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Semiparametric Single Index 
Versus 

Fixed Link Function 
Modelling 

W. Hardle V. Spokoiny S. Sperlich 

October 26, 1995 

Abstract 

Discrete choice models are frequently used in statistical and econometric prac-
tice. Standard models such as logit models are based on exact knowledge of the form 
of the link and linear index function. Semiparametric models avoid possible mis-
specificatlon but often introduce a computational _burden. It is therefore interesting 
to decide between approaches. Here we propose a test of semiparametric versus 
parametric single index modelling. Our procedure allo~s that _the (linear) index of 
the semiparametric alternative is different from that of the parametric hypothesis. 
The test is proved to be rate-optimal in the sense that it provides the (rate) minimal 
distance between hypothesis and alternative for a given power function. 

1 Introduction 

Discrete choice models are frequently used in statistical and econometric applications. 
Among them binary response models, such as Probit or Logit regression, dominate the 
applied literature. A basic hypothesis made there is that the link and the index function 
have a known form, see McCullagh and Nelder (1989). The fixed form of the link function 
e.g. the logistic cdf is rarely justified by the context of the observed data but is often mo-
tivated by numerical convenience and by reference to "standard practice", say "accessible 
canned software". 

Recent theoretical and practical studies have questioned this somewhat rigid approach 
and have proposed a more flexible semiparametric approach. Green and Silverman (1994) 
use the theory of penalizied likelihood to model nonparametric link functions with splines. 
Horowitz (1993) gives an excellent survey on single index methods and stresses economic 
applications. Staniswalis and Severini (1994) use kernel methods and keep a fixed link 
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function but allow the index to be of partial linear form. Partial linear models are semi-
parametric models with a parametric linear and a nonparametric index and have been 
studied by Rice (1986), Speckman (1988) and Engle, Granger, Rice and Weiss (1986). 

These models enhance the class of Generalized Linear Models (McCullagh and Nelder, 
1989) in several ways. Here we concentrate on one generalization, the single index models 
with link function of unknown nonparametric form but (linear) index function. The 
advantage of this approach is that still an interpretable linear single index, a weighted sum 
of the predictor variables, is produced. The link function plays in theoretical justifications 
of single index models via stochastic utility functions an important role (Maddala, 1983): 
it is the cdf of the errors in a latent variable model. Our approach enables us to interpret 
the results still in terms of a stochastic utility model but enhances it by allowing for an 
unknown cdf of the errors. 

Despite the gained flexibility in semiparametric regression modelling there is still an im-
portant gap between theory and practice, namely a device for testing between a parametric 
and semiparametric alternative. A first paper in bridging this gap is Horowitz and Hardle 
( 1994). They considered for response Y and predictor X the parametric null hypothesis 

(1) Ho: Y = F(XTBo) + c 

where x TB denotes the index and F is the fixed and known link function. The semipara-
metric alternative considered there is that the regression function has the form f ( x T Bo) 
with a nonparametric link function f and the same index x T B0 as under H0 . The main 
drawback of that paper is that the index is supposed to be the same under the null and 
the alternative. 

The goal of the present paper is to construct a test which has power for as large class of 
alternatives. We move to a full semiparametric alternative by considering alternatives of 
single index type 
(2) Hi : Y = f(XT (3) + c 

with (3 possibly different from B0 • The situation of our test is illustrated in the following 
figures 1 and 2. 

The data is a crosssection of 462 records on apprenticeship of the German Social Economic 
Panel from 1984 to 1992. The dependent variable is an indicator of unemployement, 
(Y = 1 =yes). Explanatory variables are X1 gross monthly earnings as an apprentice, X 2 

percentage of people apprenticed in a certain occupation, divided by the people employed 
in this occupation in the entire economy and X 3 unemployment rate in the state the 
respondent lived in during the year the apprenticeship was completed. The aim of the 
test is to decide between the logit model and the semiparametric model with unknown 
link function and possibly different index. In Hardle, Klinke and Turlach (1995) this 
hypothesis is tested with the Horowitz Hardle test by Proenca and Werwatz who also 
prepared the dataset. They give a delicious description of the test procedure but it does 
not reject. 

We measure the quality of a test by the value of minimal distance between the regression 
function under the null and under the alternative which is sufficient to provide the desir-

2 



LOGIT AND SEMIPARAMETRIC FIT SEMIPARAMETRIC FIT 

0 0 a:l!ll 0 (ll)OCXJmD<llll!DllDO .OOO 

0 0 OOO 

·LO o.o 1.0 2.0 3.0 ·LO o.o 1.0 :LO 3.0 
_IN06X_ _INDEX_ 

Figure 1: Parametric fitting Figure 2: Semiparametric fitting 

able power of testing. The test proposed below is shown to be rate-optimal in this sense. 
The paper is organized as follows. The next section contains the main results then we 
present the test procedure. In Section 5 we present some simulation study. The proof of 
main results are given in Section 3 (Theorem 2.2) and in the Appendix (Theorem 2.1). 

2 Main Results 

We start with a brief historical background of the nonparametric hypothesis testing prob-
lem. The problem· for the case of a simple hypothesis and univariate nonparametric 
alternative was considered by Ibragimov and Khasminskii (1977) and Ingster (1982). It 
was shown that the minimax rate for the distance between the null and the alternative set 
is of the order n-2s/(4s+i) where s is a measure of smoothness. Note that this rate differs 
from that of an estimation problem where we have n-s/(2s+i). In the multivariate case 
the corresponding rate changes to n-2s/(4s+d), as Ingster (1993) has shown. The problem 
of testing a parametric hypothesis versus a nonparametric alternative was discussed also 
in Hardle and Mammen (1993). Their results allow to extract the above minimax rate. 

The results of Friedman and Stuetzle (1981), Huber (1985), Hall (1989) and Golubev 
(1992) show that estimation of the function f under (2) can be made with the rate 
corresponding to the univariate case. Below we will see though that for the problem of 
hypothesis testing the situation is slightly different. The rate for this additive alternative 
of single index type differs from that of a univariate alternative ( d = 1) by an extra log-
factor. Nevertheless, we have almost a univariate rate and we can therefore still expect 
efficiency of the test for practical applications. 

