WN ⊗ Ic−1,

implying the assertion. �

Remark 3.1. The limiting result in (5) is not restricted to the particular form of regression coeffi-
cients leading to H. Thus, many other, related problems in nonparametric multivariate analysis
lead (under the global hypothesis) to analogous limiting multivariate chi-square distributions for
the respective vectors of test statistics.

4 Genetic association studies

From the statistical point of view, genetic association studies with case-control setup lead to the
problem of simultaneous categorical data analysis, meaning that many contingency tables have
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Table 1: Schematic representation of data for an association test problem at genetic locus j,
where the two possible alleles are denoted by Aj,1 and Aj,2.

Genotype Aj,1Aj,1 Aj,1Aj,2 Aj,2Aj,2
∑

Phenotype 1 x
(j)
1,1 x

(j)
1,2 x

(j)
1,3 n1.

Phenotype 0 x
(j)
2,1 x

(j)
2,2 x

(j)
2,3 n2.

Absolute count n.1
(j) n.2

(j) n.3
(j) N

to be analyzed simultaneously. Assuming a set of m > 1 bi-allelic genetic markers with exactly
two possible values Aj,1 and Aj,2 (say) for 1 ≤ j ≤ m, the data for genetic locus j can in such
type of study be summarized as in Table 1.

The numbers n1. of cases (phenotype 1) and n2. of controls (phenotype 0) do not depend
on j and are fixed by experimental design. The aim of the statistical analysis is to test the
family of hypotheses H = (Hj : 1 ≤ j ≤ m), where the j-th null hypothesis Hj states
that the genotype at locus j is stochastically independent of the (binary) phenotype of interest.
A suitable marginal test statistic for testing Hj against its two-sided alternative Kj that the
genotype at locus j is associated with the phenotype is given by

Qassoc.(x
(j)) =

2∑
r=1

3∑
c=1

(x
(j)
rc − e(j)

rc )2

e
(j)
rc

, (8)

where the numbers e(j)
rc = nr.n

(j)
.c /N denote the expected cell counts under Hj , conditional to

the marginal counts n1., n2., n.1(j), n.2(j), and n.3(j).

It is well known that the distribution of Qassoc.(X
(j)) converges under Hj weakly to the (central)

chi-square distribution on [0,∞) with two degrees of freedom, for all 1 ≤ j ≤ m. However,
the marginal test statistics typically exhibit strong correlations, at least in blocks, because of the
biological mechanism of inheritance. These correlations can be described in terms of linkage
disequilibrium (LD) matrices. The resulting stochastic representation of the asymptotic distribu-
tion of the vector Qassoc.(X) of all m test statistics Qassoc.(X

(j)), 1 ≤ j ≤ m, has been derived
by Dickhaus and Stange (2013); see also Moskvina and Schmidt (2008) for a simpler disease
risk model.

Lemma 4.1 (Dickhaus and Stange (2013)). Let, for 1 ≤ j ≤ m, Pj = (P1j, P2j, P3j)
> denote

the vector of expected genotype frequencies at position j for cases in the target population, and
define

Z1,j =
X

(j)
11 − n1.P1j√

n1.P1j(1− P1j)
, (9)

Z2,j =
P2j(X

(j)
11 − n1.P1j) + (1− P1j)(X

(j)
12 − n1.P2j)√

n1.P2j(1− P1j)(1− P1j − P2j)
. (10)

Then, for N → ∞, (Z1,j, Z2,j)
> converges in distribution to (Z1, Z2)> with (Z1, Z2)> ∼

N2(0, I2), the standard normal distribution on R2. Furthermore, Qassoc.(X
(j)) converges in dis-

tribution to Z2
1 + Z2

2 under Hj . Finally, under the global hypothesis H0 =
⋂m
j=1Hj , it holds

9



for all 1 ≤ j, k ≤ m: For any tuple (`1, `2) ∈ {1, 2}2, the joint distribution of (Z`1,j, Z`2,k)
>

converges weakly to a bivariate normal distribution with correlation coefficient given by

lim
N→∞

Cov(Z`1,j, Z`2,k) = rj,k(`1, `2) (say). (11)

Consequently, the vector Qassoc.(X) asymptotically follows a multivariate central chi-squared
distribution of generalized Wishart-type under H0, with correlation structure given by

lim
N→∞

Cov(Qassoc.(X
(j)), Qassoc.(X

(k))) = 2
2∑

`1=1

2∑
`2=1

r2
j,k(`1, `2). (12)

The correlation coefficients rj,k(`1, `2) in (11) only depend on the expected genotype frequen-
cies Pij , Pik, i = 1, 2, 3, and on the second-order joint probabilities of genotype pairs. Thus,
they can be deduced from appropriate LD matrices which are publicly available. Second-order
product-type probability bounds (see Block et al. (1992) and Section 4.3 of Dickhaus (2014)
for details) based on the bivariate marginal chi-square distributions of pairs of components of
Qassoc.(X) under H0 can be calculated by making use of the derivations by Jensen (1970).
These bounds can be used for approximating the joint m-variate distribution of Qassoc.(X) un-
der the global hypothesis in a computationally inexpensive manner. This strategy has originally
been advocated by Moskvina and Schmidt (2008). In Section 6.4 below, a series expansion for
the three-variate marginal distributions is provided. It allows for utilizing probability bounds (of
sum- or product-type) of order 3.

5 Multiple Wald tests

In this section, we further generalize our definition of multivariate chi-square distributions of
Wishart-type. In particular, we consider the following type of multivariate chi-square distributions.

Definition 5.1. Let m ≥ 2 and ~ν = (ν1, . . . , νm)> be a vector of positive integers. Let
(Z1,1, . . . , Z1,ν1 , Z2,1, . . . , Z2,ν2 , . . . , Zm,1, . . . , Zm,νm) denote

∑m
k=1 νk jointly normally dis-

tributed random variables with joint correlation matrix R = (ρ(Zk1,`1 , Zk2,`2) : 1 ≤ k1, k2 ≤
m, 1 ≤ `1 ≤ νk1 , 1 ≤ `2 ≤ νk2) such that for any 1 ≤ k ≤ m the random vector Zk =
(Zk,1, . . . , Zk,νk)

> has a standard normal distribution on Rνk . Let Q = (Q1, . . . , Qm)>,
where

Qk =

νk∑
`=1

Z2
k,` for all 1 ≤ k ≤ m. (13)

Then we call the distribution of Q a multivariate (central) chi-square distribution of generalized
Wishart-type with parameters m, ~ν and R and write Q ∼ χ2(m,~ν,R).

As demonstrated by Dickhaus (2012) in the context of likelihood-based simultaneous inference
in dynamic factor models, multivariate chi-square distributions of generalized Wishart-type in
the sense of Definition 5.1 occur as limit distributions of vectors of Wald statistics (or, asymp-
totically equivalently, likelihood ratio statistics) under H0 if a statistical model with multiple cor-
related endpoints is considered. For concreteness, let us consider here a multivariate multiple
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linear regression model. We assume that one can observe stochastically independent vectors
Y1, . . . ,YN for sample size N , where each Yi takes values in Rm for m > 1. We make the
model assumption that for all 1 ≤ i ≤ N , Yi ∼ Nm(βxi,Σ). In this, xi ∈ Rp denotes a
(given) profile of covariates for observational unit i, β denotes an (m × p) matrix of unknown
regression coefficients (the parameters of the model), and the covariance matrix Σ ∈ Rm×m of
each observable vector is regarded as a nuisance parameter. We denote by βk ∈ Rp the vector
of regression coefficients corresponding to coordinate k, where 1 ≤ k ≤ m, which is given by
the transpose of the k-th row of β. The following well-known result can for instance be found as
Theorem 8.2.2. in the textbook by Anderson (1984).

