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Abstract

In Brokate-Sprekels 1996, it is shown that hysteresis operators acting on scalar-valued,

continuous, piecewise monotone input functions can be represented by functionals acting

on alternating strings. In a number of recent papers, this representation result is extended

to hysteresis operators dealing with input functions in a general topological vector space.

The input functions have to be continuous and piecewise monotaffine, i.e., being piecewise

the composition of two functions such that the output of a monotone increasing function is

used as input for an affine function.

In the current paper, a representation result is formulated for hysteresis operators deal-

ing with input functions being left-continuous and piecewise monotaffine and continuous.

The operators are generated by functions acting on an admissible subset of the set of all

strings of pairs of elements of the vector space.

1 Introduction

The representation of hysteresis operators acting on scalar-valued, continuous, piecewise mono-
tone input functions by using functionals acting on alternating strings is introduced in [1, 3] and
used, for example, in [2, 6, 7, 8, 9, 16, 18, 20, 22],

In a number of recent papers [10, 11, 12, 13] of the author, this representation result is extended
to hysteresis operators dealing with inputs in a general topological vector space.

To generalize the notion of a monotone function that is only defined for scalar valued functions, a
vector-valued function is denoted as monotaffine function if it is the composition of a monotone
increasing function and an affine function, such that the monotone increasing function is applied
first.

A string of real numbers is an alternating string as considered in [1, 3] if and only if no element
in the string can be written as the convex combination of its predecessor and its successor, in
other words, if no triple within the string forms a convexity triple in R

3 according to the definition
below.

In [10, 12], it has been proved that hysteresis operators acting on vector-valued continuous
piecewise monotaffine input functions can be uniquely generated by considering functions act-
ing on convexity triple free strings.

In [3], the hysteresis operator generated from alternating strings has been extend to an hystere-
sis operator dealing with scalar, piecewise monotone input functions.

In [12], it has been shown that the hysteresis operator acting on piecewise monotaffine and
piecewise continuous input functions with values in a topological vector space can be uniquely
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generated by appropriate functions acting on appropriate quintuples. Each quintuple consists of
three elements in the vector space combined with two boolean variables. In the current paper, a
modification of this result is formulated for the special case that the input functions are in addition
left-continuous, as it holds for the input function considered for example in [15]. It is shown that
each hysteresis operator dealing with these input functions can be generated in a unique way
from an appropriate function defined on an appropriate set of strings of pairs of elements of the
vector space.

The paper is organized as the follows: In Section 2, some definitions will be presented, including
an appropriate extension of piecewise monotaffinicity considered on half-open intervals, and
an appropriate extension of the notion of convexity free strings to NCTC triple free strings.
Moreover, the main result of the paper, the representation result will be presented in this section.
In Section 3, the result will be proved, and an example for the representation of a concrete
hysteresis operator is shown in Section 4.

2 Definitions and main result

2.1 Fundamental Definitions

Let X be a topological vector space, let Y be some nonempty set and let T > 0 be some
final time. For functions u : [0, T ] → X let u(t+) := limτ↘t u(t) for all t ∈ [0, T [ and
u(T+) := u(T ).

Let N = {1, 2, 3, . . . } be the set of all natural numbers and let C ([0, T ];X) be the set of all
continuous function from [0, T ] to X .

The following notations correspond to the ones in [3, Def. 2.2.2]:

Definition 2.1. Let a function β : [0, T ] → R and a nonempty interval I ⊆ [0, T ] be given.
The function β is denoted as (strictly) monotone increasing on I if for all s, t ∈ I with s < t it
holds that β(s) ≤ β(t) (resp. β(s) < β(t)).

2.2 Hysteresis operators

Following the monographs [3, 14, 21], it is defined, as in [10]:

Definition 2.2. Let H : D(H)(⊆ Map ([0, T ], X)) → Map ([0, T ], Y ) with D(H) 6= ∅ be
some operator.

a) The operator H is denoted as hysteresis operator, if it is causal and rate-independent ac-
cording to the following definitions.

b) The operator H is said to be causal or to have the Volterra property, if for every v, w ∈
D(H) and every t ∈ [0, T ] it holds: If v(τ) = w(τ) is satisfied for all τ ∈ [0, t] then it
follows that H[v](t) = H[w](t).
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c) The operator H is called rate-independent, if for every v ∈ D(H) and every admissible
time-transformation α : [0, T ] → [0, T ] (see Def. 2.3 below) with v ◦ α ∈ D(H) it holds
that H[v ◦ α](t) = H[v](α(t)) for all t ∈ [0, T ].

Definition 2.3. A function α : [0, T ] → [0, T ] is an admissible time transformation if and only
if α(0) = 0, α(T ) = T , α is continuous, and α is monotone increasing (not necessary strictly
monotone increasing).

2.3 Convexity triple and strings

Definition 2.4. A triple (v1, v2, v3) ∈ X3 is a convexity triple in X3 if

v2 ∈ conv(v1, v3) := {(1− λ)v1 + λv3 |λ ∈ [0, 1]} . (1)

Definition 2.5. Let (xa, ya), (xb, yb), (xc, yc) ∈ X2 be given

a)
(

(xa, ya), (xb, yb), (xc, yc)
)

is denoted as convexity triple containing triple of elements of
X2, i.e. as CTC triple, if xb = yb and (ya, xb, xc) is a convexity triple, in other words, if

xb = yb ∈ conv(ya, xc). (2)

b)
(

(xa, ya), (xb, yb), (xc, yc)
)

is denoted as non-constant convexity triple containing triple of
elements of X2, i.e. as NCTC triple, if it is a convexity triple containing triple of elements of
X2, such that xa 6= ya = xb = yb 6= xc does not hold.

Definition 2.6. a) We are considering the following subset of the set of all strings of elements
of X2:

S2(X) :=
{(

(x0, y0), . . . , (xn, yn)
)

∈
(

X2
)n+1 ∣

∣n ∈ N, xn = yn
}

. (3)

b)
(

(x0, y0), . . . , (xn, yn)
)

∈ S2(X) is denoted as NCTC triple free string if n = 1 or if n > 1
and it holds that:

(

(xi−1, yi−1), (xi, yi), (xi+1, yi+1)
)

is no NCTC triple, ∀ i ∈ {1, . . . , n− 1}. (4)

c) Let

S2
F (X) :=

{

V ∈ S2(X)
∣

∣V is an NCTC triple free string
}

(5)

be the set of all NCTC triple free strings in S2
F (X).
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2.4 Monotaffine functions

In order to generalize the notion of monotonicity from scalar-valued to vector-values functions,
the composition of a monot one increasing and an affine function with the monotone increasing
function being evaluated first is considered in [11, 10, 12, 13] and leads to monotaffine function
considered on closed intervals. In [12], these monotaffine functions are also considered on
open intervals. Adapting this definition to left-open, right-closed intervals, one ends up with the
following definition.

Definition 2.7. Let some ta, tb ∈ [0, T ] with ta < tb and some function u : [0, T ] → X be
given.

a) u is denoted as affine on ]ta, tb] := {t | ta < t ≤ tb} if u(ta+) := limt↘ta u(t) exists and

u(t) =
tb − t

tb − ta
u(ta+) +

t− ta
tb − ta

u(tb), ∀ t ∈]ta, tb]. (6)

b) u is denoted as monotaffine on ]ta, tb] if u(ta+) exists and there exists a monotone in-
creasing (not necessary strictly monotone increasing) function β :]ta, tb] → [0, 1] such that
β(ta+) = 0, β(tb) = 1, and

u(t) = (1− β(t))u(ta+) + β(t)u(tb), ∀ t ∈]ta, tb]. (7)

Remark 2.8. If in the definition of “monotaffine” in Def. 2.7 it were required that β is a function
from ]ta, tb] to [0, 1], a function u : [0, T ] → X with u being monotaffine on [0, T ] such u
is constant on [T/2, T ] and u(0) 6= u(T/2) would not be monotaffine on [T/2, T ] according
to this alternative definition. In contrast, for all u : [0, T ] → X and all ta, t

′
atb ∈ [0, T ] with

ta < t′a < tb such that u is monotaffine on ]ta, tb] according to Def. 2.7 if follows that u is
monotaffine on ]t′a, tb]according to Def. 2.7, see Lemma 3.2.

