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Abstract 

A new variable bandwidth selector for kernel estimation is proposed. The 
application of this bandwidth selector leads to kernel estimates that achieve 
optimal rates of convergence over Besov classes. This implies that the procedure 
adapts to spatially inhomogeneous smoothness. In particular, the estimates share 
optimality properties with wavelet estimates based on thresholding of empirical 
wavelet coefficients. 

1 Introduction 
In nonparametric curve estimation the statistical analysis may focus on the inference of 
the qualitative structure of the analysed curve. Often, interesting features of the curve 
are connected with spatially inhomogeneous smoothness. In this case, curve estimates 
that are spatially adaptive are appropriate. 

A variety of such procedures have been proposed in the literature. In Breiman, 
Friedman, Olshen and Stone (1983) piecewise constant least squares estimates are con-
sidered with a data adaptive choice of the pieces (CART). More generally, Friedman 
(1991) uses variable knot splines (MARS). Knot points are added, removed and allo-
cated recursively using cross validation techniques. These methods have shown good 
performance in simulations and real data examples. However, no asymptotic theory is 
available. 

Mammen and van de Geer (1993) discuss penalized least squares curve estimation 
for spatial inhomogeneous curves. They propose penality terms which allow more spa-
tial inhomogeneity than the usual L2-norms of derivatives of the curve. The estimates 
turn out to be variable knot splines (see also Mammen (1991)). Results on rates of 
converg~nce and a pointwise asymptotic distribution theory are given. 

Miiller and Stadtmiiller (1987), Staniswalis (1989), and Brockmann, Gasser and 
Hermann (1993) propose kernel estimation with locally variable bandwidth selectors. 
The calculation of local bandwidths is based on pilot estimation of local smoothness 
characteristics. An asymptotic analysis is available here, however, only under addi-
tional smoothness conditions on the curve (for a discussion of this point see also Gijbels 
and Mammen, 1994). Spatially adaptive local polynomial regression estimates were in-
troduced and discussed in Fan and Gijbels (1993). In a series of papers D. Donoho, 
I. Johnstone, G. Kerkyacharian and D. Picard have shown that wavelet analysis offers 
a powerful technology for spatial adaptive curve estimation. Curve estimates based on 
thresholding empirical wavelet coefficients are nearly minimal for a wide range of loss 
functions and smoothness classes (see Donoho et al., 1993, Kerkyacharian and Picard, 
1993, Delyon and Juditsky, 1994). Up to a log factor the estimates achieve the same 
risk as a variable knot spline with optimally placed (deterministic) knot points (ideal 
spatial adaptation). This holds for every function (see Donoho and Johnstone, 1993). 
[For a comparison of wavelet estimates and local polynomial regression estimates with 
variable bandwidth selector see Fan et al., 1993]. 

In this paper, a new variable bandwidth kernel estimate is proposed. The band-
width selector is based on a modification of a procedure for adaptive estimation due 
to Lepskii (1990, 1991, 1992). We show that this estimate is a reasonable alternative 
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to wavelet estimates. It shares some decision theoretical optimality properties with 
wavelets. Furthermore, it possesses the simple mathematical interpretation due to ker-
nel estimates. In particular, we prove near minimaxity and ideal spatial adaptation of 
this estimate. 

Our model and our procedure will be described in the next section. Section 3 
contains our results. The proofs are postponed to Section 4. 