We will come back to the introductory example in section 5. Suppose we are given 
independent observations (Xi, Yi), Xi E !Rd, Yi E IR1

, i = 1, ... , n, that follow the 
regress10n 
(3) i = 1, ... ,n. 
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Here ci =Yi - F(Xi) are mean zero error variables, 

i=l, ... ,n, 

with conditional variance 

(4) i = 1, ... ,n. 

Example 2.1 As a first example take the above single index binary choice model. The 
observed response variables Yi take two values 0, 1 and 

p (Yi= 1 I Xi) 
p (Yi= 0 I Xi) 

In this case a} = F(Xi) {l - F(Xi)}. 

F(Xi), 
- 1 - F(Xi)· 

Example 2.2 A second example is a nonlinear regression model with unknown transfor-
mation. An excellent introd~ction into nonlinear regression can be found in Huet, Jolivet 
and Messeau (1993). The model takes the same form as (1) but the response Y is not 
necessarily binary and the variance a} may be an unknown function of the F(Xi) 's. 
Carroll and Ruppert (1988) use this kind of error structure to model fan shaped residual 
structure. 

We wish to test the hypothesis H0 that the regression function F( x) belongs to a prescribed 
parametric family (Fo(x ), () E 8), where 8 is a subset in a finite-dimensional space mm. 
This hypothesis is tested versus the semiparametric alternative H1 that the regression 
function F ( ·) is of the form 
(5) F(x)=f(xT/3) 
where /3 is a vector in md with 1/31 = 1, and !(-) is a univariate function. 

Example 2.3 Let the parametric family (Fo(x), BE 8) be of the form 

(6) 1 
Fo(x) = 1 + exp(-x TB) 

and let otherwise (X, Y) have stochastic structure as in Example 2.1. This form of 
parametrization leads to a binary choice logit regression model. Probit or complementary 
log-log models have a different parametrization but still have this single index form. · 

Let :Fo be the set of functions ( F8 ( x), B E 8) and let :F1 be a set of alternatives of the 
form (5). We measure the power of a test 'Pn by its power function on the sets :F0 and 
F1 : if 'Pn = 0 then we accept the hypothesis H0 and if 'Pn = 1, then we accept H1 . The 
corresponding first and second type error probabilities are defined as usual: 
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a1('Pn) =sup PF('Pn = 0). 
FE:F1 

Here PF means the distributions of observations (Xi, Yi) given the regression function 
F ( ·). When there is no risk of confusion we write P instead of P F. Our goal is to 
construct a test 'Pn that has power over a wide class of alternatives. The assumptions 
needed are made precise below. We start with assumptions on the error distribution. 

(El) The errors €i are bounded by a universal constant Ge 

i = 1, ... ,n. 

( E2) The conditional distributions of errors ci given Xi depend only on values of the 
regression function F ( Xi), 

where ( Pz) is a prescribed distribution family of one-dimensional parameter z; 

(E3) The variance function er2 (z) = E [er I F(Xi) = z] and the fourth central moment 
function ~4 (z) - E [(cf - Ec7)2 I F(Xi) = z] are separated away from zero and 
infinity i.e. 

0 <er*::; er(z)::; er*< oo 

0 < "'* ::; "'( z) ::;. "'* < 00 

with some prescribed er*, er*,"'*'"'*,. and this function is uniformly continuous: for 
some positive constants Co- and C,.., one has 

ler(z) - er(z')I ::; Co- lz - z'I, 

l"'(z) - "'(z')I ::; C,.., lz - z'j. 

Note that (El) is obviously fulfilled for the single index model in Examples 2.1 and 2.3. 
In the more general situation of Example 2.2 this assumption can be weakened to the 
existence of exponential moments for ci. 

The assumption (E3) restricts the set of X-observations to a bounded set. It is made 
more precise in the following assumption on the design X. 

(D) The predictor variables X have a design density 7r(x) which is supported on the 
compact convex set X in !Rd and is separated from zero and infinity on X; 

Assumption (D) is quite common in nonparametric regression analysis. It is apparently 
fulfilled for the above example on apprenticeship and youth unemployment. vVe now 
specify the hypothesis and alternative. 
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(HO) The parameter set 8 is a compact subset in IRm. 
For some universal constant Ce the following holds 

I Fa ( x) - Fa 1 ( x) I ::; C e I() - B' I , 'II x E X, (), ()' E 8; 

All functions Fe ( ·) belong to the Holder class ~ d ( s, L) of functions in IRd. 

(Hl) The univariate link function J(-) from (5) belongs to the Holder class ~(s, L). The 
function F(x) = f(x T {3) is separated away from the parametric family :F0 i.e. 

(7) inf llF - Fall~ Cn 
BEG 

with a given Cn > 0. Here llF - Fell= J IF(x) - Fa(x)l 2 7r(x) dx. 

For the definition of a Holder smoothness class in the context of statistical nonparametric 
problems we refer e.g. to Ibragimov and Khasminskii (1981). Assumption (HO) is cer-
tainly. fulfilled for Example 2.3 but also in Probit and other generalized linear regression 
models such as the log linear models. 

The main results are given. below. We compute first the optimal rate of convergence of 
the distance Cn distinguishing the null from the alternative. The second theorem states 
the existence of an optimal test. The test will be given more explicitly in the next section 
where we also apply it to the above concrete examples. Theorem 2.2 is proved in Section 4 
and the proof of Theorem 2.1 is giv~n in the appendix. 

2s 

Theorem 2.1 Let Cn = (a~) 4s+i. If a is small enough then for any sequence of tests 
'Pn one has 

lim inf ao( 'Pn) + 0'.1 ( 'Pn) ~ l. n-too 

Theorem 2.2 For any constant a* large enough there is a sequence of tests <.p~ which 
distinguish consistently the hypothesis H0 versus alternative H1 = H1 ( c~) with c~. = 

2s ' 

(a* v1n"'nnn n) 4s+l • i.e. 

and 

lim a 0 ( <.p~) = 0 n-+oo 

lim a 1 ( <.p~) = 0. n-+oo 

3 The test procedure 

Before we describe the test procedure let us introduce some notation. Given functions 
F( x) and G( x) we denote by 

(8) 
1 n 

(F, G) = - I: F(Xi) G(Xi). 
n i=l 
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the scalar product of the functions F and G. We write also (F) instead of (F, F) and 
identify the sequences (Yi), ( ci) with the functions Y(Xi) and c(Xi)· vVe construct the 
tests 'P~ from Theorem 2.2 in several steps. 