Theorem 5.1. Let β̂ and Σ̂ denote the maximum likelihood estimators of β and Σ. Then it holds:

(a) vec(β̂>) = (β̂>1 , . . . , β̂
>
m)> ∼ Nmp(vec(β>),Σ ⊗ A−1), where A =

∑N
i=1 xix

>
i is

assumed to be invertible.

(b) NΣ̂ ∼ Wishart(Σ, N − p) is stochastically independent of β̂.

Now, we interpret each component of the observables as an endpoint and consider the system
of hypothesesH = (Hk : 1 ≤ k ≤ m), where each endpoint-specific hypothesis Hk is a lin-
ear hypothesis, i. e.,Hk : Ckβk = ξk. The contrast matricesCk ∈ Rrk×p are assumed to have
rank rk, for all 1 ≤ k ≤ m, and the vectors ξk ∈ Rrk are given. For instance, one may want to
test if different subsets of the covariates have significant effects on different endpoints, while ad-
justing for the respectively remaining covariates. A suitable test statistic for testing Hk for each
1 ≤ k ≤ m is given by the Wald statistic Wk = (Ckβ̂k − ξk)

>(CkV̂kC
>
k )−1(Ckβ̂k − ξk),

where we denote by V̂k the submatrix of Σ̂ ⊗ A−1 which corresponds to β̂k. Marginally, each
Wk is asymptotically (N → ∞) chi-square distributed with rk degrees of freedom under Hk;
cf., e. g., Section 12.4.2 in the textbook by Lehmann and Romano (2005). Hence, due to the
joint normality of β̂ according to Theorem 5.1, the vector W = (W1, . . . ,Wm)> asymptoti-
cally follows a multivariate chi-square distribution in the sense of Definition 5.1 under the global
hypothesis H0 =

⋂m
k=1Hk.

Remark 5.1. Limiting joint distributions of vectors of likelihood ratio statistics in more general
models have been derived by Katayama (2008).

6 Computational methods: Some representations and approx-
imations for multivariate chi-square or gamma distributions

6.1 Notation and special functions

Since many formulas for multivariate chi-square distributions are scattered in the literature, some
of them are compiled in this section. As mentioned in Section 2.2, there is no general definition
of a “multivariate chi-square or gamma distribution“ but there are many well known families of
distributions with one-dimensional marginal gamma distributions. In this paper we consider only
the multivariate gamma distribution in the sense of Krishnamoorthy and Parthasarathy (1951),
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“Jensen’s multivariate gamma“, derived from Jensen (1970), and the distribution from Definition
5.1. For dimension p ∈ N, the Lt of the first one is given by

|Ip +RT |−α (14)

with the (p × p)-identity matrix Ip, the “associated“ correlation matrix R, T = diag(t1, ...tp),
t1, . . . , tp ≥ 0, α > p− 2, p ≥ 2 or 2α ∈ N (for p − 1 ≥ α > p − 2 see Section 2 in
Royen (2007)). A characterization of R allowing all α > 0 (i. e., infinite divisibility in (14)) is
given in Griffiths (1984) and Bapat (1989). Throughout this section all correlation matrices are
assumed to be regular. The distribution with Lt as in (14) is called a Γp(α,R)-distribution. A
former overview for this distribution, including some non-central extensions, is found in Royen
(1997). The joint distribution of the diagonal elements of a Wp(ν,R) - Wishart matrix is a
multivariate chi-square distribution with the Lt

|Ip + 2RT |−ν/2, (15)

which we refer to as a “Wishart-chi-square“ with ν degrees of freedom, χ2
p(ν,R) for short.

Here we are mainly interested in the cdf of this distribution, but formulas are given for the more
general cdf derived from (14). Thus, α can be read as ν/2 and a scale factor 2 can be inserted
in the following formulas for the Γp(α,R) - cdf to obtain the corresponding χ2

p(ν,R)-cdf.

Jensen’s multivariate gamma distribution is derived from the Lt

ν∏
µ=1

|Ip +RµT |−1/2. (16)

Series representations for the corresponding Γp(R1, ..., Rν)-pdf were derived by Jensen (1970)
for p = 2 and p = 3, but the trivariate series are not always convergent. Jensen (1970) has
also given a formula for (p × p) tridiagonal matrices Rµ, but unfortunately, it is based on a
formula for determinants of tridiagonal matrices, which is incorrect for p > 3. Always absolutely
convergent series for convolutions of not identically scaled multivariate gamma distributions (i.
e., Γp(α1, ..., αν ,Σ1, ...,Σν) - distributions) with Lt

ν∏
µ=1

|Ip + ΣµT |−αµ

and regular covariance matrices Σµ, 1 ≤ µ ≤ ν, are given in Royen (2013b). Actual computa-
tions are feasible at least for p ≤ 3.

The cdfs corresponding to (14) and (16) are denoted by F (x1, ..., xp, α, R) and F (x1, ..., xp,
R1, ..., Rν) respectively. For their representations we use the following notations: The spectral
norm of any (p× p)-matrix A = (aik) ist denoted by ||A|| and its determinant by |A|, Ȧ is de-
fined by A− diag(a11, ..., app), aik : 1 ≤ i, k ≤ p are the elements of A−1 and A > 0 means
positive definiteness of A. An identity matrix is always denoted by I . The notation

∑
(n) stands

for a summation over all decompositions of a non-negative integer n =
∑
ni with non-negative

integers ni, i = 1, . . . , p. Formulas from the NIST Handbook of Mathematical Functions (Olver
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et al. (2010)) are cited by HMF and their number. The pdf of a gamma distribution with shape
parameter α is given by

gα(x) = e−xxα−1/Γ(α), x > 0, α > 0, with cdf Gα(x) =

∫ x

0

g(ξ)dξ. (17)

Furthermore, we need the derivatives

G
(n)
α+n(x) =

(
d

dx

)n
Gα+n(x) =

(
α + n− 1

n− 1

)−1

L
(α)
n−1(x)gα+1(x), n ≥ 1, (18)

with the Laguerre polynomials L(α)
n (HMF 18.3,18.5) and the functions

Hα,n(x) =
n∑

m=0

(−1)n−m
(
n

m

)
2mGα+m(x) (19)

with

hα,n(x) =
d

dx
Hα,n(x) = (−1)n

(
α + n− 1

n

)−1

L(α−1)
n (2x)gα(x).

Alternatively, we can also use the relation Hα,n+1 = Hα,n − 2hα+1,n which can be verified by
Lt. Besides, lim

n→∞
Hα,n(x) = 0 for every x ∈ (0,∞), see Section 2 of Royen (1991). Moreover,

we need the extension of the non-central gamma cdf

Gα(x, y) = e−y
∞∑
n=0

Gα+n(x)
yn

n!
=
∞∑
n=0

G
(n)
α+n(x)

(−y)n

n!
(20)

to x ∈ C, y ∈ C (actually, we only need 2α ∈ N, x ∈ R, y ∈ C). For α = 1/2 + n we have

G1/2+n(x, y)− 1

2

(
erf(
√
x+
√
y) + erf(

√
x−√y)

)
= −e−x−y

n∑
k=1

(
x

y

)(k−1/2)/2

Ik−1/2(2
√
xy) = −e−y

n∑
k=1

g1/2+k(x)0F1(1/2 + k;xy)

(21)

with the principal value
√
x and the modified Bessel functions Ik−1/2, which are elementary

functions (HMF 10.49 (ii)). In a similar way

G1+n(x, y)−G1(x, y) = −e−y
n∑
k=1

g1+k(x)0F1(1 + k;xy)

with

G1(x, y) = e−y
∫ x

0

exp(−ξ)I0(2
√
ξy)dξ (22)

= 1− e−x−y
∞∑
n=0

(
n∑
k=0

xk

k!