2.5 Piecewise left-open right-closed monotaffine-continu ous function

Definition 2.9. a) A function u : [0, T ] → X is denoted as piecewise left-open, right-closed
monotaffine-continuous (pw. lo. rc. monotaffine-continuous) if there exists a decomposition
0 = t0 < t1 < · · · < tn = T of [0, T ] such that u is monotaffine and continuous on
]ti, ti+1] for all i = 0, . . . , n − 1. In this case, the decomposition is denoted as lo. rc.
monotaffinicity continuity decomposition of [0, T ] for u.

b) Let Mappw,∗ ([0, T ], X) be the set of all pw. lo. rc. monotaffine-continuous functions from
[0, T ] to X .

Remark 2.10. Every function in Mappw,∗ ([0, T ], X) is left-continuous.

Definition 2.11. For u ∈ Mappw,∗ ([0, T ], X) the standard lo. rc. monotaffinicity continuity
decomposition of [0, T ] for u is the lo. rc. monotaffinicity continuity decomposition 0 = t0 <
t1 < · · · < tn = T of [0, T ] for u, such that for all for all i = 0, . . . , n− 1, it holds

ti+1 = max {t ∈]ti, T ] | u is monotaffine and continuous on ]ti, t]} . (8)
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u(t0) = u(t0+)

u(t1) = u(t1+)

u(t2)

u1

u(t4)

u(t4+)

u(t3) = u(t3+)

u2

u(t5)

u(t6) = u(T )

u(t5+)

u(t2+)

Figure 1: An example for a piecewise left-open, right-closed monotaffine-continuous function
u : [0, T ] → R

2 and its evaluation at the times ti of the lo. rc. monotaffinicity continuity
decomposition 0 = t0 < t1 < · · · < t6 = T of [0, T ] for u. The arrow density indicates the
passing velocity, the dotted lines the jumps at the discontinuities, i.e. the jump between u(t2)
and u(t2+), the jump between u(t4) and u(t4+), and the jump between u(t5) and u(t5+).
Here, it holds that u(t2+) /∈ u(]t2, t3]) and u(t4+) /∈ u(]t4, t5]) but u(t5+) ∈ u(]t5, t6]).

Remark 2.12. a) For the set Cpw.m.a.([0, T ];X) of all continuous, piecewise monotaffine func-
tions form [0, T ] to X considered in [10, 11, 12, 13] it holds that Cpw.m.a.([0, T ];X) =
Mappw,∗ ([0, T ], X) ∩ C ([0, T ];X).

b) It holds for u ∈ Cpw.m.a.([0, T ];X) that the standard lo. rc. monotaffinicity continuity decom-
position 0 = t0 < · · · < tn = T of [0, T ] for u coincides with the standard monotaffinicity
partition of [0, T ] for u considered in [10, 11, 12, 13].

2.6 Memory operator

Definition 2.13. The memory operator ρ : Mappw,∗ ([0, T ], X) → Map ([0, T ], S2
F (X)) is

defined by mapping u ∈ Mappw,∗ ([0, T ], X) to ρ[u] : [0, T ] → S2
F (X) according to:

Let 0 = t0 < t1 < · · · < tn = T be the standard lo. rc. monotaffinicity continuity decomposi-
tion of [0, T ] for u.

I) Let r0, . . . , rn−1 ∈ {0, 1} and m0, . . . ,mn−1 ∈ {0, . . . , 2n} be defined by

ri :=











1, if i = 0 and u(t0+) ∈ u(]t0, t1[) and u(t0) 6= u(t0+) 6= u(t1),

1, if i > 0 and u(ti+) ∈ u(]ti, ti+1[) and u(ti+) 6= u(ti+1),

0, otherwise,

(9)

mi := i+
i

∑

j=0

rj, (10)
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for all i ∈ {0, . . . , n− 1}.

II) Let V0, . . . , Vmn−1
∈ X2 be defined by

{

Vmi
= (u(ti), u(ti+)) , if ri = 0,

Vmi−1 = (u(ti), u(ti+)) , Vmi
= (u(ti+),u(ti+)) , if ri = 1,

(11)

for all i ∈ {0, . . . , n− 1}.

III) Let ρ[u] : [0, T ] → S2
F (X) be defined by

ρ[u](0) :=
(

(u(0), u(0)), (u(0), u(0))
)

, (12a)

ρ[u](t) :=











(

V0, (u(t), u(t))
)

, if r0 = 0,
(

V0, (u(t), u(t))
)

, if r0 = 1 and u(0+) = u(t),
(

V0, V1, (u(t), u(t))
)

, if r0 = 1 and u(0+) 6= u(t),

∀ t ∈]t0, t1], (12b)

ρ[u](t) :=











(

V0, . . . , Vmi
, (u(t), u(t))

)

, if ri = 0,
(

V0, . . . , Vmi−1, (u(t), u(t))
)

, if ri = 1 and u(ti+) = u(t),
(

V0, . . . , Vmi
, (u(t), u(t))

)

, if ri = 1 and u(ti+) 6= u(t),

∀ t ∈]ti, ti+1], i ∈ {1, . . . , n− 1}. (12c)

Remark 2.14. For the memory operator considered in [12] it holds that for u, ti, ti+1 as in Def.
2.13 the corresponding memory string determined for u on ]ti, ti+1] would have exactly i + 1
components.

If one would prefer to deal with such an memory operator instead of the one defined in Def.
2.13, one would need to replace the strings of elements of X2 considered here by strings such
that each componend is the combination of an element of X2 with a boolean variable, keeping
track of the fact, if u(ti+) ∈ u (]ti, ti+1]) holds or does not hold. In other words, each string
component would consits of the last three components of the quintuples considered as string
components in [12, Sec. 17 –20].

2.7 Generated hysteresis operators and main result

Using the memory operator introduced in the last section, we can define:

Definition 2.15. a) Let U,V ∈ S2
F (X) be given. Then we denote that V is generated from

U by stretching the first component if for ((x0, y0), . . . , (xn, yn)) := U it holds that V =
((x0, x0), (x0, y0), . . . , (xn, yn)).

1

b) A function F : S2
F (X) → Y is denoted as invariant with respect to stretching the first

component, if for all U,V ∈ S2
F (X) such that V is generated from U by stretching the first

component it holds that F (U) = F (V)

1This implies that x0 6= y0.
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c) For F : S2
F (X) → Y being invariant with respect to stretching the first component the hys-

teresis operator GF : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y ) generated by F is defined
by GF [u](t) := F (ρ[u](t)) for all t ∈ [0, T ] and for all u ∈ Mappw,∗ ([0, T ], X).

d) Let H : D(H) → Map ([0, T ], Y ) be a hysteresis operator with Mappw,∗ ([0, T ], X)
being a subset of D(H). The function GH : S2

F (X) → Y generated by H is defined by

GH(U) = H [π [U]] (T ), ∀U ∈ S2
F (X). (13)

The following Main Theorem yields that the above notion is well defined and that for all sets Y
the mapping F 7→ GF is a bijective mapping between all maps S2

F (X) → Y being invari-
ant with respect to stretching the first component and the set of all hysteresis operators from
Mappw,∗ ([0, T ], X) to Map ([0, T ], Y ).

Main Theorem 1. a) Let F : S2
F (X) → Y be some function that is invariant with respect to

stretching the first component. Then it follows that the operator GF : Mappw,∗ ([0, T ], X) →
Map ([0, T ], Y ) defined in Def. 2.15 is a hysteresis operator.

b) For every hysteresis operator H : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y ) there exists
a unique function F : S2

F (X) → Y that is invariant with respect to stretching the first
component, such that H is the hysteresis operator generated by G, i.e. such that H = GF .
It holds F = GH, i.e., F is the function generated by the hysteresis operator.

2.8 Connection to former results for hysteresis operators d ealing with
continuous inputs

The following strings are considered in in [11, 10, 12, 13]:

Definition 2.16. a)
(

v0, . . . , vn)
)

∈ Xn+1 with n ∈ N is denoted as convexity triple free
string of elements of X if n = 1 or if n > 1 and it holds that:

(

vi−1, vi, vi+1

)

is no convexity triple, ∀ i ∈ {1, . . . , n− 1}. (14)

b) Let SF (X) be the set of all convexity triple free strings of elements of X .