First we shall do a preliminary pilot estimation F0 under the null. Second we estimate the 
d-dimensional nonparametric regression F1 necessary to construct estimators of expected 
value and the variance of the proposed test statistics. In the third step we estimate for 
each feasible value of {J the corresponding link function f under ( Hl) as in (2). Finally 
we compute the test statistic based on comparison of residuals under H0 and H 1 . 

3.1 Parametric pilot estimation 

Let en be a grid in the parametric set e with the step 1fo. Put 

(9) - · f · fl n 2 Bn = argm (Y - Fe)= argm - L IYi - Fe(Xi)I . 
() E en () E en n i=l 

Denote also 
(10) 

Note that On is not necessarily an efficient estimator under the null since we do not correct 
for the variance function. 

3.2 Nonparametric pilot estimation 

For the nonparametric estimation of the expected value and the variance of the test 
statistic we shall use the standard kernel tech:p.ique, see e.g. Hardle (1990) or Muller 
(1987). More precisely we use a one dimensional kernel satisfying the conditions 

(Kl) I<(·) is compactly supported; 

( I<2) I<(·) is symmetric; 

(I<3) I<(·) has s continuous derivatives; 

(I<4) f I<(t) dt = l; 
(I<5) f I<(t)tkdt = 0, k = 1, ... ,s -1. 

Recall from (HO) and (Hl) that s denotes the degree of smoothness of the regression 
function. Note also that (I<5) ensures that I< is orthogonal to polynomials of order 
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1 to s - 1. For a list of kernels satisfying (Kl) - (K5) we refer to Muller (1987). A 
d-dimensional product kernel K1 is defined as 

d 

(11) I<1(u1, ... , ud) =IT I<(uj)· 
j=l 

Take now 
(12) 

the optimal smoothing bandwidth in d-dimensions, and put 

- L:f= 1 YiK1(~) 
F1(x) = ( ) '"'77-_ f{ x-X; 

L....i-1 1 hi 

(13) 

The non parametric kernel smoother F1 is the well known multidimensional N adaraya-
Watson kernel estimator. 

3.3 Estimation under H1 

Set 

(14) (vrnn) 4s~l 
h= --

. n 

We will use this bandwidth for estimation in the semiparametric model. Note that in 
(12) for the nonparametric estimation problem another rate, namely n-l/(2s+d) was used. 
Here we have almost this bandwidth except for the extra log-term. 

Let Sd be the unit sphere in JR,d. Denote by Sn,d a discrete grid in Sd with the step 
bn = h2s+2 . Let N be the cardinality of Sn,d 

(15) N = #Sn,d· 

For each /3 E Sn,d define 

(16) 

and introduce the smoothing operator K,13 with 

(17) 

where 

(18) 

K13Y(Xi) = IIf3(Xi) L }jKh,f3(Xi - Xj) 
#i 

II13(Xi) = (L Kh,13(Xi - Xj ))-
1 

#i 

Similarly we define K,f3c; and K,f3F. Note that given f3 the values K 13Y estimate f in (2). 
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3 .4 The test statistic 

Now for each f3 we calculate a statistic T13 as follows: 

(19) . nVh [ / - - ) I - ) - J T13 == --- 2 \ Y - Fa, K-13 Y - Fa - \ K-13 Y - Fa + E13 . 
V13 

Here 0 is defined by (8), h by (14), Fa by (10). We use the following notation 

(20) E13 == ~I: I: a} II~(Xi) Ki,13 (Xi - xj) 
n i #i 

where IT13(Xi) is from (18), 

(21) j == 1, ... , n, 

the function cr2 ( ·) being defined in the model assumptions and F1 ( x) being the non para-
metric pilot estimator. Finally, 

-VJ == h I: I: o-; o-j rr~(Xi) j2Kh,13(Xi - Xj) - Ki~J(xi, Xj)l
2 + 

i #i 
2 

+ h L Kf L II~(Xj)I<K,13(Xi - Xj) 
#i 

with Ki == K (P1(Xi)), . i == 1, ... ,n, K(·) being from (E3) and 

(22) Ki~fo(X;,Xi) =II tx) ~ II~(Xk) Kh,,a(Xk -X;) Kh,,a(Xk -Xi)· 
/3 i k=f:i,j 

Put now 
(23) 

and 
(24) rp~ = 1 ( r: > j(2 + J) log N) . 
Here 1 ( ·) is the indicator function of the corresponding event, 8 is an arbitrary small 
positive number and N is the cardinality of Sn,d, see (15). 

4 Proof of Theorem 2 

We start with the decomposition of the test statistics T13. Denote by B13( x) the bias 
function for the smoothing operator K-13 from (17): 

(25) 

Fix some /3 E Sn,d and F E Fa U F1. 
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Lemma 4.1 

(26) 

Proof. By definition Y = F + c and therefore 

Now 

and 

Kf3Y = Kf3F + Kf3c = F + Bf3 + Kf3c:· 

2 ( F - Fa + c:, F - Fa+ Bf3 + Kf3€) = 
2 ( F - Fa) + 2 ( F - Fa, Bf3) + 2 ( F - Fa, Kf3c:) + 
+ 2 ( c, F - Fa) + 2 ( c:, B f3) + 2 ( c:, K f3€) 

( F - Fa + Bf3 + Kf3c) = 
\F - Fa)+ (Bf3) + (Kf3c:) + 
+ 2 ( F - Fa, Bf3) + 2 ( F - Fa, Kf3c:) + 2 (Bf3, Kf3c:). 

Substituting this in the definition of Tf3 we obtain tJ.:ie assertion of the lemma. 