)
yn

n!
= e−x−y

∞∑
k=1

(
k−1∑
n=0

yn

n!

)
xk

k!
. (23)
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6.2 Some representations for the Γp(α,R)-cdf

Explicit and actually computable formulas for F (x1, ..., xp;α,R) are only available for special
structures of R and in the general case only for low dimensions p.

Definition 6.1. A regular (p × p)-covariance matrix Σ is called “real m-factorial“ if m is the
lowest integer allowing a representation

Σ = D + AA>

with a real invertible diagonal matrix D and a (p ×m)-matrix A of rank m with real or purely
imaginary columns. Σ is called “m-factorial“ if the real D in the above definition is replaced by
a positive definite D.

A regular (p×p)-correlation matrixR with eigenvalues λ1, . . . , λp > 0 has an at most (p−1)-
factorial representation with D = λminIp. For an m-factorial R with D = W−2 > 0 we have
WRW = I + BB>, B = (bjµ) = WA with rows bj , columns bµ, and b>µ bκ = 0, µ 6= κ,
w.l.o.g. Then the Γp(α,R) - cdf is given by

F (x1, ..., xp;α,R) = E

[
p∏
j=1

Gα

(
w2
jxj,

1

2
bjS

(
bj
)>)]

, (24)

where the expectation refers to theWm(2α, Im)-distributed Wishart matrixS, see Royen (1995).
With m = 1 and R = diag(..., 1− a2

j , ...) + aa>,max(a2
j) < 1, we obtain

F (x1, ..., xp;α,R) =

∫ ∞
0

[
p∏
j=1

Gα

(
xj

1− a2
j

,
a2
jy

1− a2
j

)]
gα(y)dy

=
∞∑
n=0

(α)nλ
−α−n

∑
(n)

p∏
j=1

Gα+nj

(
xj

1− a2
j

) ( a2
j

1−a2
j

)nj
nj!

, (25)

where (α)n = α(α + 1) · · · (α + n − 1) and λ = 1 +
p∑
j=1

a2
j/(1 − a2

j) > 0, since |R| =

λ
p∏
j=1

(1− a2
j) > 0. For a real vector a all α > 0 are admissible in (25). In the limit case with a

real a, a2
k = 1, (and consequently |R| =

∏
j 6=k

(1− a2
j) > 0) we find

F (x1, ..., xp;α,R) =

∫ xk

0

∏
j 6=k

Gα

(
xj

1− a2
j

,
a2
jy

1− a2
j

)
gα(y)dy (26)

=
∞∑
n=0

(α)nλ
−α−n
k Gα+n(λkxk)

∑
(n)

∏
j 6=k

Gα+nj

(
xj

1− a2
j

) ( a2
j

1−a2
j

)nj
nj!

,

where λk = 1 +
∑
j 6=k

a2
j/(1− a2

j). For non-central χ2
p(ν,R,∆)-distributions with one-factorial

R see Royen (1995, 1997).
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Now let R be real one-factorial. If ak2 = max a2
j > 1, then λ from (25) becomes negative and

we get with
G∗α(x, y) = exp(y)Gα(x, y) (27)

that

F (x1, . . . , xp;α,R) = λ−α
∫ ∞

0

[
p∏
j=1

G∗α

(
xj

1− a2
j

,
a2
j

1− a2
j

y

λ

)]
gα(y)dy (28)

= (2(1− a−2
k ))α

∞∑
n=0

(α)nHα,n

(
xk

a2
k − 1

)
×

∑
(n)

cnkkk
nk!

∏
j 6=k

c
2nj
jk

nj!
Hα,nj

(
xj

1− a2
j

)
(29)

with the functions Hα,n from (19) and the elements cjk from the matrix

C = Ip − 2(Ip +WRW )−1, W = diag(w1, . . . , wp), w
2
j = |1− a2

j |−1,

(cij = 0, i, j 6= k). For the integral representation see formula (21) in Royen (2007) and for
the series in (29) see (15) in Royen (1997) or (3.12) in Royen (1991) if p = 3. If rij = 0, for
i 6= j and i, j 6= k, then

F (x1, . . . , xp;α,R) =

∫ ∞
0

[∏
j 6=k

Gα(xj,−r2
jky)

(
xk
y

)α/2
Jα(2
√
xky)

]
gα(y)dy

=
∞∑
n=0

(α)nG
(n)
α+n(xk)

∑
(n)

∏
j 6=k

r
2nj
jk

nj!
G

(nj)
α+nj(xj). (30)

All the series in (25), (26), (29) and (30) are absolutely convergent. The formulas (25), (26)
and (29) include all Γ3(α,R)-cdfs with R = (rik), r12r13r23 6= 0, since rij = sij|rij| =
aiaj, i 6= j, with ai = s1/2sjk|rijrik/rjk|1/2 for each permutation (i, j, k) of (1, 2, 3), where
s = s12s13s23. Formula (30) can be applied if there is exactly one correlation rij = 0 in the
(3× 3)-matrix R.

The Γ2(α,R)-cdf is given by

F (x1, x2;α,R) = F (x1, x2;α, r)

=
∞∑
n=0

(
α + n− 1

n

)
r2nG

(n)
α+n(x1)G

(n)
α+n(x2)

= (1− r2)α
∞∑
n=0

(
α + n− 1

n

)
r2nGα+n

(
x1

1− r2

)
Gα+n

(
x2

1− r2

)
= (1− c2)α

∞∑
n=0

(
α + n− 1

n

)
c2nHα,n

(
x1√

1− r2

)
Hα,n

(
x2√

1− r2

)
,

where c = r/(1 +
√

1− r2) and Hα,n is as in (19). The former two series are well known and
the latter one follows from the general p-variate series by Royen (1991).
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Royen (1991) provided three further types (a), (b), (c) of absolutely convergent series for the
general χ2

p(ν,R)-cdf. Here only the resulting series for the Γ3(α,R)-cdf are given. The off-
diagonal elements cik of a symmetrical (3 × 3)-matrix (cik) are also denoted here by cj for
each permutation (i, j, k) of (1, 2, 3). We get that

F (x1, x2, x3;α,R) = c

(
3∏
j=1

Gα(djxj) +
∞∑
N=2

PN(x1, x2, x3)

)
with (31)

Γ(α)PN(x1, x2, x3) =



∑
m1+m2+m3=n

min(mj)∑
m=0

22mΓ(α+n−m)

(2m)!
3Q
j=1

(mj−m)!

 3∏
j=1

c
2mj
j Fα,n−mj(djxj),

∑
m1+m2+m3=n−1

min(mj)∑
m=0

22m+1Γ(α+n−m)

(2m+1)!
3Q
j=1

(mj−m)!

×
3∏
j=1

c
2mj+1
j Fα,n−mj(djxj),

(32)
for N = 2n ≥ 2 (upper branch in (32)) and N = 2n + 1 ≥ 3 (lower branch in (32)),
respectively. Three alternative choices for the quantities in (31) and (32) are

c = 1, dj = 1, cj = −rj, Fα,n = G
(n)
α+n, provided that ||Ṙ|| < 1, (33a)

c = |Q|α, Q = (qik), qik = rik/(riirkk)1/2, (rik) = R−1, dj = rjj,

cj = −qj = −qik, Fα,n = Gα+n, (33b)

c = |2(I3 +WRW )−1|α, W = diag(w1, w2, w3), dj = w2
j , cj = cik, Fα,n = Hα,n,

(33c)

with unique positive scale factors wj implying c11 = c22 = c33 = 0 in C = (cik) = I3 −
2(I3 + WRW )−1. For existence, uniqueness and computation of the wj see formulas (3.1)
and (3.2) by Royen (1991).

