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Abstract: We study the Hopfield model of an autoassociative memory on a random graph on N 
vertices where the probability of two vertices being joined by a link is p(N). Assuming that p(N) 
goes to zero more slowly than 0(1/N), we prove the following results: 1) If the number of stored 
patterns, m(N), is small enough such that m(N)/(Np(N)) l O, as N j oo, then the free energy of 
this model converges, upon proper rescaling, to that of the standard Curie-Weiss model, for almost 
all choices of the random graph and the random patterns. 2) If in addition m(N) < ln N / ln 2, we 
prove that there exists, for T < 1, a Gibbs measure associated to each original pattern, whereas 
for higher temperatures the Gibbs measure is unique. The basic technical result in the proofs is a 
uniform bound on the difference between the Hamiltonian on a random graph and its mean value. 
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I. Introduction 

The Hop:field model of an autoassociative memory (Ho] is described by a Hamiltonian function 

(1.1) 

on the space sN of spin configurations a = { aihEA where, for a given positive integer N' A = 
{1, ... , N} and the spins variables ai ES= {-1, +1}, indicate the excitation state of the neuron i. 
The variables fff}r;1·····m E 5mxN describe them patterns the system is supposed to memorize. 
It is generally assumed that this patterns are 'random', i.e. the components lf form a family of 
mN independent, identically distributed random variables. Typically, one is interested in choosing 
m as a function of N as large as possible under the condition that certain crucial properties of the 
system are retained ('memory capacity'). 

It has been noticed very early (see e.g. [AGS]) that this model formally resembles closely a 
mean :field model of a spin glass, the Sherrington-Kirkpatrick model [SK], that has been heavily 
investigated by physicists (see for a review [M]). Therefore, tools from spin glass theory such as the 
replica method have been employed to study this model. More recently, it has been realized that the 
Hop:field model is in fact much easier to handle in a mathematically rigorous way than real spin glass 
models, at least if the number of stored patterns, m, is subject to certain restrictions. Moreover, m 
may serve as a parameter that allows to continuously drive the system from an essentially trivial 
regime (m = 1) to a highly complex and unpredictable 'spin-glass' regime (m > N). From this point 
of view, the Hop:field model does represent in fact an extremely interesting disordered mean-field 
model. 

Let us describe some of the main results so far obtained: In 1988, Koch and Piasko gave in 
a remarkable article [KP] a complete analysis of the thermodynamic limit of this model under 
the constraint that m is allowed to growth with the system size N no faster than \':i 1;. Their 
construction implied the almost sure convergence of the free energy to a calculable limit (which is 
simply the free energy of the standard Curie-Weiss model) as well as that of the distribution with 
respect to the Gibbs measures of the the so-called overlap parameters 

(1.2) 

A detailed description of these results will be given later. These results have been sharpened and 
generalized to the q-state Potts version of this same model by Gayrard [G]. More recently, Koch 
[K] has obtained a further very interesting result. He proved bounds on the free energy for all finite 
N that in particular imply that if m is chosen such that limNToo ';; = 0, then the expectation of 
the free energy with respect to the distribution of the patterns converges to the free energy of the 
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Curie-Weiss model. As a matter of fact, it is very easy to extend his results to obtain the almost 
sure convergence of the free energy (see section 3 of this article). It should be noted that this result 
holds for all temperatures. 

The Hopfield model as given by (1.1) can be seen as a spin system on the complete graph on 
{1, ... , N}. Both from the point of view of applications in the context of neural networks and from 
that of the theory of disordered systems, it is desirable to study generalizations of the Hopfield 
model on more general graphs, and in particular on random graphs; still more generally, one may 
even wish to study this model when the interaction between sites i and j is not only governed by 
the matrix 'L:µ ~f ~j but is modulated by a random variable Eij' This model is then called the 
'dilute Hopfield model' and given by the Hamiltonian 

1 m 
HN(~; Ej a)= -- L Eij L ~r~;'aw; 

