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Abstract

We consider a one-dimensional array of phase oscillators with non-local coupling and a

Lorenztian distribution of natural frequencies. The primary objects of interest are partially

coherent states that are uniformly “twisted” in space. To analyze these we take the contin-

uum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies and

study the resulting spatio-temporal system on an unbounded domain. We show that these

twisted states and their stability can be calculated explicitly. We find that stable twisted

states with different wave numbers appear for increasing coupling strength in the well-

known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement

with results of the analysis of the infinite system.

One of the simplest solutions occurring in an array of identical phase oscillators with

nonlocal coupling is the uniformly twisted state, in which phase increases linearly with

distance along the array. The existence and stability of such states was first analyzed in

2006 [27]. Here we consider similar solutions that occur in networks of nonidentical phase

oscillators, each having a different intrinsic frequency. These solutions are described by

a spatially-dependent complex order parameter, and the argument of this is identified

with the phase of a partially coherent twisted state. We derive an equation governing the

evolution of this order parameter in the continuum limit and show that it can be reduced

to a simpler equation using the Ott/Antonsen ansatz. Partially coherent twisted state are

described exactly, and their stability calculated analytically. We find analogies between

our system and PDEs which undergo the Eckhaus instability, and verify our results using

simulations of finite networks of oscillators.

1 Introduction

Coupled oscillator networks have been studied for many years as models of a variety of natural

and man-made phenomena [20]. One useful simplification in their study, valid when oscillators

are weakly coupled, is to describe the state of each oscillator by a single angular variable, its

phase. Oscillators then interact through sinusoidal functions of their phase differences [24, 2, 3,

19]. Over the last decade a number of researchers have considered spatially-extended networks

of phase oscillators, coupled nonlocally [9, 14, 7, 23, 10, 22]. Several interesting phenomena

have been studied in such systems, including “chimera” states, which show regions of synchrony

alternating with asynchronous regions [1, 11, 8], and uniformly twisted states, in which the phase

difference between neighboring (identical) oscillators is fixed [27, 6, 21].

All of these studies of twisted waves have considered identical oscillators, coupled in a highly-

symmetric fashion (although see [12] for a network with partially-random coupling). However, in

1



reality no system is ever perfect and it is of interest to consider the effects of heterogeneity on

the types of dynamics seen in highly-symmetric systems. In this paper we analyse the effects

of heterogeneity (in the form of non-identical intrinsic frequencies) on the existence and stability

of twisted waves seen in arrays of non-locally coupled phase oscillators. Because of the hetero-

geneity, there appear twisted states that are only partially coherent. However, their twist can be

no longer defined by the equal phase difference between neighboring oscillators. Instead, we

use the twist of a complex local mean field, given at each point in the array via a sum or integral

over oscillator phases in a certain neighborhood.

Our basic model is an array of non-locally coupled phase oscillators

dθk

dt
= ωk −

K

2R + 1

R
∑

j=−R

sin(θk − θk+j + α), k = . . . ,−1, 0, 1, . . . . (1)

with phases θk ∈ [0, 2π). The parameters K ∈ R and α ∈ (−π/2, π/2) are coupling strength

and phase lag, respectively. The natural frequencies ωk are randomly and independently drawn

from the Lorentzian distribution

g(ω) :=
1

π

1

1 + ω2 (2)

and R ∈ Z+ is the number of neighboring oscillators, on each side, to which each oscillator

is coupled. Without loss of generality, we have chosen the frequency distribution to have zero

mean and unit width, which can be achieved by moving to a corotating frame and rescaling

the coupling strength K. For numerical simulations, we will later take a finite number k =
1 . . . , N and introduce periodic boundary conditions. But for theoretical considerations, it is

more convenient to choose an infinite chain with k ∈ Z.

The remainder of this paper is organized as follows. In Sec. 2 we derive a continuum limit of our

model, provide explicit expressions for the twisted states, and analyze their stability. In Sec. 3

we compare simulations of the finite system (1) with our results for the continuum limit. We

conclude in Sec. 4 with a summary and discussion of generalizations of our results.