Now we consider real two-factorial correlation matrices and four-variate gamma distributions. A
real two-factorial representationR = D−1 +AA> of a (p×p)-correlation matrixR with p ≥ 4
is equivalent to a real two-factorial representation

R−1 = D +BB>, B = (bjµ), j = 1, . . . , p, µ = 1, 2. (34)

According to Lemma 2 of Royen (2007) a regular irreducible (4×4)-covariance matrix Σ with at
least four off-diagonal elements σik 6= 0 is real m-factorial with m ≤ 2. Moreover, it is always
possible to obtain at most one negative element dj in D. Let Σ be two-factorial and (i, j, k, `)
any permutation of (1, 2, 3, 4) with σijσikσjk 6= 0. Then

dk = σkk − σikσjkσ−1
ij + (σk` − σikσj`σ−1

ij )(σk` − σi`σjkσ−1
ij )/[d` − (σ`` − σi`σj`σ−1

ij )].

For a real two-factorial R−1 = (rik) we obtain with G∗α from (27) and the density fα, given by

fα(ϕ) = (sin2 ϕ)α−1/B(1/2, α− 1/2), 0 < ϕ < π, α > 1/2, (35)
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that

F (x1, . . . , xp;α,R) = |DR|−α
π∫

0

∞∫
0

∞∫
0

[
p∏
j=1

G∗α
(
djxj,−d−1

j hj(y1, y2;ϕ)
)]
×

gα(y1)gα(y2)fα(ϕ)dy1dy2dϕ, (36)

hj(y1, y2;ϕ) = b2
j1y1 + b2

j2y2 + 2bj1bj2
√
y1y2 cos(ϕ). (37)

If p = 4 in (36), one element d` in D - determining the remaining ones - can be chosen
within a certain set of possible values. Then B in BB> = R−1 − D has rank 2 and is e.
g. available by the eigenvectors and the two eigenvalues λ1, λ2 6= 0 of R−1 − D. If there
exists an index `, w.l.o.g. ` = p = 4, with a real one-factorial (3 × 3)-covariance matrix
(rjk|4) = (rjk − rj4rk4/r4,4), i. e.,

∏
1≤j<k≤3 r

jk|4 6= 0, then we can choose the limit value
d4 = 0. It is

lim
d→0

d−αG∗α(dx, d−1y) = lim
d→0

1

Γ(α)

∫ x

0
0F1(α; ξy) exp(−dξ)ξα−1dξ

=
xα

Γ(α + 1)
0F1(α + 1;xy) =

(
x

y

)α/2
Iα(2
√
xy).

Together with

bj1 = bj = sik
√
s|rij|4rjk|4/rik|4|1/2, sik = sgn(rik|4), s = s12s13s23, j ≤ 3,

bj2 = (r4,4)−1/2rj4, j ≤ 3, b4,1 = 0, b4,2 =
√
r4,4,

dj = rjj − b2
j1 − b2

j2, j ≤ 3, and d4 = 0

in (36) and (37), this leads to the representation

F (x1, ..., x4;α,R) =

(
|R|
∏
j≤3

dj

)−α π∫
0

∞∫
0

∞∫
0

[
3∏
j=1

G∗α
(
djxj,−d−1

j hj(y1, y2;ϕ)
)
×

(Γ(α + 1))−1xα4 0F1(α + 1;−r4,4x4y2)
]
×

gα(y1)gα(y2)fα(ϕ)dy1dy2dϕ. (38)

In the case of its existence we can also get formulas from a two-factorial representation R =
D−1+AA>, which is equivalent toWRW = I4+BB> withD = W 2 = diag(w2

1, . . . , w
2
4) >

0, B = WA = (b1, b2) = (bjµ) and, w.l.o.g., b>1 b2 = 0 since BB> = UΛ1/2Λ1/2U> with
an orthogonal matrix U and Λ = diag(λ1, λ2, 0, 0), where λ1, λ2 6= 0. Then

F (x1, ..., x4;α,R) =

π∫
0

 ∞∫
0

∞∫
0

[
4∏
j=1

Gα

(
w2
jxj, hj(y1, y2;ϕ)

)]
×

gα(y1)gα(y2)dy1dy2

)
fα(ϕ)dϕ. (39)
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If there exists an index ` - w.l.o.g. ` = 4 - with a one-factorial conditional covariance matrix
(rjk|4) = (rjk − rj4rk4)1≤j,k≤3 = W−2 + aa>, then, with bj1 = wjaj and bj2 = wjrj4 in
(37) for j ≤ 3, the cdf is given by

F (x1, ..., x4;α,R) =

π∫
0

 x4∫
0

∞∫
0

[
3∏
j=1

Gα

(
w2
jxj, hj(y1, y2;ϕ)

)]
×

gα(y1)gα(y2)dy1dy2

)
fα(ϕ)dϕ. (40)

For a numerical evaluation the formulas (39) and (40) are more favourable, but formulas (36)
and (38) are more general. They are supplemented by the following formulas for some special
cases. If rij = 0 then

F (x1, ..., x4;α,R) =
[
(1− r2

k`)
απ1/2Γ(α)Γ(α− 1/2)

]−1 ×
π∫

0

xk∫
0

x`∫
0

[ ∏
m=i,j

Gα(σ−2
m xm, Qm)

]
×

exp

(
−
yk + y` − 2rk`

√
yky` cos(ϕ)

1− r2
k`

)
(yky` sin2 ϕ)α−1dy`dykdϕ

= (1− r2
k`)

α ×
π∫

0

xk/(1−r2k`)∫
0

x`/(1−r2k`)∫
0

∏
m=i,j

Gα(σ−2
m xm, (1− r2

k`)Qm)×

exp(2rk`
√
yky` cos(ϕ))gα(y`)gα(yk)fα(ϕ)dy`dykdϕ, (41)

with fα from (35), σ2
m = σmm|k` = 1− (r2

mk + r2
m` − 2rk`rmkrm`)/(1− r2

k`), and

Qm =
(rmk − rm`rk`)2yk + (rm` − rmkrk`)2y` + 2(rmk − rm`rk`)(rm` − rmkrk`)

√
yky` cos(ϕ)

σ2
m(1− r2

k`)
2

,

m = i, j; see also Section 5 by Royen (1995).