2 A data adaptive local bandwidth selector 
In this paper we consider the white noise model 

dY(t) = f(t)dt + o-dW(t) (0 St S 1), (2.1) 

where W(t) (0 S t S 1) is a Brownian motion and f is an unknown (regression) 
function. Performance of estimates of f is studied for o- -+ 0. Model (2.1) gives an 
asymptotic description for density estimation with i.i.d. observations and for nonpara-
metric regression with i.i.d. Gaussian errors and sample size of order 0--2 [see Brown 
and Low (1990), Low (1992), Nussbaum (1993)]. · 

We will study kernel estimates jh with kernel K and bandwidth h: 

(2.2) 

where Kh(x) = h-1 K(x/h). We ~rite also fh(x) = fKh(x - t)f(t)dt = Efh(x). We 
assume that' the kernel K has compact support (say, [-1, l]), that it is continuous, 
and that J K(u)du = 1 and JuiK(u)du = 0 (for 1 Si S k) with k specified below. 
For t < h and t > 1 - h the kernel Kh is replaced by boundary kernels Kh (kernels 
with support [-t, h] and [-h, 1 - t], respectively). We assume further that all Kh 
are uniformly bounded, fulfil J Kh( u )du = 0, and have k vanishing moments. We set 
d'k = sup{f L2(u)du: L =Kor L = J{t for at.with 0St<hor1-h < t S l}. For 
simplicity, our notation will not take into account the modifications at the boundary, 
in particular we will skip the superscript t in Kh. 

With fixed a> 1 and 0 < h; S 1 we define 

" " A (J"R* ha(t) = sup{h E Ha : lfh(t) - f 77 (t)1 S D- 1 + ln ~ for all 'T/ < h, 'T/ E Ha}, v0 77 

where Ha is the grid 

vVe write La for the number #Ha of elements of Ha. The constant D will be chosen 
below. 

We propose the estimate }(t) = f-ti(t)(t). A modification of J based on piecewise 
cm::stant choices of h is discussed in Lepskii and Spokoiny (1994). The construction 
of h(t) is a modification of a general approach for adaptation given in Lepskii (1991). 
The bandwidth h(t) has a nice statistical interpretation. It is the largest bandwidth h 
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such that A ( t) does not differ "significantly" from kernel estimates with smaller band-
width: One chooses a resolution level such that no significant features are visible on 
a finer resolution level. This approach has a principal difference to wavelet estimation 
techniques based on thresholding of empicial wavelet coefficients. Empirical wavelet 
coefficients are related to the values 

A kernel estimate analogue of the wavelet threshold estimates would look like 

with appropriate threshold values Cj,O'· In particular, in contrast to J, this method 
is based on comparison of neighbored resolution levels. It may find that for arbitrary 
many resolution levels "significant" differences are present. 

We will study the rate of convergence of J over balls B;,q ( M) in Besov spaces 

B;,q (0 < M, 1 ::; p, q ::; +oo, s > 0). 

The following characterisation of a Besov ball will become helpful in our calculations. 

(2.3) 

where 

(2.4) 

1 
In (2.4) llfllp is the Lp-norm llfll~ = J IJIP. Furthermore, for the definition of the local 

0 
oscillation osc f ( x, h) of the function f an arbitrary r E IN with r ~ s and a real u 
have to be chosen. The constant u has to fulfill 

1 ::; u ::; +oo 
1 ::; u < +oo 

1 ::; u < p( 1 - sp t 1 

if sp > 1, 
if sp = 1, 
if sp < 1. 

With this choice of r and u the local oscillation osc J( x, h) off is defined as 

l inf sup lf(y) - P(y)I, 
ly-xl::Sh 

oscf(x,h)= inr[ 2~ f lf(y)-P(yWdyJ1'" 
ly-xl::Sh 

if u = +oo, 

if u < +oo. 

The infimum in (2.5) is taken over all polynomials of order r. 
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A proof that II llB~.q is a norm of B;,q can be found in Triebel (1992) (Section 3.5.1). 
Other equivalent norms are discussed there, too. 

We will study maximal Lp' risks of J over B;,q balls [We make the additional 
restriction that ·the functions are uniformly bounded (say by L). For sp > 1 this holds 
automatically]: 

Rcr(f, B;,q,p') = s;ip E1llf - !II~;. 
fEBp,q(M), 

(2.6) 
l!l:$L 

For simplicity, our notation does not always indicate every dependence. For instartce, 
remember that J depends on a and the choice of D, a and h~. Furthermore, it depends 
on the kernel I< (and its number k of vanishing moments). 