Remark 2.17. Let F : S2
F (X) → Y be some function that is invariant with respect to stretching

the first component. Let H0 be the restrition of GF : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y )
to Cpw.m.a.([0, T ];X). Let F0 : SF (X) → Y be defined by

F0(v0, . . . , vn) = F
(

(v0, v0), . . . , (vn, vn)
)

, ∀ (v0, . . . , vn) ∈ SF (X). (15)

Then it holds for all u ∈ Cpw.m.a.([0, T ];X) and the standard monotaffinicity partition 0 =
t0 < · · · < tn = T of [0, T ] for u that

H0 := G0 (u(t0), u(t)) , ∀ t ∈ [t0, t1], (16a)

H0[u](t) := G0 (u(t0), . . . , u(ti−1), u(t)) , ∀ t ∈]ti−1, ti], i = 2, . . . , n. (16b)

This yield that the hysteresis operator on Cpw.m.a.([0, T ];X) generated by F0 : SF (X) → Y
considered in [10, 11, 12, 13] conicides with H0.
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The following representation result is presented in [10, 11, 12, 13] and proved in [10, 12]. It
extends the representation result derived in [1, 3] for hysteresis operators defined on scalar
valued, continuous and piecewise monotone inputs functions.

Theorem 2.18. For every hysteresis operator H0 : Cpw.m.a.([0, T ];X) → Map ([0, T ], Y )
there exists a unique function F0 : SF (X) → Y such that H0 is the hysteresis operator on
Cpw.m.a.([0, T ];X) generated by F0.

2.9 Extension of hysteresis operators dealing with continu ous inputs

Remark 2.19. Let a hysteresis operator H0 : Cpw.m.a.([0, T ];X) → Map ([0, T ], Y ) and the
a unique functionF0 : SF (X) → Y such thatH0 is the hysteresis operator onCpw.m.a.([0, T ];X)
generated by F0 be given.

a) It holds for every hysteresis operator H : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y ) that H
is an extension of H0 if and only if 15 holds for F := GH.

b) If X is a Hilbert-space, one can compute the “arclen” extension Harclen of H0 to the space
of all function of bounded variation with values in X introduced in [19]. This extension can be
described in the following way: For determingHarclen[u] for a function u ∈ Mappw,∗ ([0, T ], X)
the jumps between u(t) and u(t+) are filled with straight lines, i.e., affine functions are in-
serted.

Hence, one can get from [12, Sec. 20.3.1] that for the function Farclen : S2
F (X) → Y

generated by Harclen it holds for all
(

(x0, y0), . . . , (xn, yn)
)

∈ S2
F (X) that

Farclen

(

(x0, y0), . . . , (xn, yn)
)

= G ((x0, y0, x1, y1, . . . , xn−1, yn−1xn, yn)) . (17)

3 Proof of the Main Theorem

3.1 Tools for preparing the proof

The following Lemma corresponds to [12, Lem. 7.2.3.c]:

Lemma 3.1. Let v0, v1, v2, v3 ∈ X4 be given such that (v0, v1, v2) and (v1, v2, v3) are con-
vexity triples and v1 6= v2. Then it follows that (v0, v1, v3) is a convexity triple.

Proof. Since (v0, v1, v2) and (v1, v2, v3) are convexity triples, we have λ1, λ2 ∈ [0, 1] such
that

v1 = (1− λ1)v0 + λ1v2, v2 = (1− λ2)v1 + λ2v3. (18)

� If λ1 = 0 then it follows by using 18 that (v0, v1, v3) is a convexity triple.

� If λ2(1− λ1) = 0 then 18 yields that v2 = v1 in contradiction to the assumption.

8



� If 1 > λ1 > 0 and λ2 > 0 then one can consider the first equation in 18 and insert it into
the second. This yields that

v2 = (1− λ2) ((1− λ1)v0 + λ1v2) + λ2v3

= (1− λ2)(1− λ1)v0 + (λ1 − λ1λ2) v2 + λ2v3. (19)

Hence, it holds that

(1− λ1 + λ1λ2)v2 = (1− λ2)(1− λ1)v0 + λ2v3. (20)

We have

1− λ1 + λ2λ1 = (1− λ1) + λ2λ1 > λ2(1− λ1) + λ2λ1 ≥ λ2 > 0. (21)

Therefore, the following definition creates a well defined number in [0, 1]:

λ′ :=
λ2

1− λ1 + λ1λ2

. (22)

It holds that

1− λ′ =
1− λ1 + λ1λ2 − λ2

1− λ1 + λ1λ2

=
(1− λ1)(1− λ2)

1− λ1 + λ1λ2

. (23)

Recalling 20, we deduce that v2 = (1− λ′)v0 + λ′v3 ∈ conv(v0, v3).

This yields that (v0, v2, v3) is a convexity triple.

Lemma 3.2. Let some ta, tb, tc ∈ [0, T ] with ta < tb < tc and some function u : [0, T ] → X
be given. Then it holds: u is monotaffine and continuous on ]ta, tc] if and only if u(tb) = u(tb+),
(u(ta+), u(tb), u(tc)) is a convexity triple and u is monotaffine and continuous on ]ta, tb] and
on ]tb, tc].

Proof. =⇒ Assume that u is monotaffine and continuous on ]ta, tc]. Then it follows that u(ta+)
and u(tb+) are well defined, that u(tb+) = u(tb), and that u is continuous on ]ta, tb]
and on ]tb, tc]. Moreover, there exists an monotone increasing function β :]ta, tc] →
[0, 1] such that β(ta+) = 0, β(tc) = 1 and 7 holds with tb replaced by tc.

To prove that u is monotaffine on ]ta, tb], we have do distinguish two situations:

� If β(tb) = 0 then it follows, since β is monotone increasing and β(ta+) = 0 that
β(t) = 0 for all t ∈]ta, tb]. Using now 7 with tb replaced by tc, we deduce that
u(t) = u(ta+) for all t ∈]ta, tb]. This yields that u is monotaffine and continuous
on ]ta, tb].

� If β(tb) > 0 then let β1 :]ta, tb] → [0, 1] be defined by

β1(t) :=
β(t)

β(tb)
, ∀ t ∈]ta, tb]. (24)
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Then it follows that β1 is monotone increasing and that

β1(ta+) =
β(ta+)

β(tb)
= 0 and β1(tb) =

β(tb)

β(tb)
= 1. (25)

Using 7 with tb replaced by tc, we deduce that for all t ∈]ta, tb] it holds that

(1− β1(t))u(ta+) + β1(t)u(tb)

= (1− β1(t))u(ta+) + β1(t)
(

(1− β(tb))u(ta+) + β(tb)u(tc)
)

= (1− β(t))u(ta+) + β(t)u(tc) = u(t). (26)

This yields that u is monotaffine on ]ta, tb].

For proving that u is monotaffine on ]tb, tc], we have to deal with three situations:

� If β(tb) = 1 then it follows that β(t) = 1 for all t ∈]tb, tc], since β is monotone
increasing and β(tb) = 1. Using now 7 with tb replaced by tc, we deduce that
u(t) = u(tc) for all t ∈]tb, tc]. This yields that u is monotaffine and continuous on
]tb, tc].

� If u(ta+) = u(tc) then we observe by recalling 7 with tb replaced by tc that u(t) =
u(ta+) for all t ∈]tb, tc]. This yields that u is monotaffine and continuous on ]tb, tc].

� If β(tb) < 1 and u(ta+) 6= u(tc) then let β2 :]tb, tc] → [0, 1] be defined by

β2(t) :=
β(t)− β(tb)

1− β(tb)
, ∀ t ∈]ta, tb]. (27)

This is a monotone increasing function. Applying 7 with tb replaced by tc and using
the continuity of u at tb, we deduce that

u(ta+) + β(tb) (u(tc)− u(ta+)) = u(tb) = u(tb+)

= u(ta+) + β(tb+) (u(tc)− u(ta+)) . (28)

This yields that β(tb) = β(tb+). Hence, we have

β2(tb+) =
β(tb+)− β(tb)

1− β(tb)
= 0 and β2(tc) =

β(tc)− β(tb)

1− β(tb)
= 1. (29)

Using 28 and 7 with ta replaced by tb, we deduce that for all t ∈]tb, tc] it holds that

(1− β2(t))u(tb+) + β2(t)u(tc)

=
1− β(t)

1− β(tb)

(

(1− β(tb))u(ta+) + β(tb)u(tc)
)

+
β(t)− β(tb)

1− β(tb)
u(tc)

= (1− β(t))u(ta+) + β(t)u(tc) = u(t). (30)

This yields that u is monotaffine on ]ta, tc].