Now let R−1 = (rik), or equivalently the “standardized“ inverse

Q = (qik) = (rik/(riirkk)1/2) (42)

of R, be a tridiagonal matrix, possibly after a permutation of the variables. Then the Γ4(α,R)-
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cdf is given by

F (x1, ..., x4;α,R) = |Q|α
∫ r22x2

0

∫ r33x3

0

G∗α
(
r11x1, q

2
12y2

)
G∗α
(
r44x4, q

2
34y3

)
×

0F1(α; q2
23y2y3)

3∏
i=2

gα(yi)dyi

= |Q|α
∞∑
n=0

(
α + n− 1

n

)
q2n

23 ×∫ r22x2

0

G∗α(r11x1, q
2
12y)gα+n(y)dy

∫ r33x3

0

G∗α(r44x4, q
2
34y)gα+n(y)dy

=
|Q|α

Γ(α)

∞∑
n=0

∑
n12+n23+n34=n

∏
i<j

q
2nij
ij

Γ(α + nij)nij!
×

4∏
i=1

Γ(α +Ni)Gα+Ni(r
iixi), (43)

with
N1 = n12, N2 = n12 + n23, N3 = n23 + n34, N4 = n34. (44)

If, after a suitable permutation, R itself is tridiagonal, then the Γ4(α,R)-cdf is given by

F (x1, ..., x4;α,R) =

∫ ∞
0

∫ ∞
0

Gα(x1,−r2
12y2)Gα(x4,−r2

34y3)0F1(α; r2
23y2y3)×

3∏
i=2

(Γ(α + 1))−1xαi 0F1(α + 1;−xiyi)gα(yi)dyi

=
∞∑
n=0

(
α + n− 1

n

)
r2n

23Ln(x1, x2;α, r2
12)Ln(x4, x3;α, r2

34)

=
1

Γ(α)

∞∑
n=0

∑
n12+n23+n34=n

∏
i<j

r
2nij
ij

Γ(α + nij)nij!
×

4∏
i=1

Γ(α +Ni)G
(Ni)
α+Ni

(xi), (45)

with Ni as in (44) and

Ln(x1, x2;α, r2) =

∫ ∞
0

Gα(x1,−r2y)(Γ(α+1))−1xα2 0F1(α+1;−x2y)gα+n(y)dy. (46)

For the case of rij = 0 ,i 6= j, i, j 6= k,
∏

i 6=k rik 6= 0, see (30). If qij = 0, i 6= j, i, j 6= k,∏
i 6=k qik 6= 0, then R is the limit case of a one-factorial correlation matrix with a real vector a,

a2
k → 1, see (26). Thus, all regular irreducible not real one-factorial (4×4)-correlation matrices

are included by formulas (36), (38) - (41), (43), (45), (26) and (30).
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For generalizations of (43) and (45) see Royen (1994). Namely, each symmetrical (p×p)-matrix
C = (cij) can be mapped to a graph G(C) with vertices 1, ..., p and edges [i, j] corresponding
to the non-zero cij , i 6= j. The matrix C is of a “tree type“ if G(C) is a spanning tree, meaning
that G(C) is connected with exactly p−1 edges and therefore without cycles. If the standardized
inverse Q from (42) has a tree type then we obtain the infinitely divisible Γp(α,R)-cdf

F (x1, ..., xp;α,R) =
|Q|α

Γ(α)

∞∑
n=0

∑
(n)

∏
i<j,qij 6=0

q
2nij
ij

Γ(α + nij)nij!
×

p∏
i=1

Γ(α +Ni)Gα+Ni(r
iixi) (47)

with Ni =
∑p

j=1 nij , nij = nji, nii = 0, nij = 0 if qij = 0, and the inner sums taken over all
decompositions n =

∑
i<j nij . This follows from the density

f(x1, ..., xp;α,R) = |Q|α
p∏
i=1

riigα(riixi)
∏
i<j

0F1(α; rij2xixj),

which was already derived by Blumenson and Miller (1963) for a tridiagonal R−1. For R of a
tree type we find the not infinitely divisible cdf

F (x1, ..., xp;α,R) =
1

Γ(α)

∞∑
n=0

∑
(n)

∏
i<j,rij 6=0

r
2nij
ij

Γ(α + nij)nij!

p∏
i=1

Γ(α +Ni)G
(Ni)
α+Ni

(xi).

(48)

6.3 Some formulas for Jensen’s multivariate gamma distribution

The bivariate cdf, derived from the Lt in (16), is given by

F (x1, x2;R1, . . . , Rν) = F (x1, x2; r1, ..., rν)

=
∞∑
n=0

an(r2
1, . . . , r

2
ν)G

(n)
ν/2+n(x1)G

(n)
ν/2+n(x2), (49)

where an ≡ an(r2
1, . . . , r

2
ν) is given by

an =
∑
(n)

ν∏
µ=1

(
nµ − 1/2

nµ

)
r2nµ
µ , or recursively by

a0 = 1, an+1 =
1

2(n+ 1)

n∑
m=0

an−m

ν∑
µ=1

r2(m+1)
µ .

If (X1, X2) ∼ Γ2(r1, . . . , rν) and (Y1, Y2) ∼ Γ2(ν/2, r) with r =
(
ν−1

∑ν
µ=1 r

2
µ

)1/2

then

Pr(a ≤ X1 ≤ b, a ≤ X2 ≤ b) ≥ Pr(a ≤ Y1 ≤ b, a ≤ Y2 ≤ b), 0 ≤ a < b ≤ ∞, (50)
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with the equal sign only for identical rµ = r, see Theorem 5 by Royen (2013b).

For the trivariate case we start from the Lt

ν∏
µ=1

|I3 +RµT |−1/2 =
3∏
j=1

z
ν/2
j

ν∏
µ=1

|I3 + ṘµU |−1/2, (51)

where zj = (1 + tj)
−1, U = diag(u1, u2, u3), and uj = 1 − zj = tj(1 + tj)

−1. For each
permutation (i, j, k) of (1, 2, 3) we set rµ,j = rµ,ik. Then we obtain

|I3 + ṘµU |−1/2 =
∞∑
N=0

TN(U ;
1

2
, Ṙµ), T0 = 1, T1 = 0, (52)

with Taylor polynomials

TN = (−1)N
∑

n1+n2+n3=N, nj≤[N/2]

3∏
j=1

(2nj)!r
N−2nj
µ,j

2njnj!(N − 2nj)!
u
nj
j

=


∑

m1+m2+m3=n

3∏
j=1

(2(n−mj))!r
2mj
µ,j

2n−mj (n−mj)!(2mj)!
u
n−mj
j , N = 2n ≥ 2,

−
∑

m1+m2+m3=n−1

3∏
j=1

(2(n−mj))!r
2mj+1

µ,j

2n−mj (n−mj)!(2mj+1)!
u
n−mj
j , N = 2n+ 1 ≥ 3.

(53)

For dimension p = 3 these formulas follow from formula (11) by Royen (1997). At least for a
low degree of freedom we can compute the Taylor polynomials Tn in the expansion

ν∏
µ=1

|I3 + ṘµU |−1/2 = 1 +
∞∑
n=2

Tn(U ; Ṙ1, . . . , Ṙν)

=
∞∑
n=0

∑
(n)

t(n1, n2, n3, Ṙ1, . . . , Ṙν)u
n1
1 u

n2
2 u

n3
3 (54)

by direct multiplication of the Taylor series in (52), and find by inversion of the Lt, followed by
termwise integration, that

F (x1, x2, x3;R1, . . . , , Rν) =
3∏
j=1

Gν/2(xj) +
∞∑
n=2

∑
(n)

t(n1, n2, n3, Ṙ1, ..., Ṙν)×

3∏
j=1

G
(nj)

ν/2+nj
(xj). (55)

These series are absolutely convergent if

max
{
||Ṙµ||, 1 ≤ µ ≤ ν

}
< 1⇐⇒ max

{
3∑
j=1

r2
µ,j + 2

3∏
j=1

|rµ,j|, 1 ≤ µ ≤ ν

}
< 1.

(56)
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A modified computation uses

|I3 + ṘµU | = 1− ζ(U ; Ṙµ) = 1− ζµ, ζµ =
∑
i<k

r2
µ,ikuiuk − 2

3∏
j=1

rµ,juj, (57)

|I3 + ṘµU |−1/2 = exp

(
1

2

∞∑
N=1

(−1)NN−1tr(ṘµU)N

)
= exp

(
1

2

∞∑
n=1

n−1ζnµ

)
and therefore

N−1tr(ṘµU)N =
∑

2n2+3n3=N

2n3
(n2 + n3 − 1)!

n2!n3!