3 Near minimaxity and ideal spatial adaptation 
In this section we show that our curve estimate achieves optimal rates of convergence 
over Besov classes. For.the parameters of the Besov classes.we make the usual assump-
tions: 

1 < p,q ~ +oo, 
1 < p' < +oo, 
s > (~ - ~,t· 

For the case that s ~ ~ together with q < +oo hold, we need the additional condition 
that the kernel I< can be decomposed as 

K(u) = 2M(u) - ~M(~), 

where M is a bounded function with compact support (say, [-1/2, +1/2]) and with 
JM( u )du = 1. Without any indication in the notation, modifications of M are used 
again at the boundary. Note that JI<( u )du = 1 and J uI<( u )du = 0. 

We are now ready to state our main result. 

Theorem 1 For the choices h~ = a2s;1, D > 2 + Jsd}(p' + 2), and fork > [s] the 
risks of J satisfy 

const.ap'r if ~ sp > 2 ' 

p1r 1 4 
const. (a~ [ln 1/ a] (P'-2)(2s+1) if sp = p'~P (3.1) 

~p'r' 
const. ( ay w l./ u) if ~ sp < 2 • 

if a is small enough. Here 
2s 

r=--
2s + l' 
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2(s - l + l) r' - P P' 
- 2(s - l) + 1 

p 

and const. is some absolute constant depending on p' only. 

The exponent of a in (3.1) gives the optimal rate. For sp =J=. P';p this holds also 
for the logarithmic factor. Small choices of the class parameter p correspond to Besov 
classes that contain functions with spatially inhomogeneous smoothness. Because our 
estimates achieve optimal rates in all Besov classes this shows that the estimates adapt 
well to spatially inhomogeneous smoothness. For a discussion of minimax rates in 
Besov spaces we refer to Donoho et al. ( 1993) and Del yon and Judi tsky ( 1994). 

For the interpretation of the exponents in (3.1) let us shortly remark that for the 
case of sp ::=; p';p we have p' > 2 and a positive denominator 2(s - ~) + 1 > 0 in 
the exponent. For this to become obvious, note ~hat in this case we have f' > p, and 
applying our conditions> (~-J!;)+ we obtain: !-12: sp+~-l > (~-J!;)P+~-l = 

-ffe ( ~ - 1). Because, of p' > p this implies p' > 2 and sp - 1 + ~ > 0. 
The procedure J requires explicit knowledge of s. The next theorem helps to 

understand the performance of J in case of unknown degree s of smoothness. 

' 2 
Theorem 2 For D and k as in Theorem 1 and for h; with a 2 s+1 ::=; h; ::=; 1 one gets 

, for a small enough 

const. (a jln( 1 /a)) ~'r if 
I 

sp>T 

Ro-(}, B;,q,p')= canst. (aFrrlMp'r' [lnl/a]4(P'- 2)-
1

( 2s+l)-1 if sp - p'-p 
- 2 (3.2) 

( 
~p'r' 

const. ay ln 1/ a) if i:1 sp < 2 • 

Here r, r' are the same as in Theorem 1. 

Using h; = 1 gives the optimal rate for sp < p';p and an additional logarithmic 
factor for sp > p';p. The choice h; = a 2!(2s'+l) leads to an optimal estimation for 
s = s' = s - l + ~. The additional logarithmic factor appears only for s < s' (and p p 

i::1) sp > ; . 
It is known from Lepskii (1990) and Brown and Low (1992) that in the pointwise 

estimation one has to pay an additional logarithmic factor for not knowings. However, 
here we consider global and not pointwise risks. We conjecture that the additional 
logarithmic factor in (3.2) can be removed when a more sophisticated adaptive curve 
estimate is used. 