The next step is to show that the expansion (26) for the statistic Tf3 can be simplified 
by discarding lower order terms. Indeed we shall see below that the last three terms are 
relatively small and can be omitted. The terms E(3 and v(3 can be substituted by similar 
expressions Ef3 and V,e which use "true" values O'i and "'i instead of estimated values &i 
and K,i an.cl finally, the parametric estimator On can be replaced by On defined by 

(27) ()n = arginf (F _Fe) 
() E 8n 

where F is a "true" regression function from (3). Suppose that all these replacements 
can be done. Define now 

with 

T' (3 nVh 
Vf3 [(F - Fe") - (Bf3) + 

+ 2 (Kf3c, c:) - (Kf3c:) + Ef3] 

E(3 - ~ L L (J'J II~(Xi) Ki,(3(Xi - Xj ), 
n i jf::i 

v; - h 2: 2: (}'; (J'J rr~(Xi) l2Kh,(3(xi - xj) - K~~J(xi, xj) 1
2 + 

i jf::i 
2 

+ h L K,; L II~(Xj)Ki,(3(Xi - Xj) . 
jf::i 
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Below we show that the tests <.p~* based on the statistics T:* with 

(28) 

have the same asymptotic behavior as <.p~. For the moment we only consider the tests <.p~*. 
Note that they are not tests in the usual sense since they use the non-observable values 
Ef3, Vf3, Bn. Central to our proof is the analysis of the asymptotic behavior of the random 
variables 
(29) 

Lemma 4. 2 The following assertions hold 

(30) 
(31) 

E~f3 - 0, 
E~~ VJ, 

and uniformly in FE Fa U Fi, f3 E Sn,d and t E [- ln n, ln n] 

(32) 
P(~>t) 

1 _ <I>(t) -+ 1, n-+ oo, 

<I>(·) being the standard normal distribution. 

Proof. The first two statements are derived by direct calculation. In fact, by definition 
and (22) · 

~f3 - 2VhLei IIf3(Xi) Lei I<h,f3(Xi - Xj) -
#i 

2 

-Jh:L IIp(Xi) L ej I<h,f3(Xi - Xj) + 
i #i 

+ Jh:L La] Ilp(Xi) I<K,f3(Xi - Xj) == 
i #i 

VhLLeieiITf3(Xi) [2I<h,f3(Xi-Xi)-I<i~fo(Xi,Xi)] + 
i #i 

+ vhL 2:(aJ- ej) II~(Xi) I<~,f3(Xi - Xi)· 
i #i 

Since the errors ei are independent and E ei == 0, E er == at' we immediately obtain (30) 
and (31 ). The last statement (32) is a particular case of the general central limit theorem 
for quadratic forms of independent random variables and can be obtained in a standard 
way by calculation of the corresponding cumulants. We omit the details, see e.g. Hardle 
and Mammen (1993). 

The assertion (32) of Lemma 4.2 straightforwardly implies the following corollary. 
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Lemma 4.3 Uniformly in F E Fa U F1 one has 

(33) P ( sup :~ > V(2 + 8) ln N) --+ 0, n --+ oo. 
f3ESn,d v f3 

Proof. For any tone gets 

(34) P ( sup ~ > t) :::; L P (~ > t) :::; N sup P (~ > t). 
{3ESn,d {3 f3ESn,d {3 f3ESn,d {3 

But through (32) for n large enough 

P ( ~ > j(2 + 0) In N) ::; 2 ( 1 - <P ( j(2 +8) In N)) ::,: 
::; exp{-~ IJ(2 + 0) In Nn = N+li/2 

that implies (33) through (34). 

Now we come to the calculation of the error probabilities for the tests <.p~* based on T;*. 
Under the hypothesis Ho one has F = Fe , () E E>. This does not automatically yield 
(F - FeJ = 0 since Bn E E>n, see (27), and () can be outside E>n. But the assumptions 
(HO) on the parametric family guarantee that this value is small enough. 

Lemma 4.4 Let F = Fe , () E E>. Then 

( 
2 ln

2 n 
.Fe - Fen):::; Ge-· 

.n 

Proof. Let 
()' = arginf I() _ B' I . 
n ()' E E>n 

The definition of the grid E>n provides IB - B~ 12 :::; In: n. Now from the definition of Bn and 
the assumptions (HO) on the parametric family we obtain 

( ) ( ) 1 "°' I I 2 2 I , 2 2 ln 
2 

n Fe - Fen :::; Fe - Fe~ = - L.J Fe(Xi) - Fe~ (Xi) :::; C9 B - BI :::; C8 -. n . n 
i 

Using this result we have for F = Fe by Lemma 4.3 

P ( r;• > J (2 +o) In N) ::; 
< P ( sup ~~ > j(2 + 0) lnN - Cff 1n

2 

n nv'h) --+ 0, n--+ oo, 
f3ESn,d v {3 n 

i.e. 
o:o( <.p~*) = sup P F ( <.p~* = 1) --+ 0, n --+ oo. 

FE:Fo 

Next we evaluate the error probability of the second type . 
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Lemma 4.5 Let F E F 1 . Then for n large enough· 

Proo f. Let F E F 1 be fixed and 

Op== arginf llF - Fell· e Ee 
By the triangle inequality and Lemma 4.4 one has 

(F - FeF) ~ (F - Fen)+ (Fen - FeF) ~ (F - Fen)+ CJln
2 

n. 
n 

It remains to check that the inequality 11 F - FeF 11 2: Cn implies (F - FeF) 2: cn/2. For n 
large enough that is obviously the case. 

The following Lemma is a direct consequence of assumptions (E3) and (D). 

Lemma 4. 6 There exist constants C'!r , a* and V* such that 

(35) 

(36) 

and 
(37) sup V,e ~ V*. 

,6 

Recall now that each function F(·) from F 1 is of the form F(x) == f(x T (30 ) with some 
(30 E Sd. As a consequence F(·) should be well approximated by the smoothing operator 
K,e with (3 coinciding or close to (30. More precise, the following can be stated. 

Lemma 4.7 There is a positive constant Cb such that for each F(·) E F 1 , F(x) 
f(x T f3o), 
(38) (B,en) ~ Cbh28 

with 
(39) f3n == arginf lf3 _ f3o I · 

(3 E Sn,d 

Proof. The definition of the grid Sn,d provides lf3n - f3ol ~ h2s+2 • Then, it is well known, 
e.g. from Ibragimov and Khasminskii (1981), that for F(x) == J(xT(30) with J E Li(s,L) 
one has 
( 40) ( B,eo) == (K,eo F - F) ~ L' h 2s+I 
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with L' = LllKll/(s - l)! But 

I (Bf3n) - (B/30) I < (Bf3n - B/30) ~ 
< (K/3oF - K/3nF) ~ 

< ~ L IT/3n(Xi) L F(Xj) f{h,/3n(Xi - Xj)-
n i #i 

Now using assumptions (D) and (Kl) - (K5) we obtain 

(41) 

lrr~~(Xi) - rr~o1 (Xi)I < L 1Kh,/3n(Xi - Xj) - Kh,/3o(Xi - Xj)I ~ 
#i 

< CIT (X·) l/3n - /3ol /30 i h 

and similarly 

(42) L IF(X;)I<h,/ln(X; - X;) - F(X;)I<h,iJo(X; - X1)f :'.:O crriJ,(X;) l.6n: ,6of. 
#i . 