(∑
i<k

r2
µ,ikuiuk

)n2
(∏

j

rµ,juj

)n3

=



∑
m1+m2+m3=n

min(mj)∑
m=0

22m(n−m−1)!

(2m)!
3Q
j=1

(mj−m)!

 3∏
j=1

r
2mj
µ,j u

n−mj
j ,

∑
m1+m2+m3=n−1

min(mj)∑
m=0

22m+1(n−m−1)!

(2m+1)!
3Q
j=1

(mj−m)!

 3∏
j=1

r
2mj+1
µ,j u

n−mj
j

(58)

for N = 2n ≥ 2 (upper branch in (58)) and N = 2n + 1 ≥ 3 (lower branch in (58)),
respectively. Then, the Taylor polynomials in (54) are computed recursively by

T0 = 1, T1 = 0, Tn+1 =
1

2(n+ 1)

n∑
m=1

Tn−m

ν∑
µ=1

tr(−ṘµU)m+1, n ≥ 1. (59)

Utilizing Jensen’s original trivariate series for the Γ3(R1, ..., Rν)-pdf (Section 3 by Jensen
(1970)), we obtain from

ν∏
µ=1

|Ip + ṘµU |−1/2 =
ν∏

µ=1

∞∑
n=0

(
n− 1/2

n

)
ζnµ =

∞∑
n=0

Qn(U ; Ṙ1, ..., Ṙν)

with inhomogeneous polynomials

Qn =
∑
(n)

ν∏
µ=1

(
nµ − 1/2

nµ

)
ζnµµ =

∑
2n≤

P
k nk≤3n

qn(n1, n2, n3, Ṙ1, . . . , Ṙν)
3∏

k=1

unkk

computed recursively by

Q0 = 1, Qn+1 =
1

2(n+ 1)

n∑
m=0

Qn−m

ν∑
µ=1

ζm+1
µ , n ≥ 0,

the series

F (x1, x2, x3;R1, . . . , Rν) =
3∏

k=1

Gν/2(xk) +

∞∑
n=1

∑
2n≤

P
k nk≤3n

qn(n1, ..., np, Ṙ1, . . . , Ṙν)×

3∏
k=1

G
(nk)
ν/2+nk

(xk). (60)
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The outer series
∞∑
n=1

Sn in (60) with the inner sums Sn viewed as single terms is convergent

under the condition

max
1≤µ≤ν

(
sup{|ζ(U ; Ṙµ)| : U = diag(u1, u2, u3), uk = −itk(1− itk)−1, tk ∈ R}

)
< 1,

(61)
with ζ(U ; Ṙµ) as in (57). For dimensions p ≥ 3 see Theorem 4 by Royen (2013b). This condi-
tion is weaker than (56), but for numerical evaluations (55) is more suitable.

Three always absolutely convergent series for Jensen’s Γp(R1, ..., Rν)-cdf follow from the gen-
eral formulas in Theorem 1 of Royen (2013b) for convolutions of differently scaled multivariate
gamma distributions (Γp(α1, ..., αν ,Σ1, ...,Σν)-distributions). The Lt in (16) can be written in
three ways:

ν∏
µ=1

|Ip +RµT |−1/2 =

p∏
k=1

z
ν/2
k

ν∏
µ=1

c1/2
µ |Ip − CµY |−1/2, Y = diag(y1, ..., yp), (62)

where, alternatively,

Y = U, Cµ = Ip − vRµ, cµ = 1, (63a)

Y = Z, Cµ = Ip − (vRµ)−1, cµ = |Ip − Cµ|, (63b)

Y = Ω, Cµ = Ip − 2(Ip + vRµ)−1, cµ = |Ip − Cµ|, (63c)

and zk = (1+v−1tk)
−1, uk = 1−zk, ωk = zk−uk, k = 1, . . . , p. IfRµ has the eigenvalues

λµ,k we obtain with

λmin = min{λµ,k; 1 ≤ µ ≤ ν, 1 ≤ k ≤ p} > 0, λmax = maxλµ,k, ϑ = λmin/λmax

(64)

that, respectively,

max ||Cµ|| = (1− ϑ)/(1 + ϑ) with v = 2(λmin + λmax)−1 (65a)

max ||Cµ|| = (1− ϑ)/(1 + ϑ) with v = (λ−1
min + λ−1

max)/2 (65b)

max ||Cµ|| = (1− ϑ1/2)/(1 + ϑ1/2) with v = (λminλmax)−1/2. (65c)

Remark 6.1. With suitable values of the scaling factors v also Cµ ≥ 0 and ||Cµ|| < 1 can be
accomplished.

For p = 3, we now obtain from−1
2

ν∑
µ=1

log |I3−CµY | =
∞∑
m=1

1
2m

ν∑
µ=1

tr(CµY )m and by setting

Y , Cµ and cµ as in (63a), (63b) and (63c), respectively, the three series

ν∏
µ=1

|I3 +RµT |−1/2 =

(
ν∏

µ=1

c1/2
µ

)(
3∏

k=1

z
ν/2
k

)
∞∑
n=0

Tn(Y ;C1, ..., Cν),

T0 = 1, Tn+1 =
1

2(n+ 1)

n∑
m=0

Tn−m

ν∑
µ=1

tr(CµY )m+1, n ≥ 0,
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with Taylor polynomials

Tn =
∑
(n)

t(n1, n2, n3;C1, ..., Cν)
3∏

k=1

ynkk ,

and consequently the three corresponding always absolutely convergent series for the
Γ3(R1, ..., Rν)-cdf, given by

F (x1, x2, x3;R1, ..., Rν) =

(
ν∏

µ=1

c1/2
µ

)
∞∑
n=0

∑
(n)

t(n1, n2, n3;C1, ..., Cν)
3∏

k=1

Fν/2,nk(vxk),

(66)
where we respectively take

Fα,n = G
(n)
α+n from (18), (67a)

Fα,n = Gα+n from (17), (67b)

Fα,n = Hα,n from (19). (67c)

For numerical evaluations a high number of the polynomials tr(CµY )m is available by computer
algebra systems. Alternatively, we can also obtain the polynomials

tr(CY )n+1 = (n+ 1)Tn+1 −
n−1∑
m=0

Tn−mtr(CY )m+1

recursively from

|I3 − CY |−1 =

[
1−

(
tr(CY )−

∑
i<k

|Cik|yiyk + |C|y1y2y3

)]−1

=
∞∑
n=0

Tn(Y ; 1, C),

where |Cik| = ciickk − c2
ik, T0 = 1, T1 = tr(CY ),

T2 = (tr(CY ))2 −
∑
i<k

|Cik|yiyk =
3∑

k=1

c2
kky

2
k +

∑
i<k

(ciickk + c2
ik)yiyk,

Tn+1 = Tntr(CY )− Tn−1

∑
i<k

|Cik|yiyk + Tn−2|C|y1y2y3, n ≥ 2.

More explicitly, but less useful, we have for p = 3 that

Tn(Y ; 1, C) =∑
n1+2n2+3n3=n

(−1)n2
(n1 + n2 + n3)!

n1!n2!n3!
(tr(CY ))n1

(∑
i<k

|Cik|yiyk

)n2

(|C|y1y2y3)n3

and n−1tr(CY )n is obtained if (n1 + n2 + n3)! is replaced by (n1 + n2 + n3 − 1)!.