2 Continuum limit analysis

As a crucial tool for our analysis we use the ansatz of Ott and Antonsen [17, 18]. In its general

form, it is applicable to the continuum limit of networks of nonidentical, sinusoidally-coupled

phase oscillators and allows one to study most of the interesting phenomena in a substantially

simplified setting. We start by rewriting Eq. (1) in the local form

dθk

dt
= ωk + Im[Zk(t)e

−iθk ],

such that oscillator k is driven by Zk(t) ∈ C, which involves an average over oscillator k’s

2R + 1 nearest neighbors:

Zk(t) =
K

2R + 1

R
∑

j=−R

eiθk+j(t)e−iα.
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To obtain a continuum limit, we suppose that the oscillators are uniformly distributed on the real

line, at positions

xk =
hk

R
.

In the formal limit h → 0, we obtain a continuum version where the spatial concentration of

oscillators becomes dense and their phases are described in terms of a probability density

function f(θ, ω, x, t), where x and ω are now continuous variables. The averaged field Zk has

to be replaced by its spatially continuous analog

Z(x, t) =

∫

∞

−∞

KG(x − y)

∫

∞

−∞

∫ 2π

0

f(θ, ω, y, t)eiθe−iαdθ dω dy,

where

G(s) =

{

1/2 for |s| ≤ 1,

0 for |s| > 1.
(3)

Note that the coupling range is treated here as a macroscopic quantity, which can be scaled to

one in the continuum limit. Accordingly, the number of oscillators in the coupling range tends to

infinity. The evolution of the function f is then given by the continuity equation

∂f

∂t
+

∂

∂θ
(fJ [f ]) = 0, (4)

where

J [f ] = ω + Im

[

e−i(θ+α)

∫

∞

−∞

KG(x − y)

∫

∞

−∞

∫ 2π

0

f(θ′, ω, y, t)eiθ′

dθ′ dω dy

]

. (5)

For the nonlocal coupling used in Eq. (1) we have to use the function G(s) given by formula (3).

However, the analysis presented below remains valid for arbitrary even, absolutely integrable

functions G(s).

Following the Ott-Antonsen method [17, 18] we seek solutions of Eqns. (4) and (5) in the form

f(θ, ω, x, t) =
g(ω)

2π

[

1 +

∞
∑

n=1

zn(ω, x, t)einθ + c.c.

]

, (6)

where c.c. stands for the complex-conjugate of the preceeding term. It is straightforward to verify

that ansatz (6) solves Eqns. (4) and (5) provided |z| ≤ 1 and

dz

dt
= iωz(ω, x, t) +

1

2
Z(x, t) −

1

2
z2(ω, x, t)Z(x, t). (7)

Since the natural frequencies are distributed according to the Lorentzian (2), it is easy to verify

that
∫

∞

−∞

∫ 2π

0

f(θ, ω, x, t)eiθdθ dω = z(i, x, t).

Now denoting z(i, x, t) by u(x, t), Eq. (7) is replaced by the simpler equation

du

dt
= −u(x, t) +

K

2
e−iαGu −

K

2
eiαu2(x, t)Gu, (8)
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where for any locally integrable function v we define

(Gv)(x) =

∫

∞

−∞

G(x − y)v(y)dy. (9)

Note that equations equivalent to (8)-(9) were first presented in [8], although in the context of

analysing chimera states.

2.1 Uniform incoherence

The uniformly incoherent state u(x, t) = 0 is clearly always a solution of (8). To study its

stability, we linearize Eq. (8) around this state and obtain

dv

dt
= −v(x, t) +

K

2
e−iαGv.