Np {i,j)EAX A µ=1 
i~j 

(1.3) 

where p = IE( Eij) > 0. Dilute neural network models are frequently studied in the regime where 
p = c/N (so-called highly dilute model). There it has been noted by Derrida, Gardner a_nd Zippelius 
[DGZ] that the dynamics of this model with asymmetric Eij (i.e. Eij independent of Eji) can be 
solved exactly in the limit N j oo if the number of patterns is kept finite and proportional to c. 
The reason for this is that in this limit the underlying graph has essentially the structure of a 
(disconnected) tree (see e.g. [BO]). An undesirable feature in this situation is the instability of this 
model against mixing of patterns and thus noisy dynamics. This last point is very easily understood 
in terms of the Hopfield hamiltonian (1.3). Namely, if the underlying graph has the structure of 
a tree, then by cutting any edge it becomes disconnected, and choosing a to equal one pattern on 
one of the components and another on the second, this configuration differs in energy only be a 
finite amount from the original patterns. Moreover, one may construct an infinite number of such 
mixtures. 

Diluted networks are of interest not only if they are more easy to analyze but also for pragmatic 
reasons of network architecture. In very large networks, maintaining full connectivity is clearly 
undesirable if not impractical for technical reasons. It is thus natural to ask how such a model 
behaves if it is less highly diluted, and in particular one may ask how much the network may be 
diluted if the properties of the fully connected network are to be retained. This has been done 
recently [BG] in the regime where m = a.Np where it has been shown that rigorous lower bounds 
on the storage capacity as proven first by Newman [NJ for the model (1.1) can be recovered in this 
situation, provided that p ~ j¥-. 

In the present paper we study this model from the point of view of mean field theory in the 
regime where m < < N. As we will see, the mean field results prove fairly robust against the effect 
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of dilution and can be re-proven under fairly weak assumption on the Eij, although we must always 
require p to be much larger than in Derrida's model. 

To be able to make precise statements, we need to introduce some notation. First, let S1e :::: 
{-1, +l}JNxJN, Fe the corresponding Borel O"-algebra, and let JPe denote the product measure on 
S1e such that ~ = { ~f}fEEjf: is a family of independent, identically distributed random variables with 
JPe(~f = ±1) = ~· Note that for a given, non-decreasing function m: IN -t IN we will denote by . 
~(N) the cylinder generated by the family fff}f:L:::~(N). 

To define the probability space for the dilution variables i:, we need to be slightly more sophi-
sticated due to the fact that we want the marginal distributions of the Eij to depend on the size 
of the network while at same time define all Hamiltonians for different N on the same probability 
space. Thus we take nE = {O, l}JNxJNxJN, FE the corresponding cylindrical O"-algebra. Then let 

E = {Eij(N)}f,i~8:.rxJN be a family of random variables and for all NE IN let F~N) be the sigma-
algebra generated by { Eij(N')}f,;~~xJN· Moreover, we let JP€ be a probability measure on (S1€, F€) 
such that the famili~s { Eij(N)}NEJN are independent for different i, j and that the distributions 
JP~N) induced by JPE on {Eij(N)}i,jEJNxJN is the product Bernoulli measure s.t. 

(1.4) 

This does not yet fix JP€ uniquely and although this is really all we will require, we prefer to 
specify our measure completely by demanding that { Eij( N) }NEJN be a Markov chain with transition 

probabilities chosen such that JPe(Eij(N) = Eij(N - 1)) be maximal given the marginals specified 
in (1.4). A simple computation then shows that this requires 

JP€(Eij(N) = ljt:ii(N - 1) = 1) = p(N)/p(N - 1) 

JP€(Eij(N) = OIEij(N - 1) = 1) = 1 - p(N)/p(N - 1) 

JP€(Eij(N) = llEij(N - 1) = 0) = 0 

JPE(Eij(N) = OIEij(N - 1) = 0) = 1 

(1.5) 

Remark: Obviously, we may carry through this entire construction with Eij(N) taking values in 
a more general space than {O, 1}. 

Let us now define the finite volume partition functions and free energy of our model through 

(1.6) 

and 

(1. 7) 
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Let us further denote by fcw(/3) the free energy of the Curie-Weiss model [E), i.e. 