In particular, for ν = 2 degrees of freedom a bivariate integral representation for Jensen’s
p-variate gamma cdf is obtained as a special case from Theorem 3 by Royen (2013b) with
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one-factorial (p × p)-correlation matrices Rµ = diag(. . . , 1 − a2
µ,j, . . .) + aµa

>
µ , µ = 1, 2.

Then

F (x1, ..., xp;R1, R2) =

∞∫
0

∞∫
0

[
p∏
j=1

exp

(
−

a2
1jy1

1− a2
1j

−
a2

2jy2

1− a2
2j

)
×

∞∑
n=0

Pn(y1, y2; a2
1j, a

2
2j)G1+n

(
xj

min(1− a2
1j, 1− a2

2j)

)] 2∏
µ=1

g1/2(yµ)dyµ

=
4

π

∞∫
0

∞∫
0

[
p∏
j=1

∞∑
n=0

Pn(y2
1, y

2
2; a2

1j, a
2
2j) ×

G1+n

(
xj

min(1− a2
1j, 1− a2

2j)

)] 2∏
µ=1

exp(−λµy2
µ)dyµ, (68)

where λµ = 1 +
p∑
j=1

a2
µ,j/(1− a2

µ,j) > 0 and

Pn(y1, y2; a2
1j, a

2
2j) = q

1/2
j

∑
0≤k1+k2≤n

(
n− k1 − 1/2

n− k1 − k2

)
qk2j (1− qj)n−k1−k2

k1!k2!
×

(
a2

1jy1

1− a2
1j

)k1 ( a2
2jy2

1− a2
2j

)k2
if qj = min(1− a2

1j, 1− a2
2j)/max(1− a2

1j, 1− a2
2j) = (1− a2

1j)/(1− a2
2j).

Otherwise,
(
n−k1−1/2
n−k1−k2

)
qk2j has to be replaced by

(
n−k2−1/2
n−k1−k2

)
qk1j .

6.4 A series for the generalized multivariate chi-square distribution from
Definition 5.1

The p-variate generalized chi-square distribution from Definition 5.1 has the Lt

|Iν + 2RT |−1/2 (69)

with ν = ν1 + ... + νp, T = t1Iν1 ⊕ . . . ⊕ tpIνp and a regular (ν × ν)-correlation matrix R
with diagonal blocks Rii = Iνi and off-diagonal blocks Rik.

For p = 2 and ν1 ≤ ν2 the corresponding cdf is given by

Pr{χ2
1 ≤ x1, χ

2
2 ≤ x2;R12} = F

(x1

2
,
x2

2
; r12,1, ..., r12,ν1

)
(70)

=
∞∑
n=0

an(r2
12,1, ..., r

2
12,ν1

)G
(n)
ν1/2+n

(x1

2

)
G

(n)
ν2/2+n

(x2

2

)
,

with the canonical correlations r12,1, ..., r12,ν1 of R12 which are the roots of the eigenvalues of
R12R21, and the coefficients an as in (49); see, e. g., Section 5 of Royen (2013b). For ν1 = ν2

this distribution coincides with a bivariate chi-square distribution of Jensen’s type.
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For p = 3 a series for the cdf, suitable for actual computations, seems to be feasible at most
for very small degrees of freedom νj , for instance for the distribution discussed at the end of
Section 4 where ν1 = ν2 = ν3 = 2. For an approximation see the end of Section 6.5.

With C = Iν − vR, ||C|| < 1, (e. g., v = 2(λmin + λmax)−1 with the maximal and the
minimal eigenvalue of R), the principal minor arrays CJ of C with indices i, j from J , where
∅ 6= J ⊆ {1, ..., ν} and U = u1Iν1 ⊕ u2Iν2 ⊕ u3Iν3 , uj = 2v−1tj(1 + 2v−1tj)

−1, we obtain
from the polynomial

|Iν − CU | = 1−
ν∑
k=1

Dk(u1, u2, u3;C), Dk = (−1)k−1
∑

size(J)=k

|CJ | · |UJ |

the Taylor polynomials Pn =
min (ν,n)∑
k=1

DkPn−k in the expansion

|Iν − CU |−1 = 1 +
∞∑
n=1

Pn(u1, u2, u3;C),

and then again recursively the Taylor polynomials

Tn(u1, u2, u3;C) =
∑
(n)

t(n1, n2, n3;C)
3∏
j=1

u
nj
j

in

|Iν − CU |−1/2 = 1 +
∞∑
n=1

Tn(u1, u2, u3;C),

namely by

T1 =
1

2
P1, T2m =

1

2
(P2m − T 2

m)−
m−1∑
k=1

TkT2m−k, T2m+1 =
1

2
P2m+1 −

m∑
k=1

TkT2m+1−k.

Transforming the Lt given in (69) into
(∏3

j=1 z
νj/2
j

)
|Iν −CU |−1/2 with zj = (1 + 2v−1tj)

−1,

the absolutely convergent series

Pr{χ2
1 ≤ x1, χ

2
2 ≤ x2, χ

2
3 ≤ x3;R} =

∞∑
n=0

∑
(n)

t(n1, n2, n3;C)
3∏
j=1

G
(nj)

νj/2+nj

(v
2
xj

)
(71)

follows by inversion and termwise integration.

6.5 Some approximations

In this section we are mainly interested in approximations for small exceedance probabilities
p = 1 − Fp(x, . . . , x;α,R). Notice that setting x = ti leads to the multiplicity-adjusted p-
values defined in (1). For the more general distributions from Sections 6.3 and 6.4 only the
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three-variate case is considered here. Classical conservative approximations make use of re-
fined Bonferroni inequalities with marginal distributions of low orders or sometimes - under the
required assumptions - the “product-type probability bounds“ of Glaz and Johnson (1984) and
Block et al. (1992), cf. our respective remarks at the end of Section 4. However, frequently com-
paratively large differences between the true p-values and the approximated ones resulting from
the aforementioned bounds are the price for guaranteed conservatism (i. e., strict control of the
multiple type I error level). Here, a different method from Royen (2013a) is presented, providing
very accurate approximations of the probability p for many correlation matrices R. It is based
on the following two formulas (73) and (75) for the Γp(α,R)-cdf. Let R be the special regular
(p× p)-correlation matrix (

R11 R12

R21 R22

)
(72)

with a (q × q)-submatrix R11 for q ≥ 2, p − q ≥ 2, and with identical correlations r1 > 0,
r2 > 0 and r within the corresponding submatrices R11, R22 and R12. If r2 ≤ r1r2 then

F (x1, ..., xp;α,R) =
∞∑
k=0

(
α + k − 1

k

)−1
r2k

(r1r2)k
×

∞∫
0

[
q∏
j=1

Gα

(
xj

1− r1

,
r1y

1− r1

)]
L

(α−1)
k (y)gα(y)dy ×

∞∫
0

[
p∏

j=q+1

Gα

(
xj

1− r2

,
r2y

1− r2

)]
L

(α−1)
k (y)gα(y)dy. (73)

Now, we regard F (x1, . . . , , xp;α,R), p ≥ 4, as a function of the (general) correlation matrix
R = (rik) = R0 +H ,H = (hik), and approximate it by a Taylor polynomial of second degree
with a one-factorial correlation matrixR0 if (p(p−1))−1tr(H2) ≤ h2

max with a sufficiently small
value h2

max, e. g., h2
max ≤ 0.01. For the computation of R0, the general Taylor formula and

numerical examples up to dimension p = 10 see Royen (2013a). Here only the special case is
given where

R0 = (1− r)Ip + r~1~1>, ~1 = (1, . . . , 1)>, r =
2

p(p− 1)

∑
1≤i<k≤p

rik, (74)

and consequently( ∑
1≤i<k≤p

hik

)2

= H2 +H3 +H4 = 0, H2 =
∑
i<k

h2
ik,

H4 =
∑

i<k,`<m
{i,k}∩{`,m}=∅

hikh`m, H3 = −H2 −H4.