Substituting

v(x, t) = v0e
iκxeλt,

we find the spectral equation

λ = −1 +
1

2
e−iαKĜ(κ), (10)

where

Ĝ(κ) ≡

∫

∞

−∞

G(s)e−iκsds =

∫

∞

−∞

G(s) cos(κs)ds.

is the Fourier transform of the coupling function, G. In particular, for the coupling function (3) we

obtain

Ĝ(κ) =
sin(κ)

κ
. (11)

Fig. 1 shows the graph of Re(λ) vs. κ for four different values of K and α = 0. By inserting

Re(λ) = 0 into (10), we obtain the stability boundary of this state in the parameter plane

spanned by K and κ, for a given value of α. This stability boundary is shown as the red dashed

curves in Fig. 2. Note that for |α| < π/2 and small |K| the uniform incoherent state is stable

with respect to perturbations with all wave numbers. For positive K, it loses its stability in a long

wave instability (κ = 0) at

K =
2

cos α
,

whereas for negative K the instability occurs at a finite wavelength.

2.2 Twisted states: existence

The main focus of our interest are partially coherent twisted states appearing after the destabi-

lization of the completely incoherent state. In the continuum limit, they can be found explicitly in

the form

u(x, t) = aei(κx+νt), (12)

4



-6

-4

-2

 0

-6π -4π -2π 0 2π 4π 6π

R
e 

λ

Wave number, κ

K = 3
K = 2
K = 1

K = -10

Figure 1: Spectral curves of the uniformly incoherent state, as determined by Eq. (10), for α = 0
and coupling function (3). There is a long wave instability for increasing coupling strength K,

and a finite wavelength instability for decreasing negative K.

where κ, ν and a > 0 are real numbers. Substituting (12) into Eq. (8) we find

iν = −1 +
K

2

(

e−iαĜ(κ) − a2eiαĜ(−κ)
)

= −1 +
K

2
(e−iα − a2eiα)Ĝ(κ), (13)

where we used the identity

∫

∞

−∞

G(x − y)eiκydy = Ĝ(κ)eiκx,

and the fact that Ĝ(−κ) = Ĝ(κ) for an even coupling function G(s). Now, equating real and

imaginary parts of Eq. (13) we obtain

a2 = 1 −
2

KĜ(κ) cos α
(14)

and

ν = −
K

2
(1 + a2)Ĝ(κ) sin α = tanα − KĜ(κ) sin α. (15)

It is easy to see that Eq. (14) has a solution with a given κ iff

1 −
2

KĜ(κ) cos α
> 0. (16)

This inequality is satisfied inside the regions bounded by the red dashed curves K = Kc(κ) :=
2/(Ĝ(κ) cos α) in Fig. 2. Thus, twisted states are created as the uniformly incoherent state

destabilizes.

Substituting (12) into (6), evaluating the infinite series, and marginalizing over ω we obtain the

probability density function

F (θ, x, t) ≡

∫

∞

−∞

f(θ, ω, x, t) dω =
1 − a2

2π{1 − 2a cos [θ − (κx + νt)] + a2}
.
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Figure 2: Dashed curves show the existence boundaries for twisted states, which are also the

instability boundaries for the uniformly incoherent state. Solid curves mark instabilities of twisted

states. Stable twisted states can be found for parameters picked from shaded regions. For in-

creasing α, twisted states are less stable, compare (a) α = 0, (b) α = π/4, and (c) α = 3π/8.
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For fixed x and t, this is a unimodal function of θ, with maximum at θ = κx + νt, and width de-

termined by a. As a → 0, the distribution becomes uniform, whereas for a → 1, the distribution

tends to δ(θ−(κx+νt)) [14]. Due to (14), this case corresponds to K → ∞ and we obtain the

completely coherent twisted states studied in [27] for the system with identical frequencies. Ac-

cordingly, the twist is given by spatial wave number κ, both for partilly and completely coherent

states.

2.3 Stability of twisted states

Let us now consider the stability of a twisted state with a given wave number κ0 and corre-

sponding temporal frequency ν0, as determined by Eq. (15). It is convenient to transform Eq. (8)

into corotating coordinates

u(x, t) 7→ U(x, t), where u(x, t) = U(x, t)ei(κ0x+ν0t).