Putting together ( 41) and ( 42) we conclude that 

l(B ) - (B )I < c l/3n - f.Jol < Ch2s+l 
f3n /30 - h -

and the lemma follows with cb = L' + 1. 

To complete the proof for the tests r.p~* it remains to note that for each F E :F1 

and that if 
(43) 

T** > nVh l(F- F. ) - (B )I+ ~f3n 
n - Vr Bn f3n Vt (3n ~ 

with V* from Lemma 4.6, then by Lemma 4.3 we obtain 

P ( r;· < J (2 +<5) In N) :'.:O 

< P (~'fh 2V~j(2 + 8) In N + :~· < j(2 + 8) In N) ~ V(3n ny h Vf3n 

< P (I~: I> j(2 +<5) In N) ---t 0, n---t oo. 

Finally we remark that ln N ~ C ln n and the choice of h by (8) yields 
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i.e. ( 43) holds true if en in the definition ·of the alternative H1 is taken with c; 2: 2C' h28 • 

This completes the proof for the tests r.p~* 

Now we explain why the statistics T;* can be considered in place of T;. The idea is to 
show that the difference T;* - T; is relatively small (being compared with the test level 
v2 ln Nor deviation (F - Fon)). First we treat the preliminary parametric estimator Bn. 
Denote for given FE Fo U F1 

Bn being from (27) 

Lemma 4.8 Uniformly in F E Fo U F1 we have for each 8 > 0 

(44) p (dn~F) J(F- Po)- (F- Fo.)J > s)--+ 0, 

P cn~F) J(F- Po,c)J > s) --+ o. 

Proof. Let us fix some 8 > 0 and some B E 8n. First we show that the probability of 
the event {I ( F ~ Fe, c) I > J ( (F - Pe) + In: n) } 
is asymptotically small. More precise, we state the following assertion: 

(45) e~. P (l(F - Fe,c)I > J ((F - Fe)+ In: n)) --+ 0, n--+ CXJ. 

In fact, if we put d~ = E l(F - Fo, c)l 2 then we have 

d~ = EI~ ~c, [F(X;) - Fe(X;)]r 

~ l::a} IF(Xi)- Fo(Xi)l 2
• n . 

i 

Using Lemma 4.6 we have 

a*2 a*2 
d~ ~ - 2 2::: IF(Xi) - Fo(Xi)l 2 = - (F - Fe). n . n 

i 

Further, 
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and 

P (l(F - Fo, c)I > J ( (F - Fo) + ~)) ::; 

< P Uo l(F - Fo, c)I > :
0 

ln nJ(F - Fo) /n) ::; 

< P (:
0 

l(F - Fo,c)I > :. lnn). 

Now we use an estimate of the large deviation probability for the centered and normalized 
random variables d1e (F - F8 , c), see Lemma 4.11 below. Indeed, for n large enough 

L P ( dl ( F - Fe, c) > 8
* ln n) :::; 

BE Sn B O' 

:::; L exp {- 2
82

*2 ln 2 n} :::; n d exp { -( d + 1) ln n} :::; n - I 
BE Sn O' 

which implies (45). Here we used that the cardinality of en is of order nd. Let BE en be 
such that 
( 46) (F - Fe) - (F - FoJ > 28dn(F). 
For 8 small enough this yields 

( 47) ( F - Fe) - ( F - Fon) > 8 ( ( F - Fe) + ( F - Fon)) . 

Now by definition of Bn we obtain through ( 46) and ( 47) 

{Bn=B} c {(Y-Fo)::;(Y-Fon)}= 
{ ( F - Fe + c) :::; ( F - Fon + c)} = 
{ (F - Fe) - (F - Fon) :::; 2 (F - Fe, c) + 2 (F - Fon, c)} ~ 

C { (F - Fo, c) > ~ ( F - Fo)} U { ( F - Fo., c) > ~ ( F - Fo.)} . 

Using this relation and ( 45) we deduce 

P (l(F - F0J- (F - Fon) I> 28dn(F)) :::; 

< L 1 (l(F - Fe) - (F - Fon)I > 28dn(F)) p (en= e) :::; 
BE Sn 

< L P ((F - Fo,c:) > ~ (F - Fo)) --+ 0, n--+ oo, 
BE Sn 

that proves ( 44). The second statement of the lemma follows directly from ( 45). 

The next step is to show that the last two terms in the expansion ( 29) are vanishing. 
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Lemma 4. 9 Given F let 
ln2 n 

bf3 == (Bf3) + -. n 
Then uniformly in F E Fo U F1 for each 5 > 0 the following assertions hold: 

L p ( (Bf3, K,f3c;) > 5bf3) -t 0. 
(3ESn,d 

Remark 4.1 The statements of this lemma yield immediately that 

and similarly for (Bf3, K,f3c;). 

Proof. The statements of the lemma are proved in the same manner as in the last part 
of the proof of Lemma 4.8. For the second statemerit we use in addition the fact that 

( 48) 

Indeed, using assumptions (El)-( E3) and ( I<l )-( I<5), Lemma 4.6 and Jensen's inequal-
ity we have . 