Now we turn to state a property of J which was been called ideal spatial adaptation 
in Donoho and Johnstone (1993). For quadratic loss we would like to compare the risk 
of J with inf Ellfh(·) - fll~, where the infimum runs over all (deterministic) variable 
bandwidth h( · ). The minimizing h( ·) was called an oracle in Donoho and Johnstone 
(1993). Note that Ellfh(·) - fll~ = f~(fh(t)(t) - f(t)) 2dt + f~ Var Jh(t)(t)dt. Here it 
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suffices to consider the pointwise risk E(fh(t)(t) - f(t)) 2 • We are only able to compare 
the risk of }(t) with ropt(t) = inf [ sup (!77 (t) - f(t)) 2 + Var (}h(t))]. 

o::;h9 O<TJ<h 
'vVe denote the minimizing bandwidth by hopt· 

Theorem 3 Choose h; = 1 and D > 0. For all functions f and all variances a 2 small 
enough it holds fort E (0, 1) with uniform constants L0 , Li: 

A 1 
E(f(t) - f(t)) 2 

:::; (Lo+ Li ln(-h ))ropt(t). 
opt 

There exist versions of Theorem 3 for nonquadratic losses. 

4 Proofs 
Proof of Theorem 1. For f E B;,q(M) and fort E [O, 1] we define . 

(J' ~ h-;;(t,J) = sup{h E Hu: lf77 (t)-f(t)1:::; Y17Yl +ln~ for all ry:::; h} ( 4.1) 

and 
hcr(t, J) =a h;(t, !). 

For any f E B;,q ( M) we consider 

Rt(!)= f E1lf(t)- J(t)l"'t(Au(t,f))dt (4.2) 

and 
R-;(f) = f E1lf(t) - f(t)IP't(A~(t,f))dt, (4.3) 

where Au(t, !) denotes the random event Au(t, !) = {h(t) ~ h;(t, f)} and A~(t, !) its 
complement. 

Clearly, we obtain 

Rcr(}, B;,q,p'):::; sup R°t(f) + sup R-;;(f). 
j EB~.q(M) fEB~,q(M) 

( 4.4) 

We start by proving 
p' 

sup R-;;(f) :::; const [{hia ] . 
fEBs (M) h* p,q (1 

(4.5) 

Proof of ( 4.5). We fix now an arbitrary function f E B;,q(M) and write 

H; = {h E Hcr: h < h-;;(t, f)}. 

For any hi, h2 E H; with h2 < hi we put 

6 



With this notation we get 

A~(t, J) = LJ {h(t) = h} = LJ LJ Ba(t,2h,77). ( 4.6) 

Using the Cauchy-Schwarz inequality we obtain 

where 
ra(h,t) = {E1lfh(t)- J(t)l 2P'} 1/ 2 . 

Forgetting the modifications of I< at the boundary we can write 

" O'dK fh(t) = fh(t) + y'h, ~a(t, h), (4.8) 

where dk = J!": K 2 
( u )du and 

~u(t,h) = ! [ah-1 l f{ C ~ u) dW(u)]. 

Note that for h ::; t ::; 1 - h the random variable ~u·(t, h) is standard Gaussian. [For 
t < h and t '> 1 - h it is a mean zero Gaussian variable with variance ::; l]. Because 
of (4.1) and (4.2) we have for h < h;;(t, !), 

fh(t) - f(t) :S ~J1 +In~. 
This implies 

Thus we obtain 

ru(h, t) :S const. ( :/J;)i +In h;) v'. ( 4.9) 

Combining (4.7) and (4.9) gives 

R;(f):::; const. fo1 \ L ( ~vl+ln h; )p' ( L P1(Bu(t,2h,77)))

112

) dt. (4.10) 
o hEH; y h ri~h-

riEHu 

Using (4.8) we can bound 
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For 17 ~ h < ha(t, !) we have 

This gives 

and 

2a ~ lhh(t) - f11(t)I::; lhh(t) - f(t)I + lf11(t) - f(t)I ::; y'rjv 1 + ln -;J-· 

B,,(t, 2h, rJ) C { e,,(t, 2h)::::: ~dx 2 
J1 +In h;} 

U { e,,(t, rJ) ::::: ~dx 2 vl+ In hn 
(D-l)2 

( 
17 ) 8d}( P1(Ba(t,2h,17)) ~ const. h; . 