( 1 :z:2) fcw(/3) = J~k -{ilncosh(/3:z:) + 2 (1.8) 

Then, we have the following 

THEOREM 1: Let p: IN~ (0, 1] be a decreasing function such that p(N)N j 00 1 as N j 00 1 

and let m : IN ~ IN be an increasing function such that ;(1~1 ·l 01 as N j oo. Then, for. all' 

0 ~ /3 < oo, 

#f! fN,13(e; E) = fcw(/3),IP€ x IP€ - a.s. (1.9) 

As in the standard Hopfield model, when the number of patterns, m, is small enough, the 
extremal infinite volume Gibbs states of the Dilute Hopfield model are expected to be measures, 
ga., concentrated near the original patterns ea.. Here what we will in fact be interested in is 
the limiting distributions of the overlap parameters (1.2) with respect to the measure 9a.. More 

precisely, in order to construct the measure ga., we add to the Hamiltonian H N,E,€( a) a 'magnetic 

field, h coupling to the pattern ea. that is we write 

N 

H.N,h(E; e; a)= HN(E; e; a)- h L (jief 
i=l 

(1.10) 

We denote by 9.N,l3,h( Ej 0 the finite volume Gibbs measure which assigns to the configuration 
a E SN the probability 

(1.11) 

We denote by mjv( e) the map 

(j ~ m'fv(e; a) 
(1.12) 

and by .ca.[m'fv(e)] the law of m'fv(e) under 9.N,13 ,h(E;e). Let a+(/3), respectively a-(/3), be the 
largest and smallest solutions of the equation a= tanh(/3a) and define m~,µ(f3) = a±(f3)6a.,µ where 
6a.,µ is the Kronecker symbol. Then, denoting by 6{:i:} the Dirac measure on IR concentrated at the 

point :z:, we have the following 

THEOREM 2: Suppose that all the assumptions of theorem 1 are satisfied and that in addition 
m < ln N / ln 2. Then for h 2: 0 and for all 0 ~ /3 < oo 

(1.13) 
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The same result holds for h ~ 0 with mtµ(f3) replaced by m~1µ("/3). 

Remark: The restriction on the number of patterns in theorem 2 is due to the fact that even in the 
standard Hopfield model, the analogue of theorem 2 has only been proven under this hypothesis. If 
(1.13) holds in the standard Hopfield model under weaker restrictions on m, we expect to be able 
to prove i.t also for the dilute Hopfield model under the same conditions plus those of theorem 1. 

Remark: A more general form of theorem 2 will be given later. . 

Our proofs of theorems 1 and 2 actually follow from the analogous results in the standard 
Hopfield model together with the following theorem, which really constitutes our main technical 
result. Let IP denote the product measure IPe x 1Pe on (ne x ne, Fe x Fe)· 

THEOREM 3: Let m be an increasing function such that m( N) / N l 0 as N j oo. Then there 
exists an event AN E Fe and a constant 0 < K < oo s.t. 

(1.13) 

and s.t. if p satisfies p(N)N j oo as N j 00 1 then, for any strictly decreasing function 'Y: IN --t IR 

satisfying r(N) l 0 as N j oo and p_(N)Nr2(N) > c for some constant 0 < c < 00 1 there exists a 

constant p > 0 s. t. 

(1.14) 

Remark: It should be noted that our results require only the weakest plausible conditions on the 
dilution rate p(N). In fact, in terms of the underlying random graph, this condition assures that 
the 'giant component' of the graph is so big that the number of vertices in its complement is o(N) 
(see [Bo]). If p(N) were smaller, e.g. lim Np(N) > O, then an extensive fraction of the graph would 
consist of finite connected components and a result like theorem 3 could not be expected. It is also 
very likely that the condition in theorem 1 on the number of stored patterns is optimal, although 
as yet we cannot prove this. The situation in theorem 2 is less clear, the reason being the lack of 
knowledge on the structure of Gibbs states in the Hopfield model if the number of patterns exceeds 
lnN. 

The prove of this theorem will be given in the next section. In sections 3 and 4 we will use 
this to prove theorems 1 and 2, respectively. 

Acknowledgements: V.G. would like to thank Joel Lebowitz and the Mathematics Department 
of Rutgers University there part of this work was done for their kind hospitality. We are grateful 
to Hans Koch for sending a copy of his work prior to publication. Finally, we would like to thank 
Pierre Picco for a critical reading of the manuscript and valuable comments. 
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II. A uniform bou-nd on the Hamiltonian 

In this chapter we prove our theorem 3 which provides a uniform bound on the difference 
between the Hamiltonian of the dilute Hopfield model and its average with respect to the dilution 
variables €. We have recently proven such a result for the dilute Curie-Weiss model [BG2] (which 
corresponds to the case m = 1) and our basic strategy will be the same; however, this time the 
presence of the random couplings Jij = l:µ er er adds considerable complications. 