2 

E l(Bf3, K,f3c;)j2 - ~E L Bf3(Xi)IIf3(Xi) L €jI<h,(3(Xi - Xj) -
n2 i #i 

2 

- ~E L Cj L Bf3(Xi)IIf3(Xi)I<h,f3(Xi - Xj) -
n2 j i:f:.j 

2 

- ~I::a~ L Bf3(Xi)ITf3(Xi)I<h,f3(Xi - Xj) < n2 . J 
J i:f:.j 

2 

< ~a*2C2 L rr2 (X.) L Bf3(Xi)I<h,(3(Xi - Xj) < 2 7f' f3 J n . i:f:.j J 

< !_(J.2c; L I 'L,;,,,; Bf!(~· )Kh,/!(X; - X;) r < 
n 2 i Li:f:.i Kh,f3(Xi - Xi) -

< ~a*2c;c (Bf3). 
n 

Next we show that the quantities Ef3 and v(3 estimate E(3 and vf3 good enough. 
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Lemma 4.10 For each J > 0 and uniformly in FE Fo U F1 

p ( SU p I Ell - Ell I > ~ ) -+ 0' f3ESn,d n h Inn 

P ( sup I~ -11 > J) -+ 0. f3ESn,d v {3 

Proof. The assumption (E3) implies for each j = 1, ... , n 

lo-J - a-JI::; c(i IP1(Xj) - F(Xj)I 
and hence 

l.Ef3 - Ef3 I ::; ~I: I: lo-J - &JI II~(Xi)I<K,f3(Xi - Xi ). 
n i #i 

Now by the design and kernel properties we derive for each j = 1, ... , n 

L II~(X;)I<i,ll(X; - Xj) :s; ~ 
i#i n 

and using Cauchy-Schwarz inequality we obtain 

!Ell - Elli :s; n~h 2( IP1(XJ) - F(XJ)I :s; n~h [~ 2( IF1(XJ) - F(XJ)1
2r 

The pilot est.imator F1 fulfills with high probability 

(P1 -· F)::; cn-2;~d. 

Hence using the inequality 2;~d > 48~1 and the definition of h we arrive to the conclusion 
that 

Lemmas 4.8-4.10 together imply the asymptotic equivalence of the tests based on Tf3 and 
Th. We finish the proof of the theorem with a result on probabilities of deviations of 
centered and normalized sums of independent errors €i over the logarithmic level. The 
following lemma was already used in the proof of Lemma 4.8. 

Lemma 4.11 For each positive constants r, a the following relation holds uniformly in 
functions F from the Lipschitz class l:d(l, L) of functions in IRd: 

where 

nrP (e(F) >a Inn)-+ 0, n-+ oo, 

~(F) = (F, c) 
jE (F, c)2 

Proof. We proceed in a standard way using the exponential inequality and boundedness 
of errors €i due to (El). The details are omitted. 
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5 A simulation and an application 

The purpose of our simulation experiments was to study the quantiles of the test statistic 
T; and the power of the test in finite samples. All calculations have been performed in the 
languages GAUSS and XploRe ( Hardle, Klinke and Turlach (1995) ). The observations 
were generated according to a binary response model. The explanatory variables were 
identically independent uniform distributed on [-1, l]. \Ve took the parameter e = G) )2 
and considered the functions 

( 49) 

(50) 
(51) 

fo(u) 

fi( u) 
f2( u) 

1 
1 + exp-u 
fo(u) + 77 · c.p'(u) 
1 - exp ( - exp ( u)) 

for different 0 < 77 ~ 1, where <.p is the density function of the standard normal distribution. 
While fo is a legit function, Ji consists of a legit disturbed by a bump (figure 3). The 
response Y under H0 was generated such that P(Y = llxTB0 = u) = f 0 (u). We are thus 
interested in the hypothesis Ho 

Ho: Fe(x) = E[Ylu(x, B) = u] = fo(u) 

In a first step we calculated empirically the 90 and 95 percent quantiles of T; for n = 100 
and 200 observations generated by f 0 . They were used then as rejection boundaries, 
defined as j(2 + 5) ln N, see (24). We calculated T; by optimizing Tf3 over a grid, see 
(23), with N = 50 gridpoints. As kernel function I< we used always the quartic kernel 

/" 15 ( 2)2 /1 (u) = 16 1 - u l{lul<l} 

-2.0 

REAL AND DISTURBED LOGISTIC 

-1.0 o.o 
~ 

1.0 2. 0 

Figure 3: solid line: f 0 , dashed line: f 1 

with 77 = 0.2, pointed line: fi with 77 = 0.6 

BANDWIDTH VS POWER 

0.3 0. 6 o. 9 1.2 1.5 1. 8 2.1 
BAN!><ICTH 

Figure 4: Power function of the test with 
respect to the bandwidth for funtion fie 

In the second step we analyzed the effect of increasing sample size on the power. In table 
1 we show the power of the test when the data were generated with functions f 1a, that 
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is Ji for T/ = 0.2, fie, where T/ = 0.6 and f2. In order not to oversmooth we used the 
bandwidth hi = h = 0.5 for n = 100, 200 and hi = h = 0.25 for n = 350, 500 . Although 
we substituted for speed reasons in the cases n = 350 and 500 V,e by Va for all /], the 
power increases very fast with n. Therefore, it could be of interest to compare the power 
with regard to the bump T/ in the logit model. In table 2 we show for n = 200 and 350 
the power of the test as a function of T/· We see that for T/ > 0.4 this test procedure works 
very well. 

Table 1: Power and rejection boundaries for different alternatives. 

n, h = 100 ' 0.5 200 ' 0.5 350 ' 0.25 500 ' 0.25 
level 5% 10% 5% 10% 5% 10% 5% 10% 

rejection boundary 4.00 3.35 3.30 3.25 3.75 2.90 3.20 2.76 
fia 0.056 0.096 0.112 0.215 0.133 0.207 0.150 0.200 
fie 0.224 0.294 0.530 0.690 0.798 0.856 0.900 0.960 
h 0.316 0.376 0.946 0.991 0.995 1.000 0.995 1.000 

Table 2: Power for different bumps T/ • 

T/ = 0.2 0.4 0.6 1.0 
level 5% 10% 5% 10% 5% 10% 5% 10% 

h 
200, 0.50 0.112 0.215 0.227 0.419 0.530 0.690 0.687 0.801 

n, 
350, 0.25 0.133 0.207 0.3.21 0.478 0.798 0.856 0.889 0.926 

The last _step of the simulation experiment was the study of bandwidth choice. For 
the sake of simplicity we set hi = h as above. First we always have had to determine 
numerically the rejection boundaries for the special bandwidth h. Here we observed 
shrinking boundaries, when h grew from 0.25 up to 2.25 . In figure 4 we plot the bandwidth 
vs the power of the test with observations generated by fie· Obviously for this kind of 
alternative we get better power for larger bandwidths. 