Inserting this in ( 4.10) and using (~~k)
2 2: p' + 2 and 17 < h we have 

, [ l 1/2 1+1 ~ p p'+2 

R;(f) ~ const. L [o-J Vh n h] · L (ii*) 
heH;; h TJ~h a 

TJEH;; 

But 

L (h17*) v'+
2 

:::; const. (:.) p'+
2 

T)~h (1 (1 

TJEH;; 

and 

R;(f) < const. 
( 

(J ) p' { ( h )-p' 1
2 

( h;) p' 1
2 

( h ) p' /
2+1} 

ff;:* . I: h * 1 + ln h . h * V 1(,a hEH;; a a 

::; const. (v;;J' 
where const. is some absolute constant depending on p' only. Thus the proof of ( 4.5) 
is complete. It remains to show 

Rt(!)~ const. ( av1n1Y'r' . [ln 1/ a]4(p'-2)-1(2s+i)-1 

1 
const. ap'r 

( 
~p'r' 

const. ay 111 i; u) 

Proof of (4.11). Note that, by means of (4.8) we obtain 

if sp > p';p 
if sp = p';P, 
'f ~ 1 sp < 2 • 

( 4.11) 

H};(f) :::; fo1 E1{ [1f(t) - lh;(t,J)(t)I + lfh;(t,J)(t) - f(t)I + adx)h~(~;x f)r 
I( A,, ( t, f)) }dt. ( 4.12) 
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By the definition of k(t), we have on A(J'(t, !) 

(4.13) 

Moreover, by the definition of h(J'(t,f) (see (4.1), (4.2)) we conclude for h-;(t,f) < 
h(J'(t, !) 

a h* 
lfh;(t,J)(t) - f(t)I :S J _ 1 +In h-(; f). 

h(J' (t, !) (J' ' 
( 4:14) 

By inserting (4.13) and (4.14) in (4.12) and by using that ~(J'(t,h-;(t,f)) has bounded 
moments we arrive at 

( 4.15) 

where 

,P"(h) = ~J1 +In~. 
The right-hand side of ( 4.15) can be written as 

== .const. L j l~(J'(h)IP'dt 
hEHush 

where Sh == {t: h(J'(t, !) = h}. On Shit holds that 

( 4.16) 

where b.h(t) =sup IJ11 (t) - f(t)j. 
11<h 

This follows fro~ the definition (4.1) of h(J'(t, !) and the monotonicity of D.h(t) and 
~(J'(h) in h. 

We define now a function p1(h). For sp > p'~p we put p1(h) = min{p,p'}. For the 
case of sp ~ p' ;P we put 

P1(h) = { ~ 
p' 

if h > h1(a) 
if h1(a) ~ h ~ h2(a) 
if h < h2(a), 

2/(2s+l) ( 1/(s-l+t) , 
where h1(a) = (aJin(l/a)) and h2(a) = ajln(l/a)) P • For sp ~ T 
we have that s - ~ + ~ > 0 [see the remark after Theorem l]. Therefore, the definition 
of h2(a) makes sense. Using (4.16) we obtain 

R't(f) < const. L l~cr(h)jP'-vi(h) J ID.h(t)lpi(h)dt 
hEHu 

= const. L l~cr(h)lp'-pi(h)llD.hll:~~~~· (4.17) 
hEHu 
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\Ve will use now that 
sup sup h-sll~hllP < +oo 

J o:s;h~I 
(4.18) 

p' - p 
sup sup h-s' ll~hllp' < +oo if sp:::; -

2
-. ( 4.19) 

f 0:5h9 
Here the supremum runs over all functions f in the Besov ball B;q(M) [which are in 
supnorm uniformly bounded by L]. The quantity s' is defined as s' = s - l + 1,. p p 