After this transformation we obtain

dU

dt
= −(1 + iν0)U(x, t) +

K

2
e−iα

∫

∞

−∞

G(x − y)e−iκ0(x−y)U(y, t)dy

−
K

2
eiαU2(x, t)

∫

∞

−∞

G(x − y)eiκ0(x−y)U(y, t)dy.

Substituting

U(x, t) = a(κ0) + v(x, t),

where a(κ0) is given by Eq. (14) with κ = κ0, and linearizing the result with respect to small

perturbations v we arrive at

dv

dt
= −η(κ0)v(x, t) +

K

2
e−iα

∫

∞

−∞

G(x − y)e−iκ0(x−y)v(y, t)dy

−
K

2
a2(κ0)e

iα

∫

∞

−∞

G(x − y)eiκ0(x−y)v(y, t)dy. (17)

where

η(κ) := 1 + iν(κ) + Keiαa2(κ)Ĝ(−κ) =
K

2
(e−iα + a2(κ)eiα)Ĝ(κ).

Introducing the vector function

V (x, t) =

(

Re v(x, t)

Im v(x, t)

)

and separating real and imaginary parts of (17) we rewrite this equation as follows

dV

dt
= −MV (x, t) +

K

2
QT

∫

∞

−∞

G(x − y)

(

cos κ0(x − y) sin κ0(x − y)

− sin κ0(x − y) cos κ0(x − y)

)

V (y, t)dy

−
K

2
a2(κ0)Q

∫

∞

−∞

G(x − y)

(

cos κ0(x − y) sin κ0(x − y)

sin κ0(x − y) − cos κ0(x − y)

)

V (y, t)dy, (18)
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where

M =

(

Re η(κ0) −Im η(κ0)

Im η(κ0) Re η(κ0)

)

and Q =

(

cos α − sin α

sin α cos α

)

.

Next we look for solutions to Eq. (18) of the form

V = V0e
iκxeλt, where V0 ∈ C

2. (19)

Substituting this into Eq. (18) and using the identities

∫

∞

−∞

G(x − y) cosκ0(x − y) eiκydy =
1

2

(

Ĝ(κ + κ0) + Ĝ(κ − κ0)
)

eiκx,

∫

∞

−∞

G(x − y) sinκ0(x − y) eiκydy =
i

2

(

Ĝ(κ + κ0) − Ĝ(κ − κ0)
)

eiκx,

we obtain the spectral equation

det(λI − B) = 0, (20)

where

B := −M +
K

4
QT

(

h+(κ, κ0) ih−(κ, κ0)

−ih−(κ, κ0) h+(κ, κ0)

)

−
K

4
a2(κ0)Q

(

h+(κ, κ0) ih−(κ, κ0)

ih−(κ, κ0) −h+(κ, κ0)

)

and

h+(κ, κ0) := Ĝ(κ + κ0) + Ĝ(κ − κ0), h−(κ, κ0) := Ĝ(κ + κ0) − Ĝ(κ − κ0).

Eq. (20) ensures the existence of non-trivial solutions of (18) of the form (19). It can be solved

explicitly:

λ±(κ) =
1

2

(

tr B ±

√

(tr B)2 − 4 det B

)

. (21)

Fig. 3 shows the dispersion relations Re (λ±(κ)) for a state with twist κ0 = 1, again using

the coupling function (3). Note that according to (16), we should choose K ≥ Kc(κ0) in order

to ensure the existence of the twisted state. We observe that the twisted state with κ0 = 1
bifurcates unstably from the completely incoherent state and eventually stabilizes for sufficiently

large coupling strength K. The stability threshold can be determined by

Re (λ′′

+(0)) = 0,

where the dispersion (21) curve changes from negative to positive curvature at κ = 0. Note

that one can easily check that

Re (λ+(0)) = Re (λ′

+(0)) = 0

8
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Figure 3: Spectral curves (upper curve corresponding to λ+, lower curve to λ−) for twisted state

with κ0 = 1, indicating instability (red dashed curves) for K < KE(κ0) and stability (black solid

curves) for K > KE(κ0); (α = 0).