Hence, it is proved that u is monotaffine and continuous on ]ta, tb] and also on ]tb, tc].
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⇐= Assume that u(tb) = u(tb+), that (u(ta+), u(tb), u(tc)) is a convexity triple and that u
is monotaffine and continuous on ]ta, tb] and on ]tb, tc]. Hence, it follows that u(ta+) is
well defined, and that there exists some λ ∈ [0, 1] and monotone increasing functions
β1 :]ta.tb] → [0, 1] and β2 :]tb.tc] → [0, 1] such that

u(tb+) = u(tb) = (1− λ)u(ta+) + λu(tc), (31)

β1(ta+) = 0, β1(tb) = 1, β2(tb+) = 0, β2(tc) = 1, (32)

u(t) = (1− β1(t))u(ta+) + β1(t)u(tb), ∀ t ∈]ta, tb], (33)

u(t) = (1− β2(t))u(tb+) + β2(t)u(tc), ∀ t ∈]tb, tc]. (34)

Defining now β :]ta, tc] → [0, 1] by

β(t) :=

{

β1(t)λ, if t ∈]ta, tb]

λ+ β2(t)(1− λ), if t ∈]ta, tb]
(35)

we get an monotone increasing function with

β(ta+) = λβ(ta+) = 0, β(tc) = λ+ (1− λ)β(tc) = 1, (36)

such that 7 with tb replaced by tc holds.

Therefore, we can deduce that u is monotaffine on ]ta, tc].

Combining u(tb) = u(tb+) and the continuity of u on ]ta, tb] and on ]tb, tc], we conclude
that u is continuous von ]ta, tc].

Lemma 3.3. Let u ∈ Mappw,∗ ([0, T ], X) be given. Then it holds: The memory operator
ρ[u] : [0, T ] → S2

F (X) as in Def. 2.13 is well defined.

Proof. Let 0 = t0 < t1 < · · · < tn = T be the standard lo. rc. monotaffinicity conti-
nuity decomposition of [0, T ] for u. Let r0, . . . , rn−1 ∈ {0, 1}, m0, . . . ,mn−1 ∈ N0 and
V0, . . . , Vmn−1

∈ X2 be defined as in Def. 2.13. Recalling 12, we see that ρ[u] is a well de-
fined function from [0, T ] to S2(X). Hence, it remains to show that for all t ∈ [0, T ] it holds
that ρ[u] is a NCTC triple free strings.

� All strings consisting of only two elements of X2 as components are NCTC triple free
string. Using 12a, we see therefore that ρ[u](0) is a NCTC triple free string.

� Recalling 12b, we deduce for all t ∈]0, t1] it holds:

� ρ[u](t) has two components and is therefore a NCTC triple free string.

� ρ[u](t) has three components and it holds therefore r0 = 1, u(0) 6= u(0+) 6=
u(t) and

ρ[u](t) =
(

V0, V1, (u(t), u(t))
)

. (37)

Invoking 9 and 11, we see that V0 = (u(0), u(0+)) and V1 = (u(0+), u(0+)).
Thus, Def. 2.5 yields that ρ[u](t) considered as triple is no NCTC triple, and that
ρ[u](t) considered as string is a NCTC triple free string.
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Therefore, it is proved that ρ[u](t) ∈ S2
F (X) for all t ∈]0, t1].

� Using the above result, we see that for an induction proof of the assertion ρ[u](t) ∈
S2
F (X) for all t ∈]0, ti] for all i ∈ {1, . . . , n} the base case for i = 1 is done.

In the induction step, we assume that i ∈ {1, . . . , n − 1} s given such that ρ[u](t) ∈
S2
F (X) for all t ∈]0, ti]. Now, it is to prove that ρ[u](t) ∈ S2

F (X) for all t ∈]ti, ti+1]. Let
t ∈]ti, ti+1] be arbitrary.

Recalling 12, we see that

S2
F (X) 3 ρ[u](ti) =

(

V0, . . . , Vmi−1
, (u(ti), u(ti))

)

. (38)

Using also that 9 and 11 yield that mi−1 + 1 = mi − ri and Vmi−ri = (u(ti), u(ti+)),
we observe that:

(Vj−1, Vj , Vj+1) is no NCTC triple ∀ j ∈ N with j < mi − ri. (39)

Since u is monotaffine and continuous on ]ti−1, ti] and on ]ti, t] but not monotaffine on
]ti−1, t], we deduce from Lemma 3.2 that at least one of the two conditions (u(ti−1+), u(ti), u(t))
is a convexity triple and u(ti) = u(ti+) is not satisfied.

Using that 11 yields that there is some x∗ ∈ X such that
(

Vmi−ri−1, Vmi−ri , (u(t), u(t)
)

=
(

(x∗, u(ti−1+)) , (u(ti), u(ti+)) , (u(t), u(t)
)

,
(40)

we observe that
(

Vmi−ri−1, Vmi−ri , (u(t), u(t))
)

is no CTC triple. (41)

� If ri = 0 then it follows from 12c that

ρ[u](t) =
(

V0, . . . , Vmi
, (u(t), u(t))

)

. (42)

Combining this with 39 and 41, we see that ρ[u](t) ∈ S2
F (X).

� If ri = 1 and u(ti+) = u(t) then if follows from 12c that

ρ[u](t) =
(

V0, . . . , Vmi−ri , (u(t), u(t))
)

. (43)

Invoking 39 and 41, we deduce that ρ[u](t) ∈ S2
F (X).

� If ri = 1 and u(ti+) 6= u(t) then if follows from 9 and the monotaffinicity of
u on ]ti−1, ti] that there exists some τ ∈]ti, t[ such that u(ti+) = u(τ), and
therefore, by 11, Vmi

= (u(τ), u(τ)). Hence, the above discussion holds with
t replaced by τ such that the corresponding modified version of 41 yields that
(

Vmi−2, Vmi−1, Vmi

)

=
(

Vmi−ri−1, Vmi−ri , (u(τ), u(τ))
)

is no CTC triple.

Since u(ti+) 6= u(t) and u(ti) 6= u(ti+), because of ri = 1 and 9, we see by
recalling Def. 2.5 that
(

Vmi−1, Vmi
, (u(t), u(t))

)

=
(

(u(ti), u(ti+)) , (u(ti+), u(ti+)) , (u(t), u(t))
)

is an CTC triple but no NCTC triple.

Combining these results with 39 and 12c implies that

S2
F (X) 3

(

V0, . . . , Vmi
, (u(t), u(t))

)

= ρ[u](t). (44)
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Lemma 3.4. The memory operator ρ : Mappw,∗ ([0, T ], X) → Map ([0, T ], S2
F (X)) defined

in Def. 2.13 is causal.

Proof. Let u, u′ ∈ Mappw,∗ ([0, T ], X) and t ∈ [0, T ] be given such that u(τ) = u′(τ) for all
τ ∈ [0, t].

Let 0 = t0 < t1 < · · · < tn = T and 0 = t′0 < t′1 < · · · < t′n′ = T be the standard lo. rc.
monotaffinicity continuity decomposition of [0, T ] for u and for u′, respectively.

Let r0, . . . , rn−1,m0, . . . ,mn−1 and V0, . . . , Vmn−1
be as in Def. 2.13 when ρ[u] is determined

and let r′0, . . . , r
′
n, m′

0, . . . ,m
′
n′ and V ′

0 , . . . , V
′
m′

n′

be as in Def. 2.13 when ρ[u′] is determined.

I) If t = 0 then we can use 12a to deduce that

ρ[u](0) =
(

(u(0), u(0)), (u(0), u(0))
)

=
(

(u′(0), u′(0)), (u′(0), u′(0))
)

= ρ[u′](0).
(45)

II) if t ∈]0, t1] then it follows that t ∈]0, t′1] and that V0 = (u(0), u(0+)) = (u′(0), u′(0+)) =
V ′
0 and (u(0+), u(0+)) = (u′(0+), u′(0+)).