In the introductory example we dealt with youth unemployement. The question is, can 
we explain the youth unemployement with the aforementioned predictor variables X in a 
single index model with logit link? In the application of this dataset, we used a sligthly 
modified procedure as described in Proenca and Ritter (1995). Further we rescaled the 
explanatory variables of each dimension to [-1, 1]. Since there are three dimensions 
( d = 3) for a sample size of n = 462, we chose the bandwidth hi large, definitively 1.5, 
whereas h = 0.3. By Monte Carlo studies described above we determined the 90 and 95% 
one side quantiles of T462 and got 1. 7 4 respectively 2.38 . Now we ran the test for our 
data and got the statistic value T462 = 3.076 for {3 = (-0.18010, -0.10725, 0.97778). For 
purpose of comparison in table 3 we switch the norm of {3 and set his first component 
equal to the corresponding one of e, the parameter of the logit fit in figure 1. 
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explanatory 
variables 

() 

/3 

Appendix 

Table 3: Comparison of fJ and f3. 
intercept earnmgs as an percentage of apprentices 

apprentice divided by employees 
-2.40996 -0.07999 -0.17989 

-0.07999 -0.04763 

unemployed 
rate 

0.95113 
0.43422 

Proof of Theorem 1. To simplify our exposition and to emphasize the main idea 
we consider the case when the parametric family consists of one point, namely, a zero 
regression function, and errors €i are independent and standard Gaussian. Moreover, 
we assume random design with a design density 7r ( x) in !Rd of the form 7r ( x) = 7r 1 (Ix I) 
where a univariate fundion 7r1(·) is compactly supported on [-1, 1], symmetric, twice 
continuously differentiable and satisfies 7r1(t) = 3/4 for ltl :S 1/2. 

The idea of the proof is standard. We replace the minimax problem by a Bayes one where 
we consider instead of the set F 1 of alternatives one Bayes alternative corresponding to a 
prior v concentrated on Fi. We try to choose this prior v in such a way that the likelihood 
Zv == dP v / dP0 is close to 1 where the measure P,,, is the Bayes measure for the prior v 
and P 0 corresponds to the case of zero regression function. The Neyman-Pearson Lemma 
yields that the hypothesis Ho : P = Po can not be consistently distinguished versus the 
Bayes alternative Hv: P = Pv and hence versus the. composite alternative Hi : P E Fi. 

Now we describe the structure of the prior v. Let 9( ·) be some function from the Holder 
class :E(s, L), supported on [-1, 1] and satisfying the conditions· 

(52) ; 9(t) dt = o, 11911 2 = / g2(t) dt > o. 
Set 

(53) 

where a constant a will be chosen later. Denote by In the partition of the interval [-~, ~] 
into intervals of length h. Without loss of generality we assume that the cardinality of 
the set In coincides with 1/ h 

(54) 

For each interval I E In introduce a function 91(t) of the form 

(55) (
t - t1) 91(t) = h5 9 -h- , 

t1 being the center of I. Evidently 91(·) is supported on I, 91 E :E(s, L) and the followings 
hold for h small enough: 

(56) ; g1(t) dt = o, 
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Let now µ be a set of binary values {µ1, I E In} i.e. µ1 = ±1. Define a function Gµ(t) 
with 
(57) Gµ(t) = L µ191(t). 

IEin 

This function Gµ E Li(s, L) vanishes outside [-!, !] and by (56) 

(58) I GJ(t) di= L j9i(t) dt = _!_h 2s+l jg2(t) di= h2
s 11911 2 

· 
IEin h 

Taking into account ( 53) we see that the distance between zero function and each G µ is 
just of the rate c~ from Theorems 2.1 and 2.2. 

Denote by Mn the set of all possible collections {µ1, I E In} with binaries µ1 = ±1, and 
let m( dµ) be the uniform measure on Mn. This measure can be represented as the direct 
product of binary measures m1( dµ1) with m1(M = ±1) = 1/2. 

Now we pass to the semiparametric model. Let Sn be a grid on the unit sphere Sd with 
the step bn, 
(59) b - hl/8 

n - ' 

h being from (53). This means that IJ3 - /3'1 ~ bn = h118 for each /3, /3' E Sn, /3 -:/= /3'. 
Below we will use that for some a > 0 

(60) 

and for n large enough 

(61) h ln n < h ln n < h 1I4 w a a' S a -:/= r:J.' 
4 b VJJ,JJ E n,JJ JJ· 1/3 - /3'1 - ~ -

For each /3 E Sn and eachµ E Mn define the multivariate function Gf3,µ( x) on !Rd with 

It is clear that the function Gf3,µ(x) is Holder, G13 ,µ(x) E Lid(s, L), and by (58) we get 

(62) j G~,µ(x) 7r(x) dx == j G~(x T /3) 7r1(lxl) dx == j G~(t) 7r2(t) dt = Coh2
s 

with 7r2(t) == ;t J I(x T /3:::; t) 7r1(lxl) dx and Co E [! 11911 2, 11911 2]. 

Finally we take the prior v as the uniform measure on the set of functions { Gf3,µ }, /3 E Sn 
, µ E Mn, and 
(63) 1 1 

Pv = N L M L Pa/3,µ. 
/3ESn µEMn 
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Here M = #Mn = 21/h, N being from (60). Denote also Zv = ~~~ and notice that this 
likelihood can be represented in the form Zv = ~ L:/)ESn z/J with 

(64) 

Our goal is to prove that for a small enough in (53) one has 

(65) 

under the measure Po. 

We start from a decomposition and an asymptotic expansion for each Z/J from (64). For 
that we need some more notation. Fix some {3 E Sn and put 

(66) O"~,I = L gJ(XiT {3), f E In, 
i 

(67) 1 ~ T 
~/JJ = - L..J g1(Xi {3) c1, 

O"IJ,l i 

We see that e13 ,1 are standard normal and independent for different I E In , and 

L G~,µ(Xi) = L G~(Xl {3) = L (j~,I · 
i i lEin 

Recall that we assume the random design and 

(68) E ~ G~,µ(Xi) = n J G~,µ(x) 7r(x) dx == nC0 h28
• 

i 

Similarly for each O"~,I 

(69) EO"~,I = n J gJ(x T {3) 7r(x) dx == n J gJ(x T {3) 7r1(lxl) dx = nC1h2s+l 

where C 1 does not depends on {3 and C 1 E [Co/ J2, J2Co]. 