Then, with identical xj = x,

F := Gα

(
x

1− r
,
ry

1− r

)
, fn :=

∂n

∂xn
Gα+n

(
x

1− r
,
ry

1− r

)
, n = 1, 2,
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and the coefficients

a =

∞∫
0

(αf 2
1 − 2ryf1f2 + 2r2y2f 2

2 )F p−2gα(y)dy,

b = −r
∞∫

0

f 2
1 (f1 − 2ryf2)F p−3ygα(y)dy,

c = 2r2

∞∫
0

f 4
1F

p−4y2gα(y)dy,

we obtain the Taylor polynomial

T2(x;α, r,H) =

∞∫
0

F pgα(y)dy + aH2 + bH3 + cH4 (75)

and the approximation

Fp(x, . . . , x;α,R = R0 +H) ≈ T2(x;α, r,H), (76)

which is in particularly useful for larger values of x. Besides, Fp(x, ..., x;α,R), where α ≥ 1/2
and p ≥ 3, has - as a function of R - a local minimum at R = R0 from (74), at least for r ≥ 0
and a + (p − 4)b − (p − 3)c > 0, see Theorem 3 of Royen (2013a). Frequently, the latter
condition can already be verified by a plot of the corresponding integrand.

Now suppose that R - possibly after a suitable renumbering of the variables - has a partitioned
form as in (72) with two blocks B1 = {1, ..., b1}, B2 = {b1 + 1, ..., b1 + b2 = p} of indices,
mean correlations rµ > 0 of Rµµ, µ = 1, 2, and a mean correlation r of R12 with r2 ≤ r1r2.
Then, with PBµ(x) := Pr{maxXj ≤ x, j ∈ Bµ;α,Rµµ} and

ck(x;α, bµ, rµ) :=

(
α + k − 1

k

)−1
∞∫

0

[
Gα

(
x

1− rµ
,
rµy

1− rµ

)]bµ
L

(α−1)
k (y)gα(y)dy,

the approximation

Fp(x, . . . , x;α,R) = PB1∪B2(x) ≈ PB1(x)PB2(x) +
∞∑
k=1

(
α + k − 1

k

)
r2k

(r1r2)k
ck(x;α, b1, r1)ck(x;α, b2, r2) (77)

with an always positive series is proposed if the PBµ(x) are computable by an exact represen-
tation. The corresponding hypothetical inequality with “≥“ instead of “≈“ seems to be frequently
satisfied, but presumably it holds true only under additional assumptions. It should be noted,
that not even the inequality PB1∪B2(x) ≥ PB1(x)PB2(x), following from the famous Gaussian
correlation conjecture, has been proved until now for all R.
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If PBµ(x) in (77) is not computable by an exact representation then it should be replaced by

the best available approximation P̃Bµ(x). This can be a Taylor approximation as in (76) if the
correlations in Rµµ have a sufficiently low variability or the more general Taylor approximation
with a one-factorial R0µµ in Rµµ = R0µµ + Hµµ. Royen (2007) has described such Taylor
approximations with a “low-factorial“R0 in a general form, but even the search for a two-factorial
approximation R0 of R and in particular the computation of the resulting Taylor polynomials by
three-variate integrals is rather intricate. However, very frequently a (5 × 5)-correlation matrix
R can be approximated rather accurately by a two-factorial R0. Then, the additional correction
terms of the Taylor polynomial may be dropped in many cases.

The approximation P̃Bµ(x) can also be obtained by a further decomposition of Bµ into two

smaller blocks Bµ1, Bµ2 and application of (77) to P̃Bµ1 , P̃Bµ2 or PBµ1 , PBµ2 , but more than
one such iterated application of (77) is not recommended in general.

The ΓP (α,R)-distribution can also be used for an approximation of Jensen’s Γp(R1, ..., Rν)-
distribution. A generalization of inequality (50) is not proved here, but for p = 3 and at least for
correlation matrices Rµ with rµ,12rµ,13rµ,23 > 0, 1 ≤ µ ≤ ν, the approximation

p := 1− F (x, x, x;R1, ..., Rν) ≈ 1− F (x, x, x; ν/2, R) (78)

with R = (rik), rik =

(
ν−1

ν∑
µ=1

r2
µ,ik

)1/2

, i 6= k, is recommended for small exceedance

probabilities. That R is always a correlation matrix follows from the convexity of the intersection
of the unit cube with the body whose surface is determined by the singular correlation matrices
C with correlations

√
x,
√
y,
√
z and the equation |C| = 1 + 2

√
xyz − x− y − z = 0.

For the more general three-variate χ2-distribution with Lt given in (69), now with ν1 = ν2 =
ν3 = ν and the (3ν × 3ν)-correlation matrix R with the diagonal blocks Rii = Iν and the off-
diagonal blocks Rik, 1 ≤ i, k ≤ 3, i 6= k, small values of Pr{maxχ2

j > x, j = 1, 2, 3; ν,R}
can be approximated by 1 − F (x/2, x/2, x/2;R1, ..., Rν), provided that all the symmetrical
(3 × 3)-matrices Rµ = (rµ,ik), rµ,ii = 1 containing the canonical correlations (i. e., singular
values) rµ,ik of the Rik, are positive definite. Afterwards, approximation (78) can be applied.

7 Concluding Remarks

We have demonstrated the relevance of three types of multivariate chi-square distributions for a
variety of multiple test problems. Our computational methods allow for addressing these prob-
lems by multivariate methods, meaning that the joint (limiting) distribution of test statistics is
employed for the calibration of a multiple test with respect to type I error control, rather than
just the marginal distributions like, for instance, in a Bonferroni or a Šidák correction. Since
chi-square distributed random variables are necessarily non-negatively correlated, it is to be
expected that the utilization of their joint distribution will typically lead to a better exhaustion of
the FWER level and, due to the structure of the decision rule, to higher power in comparison
with the latter margin-based approaches.

Up to present, the drawback of the computational methods described in Sections 6.2 - 6.4 is
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that they are only feasible for low dimensions p ≤ 4. However, statistical methodology for mul-
tiple test problems with m > 4 hypotheses can also profit from these methods. Namely, the
m-variate limiting joint distribution of test statistics under the global hypothesis can be approxi-
mated conservatively by probability bounds of sum- or product-type, as outlined in Section 4 and
Section 6.5, which only require the computation of p-variate marginal chi-square probabilities
for p < m. For instance, computer simulations (not shown here) under the model considered
in Section 4 indicate that product-type probability bounds of order 4 in the sense of Block et al.
(1992) often approximate the true p-value already markedly tighter than a simple Bonferroni or
Šidák correction, at least if pronounced correlations are present among test statistics. Such pro-
nounced correlations typically occur in modern applications from the life sciences like genetic
association studies (strong linkage disequilibrium among genetic markers), gene expression
studies (co-activation of several genes), or functional magnetic resonance imaging (highly cor-
related voxels within regions of interest); cf., e. g., Part II of Dickhaus (2014) and references
therein. Furthermore, formula (77) - in combination with the Taylor approximation from (76)
where appropriate - has turned out to be accurate for small exceedance probabilities at least for
dimensions p ≤ 12, albeit conservativity in terms of strict FWER control is not guaranteed.

Future work will aim at implementing the formulas given in Section 6 into easy-to-access soft-
ware for practitioners, with special emphasis on user-friendlyness.
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