� If u(t) = u(0+) then it follows that also u′(t) = u′(0+). Invoking now 12b, we
deduce that

ρ[u](t) =
(

V0, (u(t), u(t)
)

=
(

V ′
0 , (u

′(t), u′(t)
)

= ρ[u′](t). (46)

� If u(t) 6= u(0+) then it follows that also u′(t) 6= u′(0+). Since u is monotaffine on
]0, t1] and u′ is monotaffine on ]0, t′1], we obtain that u(t1) 6= u(0+) and u′(t′1) 6=
u′(0+).

� If r0 = 0 then it holds u(0+) /∈ u(]0, t1[) and therefore u′(0+) = u(0+) /∈
u(]0, t[) = u′(]0, t]). Using that u′ is monotaffine on ]0, t′1], we conclude that
u′(0+) /∈ u′(]0, t′1]). Hence, it holds that r′0 = 0. such that 12b yields that 46
is valid.

� If r0 = 1 then it holds u(0+) ∈ u(]0, t1[) and therefore, thanks to the mono-
taffinicity of u, that u′(0+) = u(0+) ∈ u(]0, t[) = u′(]0, t]) ⊆ u′(]0, t′1].
Therefore, we have r′0 = 1 and V1 = (u(0+), u(0+)) = (u′(0+), u′(0+)) =
V ′
1 such that 12b yields that

ρ[u](t) =
(

V0, V1, (u(t), u(t)
)

=
(

V ′
0 , V

′
1 , (u

′(t), u′(t))
)

= ρ[u′](t). (47)

III) If t ∈]ti, ti+1] for some i ∈ {1, . . . , n} then it follows that t ∈]t′i, t
′
i+1], that rk = r′k

and mk = m′
k for all k ∈ {0, . . . , i − 1}, Vj = Vj for all j ∈ {0, . . . ,mi − 1}, that

mi − ri = m′
i − r′i and that Vmi−ri = (u(ti), u(ti+)) = (u′(ti), u

′(ti+)) = Vm′
i
−r′

i

� If u(t) = u(ti+) then it follows that also u′(t) = u′(ti+). Invoking now 12c, we
deduce that

ρ[u](t) =
(

V0, . . . , Vmi−ri , (u(t), u(t))
)

=
(

V ′
0 , . . . , V

′
m′

i
−r′

i
, (u′(t), u′(t))

)

= ρ[u′](t). (48)
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� If u(t) 6= u(ti+) then it follows that also u′(t) 6= u′(ti+). Since u is monotaffine
on ]ti, ti+1] and u′ is monotaffine on ]ti, t

′
i+1] it follows that u(ti+1) 6= u(ti+) and

u′(t′i+1) 6= u′(ti+).

� If ri = 0 then it follows that u(ti+) /∈ u(]ti, ti+1[) and therefore u′(ti+) =
u(ti+) /∈ u(]ti, t[) = u′(]ti, t]). Using that u′ is monotaffine on ]ti, t

′
i+1], we

conclude that u′(ti+) /∈ u′(]ti, t
′
i+1]). Hence, r′i = 0 holds such that 12c yields

that 48 is valid.

� If ri = 1 then it holds that u(ti+) ∈ u(]ti, ti+1[) and therefore, thanks to the
monotaffinicity of u:

u′(ti+) = u(ti+) ∈ u (]ti, t[) = u′ (]ti, t[) ⊆ u′
(

]ti, t
′
i+1]

)

. (49)

Therefore, we have r′i = 1, mi = m′
i, and

Vmi
= (u(ti+), u(ti+)) = (u′(ti+), u′(ti+)) = V ′

mi
, (50)

such that 12c yields that

ρ[u](t) =
(

V0, . . . , Vmi
, (u(t), u(t))

)

=
(

V ′
0 , . . . , V

′
mi
, (u(t), u(t))

)

= ρ[u′](t). (51)

Lemma 3.5. Let u ∈ Mappw,∗ ([0, T ], X) be given. Let 0 = t0 < t1 < · · · < tn = T be the
standard lo. rc. monotaffinicity continuity decomposition of [0, T ] for u. Let α : [0, T ] → [0, T ]
be an admissible time transformation of [0, T ].

a) If u(0+) = u(0) and/or α(t) > 0 for all t > 0 then we have ρ[u](α(s)) = ρ[u ◦ α](s) for
all s ∈ [0, T ].

b) If u(0+) 6= u(0) and there is some t ∈]0, T ] with α(t) = 0 then we have:

� For all s ∈ [0, T ] with α(s) = 0 it holds ρ[u](α(s)) = ρ[u ◦ α](s).

� For all s ∈]0, T ] with α(s) > 0 it holds that ρ[u ◦ α](s) is generated from ρ[u](α(s))
by stretching the first component.

Proof. Let 0 = t0 < t1 < · · · < tn = T be the standard lo. rc. monotaffinicity continuity
decomposition of [0, T ] for u. Let σ0 < σ1 < · · · < σn be defined by

σi := max{s ∈ [0, T ] |α(s) = ti}, ∀ i = 0, . . . , n. (52)

Since α is monotone increasing and continuous, we see that for all s, s′ ∈ [0, T ] with s < s′

it holds that u ◦ α is monotaffine and continuous on ]s, s′] if and only if u is monotaffine and
continuous on ]α(s), α(s′)].
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Therefore, using the above settings and recalling Def. 2.11, we deduce that

σi = max {s ∈]σi−1, T ] | u ◦ α is monotaffine and continuous on ]σi−1, s]} , (53)

for all i ∈ {1, . . . , n}. Moreover, the definition of σi in 52 yields that

u ◦ α(σi) = u(ti), u ◦ α(σi+) = u(ti+), ∀ i ∈ {0, . . . , n}. (54)

I) If for all s ∈]0, T ] it holds α(s) > 0, then we have σ0 = 0 and it follows that 0 = σ0 <
σ1 < · · · < σn = T is the standard lo. rc. monotaffinicity continuity decomposition of
[0, T ] for u ◦ α. Recalling Def. 2.13 and 54, we see that ρ[u ◦ α](t) = ρ[u](α(t)) for all
t ∈ [0, T ].

II) If u(0) = u(0+) and for some s ∈]0, T ] it holds α(s) = 0, then we have σ0 > 0. Thanks
to 54, we have u(0) = u ◦ α(σ0) = u ◦ α(σ0+). Since u ◦ α is constant on [0, σ0]
and monotaffine and continuous on ]σ0, σ1], we can now apply Lemma 3.2 and deduce
that u ◦ α is monotaffine and continuous on ]0, σ1]. Defining σ′

0, . . . , σ
′
n by σ′

0 := 0 and
σ′
i = σi for i = 1, . . . , n, we conclude that 0 = σ′

0 < σ′
1 < · · · < σ′

n = T is the
standard lo. rc. monotaffinicity continuity decomposition of [0, T ] for u ◦ α. Recalling Def.
2.13 and 54, we see that ρ[u ◦ α](t) = ρ[u](α(t)) for all t ∈ [0, T ].

III) If u(0) 6= u(0+) and for some s ∈]0, T ] it holds α(s) = 0, then we have σ0 > 0. Thanks
to 54, we have u ◦ α(σ0) = u(0) 6= u(0+) = u ◦ α(σ0+). Since u ◦ α is constant on
[0, σ0], we deduce that

σ0 = max {s ∈]0, T ] | u ◦ α is monotaffine and continuous on ]0, s]} . (55)

Defining σ′′
0 , . . . , σ

′′
n+1 by σ′′

0 := 0 and σ′
i = σi−1 for i = 1, . . . , n + 1, we conclude

that 0 = σ′′
0 < σ′′

1 < · · · < σ′′
n+1 = T is the standard lo. rc. monotaffinicity continuity

decomposition of [0, T ] for u ◦α. Let r0, . . . , rn−1, m0, . . . ,mn−1 and V0, . . . , Vmn−1
be

as in Def. 2.13 when u is determined and let r′′0 , . . . , r
′′
n, m′′

0, . . . ,m
′′
n and V ′′

0 , . . . , V
′′
m′′

n

be as in this Definition when ρ[u ◦ α] is determined. Recalling 54, we see that

r′′0 = 0, m′′
0 = 0, r′′i = ri−1, m′′

i = mi−1 + 1, ∀ i ∈ {1, . . . , n+ 1}. (56)

and

V0 = (u(0), u(0+)) , V ′′
0 = (u ◦ α(0), u ◦ α(0+)) = (u(0), u(0)) , (57)

V ′′
1 = (u ◦ α(σ1), u ◦ α(σ1+)) = (u(0), u(0+)) , (58)

V ′′
j = Vj−1, ∀ j ∈ {1, . . . ,m′′

n} (59)

are satisfied.