Before we come to the proof of ( 4.18) and ( 4.19) let us show that these both 
statements imply Theorem 1. For sp > T and p 2:: p' we obtain from ( 4.17) and 
(4.18) 

( 4.20) 
hEHu 

The right-hand side of ( 4.20) is a geometric series. It can be bounded by const. 
I I 2s 

(h; )sp = const. aP 2s+1. This shows the statement of Theorem 1 for this case. 
If sp > p'? but p < p', then again by ( 4.17) and ( 4.18) we get 

R't(f):::; const. :E hsp~u(h)P'-p:::; (h;)8Pl?./J11 (h;)lp'-p L (:.)sp (~a((~~)p'-p 
hEHu hEHu <T lf/<T <T 

By the definitions of h; and ?.jJ11 (h) one gets lh;lspl~11 (h;)IP'-p = aP 2 ;; 1 • It remains 
to note that for sp - p'? > 0 

(
. h )sp (?./Ju(h)). p'-p ( h )sp~~ ( h;) ~ L - -- = L - 1 + ln - < const. 

hEHu h; ~a(h; hEHu h; h -

For the case of sp:::; p';p we split the summation on the right-hand side of ( 4.17) into 
three sums and apply ( 4.18) and ( 4.19). We obtain 

R't(f) :::; const. [R1 + R2 + R3] 

where 

R1 - :E ll~h11:~~~~ l?./Ja(h)lp'-pi(h) 
h>h1 (u) hEHu 
:E l?./Ja(h) Ip', 

h~hi(u) hEHu 
R2 - :E ll~h11:~~~~ 17./Ja(h)lp'-pi(h) 

h1 (u)~h~h2(u) hEHu 
:E hsp l~a( h) lp'-p' 

hi (u)~h~h2(u) hEHu 
R3 :E II ~h 11:~ ~~~ l?./Ja(h) lp'-p1 (h) 

h<h2(u) hEHu 
= :E hs'p'. 

h<h2(u) hEHu 
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Comparing 'l/Ja for two neighboured elements in Ha we obtain 

'l/J a ( h) 1 ( ln a ) 
'l/J a ( h /a) = Va 1 + 1 + ln( h; / h) · 

For h E Ha this is bounded away from 0 and 1. This implies 

Ri < const. l'l/Ja(h1(a))IP' 

< const. (aJ!n(l/ a)Y' Jh 1 (a)J-p'/2 

const. (aJ!n(l/a)Y'r. 

For sp:::; p';p this bound is al~ays of smaller order than the right-hand side of (3.1) 
because of r' :::; r for sp :::; p';p. 

The sum R3 is a geometric series and can be bounded by 

s-l+.L 

s' / [ /: l 2P' 2(s~l)~l [ /: l p'r' const. [h2(a)] P = const. aln(l/a) P = const. aln(l/a) , 

which, again, is of the same order than the right-hand side of (3.1) (for sp:::; p';P). 
It remains to bound R2. We obtain 

For the case of sp - p'? < 0 this gives 

R2 ::; const. (aJ!n(l/a)y--p Jh2 (a)Jsp-!ir1 
s-1.+...L 

= const. (aJ!n(l/a))2p' 2c'':;>~1 • 

For the case of sp - p';p = 0 we obtain r'p' = p' - p and 

( /: )p'-p hi(a) R2 ::; const. a ln(l/a) In h
2
(a). 

The last two estimates give (3.1) for sp:::; p';P. 
We come now to the proofs of ( 4.18) and ( 4.19). 

Proof of ( 4.18). For sp > 1 the definition (2.5) of local oscillations with u = +co 
implies that for 0 :::; t :::; 1 and for each s > 0 there exists a polynomial Pt,h of degree 
k with 

sup lf(x) - Pt,h(x)I :::; osc f(t, h) + s. 
lx-tl~h 
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This implies 

sup lf(x) - f(t) - Pt,h(x) + Pt,h(t)I:::; 2osc f(t, h) + 2£. 
lx-tl~h 

Since K has k vanishing moments, we obtain 6..h(t) :::; const. osc f(t, h). This shows 
(4.18). 