Lemma 5.1 
z/J = II eh( O"f3,l ~/3,l )e-to-~.r 

lEin 

where ch(z) = ! (ez + e-z). 

Proof. By Girsanov formulae and (66)-(67) 

Z13,,, = exp { ~ G13,,,(X;) c; - ~ ~ G~,,.(X;)} = 

- exp { L µw13,1e13,1 - ~ L a~.1 } = 
lEin lEin 

II exp {µw13,1e13,1 - ~a~.1} . 
lEin 
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Now the lemma's assertion follows from the direct product structure of the measure 
m(dµ). 

Denote also 
2 1 ""' 4 vf3 = 2 L.J 0'{3,I' 

IEin 
(70) 

(71) 

Lemma 5.2 The following statements hold: 

{i) E(f3 = O; 

{ii) E(J = l; 
{iii) v~ = C1n2h4s+I = C1 ln n with C1 :::=;a , 

(iv) There exists an independent standard normal r. v. ((3 that 

ln n sup E0 ( (,e - (,e )2 --+ 0. 
{3ESn 

Proof. The first two statements are obvious. (iii) follows from (69). Finally, (iv) is the 
application of the Strassen type invariance principle (see, e.g. ??). 

The next step is the asymptotic expansion for each Z,e. 

Lemma 5.3 The following statements are satisfied uniformly in /3 E Sn: for each 5 > 0 

{i) 

{ii) 

Proof. The first statement is equivalent to the following one: 

Po (l1n Z13 - v13(13 + ~v~I > 0) -+ 0. 

But the latter can be obtained using Taylor expansion for ln Z,e 

In Z13 = L In eh( <Tf3,I~/3,I) - ~<T~,I = 
IEin 

""' [1 2 ( 2 ) 1 4 4 6 6 l L.J 2af3,I ~,6,I - 1 - 12 a,e,I~J3,J + O(af3,J~,e.1) 
IEin 
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and the following asymptotic relations which hold uniformly in {3 

Po ( L 0"~,r( ~~,[ - 3) > o) -t O; 
lEin 

Po ( L a~,r~~.I > <5) -t O; 
lEin 

for details we refer to Ingster(1993). 

The second statement of the lemma follows directly from (iii) of Lemma 5.2. 

Now we arrive at the central point of the proof. Actually we prove that "submodels" 
corresponding to different f3 are in some sense asymptotically independent. That is why 
we have to pay with the extra log-term for the choice of "direction" {3. 

Lemma 5.4 There exist a universal constant R such that for any {3, {3' E Sn) {3 # {3', 

(72) 
Rh 

IE ((3((3'' ::; lf3 - {3'14. 

Proof. Let us fix some {3, {3' from Sn· Denote by p their scalar product, 

p == ({3' {3'). 

Now fix also some I, I' from In and set 

r == r({3, I, {31
, I') == E ef3,Ief31,11 • 

Using normality of ef3,I and ef3',I' we calculate easily 

(73) 

Below we state that r satisfies the condition 

(74) 

with some universal constant C and now we show that this implies (72). In fact, through 
(73) one has 

= E~ I: a~,1 ( e~,I - 1) _!__ I: a~',l' ( e~',l' - 1) = 
Vf3 lEin Vf3' l'Ein 

- ~ _!__ L L a~,Ia~,,I, [ 4r2 ({3, I, {3' ,I') - 2r({3 ,I, {3', I')] 
Vf3 Vf3' lEin l'Ein 

and hence by (69) and (iii) of Lemma 5.2 we obtain 
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Ch2 1 1 ~ ~ 2 2 Ch IE(p(pil::; (1 )2 L.J L.J (j/3,l(j/3',l'::; (1 )2 
- p Vp V[J' lEin l'Ein - p 

and (72) follows. 

To prove ( 7 4) we note that 

r E ef3,1~13 1 ,11 = 
- E l I: g1(XiT /]) g11(Xl /3') = 

a13,1a13',I' i 

n Jg1(x T /]) gl'(x T /3') 7r(x) dx. 
(j /3 ,l(j /3',l' 

Introduce new variables y1 and y2 with x T /3 = tr + hy1 , x T /3' = t11 + hy2. We have 

(75) 

Now we use the Taylor expansion for the function p(y1 , y2 ) = 7r1 (lxi2). with lxl2 due to 
.(75). This function is continuous differentiable and allfirst derivatives are bounded by 
Ch/(l - p) with some constant C depending only on the function 7r1. Using the equality 
J g(t) dt = 0 and (69) we get 

Cnh2s+2h Ch2 
lrl ::; nh2s+l (1 _ P )2 = (l _ P )2 · 

Now everything is prepared to complete the proof of (65). The results of Lemmas 5.2 and 
5.3 reduce this assertion to the following one: 

(76) 

under the measure P 0 • It suffices to check that 

2 

~2 Ea 2::: ( Z ll - 1) -+ 0 
/3ESn 

with 

26 



Using normality of (13 and (iii) of Lemma 5.2 one derives 

For different /3, /3' E Sn denote r = Eo(,a(,a,. Then (,a, can be represented in the form 
(f3' = r(f3 + ( 1 - r )(' with (' independent of (f3. Now 

Eo exp { ( v13 + rv13• )(13 - ~v~} exp { ( 1 - r )v13•(' - ~v~,} = 

{ 1 ( )2 1 2 ( 2 2 1 2 } exp 2" Vf3 + rv,a1 - 2vf3 + 1 - r) vf3' - 2vf3' = 

{ 
2 1 2( 2 2 )} exp rvf3Vf3' - rvf3' + 2r vf3 + v13 , • 

The results of Lemma 5.4 and (iv) of Lemma 5.2 allow us to obtain 

Eo ( Zf3 - 1) ( Zf3' - 1) = E 0 Z,aZ,a, + 1 :::;; Gr Inn. 

Finally, by (61), Lemma 5.4 and (iii),(iv) of Lemma 5.2 we derive 

if a is small enough. 
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