Let us set (ti, e;) = l:µ ef ej'. We may write the Hamiltonian as (we suppress the dependence 
of€ and ton N for the simplicity of notation) 

(2.1) 

Here we choose to define 
. ( ) { 1 ' if x 2:: 0 

sign x = -1 , if x < 0 (2.2) 

Now define the set A+ as the set of all pairs of sites where the spins are aligned with the couplings, 
i.e. 

(2.3) 

Defining furthermore '5.ij as the indicator function of this set, i.e. 

'5.i·= {1 ,if(i,j)EA+(u;e) 
3 0 , otherwise 

(2.4) 

and noticing that 

(2.5) 

we may rewrite our Hamiltonian as 

(2.6) 

We want to prove,;Ghat uniformly in O', the Hamiltonian HN(€j e; u) is close to its expectation w.r.t. 
the distribution IE~. Since the first term in (2.6) is independent of O', the real task is to show this 
property for the sE:cond term in (2.6). More precisely, let us consider the probability 

IPe (30······ E sN =·I: l(ei,e;)l'5.ij€ij - PI: l(ei,e;)l'5.ij > P1 I: l(ei,e;)l'5.i;) (2.7) 
i#j i#j i#j . 

where/ = 1(N) fo some positive decreasing function tending to zero with N that will be chosen 
appropriately later. We will show that with !Pe-probability that tends to one as N j oo, the 
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probability (2.7) is expo:rientially small. Note that (2.7) is bounded from above by 

IP€ (:ia E sN : L l(ti,tj)l2ijtij > p(l + 1) L l(ti,tj)l2ij) 
i#j i#j 

+IP€ (:ia E sN : L 1cei,ej)J2ijtij < p(l - 1) l::J<ei,ej)Jsij) 
i#j i#j 

(2.8) 

Our estimates wilf be the same for both terms in (2.8) so that we only concentrate on 

We have, bounding the probability of the union by the sum of the probabilities and then using the 
exponential Markov inequality [CT] 

Now 

(2.11) 

so that the exponent in (2.10) can be written as 

AN(e,a) = l:=ii (-p(l +1)tl(ei,ti)I +In (p(elC€ •. €;)Jt -1) + 1)) (2.12) 
i#j 

Now for t ~ 0 we have the following bound 

In (p(elC€i.€;)Jt - 1) + 1) ~ p(elC€i.€;)1t - 1) 

= P { i(ei, ti)lt + i(ti, ~)i 2 t2 + RJ(i(ti, ti)lt)} 
(2.13) 

where 

(2.14) 

Our strategy will now be the following: Anticipating that R3 will be small, we choose t* such that 

-p(1+1) 2: 1cei,ej)12ijt + p L 1cei, ej)lsijt + p L icei, ~)12t2 sij c2.15) 
i#j i#j itj 
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is minimized, i.e. 

(2.16) 

This gives the bound 

(2.17) 

Our aim is to get a a-independent bound on the exponential in (2.17). To this end notke that first 
of all we have the trivial upper bounds 

(2.18) 

and 
(2.19) 

i'f;j i-:j;j 

More interestingly, we may also get corresponding lower bounds. Namely, since 

(2.20) 

we get that 

L l(li, li)ISij = ~ L [awi(li, li) + l(li, li)I] 
~j ~j 

= ~ [t,w.u)' -mN + ~ l(t•.t;)ll 
(2.21) 

and hence 

~ l(t,,t;)IB;; ~ ~ [-mN + ~ l(t;,t;)ll (2.22) 

Finally, 

I: l(li, liWsij = ~ :L [2= lNre;e; O"iO"j + l(li, lj)1 2] 
i'f;j i-:j;j µ,v 

= ~ L (~tfl'iai) 2 
- ~m2N + ~ ~ l(li,li)l2 

µ,v i i'f;J 

(2.23) 

and hence 

(2.24) 

Combining these four bounds we get the following 
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LEMMA 2.1: t* as defined in {2.16} satisfies the following upper and lower bounds: 

(2.25) 

if t~ > O, and 

(2.26) 

(Note that the condition t~ > 0 will be satisfied on the subspace of n( where we will want to 
use (2.25)). 