holds true in general. Applying this bifurcation criterion, we calculated stability boundaries of

twisted states for the coupling (3), see blue lines in Fig. 2. For α = 0, the synchronization

transition at K = 2, where the uniform completely incoherent state loses stability and spa-

tially periodic patterns with different wave numbers arise, resembles the well-known Eckhaus

scenario [5]. Only for the central wavelength κ0 = 0 we observe a direct transition from sta-

ble incoherence to a stable partially coherent state. All states with twist κ0 6= 0 are unstable

upon creation at Kc(κ0) and stabilize only for some KE(κ0) > Kc(κ0) where their amplitude

is already different from zero. Note that the curves for existence (red dashed curves in Fig. 2)

and stability (blue solid curves in Fig. 2) coincide with the classical Eckhaus parabolas only to

leading order in a vicinity of the central wavelength κ0 = 0. Their asymptotic wave numbers

for K → ∞ coincide, for α = 0, with the corresponding values calculated in [27] for the case

of identical frequencies. For α > 0, the temporal frequency of the bifurcating twisted waves is

different from zero, the critical coupling Kc(0) for the onset of partial coherence increases, and

the stability region becomes slightly smaller. But there are no qualitative changes until α = π/4
where the stability curve detaches from the existence curve and new stable regimes beyond

partially coherent twisted states appear.

3 Finite-N simulations

In this section we compare the theoretical predictions of the continuum limit analysis with nu-

merical results for the finite system obtained by introducing periodic boundary conditions to the

discrete oscillator chain (1). Correspondingly, we have to restrict to solutions of the continuum

limit that respect periodic boundary conditions on a finite interval [0, L]. The main consequence

for our analysis is that possible twisted states and their unstable modes also have to satisfy this

periodicity condition and appear for a discrete sequence of wave numbers κ = 2πq/L, q ∈ Z,

only. However, for sufficiently large L there are no substantial differences, c.f. [26]. For a proper
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Figure 4: Partially synchronized twisted states observed in system (1) with N = 1000, R =
100, α = 0 and K = 10.

correspondence to the continuum limit, the total number of oscillators N and the discrete cou-

pling range R have to satisfy N = LR. For fixed N and identical frequencies system (1) has N
different uniformly twisted states [6], parametrized by the integer q ∈ {0, 1, 2, . . . , N − 1}, de-

scribed by

θk =
2π

N
qk, k = 1, 2, . . . , N. (22)

These states can be identified with their continuum limit counterparts

u(x, t) = eiκx, where κ = 2πq/L. (23)

Recall that for non-identical oscillators we obtained partially synchronized twisted states de-

scribed with a more general ansatz (12).

Using exact twisted states (22) with q = 0,±1,±2 as initial data, we performed numerical

simulations of system (1) with N = 1000, R = 100, α = 0 and K = 10. Discarding

transient dynamics of 100 time units, we recorded typical final snapshots as shown in Fig. 4.
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Each of these snapshots appears as a swarm of points distributed around a central curve that is

close to an exact twisted state. However, decreasing the coupling radius to R = 50 we observe

already a strong influence of the finite size fluctuations induced by the realization of the randomly

distributed frequencies. We obtain the significantly distorted twisted states shown in Fig. 5. Their

central curves are bent and deviate significantly from exact twisted states. Despite this fact,

statistical properties of these distorted twisted states are well described by the continuum limit.