� For s ∈]0, T ] such that α(s) = 0, we deduce by using 12

ρ[u](α(s)) = ρ[u](0) =
(

(u(0), u(0)) , (u(0), u(0))
)

=
(

(u ◦ α(0), u ◦ α(0)) , (u ◦ α(s), u ◦ α(s))
)

= ρ[u ◦ α](s). (60)
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� For s ∈]0, T ] such that α(s) ∈]t0, t1] it holds s ∈]σ0, σ1] =]σ′′
1 , σ

′′
2 ]. Using now 12

m′′
1 = m0 + 1 = r0 + 1, r′′1 = r0 and u ◦ α(σ′′

1+) = u(0+), we conclude that

ρ[u](α(s))

=































(

(u(0), u(0+)) , (u(α(s)), u(α(s)))
)

, if r0 = 0,
(

(u(0), u(0+)) , (u(α(s)), u(α(s)))
)

, if r0 = 1

and u(0+) = u(α(s)),
(

(u(0), u(0+)) , V1, (u(α(s)), u(α(s)))
)

, if r0 = 1

and u(0+) 6= u(α(s)),

(61)

ρ[u ◦ α](s)

=































(

V ′′
0 , V

′′
1 , (u ◦ α(s), u ◦ α(s))

)

, if r′′1 = 0,
(

V ′′
0 , V

′′
1 , (u ◦ α(s), u ◦ α(s))

)

, if r′′i = 1 and

u ◦ α(σ′′
1+) = u ◦ α(t),

(

V ′′
0 , V

′′
1 , V

′′
2 , (u ◦ α(s), u ◦ α(s))

)

, if r′′1 = 1 and

u ◦ α(σ′′
1+) 6= u ◦ α(t),

=































(

(u(0), u(0)) , (u(0), u(0+)) , (u ◦ α(s), u ◦ α(s))
)

, if r0 = 0,
(

(u(0), u(0)) , (u(0), u(0+)) , (u ◦ α(s), u ◦ α(s))
)

, if r0 = 1 and

u(0+) = u ◦ α(s),
(

(u(0), u(0)) , (u(0), u(0+)) , V1, (u ◦ α(s), u ◦ α(s))
)

, if r0 = 1 and

u(0+) 6= u ◦ α(s).

(62)

Therefore, we observe that ρ[u ◦ α](t) is generated from ρ[u](α(t)) by stretching
the first component.

� For s ∈]0, T ] and i ∈ {1, . . . , n − 1} such that α(s) ∈]ti, ti+1] it holds s ∈
]σi, σi+1] =]σ′′

i+1, σ
′′
i+2]. Using now Def. 2.13, m′′

i = mi−1 + 1, r′′i−1 = ri and
u ◦ α(σ′′

i+1+) = u(ti+), we see that
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ρ[u](α(s))

=































(

V0, . . . , Vmi
, (u(α(s)), u(α(s)))

)

, if ri = 0,
(

V0, . . . , Vmi−1, (u(α(s)), u(α(s)))
)

, if ri = 1 and

u(ti+) = u(α(s)),
(

V0, . . . , Vmi
, (u(α(s)), u(α(s)))

)

, if ri = 1 and

u(ti+) 6= u(α(s)),

=































(

(u(0), u(0)) , V1, . . . , Vmi
, (u(α(s)), u(α(s)))

)

, if ri = 0,
(

(u(0), u(0)) , V1, . . . , Vmi−1, (u(α(s)), u(α(s)))
)

, if ri = 1 and

u(ti+) = u(α(s)),
(

(u(0), u(0)) , V1, . . . , Vmi
, (u(α(s)), u(α(s)))

)

, if ri = 1 and

u(ti+) 6= u(α(s)).

(63)

ρ[u ◦ α](s)

=



































(

V ′′
0 , . . . , V

′′
m′′

i+1

, (u ◦ α(s), u ◦ α(s))
)

, if r′′i+1 = 0,
(

V ′′
0 , . . . , V

′′
m′′

i+1
−1, (u ◦ α(s), u ◦ α(s))

)

, if r′′i+1 = 1 and

u ◦ α(σ′′
i+1+) = u ◦ α(s),

(

V ′
0 , . . . , V

′′
m′′

i+1

, (u ◦ α(s), u ◦ α(s))
)

, if r′′i+1 = 1 and

u ◦ α(σ′′
i+1+) 6= u ◦ α(s),

=































(

(u(0), u(0)) , (u(0), u(0+)) , V1, . . . , Vmi
, (u ◦ α(s), u ◦ α(s))

)

, if ri = 0,
(

(u(0), u(0)) , (u(0), u(0+)) , V1, . . . , Vmi−1, (u ◦ α(s), u ◦ α(s))
)

, if ri = 1 and

u(ti+) = u ◦ α(s),
(

(u(0), u(0)) , (u(0), u(0+)) , V1, . . . , V
′′
m′′

i+1

, (u ◦ α(s), u ◦ α(s))
)

, if r′′i+1 = 1 and

u(ki+) 6= u ◦ α(s),

(64)

This proves that ρ[u ◦α](t) is generated from ρ[u](α(t)) by stretching the first com-
ponent.

Definition 3.6. a) Let U =
(

(x0, y0), . . . , (xm, ym)) in S2
F (X) be given. The interpolation of

U inMappw,∗ ([0, T ], X) is the function π[U] ∈ Mappw,∗ ([0, T ], X) defined by π[U](0) =
x0 and

π[U](t) =
sk+1 − t

sk+1 − sk
yk +

t− sk
sk+1 − sk

xk+1, ∀ t ∈]sk, sk+1], k = 1, . . . ,m (65)

with sk :=
k
m
T for all k ∈ {0, . . . ,m}.
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b) The interpolation operator π : S2
F (X) → Mappw,∗ ([0, T ], X) maps U ∈ S2

F (X) to
π[U] ∈ Mappw,∗ ([0, T ], X) defined in a).

Lemma 3.7. For every u ∈ Mappw,∗ ([0, T ], X) there exists some admissible time-transformation
αu : [0, T ] → [0, T ], such that

u = π [ρ[u](T )] ◦ αu. (66)

Proof. Let u ∈ Mappw,∗ ([0, T ], X) be given. Let 0 = t0 < t1 < · · · < tn = T be
the standard lo. rc. monotaffinicity continuity decomposition of [0, T ] for u. Let r0, . . . , rn−1 ∈
{0, 1} and m0, . . . ,mn−1 ∈ N0 be as in Def. 2.13. Then it holds for m := mn−1 + 1 that
ρ[u](T ) ∈ Xm+1. Let

(

(x0, y0), . . . , (xm, ym)
)

:= ρ[u](T ). (67)

Then it follows that
{

xmi
= u(ti), ymi

= u(ti+), if ri = 0,

xmi−1 = u(ti), ymi−1 = xmi
= ymi

= u(ti+), if ri = 1,
(68)

for all i ∈ {0, . . . , n− 1} and that xm = ym = u(T ).

Let s0, . . . , sm ∈ [0, 1] be defined by sk :=
k
m
T for all k ∈ {0, . . . ,m}.

I) Let αu(0) := 0. Then it follows that

u(0) = x0 = π[ρ[u](T )](0) = π[ρ[u](T )] ◦ αu(0). (69)

II) For i ∈ {0, . . . , n− 1} such that u(ti+) = u(ti+1) it holds that ri = 0, mi = mi−1 + 1
and ymi

= u(ti+) = u(ti+1) = xmi+1. Hence, thanks to the monotaffinicity of u and
Def. 3.6 it holds that u is equal to u(ti+) on ]ti, ti+1] and that π [ρ[u](T )] is also equal to
u(ti+) on ]smi

, smi+1]. Defining αu on ]ti, ti+1] by

αu(t) =
ti+1 − t

ti+1 − ti
smi

+
t− ti

ti+1 − ti
smi+1, ∀ t ∈]ti, ti+1], (70)

we conclude that α is continuous and monotone increasing and that

αu(]ti, ti+1]) =]smi
, smi+1

], (71)

u(t) = π [ρ[u](T )] ◦ αu(t), ∀t ∈]ti, ti+1]. (72)

III) For i ∈ {0, . . . , n− 1} such that u(ti+) 6= u(ti+1), it holds that:

Since u it monotaffine and continuous on ]ti, ti+1], u(ti+) = ymi−ri , and u(ti+1) =
xmi+1, it follows that there is some continuous, monotone increasing function β :]ti, ti+1] →
[0, 1] such that β(ti+) = 0, β(ti+1) = 1, and

u(t) = (1− β(t))ymi−ri + β(t)xmi+1, ∀ t ∈]ti, ti+1]. (73)
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� If ri = 0 then it follows that mi = mi−1 + 1.