An immediate consequence of this lemma together with (2.17) is the following proposition, 
which yields the desired uniform, but still ~-dependent bound on Q N: 

PROPOSITION 2.2: The probability QN(O satisfies the bound 

(2.27) 

for all~ s.t. t~ > 0. 

What we now need to prove is that with very large probability, the exponential in (2.27) is suffi-
ciently small to offset the 2N pre-factor. Note that it depends only on the quantities .Ei:;C; l(~i, ~;)In 
and it is those we need to control. To see how this can be done, it is reasonable to think of the 

variables (~i, ~;) as being essentially gaussians with variance m 112 • In fact, we have the following 
bounds: 

LEMMA 2. 3: The moments of the variables ·I ( ~i, ~i) I (for i f. j} satisfy the upper and lower 
bounds: 

(i) If l ~ ~ 
m!l! 21 21 m!l! 

(m - l)! :$ IEl(~i, ~;)I :$ 2 (m - l)! (2.28) 

{ii) If l > ~I 

ml (k(k + 1))'-k $.lEJ(~i, ~;)1 21 :$ 221 m! (k(k + 1)/-k, if m = 2k 

m!k (k(k + 1))!-k-l $1El(~i, ~;)1 21 :$ 221 m!k (k(k + 1)/-k-l , if m = 2k - 1 
(2.29) 

(iii) The odd moments are bounded in terms of the even ones through 

(2.30) 
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(iv) Moreover, for the first two moments we have the exact formulas 

(2.31) 

Proof: Notice first that point (iii) simply follows from Jensen's inequality [CT]. The even moments 
are more easy to compute since in this case the absolute value may be dropped, and since for i :j=. j, 

~re; has the same distribution as ~r' so that 

(2.32) 

But since t 11-' are i.i.d. symmetric Bernoulli, the moment generating function for the r.v. °"m ti-' <,, LJµ=l <:.1 

is ( cosh x )m, and thus 

(2.33) 

Thus, we just need to estimate the 2l-th derivative of coshm x. Let us put C,,(x) = coshm-s x.sinh" x. 
Since 

d 
dx C,, = (m - s)Ca+l + sCa-1 (2.34) 

it is natural to label each term appearing in the 2l-th derivative by a random walk w of length 2l on 
{O, 1, 2, ... , m}. Moreover, since at the end we must set x = 0, only such walks will give a nonzero 
contribution which finally produce a C0 , i.e. we count only walks starting at zero and ending at 
zero. Finally, we define the weight of each step of the walk by 

, if Wt+l - Wt = 1 
, if Wt+ 1 - Wt = -1 (2.35) 

Then we have that 

(2.36) 

Now since w must contain the same number of steps going up as going down, we may pair them 
in such a way that to each step going up at, say, time t (and starting at Wt), we associate the 

next step down starting at the position Wt' = Wt+ 1. Notice that such a time t' will necessarily 
exist. Now the weight of each such pair is (m - Wt)Wt' = (m - Wt)(wt + 1), and the weight of the 
walk is the product over all pairs of these quantities. The important observation is now that the 
function ( m - x )( x + 1) attains its maximum at x = m2l, and therefore the walk with highest 
weight is simply the one for which Wt is as close to this value as possible under the constraints that 
w0 = wu = 0. It is trivial to see that such a walk will have the weights corresponding to the lower 
bounds in (2.28,2.29). 
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The upper bounds are simply obtained by multiplying the highest weights by the trivial upper 

bound 221 for the number of contributing walks (this could be slightly improved to (2/) ). 