In order to see this, for each snapshot in Fig. 5 we calculated the approximate local mean field

0

0 500 1000
0

1

q = -2
θk |wk|

-π

π

0

0

1

q = -1
θk |wk|

-π

π

0

0

1
q = 0

θk |wk|

-π

π

0

0

1

q = 1
θk |wk|

-π

π

0

0

1

q = 2
θk |wk|

-π

π

Figure 5: Partially synchronized twisted states observed in system (1) with N = 1000, R = 50,

α = 0 and K = 10. Red and green solid lines show |wk| and arg(wk) calculated by (24).

wk =
1

2R + 1

R
∑

j=−R

eiθk+j . (24)

The argument of wk, arg(wk), resembles the central curve of the oscillators (green lines in

Fig. 5), which allows us to determine the twists q of these distorted states as a topological

invariant. Next, we consider the absolute value, |wk|, which displays irregular oscillations around

11
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Figure 6: Averaged local mean field W of the non-twisted partially synchronized state (q = 0).

Theoretical values calculated by formula (14) (solid line) and numerical data (dots) obtained

by the application of formula (25) to non-twisted final states of system (1) with N = 1000,

R = 100 and α = 0.

some constant level W , where

W =
1

N

N
∑

k=1

|wk|. (25)

Taking into account that in the continuum limit, the quantity analogous to wk is given for a twisted

state (12) by the formula

w(x, t) =
1

2

∫ 1

−1

aei(κx+κy+νt)dy = aĜ(κ)ei(κx+νt),

we can compare the amplitude |aĜ(κ)| with its finite dimensional counterpart W . Fig. 6 shows

for N = 1000 good coincidence of these values for the non-twisted state. (A comparison for

twisted states is shown below.)

In order to verify the Eckhaus stability boundaries, we performed another series of numerical

simulations. It is natural to assume that an exact q-twisted state used as initial data for sys-

tem (1) will typically be attracted to the corresponding partially synchronized q-twisted state,

provided the latter is stable. We checked this hypothesis numerically as follows. Using an ex-

act q-twisted state as initial data, we performed 1000 simulations of system (1), each with a

different realization of the frequencies ωk, and estimated the probability of being attracted to a

stable partially synchronized state with the same twist, see Fig. 7. We observed that as we vary

the wave number κ = 2πqR/N the probability tends to vanish close to the Eckhaus instability

boundary.
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Figure 7: Top: Probability of obtaining partially synchronized twisted states starting from the

corresponding exact twisted state for K = 25 (a) and K = −25 (b). Other parameters:

N = 5000, R = 100, α = 0. Eckhaus stability boundaries are shown as dashed vertical

lines (see Fig. 2(a)). The lower two panels show the averaged local mean field W given by (25)

for these partially-synchronized states (points) and the theoretically predicted value given by

formula |aĜ(κ)| with (14) and (11) (solid line).
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Figure 8: Distribution of basin sizes for the various partially synchronized twisted states. The

data points were obtained from 10000 simulations of system (1) with random initial data and

independent realizations of natural frequencies ωk. Parameters: R/N = 0.01, K = 10
and α = 0. Solid line shows a Gaussian fit of points with N = 20000.
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Figure 9: (a) Inverse of the variance of the probability distribution histogram, σ−2, versus ra-

tio r = R/N , for fixed K = 10. (b) Width of distribution, σ, as a function of coupling

strength K, for fixed r = R/N = 0.01. For increasing coupling strength K, the distribution

becomes broader and its width saturates (dotted line) for K → ∞. Parameters: N = 10000,

α = 0.

For fixed parameters, a large number of different stable twisted states may coexist, and the size

of their basins is an important issue [13]. Indeed, in [27] it has been pointed out that for identical

oscillators, depending on the twist, there is a remarkable difference in the sizes of their basins. In

a similar way, as in [27] we investigated the statistical properties of the basin sizes. For fixed N ,

R, α and K we performed 10000 numerical simulations with different realizations of natural

frequencies ωk and random uniformly distributed initial data. For each simulation, we take its

final snapshot after 100 time units to allow for transients to die away, and extract its topological

twist q. Collecting 10000 samples we construct a probability distribution histogram with respect

to the twist q. The obtained results are shown in Fig. 8. Similar to the results of Wiley et al. [27],

we observe that the distribution of basin sizes becomes Gaussian as N increases. Moreover,

the standard deviation of the distribution depends on the ratio r = R/N rather than on R
and N separately. Fig. 9 shows the dependence of the Gaussian’s width, σ, as r and K are

varied. We see that 1/σ2 seems to be proportional to r (compare with Fig. 3 in [27]). On the

other hand, there seems to be a monotonic growth of σ with increasing coupling strength K
that saturates as K → ∞ at the corresponding value for identical oscillators.