For sp :::; 1 and q = +oo we apply the definition (2.5) of local oscillations with 
u = 1. Arguing similarly as above we obtain 

lfh(t) - fh/2(t)I:::; const. osc f(t, h). 

Because of llf77 - fllp -+ 0 (for 77 -+ 0) it holds that 

llfh - fllp:::; :L 1112-ih - !2-i- 1hllp· 
i~O 

Now h-,ellosc f(t, h)llp:::; const. provides 

llfh - fllp :::; h+,e L const. 2-i,6 :::; const. h,e. 
. i~O 

This shows ( 4.18). 
For sp :::; 1 and q < +oo we recall that K can be decomposed as 

Now 

1 ·X 
K(x) = 2M(x) - 2"M( 2" ). 

fh(x) - f(x) j M(t)[2f(x + ht) - f(x + 2ht) - f(x)]dt 

< const. j l2f(x +. ht) - J(x + 2ht) - f(x)jdt. 
ltl~l 

The equation ( 4.18) follows by application of Theorem 3.5.3 in Triebel (1992) and by 
using the embedding B;,q C B;,00 • 

Proof of ( 4.19). For p' 2:: p the Besov space B;:,q can be embedded into B;,q for all 
q 2:: 1 (see Triebel, 1992). This means that 

Note also that s'p' < 1, = 1, or > 1, if and only if sp < 1, = 1, and > 1, respectively. 
Thus, ( 4.19) can be shown by the same arguments as ( 4.18). 
Proof of Theorem 2. We proceed similarly as in the proof of Theorem 1. The term 

R;(!) can be bounded again by canst. ( kY'· This is sufficient. For sp::; (? also 
the term R"/; (!) can be treated as in the proof of Theorem 1. 
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For the case of sp > p'~p another definition of p1 (h) will be used for esti.mating 
Rt(!). The choice 

will do. 
Proof of Theorem 3. We fix t and write r = r(t), f = f(t), J = f (t), fh = fh(t). 
We define 

h,, sup{ h '.::'. 1 : If, - JI '.::'. ~Jl + ln(l/ h) for all 7) '.::'. h }, 

h; sup{h E H(j : h < h(j }. 

Note that the definition of h(j differs slightly from the definition (4.1) of h(j(t,f). We 
write 

r(j E1lf - fl 2 = r; + r;, where 

r(j E1lf - fl 2I(h < h;), 
rt E1lf - fl 2 I(h ~ h;). 

Using the arguments given in the proof of Theorem 1 we obtain 

r; :=::; const .. a~ 

and 
a2 

r; :=::; const. h(j (1 + ln(l/h(j)). 

Combining of these inequalities provides 

a2 
r <7 :::; const. h(j (1 + ln(l/ h(j) ). ( 4.21) 

We put now 

and 

Then 
ropt = ropt(i) = inf r(l)(h) + r~2)(h). 

O~h~l 

Suppose that the infimum is attained at hopt· For h(j we get 

( 4.22) 

where Co= f I<2(u)du. 

13 



vVe treat now the cases of hopt 2:: ho and hopt < ho separately. Note that r(l) ( h) is 
monotone increasing in h and that rr2) ( h) is monotone decreasing in h. Suppose first 
that hopt 2:: ho. Applying ( 4.22) gives 

2 (l)(h ) (l)(h ) 
~. _ (2)(h )- rer er < rer opt < I'opt Co-rer er - · her co(l+ ln(l/her))- co(l + ln(l/her)) - co(l + ln(l/her)) 

( 4.23) 

For the case that hopt :::; ho we have 

(}'2 

her Co :S I'opt· ( 4.24) 

The formulas (4.21), (4.23), and (4.24) give 

rer :S const. ropt(l + ln(l/hopt)). 

This is the statement of Theorem 3. 
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