Defining now

αu(t) = (1− β(t))smi
+ β(t)smi+1, ∀ t ∈]ti, ti+1], (74)

we deduce that αu is continuous and monotone increasing.

� If u(ti+) /∈ u(]ti, ti+1]) then it follows from 73 that we have therefore β(t) > 0
for all t ∈]ti, ti+1]. Hence, we see that 71 holds and that 73 yields that 72 is
valid.

� If u(ti+) ∈ u (]ti, ti+1]) then if follows from 9 that xmi
= u(ti) = u(ti+) =

ymi
and by applying 73 we observe that is some β(t) ∈]ti, ti+1] such that

β(t) = 0.
Hence, we deduce by recalling Def. 3.6 that φ[ρ[u](T )](ti) = ymi−0 = ymi−ri ,
such that 73 yields that 72 is valid, and we see thatαu(]ti, ti+1]) = [smi

, smi+1
].

� If ri = 1 then it follows that mi = mi−1 + 2 and that u(ti+) ∈ u (]ti, ti+1]).
Therefore, it holds that

t∗ := max{t ∈]ti, ti+1[ | β(t) = 0} (75)

is a well-defined number. Defining now αu :]ti, ti+1] →]smi−1, smi+1] by

αu(t) =

{

t∗−t
t∗−ti

smi−1 +
t−ti
t∗−ti

smi
, if t ≤ t∗,

(1− β(t))smi
+ β(t)smi+1, if t > t∗,

(76)

we see that α is continuous and monotone increasing. Invoking 73 and that 71 and
72 hold.

Hence, we see that αu : [0, T ] → [0, T ] generated by this method is an admissible time-
transformation of [0, T ], such that 66 holds.

Lemma 3.8. For all U ∈ S2
F (X) it holds that

ρ [π[U]] (T ) = U. (77)

Proof. Let
(

(x0, y0), . . . , (xm, ym)) := U. Considering s0, . . . , sm as in Def. 3.6, we see that
π[U] is continuous and monotaffine on ]sk−1, sk] for all k = 1, . . . ,m.

Let r′0, . . . , r
′
m−1 ∈ {0, 1} be defined by

r′i :=

{

1, if yi = xi+1 = yi+1 and i < m− 1

0, otherwise,
∀ i ∈ {0, . . . ,m− 1}. (78)

Let n := m−
∑m−1

j=0 r′j and m′
0, . . . ,m

′
n ∈ {0, . . . ,m} be defined by

m′
0 := 0, m′

j+1 := m′
j + 1 + rm′

j
, ∀ j ∈ {0, . . . , n− 1}. (79)

Let t0, . . . , tn ∈ [0, T ] be defined by

tj := sm′
j

∀ j ∈ {0, . . . , n}. (80)
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I) Now, it will be proved that 0 = t0 < · · · < tn = T is the standard lo. rc. monotaffinicity
continuity decomposition of [0, T ] for π[U].

� Let j ∈ {0, . . . , n − 1} be arbitrary. We have to prove that 8 holds for u := π[U]
and i := j.

� It follows from Def. 3.6, that π[U] is monotaffine and continuous on ]smj
, smj+1]

and on ]smj+rmj
, smj+1+rmj

].

� If rj = 0, we have mj+1 = mj + 1 and it follows immediately that π[U] is
monotaffine and continuous on ]smj

, smj+1
].

� If rj = 1, then it holds ymj
= xmj+1 = ymj+1. Hence, we deduce by

Def. 3.6 that π[U] is on ]smj
, smj+1] constant equal to ymj+1 and that

ymj+1 = π[U](smj+1+). Since π[U] is monotaffine and continuous on
]smj+1, smj+2], we conclude that π[U] is monotaffine and continuous on
]smj

, smj+2] =]smj
, smj+1

].

Hence, it is shown that π[U] is monotaffine and continuous on

]smj
, smj+1

] =]tj, tj+1].

� Now, it will be proved by a contradiction argument that for all s ∈ [0, T ] with
s > tj+1 = smj+1

it holds that π[U] is not monotaffine and continuous on
]tj, s] =]smj

, s]: Assume that this assertion does not hold. Then there exits
some s ∈]smj+1

, smj+1+1] such that π[U] is monotaffine and continuous on
]smj

, s]. Thus, we can apply Lemma 3.2 to conclude that

xmj+1
= π[U](smj+1

) = π[U](smj+1
+) = ymj+1

(81)

and that

(

π[U](smj
+), π[U](smj+1

), π[U](s)
)

=
(

ymj
, xmj+1

, π[U](s)
)

is a convexity triple.

� If π[U](smj+1
+) = π[U](s) then it follows by Def. 3.6 that ymj+1

=
xmj+1+1. Since xmj+1

= ymj+1
, we deduce that

(

ymj
, xmj+1

, xmj+1+1

)

.
is a convexity triple.

� If π[U](smj+1+) 6= π[U](s) then we can use Lemma 3.2 to deduce that
π[U](s) = π[U](s+) and that

(

π[U](smj+1+), π[U](s), π[U](smj+1+1)
)

=
(

xmj+1
, π[U](s), xmj+1+1

)

is a convexity triple. Applying Lemma 3.1 for
(

ymj
, xmj+1

, π[U](s)
)

and
(

xmj+1
, π[U](s), xmj+1+1

)

yields that
(

ymj
, xmj+1

, xmj+1+1

)

is a con-
vexity triple.

Using that ymj
= ymj+rj = ymj+1−1, we deduce that

(

ymj+1−1, xmj+1
, xmj+1+1

)

is a convexity triple. Recalling now 81, it follows that

((

xmj+1−1, ymj+1−1

)

,
(

xmj+1
, ymj+1

)

,
(

xmj+1+1, ymj+1+1

))
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is a CTC triple. This is no NCTC triple since it is a triple in the string ρ[π[[U ]]
being a NCTC triple free string. Combining these properties of the triple, we
deduce by Def. 2.5 that

xmj+1−1 6= ymj+1−1 = xmj+1
= ymj+1

6= xmj+1+1. (82)

� If rmj
= 0 then it follows that mj+1 = mj + 1 such that 82 yields that

ymj
= xmj+1 = ymj+1. Hence, we see that 78 yields that rmj

= 1 which
is a contradiction to the considered situation.

� If rmj
= 1 then it follows that mj+1 = mj + 2 and that ymj

= xmj+1 =
ymj+1. Hence, we have a contradiction to 82.

Since a contradiction could be derived in both possible situations, it follows that
the considered assertion is wrong. Therefore, is proved that for all s ∈ [0, T ]
with s > tj+1 = smj+1

it holds that π[U] is not monotaffine and continuous on
]tj, s] =]smj

, s].

Combining both results, we see that 8 holds for u := π[U] and i := j.

Thus, it is derived that 0 = t0 < · · · < tn = T is the standard lo. rc. monotaffinicity
continuity decomposition of [0, T ] for π[U].

II) Let r0, . . . , rn−1, m0, . . . ,mn−1 and V0, . . . , Vmn−1
be as in Def. 2.13 when ρ[π[U]] is

determined. Hence, we deduce by Def. 3.6, that ri = rm′
i

and mi = m′
i for all i ∈

{0, . . . , n− 1} and that Vj = (xj, yj) for all i = 1, . . . mn−1. Using 12, we see that

ρ[π[U]](T ) =
(

V0, . . . , Vmn−1
, (u(T ), u(T ))

)

. (83)

Using that u(T ) = xm = ym and mn−1 = m− 1, we conclude that ρ[π[U]](T ) = U.