4 Conclusion and Discussion

We have considered twisted waves in arrays of nonlocally coupled non-identical phase oscilla-

tors. By passing to the continuum limit and using the Ott/Antonsen ansatz we have derived a

nonlocally coupled differential equation governing the evolution of a complex-valued spatially-

dependent order parameter. For twisted states, the magnitude of this quantity indicates the level

of synchrony of nearby oscillators, while its argument can be used to define the twist of the cor-

responding state. We explicitly found twisted states in the continuum limit and showed that their

stability can also be calculated explicitly. There is a strong analogy between the appearance

of twisted states and their subsequent stabilization as the coupling strength is increased, and

the Eckhaus instability [28, 26]. Finite-N simulations were performed which showed that once
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finite-size effects are taken into account, the results from the analysis of the continuum system

correctly describe the dynamics of a finite network.
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Figure 10: A steady-state solution of (8)–(9) showing the modulus of u (top) and its argument

(bottom). This is a multi-twisted state. Parameters: K = −70, α = 0.

The main work with which we should compare our results is that of Wiley et al. [27]. We used

nonidentical oscillators, while they used identical ones. This leads to several complications.

For their system, all twisted states always exist for non-zero coupling strength. When using

nonidentical oscillators, there is competition between the tendency for oscillators to move at

their own intrinsic speed and the coupling term, which acts to synchronize the oscillators, as

in the original Kuramoto system [2, 24]. We thus have a more complicated situation, where the

existence of twisted states depends not only on the strength of coupling, but the value of the

twist (see Fig. 2). Our continuum limit equations [(8) and (9)] are for a complex variable with

both phase and magnitude, whereas Wiley et al. have an equation for a purely angular variable.

This results in the stability calculations shown here being more involved than those of Wiley et
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al. These authors found that stability depended only on the width of the coupling kernel (r) and

the twist of a state, whereas in our model the strength of coupling (K) also plays a role (again,

see Fig. 2). Our work can be seen as a direct extension of the work of Wiley et al., and setting

a = 1 and α = 0 it can be shown that our stability results reduce to theirs. In other work,

Tsimring et al. briefly considered nonidentical oscillators with nonlocal repulsive coupling [25].

Girnyk et al. [6] considered the same system as Wiley et al., but with negative (repulsive) cou-

pling. Hence our system, with negative K, can be regarded as a generalization of theirs. As

well as considering twisted states, these authors also found stable “multi-twisted” states, for

which on a part of the domain the twist was approximately constant, but on the rest of the

domain the twist was also approximately constant although of opposite sign. We have seen

similar states in our heterogeneous network (see Fig. 10) but leave their analysis for the fu-

ture. Other generalizations of the work presented here could include the presence of delays,

either space-dependent [21], constant [15] or distributed [9]. Another possibility is to investigate

two-dimensional domains [9, 11, 16], or the use of a different coupling function.

We conclude by mentioning that we have not provided a complete description of the dynamics

of (1). Looking at Fig. 2(c) we see that for K = 7, say, the completely incoherent state and all

partially synchronized twisted states are unstable. Simulating the system for this value of K we

obtain complicated spatio-temporal dynamics, as shown in Fig. 11, similar to those described

for the complex Ginzburg-Landau equation [4].
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Figure 11: Space-time plots of |wk| (a) and arg(wk) (b) calculated using (24) along the trajec-

tories observed in system (1) with K = 7. Other parameters: N = 10000, R = 1000, and

α = 3π/8. Initial data: identical phases of all oscillators.
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