3.2 Proof of Assertion a) in Thm. 1

Let F : S2
F (X) → Y be some function that is invariant with respect to stretching the first

component. Let GF : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y ) be defined as in Def. 2.15, i.e.
it holds GF [u](t) = F (ρ[u](t)) for all t ∈ [0, T ] and for all u ∈ Mappw,∗ ([0, T ], X).

� For all u, v ∈ Mappw,∗ ([0, T ], X) and t ∈ [0, T ] such that u(τ) = v(τ) for all τ ∈
[0, t], we observe by recalling Lemma 3.4 that ρ[u](t) = ρ[v](t) and therefore

GF [u](t) = F (ρ[u](t)) = F (ρ[v](t)) = GF [v](t). (84)

Hence, it is proved that GF is causal.

� Let u ∈ Mappw,∗ ([0, T ], X) and t ∈ [0, T ] be given. Let α : [0, T ] → [0, T ] be an
admissible time transformation of [0, T ].
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� If ρ[u](α(t)) = ρ[u ◦ α](t) then it follows that

GF [u](α(t)) = F (ρ[u](α(t))) = F (ρ[u ◦ α](t)) = GF [u ◦ α](t). (85)

� If ρ[u](α(t)) 6= ρ[u ◦ α](t) then we conclude by recalling Lemma 3.5 that ρ[u ◦
α](t) is generated from ρ[u](α(t)) by stretching the first component. Since F is
invariant with respect to stretching the first component, it follows also that 85 holds.

Since 85 is proved for general u, α, and t, it is proved that GF is rate-independent.

Using that GF is causal and rate-independent, we deduce that GG is an hysteresis-operator, i.e.
Ass. a) in Thm. 1 is proved.

3.3 Proof of Assertion b) in Thm. 1

Let H : Mappw,∗ ([0, T ], X) → Map ([0, T ], Y ) be some hysteresis operator.

Let GH : S2
F (X) → Y be defined as in Def. 2.15.

� To prove that GH is invariant with respect to stretching the first component, let U :=
((x0, y0), . . . , (xn, yn)) ∈ S2

F (X)with be given such thatV :=
(

(x0, x0), (x0, y0), . . . , (xn, yn)
)

∈
S2
F (X). The functionα : [0, T ] → [0, T ] that is constant equal to 0 on 1

n
T and increases

linearly from 0 to T on
[

1
n
T, T

]

is an admissible time transformation of [0, T ]. Recalling
Def. 3.6, one observes that π[V] = π[U] ◦ α. Since H is rate-independent. we can
deduce that

GH[V] = H[π[V]](T ) = H[π[U] ◦ α](T ) = H[π[U]](α(T )) = H[π[U]](T ) = GH[U].
(86)

Hence, it is shown that GH is invariant with respect to stretching the first component.

� Now, we consider u ∈ Mappw,∗ ([0, T ], X) and prove that H[u](T ) = GGH
[u](T ).

Thanks to Lemma 3.7 there exists an admissible time-transformation αu : [0, T ] →
[0, T ] such that u = π [ρ[u](T )] ◦ αu.

Using that H is rate-independent, we deduce that

H[u](T ) = H [π [ρ[u](T )] ◦ αv] (T ) = H [π [ρ[u](T )]] (αu(T ))

= H [π [ρ[u](T )]] (T ) = GH (ρ[u](T )) = GGH
[u](T ). (87)

� Now, let u ∈ Mappw,∗ ([0, T ], X) and t ∈ [0, T [ be arbitrary. Let vt : [0, T ] → X be
defined by

vt(t) :=

{

u(t), if t ≤ s

u(s), if t > s
(88)

Since H and GGH
are causal, it holds that H[u](t) = H[vt](t) and GGH

[u](t) =
GGH

[vt](t). Moreover, taking into account that H and GGH
are rate-independent and
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that vt is constant on [t, T ], we deduce that H[vt] and GGH
[vt] are also constant on

[t, T ], and therefore H[u](t) = H[vt](T ) and GGH
[u](t) = GGH

[vt](T ). Applying now
87 with u replaced by vt, we observe that

H[u](t) = H[vt](T ) = GGH
[vt](T ) = GGH

[u](t).

� Let F : S2
F (X) → Y be some function that is invariant with respect to stretching the

first component such that GF = H. Then it holds by Lem. 3.8 for all U ∈ S2
F (X) that

F (U) = F (ρ[π[U]](T )) = GF [π[U]](T ) = H[π[U]](T )

=GGH
[π[U]](T ) = GH (ρ[π[U]](T )) = GH(U). (89)

Hence, it is shown that GH = F .

Collecting all results, we see that GH is the unique function F : S2
F (X) → Y being invariant

with respect to stretching the first component such that GF = H.

4 Example: Generalized vectorial relay

4.1 Definition of the generalized vectorial relay

Many vectorial relays considered in the literature (see, e.g. [4, 5, 17, 21]) can be rewritten as
a hysteresis operator of the following form (see [10, 12]), acting on the set C ([0, T ];X) of all
continuous function from [0, T ] to X .

Let a nonempty, open subset Ω of X , a function ζ : X \ Ω → Y and η0 ∈ Y be given.

Definition 4.1. The generalized vectorial relay operator R is defined by

R : C ([0, T ];X) → Map ([0, T ], Y ) , (90)

R[u](t) :=



















ζ(u(t)), if u(t) 6∈ Ω,

η0, if u([0, t]) ⊂ Ω,

ζ

(

u

(

max
{

s ∈ [0, t]
∣

∣ u(s) 6∈ Ω
}

))

, otherwise,

(91)

for all u ∈ C ([0, T ];X).

4.2 The “Definition reuse” extension of the relay and the gene rated func-
tion

The generalized vectorial relay operator can be extended to a hysteresis operator Rreuse on the
space Cl([0, T ];X) of all left-continuous function from [0, T ] to X by requesting that 91 holds
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with R replaced by Rreuse for all u ∈ Cl([0, T ];X). For the function GR1
generated by Rreuse

is holds for all
(

(x0, y0), . . . , (xn, yn)
)

∈ S2
F (X) that

GRreuse

(

(x0, y0), . . . , (xn, yn)
)

=







































ζ(xn), if xn 6∈ Ω,

ζ(x0), if x0 6∈ Ω and conv>0(yi, xi+1) ⊆ Ω, ∀ i ∈ {0, . . . , n− 1},

η0, if x0 ∈ Ω and conv>0(yi, xi+1) ⊆ Ω, ∀ i ∈ {0, . . . , n− 1},

ζ ((1− s)yk + sxk+1) with

s ∈]0, 1] maximal such that (1− s)yk + sxk+1 ∈ ∂Ω,

k := max
{

i ∈ {0, . . . , n− 1}
∣

∣ conv>0(yi, xi+1) \ Ω 6= ∅
}

, otherwise,

(92)

with

conv>0(v, w) :=
{

(1−λ)v+λw
∣

∣λ ∈]0, 1]
}

=

{

conv(v, w) \ {v}, if v 6= w,

{v}, if v = w,
(93)

for all v, w ∈ X ,

4.3 The “arclen” extension of the relay and the generated fun ction

If X is a Hilbert-space, we can extend R the “arclen” extension Rarclen introduced in [19], see
Rem. 2.19.

Hence, starting from 17, we deduce for all
(

(x0, y0), . . . , (xn, yn)
)

∈ S2
F (X) that:

GRarclen

(

(x0, y0), . . . , (xn, yn)
)

=















































































ζ(xn), if xn 6∈ Ω,

η0, if (conv(xi, yi) ∪ conv(yi, xi+1)) ⊆ Ω, ∀ i ∈ {0, . . . , n− 1},






































ζ ((1− s)yk + sxk+1) with

s ∈]0, 1] maximal such that (1− s)yk + sxk+1 ∈ ∂Ω,

if conv(yk, xk+1) \ Ω 6= ∅,

ζ ((1− s)xk + syk) with

s ∈]0, 1] maximal such that (1− s)xk + syk ∈ ∂Ω,

if conv(yk, xk+1) \ Ω = ∅,

with k := max
{

i ∈ {0, . . . , n− 1}
∣

∣ (conv(xi, yi) ∪ conv(yi, xi+1)) \ Ω 6= ∅
}

,

otherwise.

(94)
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