Finally, the exact formulas (2.31) for the first two moments are obtained by standard compu-
tations. This concludes the proof of lemma 2.3. 0 

The reader will now verify that if we were to replace all powers of l(fi, f;)I in (2.27) by the 
respective moments, this would indeed yield an exponentially small value for Q N· Our next step will 
therefore consist in proving that the fluctuations of the powers of l(fi,f;)I about their expectations 
are sufficiently small. More precisely, we want to control the probabilities 

Pn(D) ""!Pe ( ~ [l(e,, <;JI" - IBl(e,, <;)I"] " 6" N' 1El(<i. 6)1") (2.37) 

Note that the obvious bound 

(2.38) 

would be a disaster as the last probabilities in (2.38) do not depend on N and thus will never offset 
the N 2 prefactor. To improve it, we must exhibit some independence of the terms appearing in the 
sum over i and j. To do so, we go only halfway towards (2.38), i.e. we notice that 

Pn(o) ~ NIPf. (L[l(fi,f1)ln-1El(fi,(1)ln] ~ c5nN1El(fi,6)1n) 
i:;H 

(2.39) 

The terms in the remaining sum are now independent. To obtain a bound on Pn that behaves like 
1/N2 , we now use the sixth-order Chebychev-inequality to bound the probabilities in (2.39). This 
gives 

lPf. (L [l(fi, li)ln - lEl(fi, fi)ln] ~ sn N 1El(6, 6)1n) 
i#-1 

1E (L:ii:l [l(fi,li)ln -1El(fi,6)1nJ)6 < ~~~~~~~~~~~~~-
- N 505n (1El(f1, 6)1n)6 

(2.40) 

Let us put ai = l(fi, fi)ln - lEl(fi, li)ln. Then, since lEai = 0, 

1E (~ai)' = I;1Ea1 + G) f:lEailEaJ 
S S SrJ 

+ (~) ~ lEa~ lEa~ 
Sr] (2.41) 

+ (~) (~) L lEa~lEa~lEa~ 
if:#k 

= NlEa~ + 15N(N - l)lEa~lEa~ + 20N(N - 1) (1EaD 2 

+ 90N(N - I)(N - 2) (1EaD 3 
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With these preliminaries it is now an easy matter to prove the following 

LEMMA 2.4: There exists a finite positive constant C, such that, uniformly in m, n and N, 

IE (2:i,ei [l(ei,6)1n -IEl(ei,6)1nl) 6 

~~~~~~~~~~~~~~N3Cn 
(IEl(e1, 6)1n)6 

(2.42) 

Proof: Note that from (2.41) it follows that the quantity on the left of (2.42) can be expressed 
as a finite sum of terms of the form 

(2.43) 

with a= 2, 3, 4, 6, i = 1, 2, 3 and ca,i finite numerical constants. Using the upper and lower bounds 
from lemma 2.3, one easily checks that the ratios of expectations in (2.43) are all bounded by 
constn, uniformly in.m. But this yields the claim of lemma 2.4. O 

From lemma 2.4 we can now deduce the 

LEMMA 2. 5: There exists a finite positive constants 8 and K such that 

Proof: Just notice that by (2.39) and lemma 2.4 

IP; ( 3.~, : ~II({;, <;JI" - JEl(e., <;ll"l ::, o• N' JEl('1, <2ll") 

'.': ~IP; (~II(<., <;ll" - JEI(<;, <;ll"l ::, o• N' JEl('1, '2)1") 
1 (c)n ~I: N2 {; 

n~J 

from which (2.44) follows if 8 is chosen such that C / 8 < 1. O 

Let us now define the event AN E Fe as follows: 

DEFINITION 2.1: w E AN, iff e =: e(w) satisfies 

12 
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We define further the set 
00 

A=: LJ n AN (2.46) 
No=l N'?_No 

From the previous results it follows already that AN has large probability: 

LEMMA 2. 6: There exists a constant 0 < K < oo such that 

(2.47) 

Moreover, 

lP~(A) = 1 (2.48) 

Proof: The bound (2.47) is easily pieced together from the previous lemmata. (2.48) follows from 
(2.47) and the Borel-Cantelli lemma [CT].() 

Now the event AN was constructed in such a way as to ensure that (2.27) is small. More 
precisely, we have 

LEMMA 2.7: On the set AN, we have, for any function/ s.t. 1(N) 10 1 as N j 00 1 the following 

(i) 

(ii) 

and 

{iii} 
2:::: Ra(t*l(~i, ~i)I) ~ 1 3 K N 2 

if:;j 

(2.49) 

(2.50) 

(2.51) 

Remark: It should be noted here that no assumptions are made in this lemma on the speed with 

which 1(N) tends to zero. This is, as we will see shortly, essential in order to get the weakest 
possible assumptions on p(N). This renders our proof somewhat more complicated. A simpler 
proof can be found under the assumption that 1(N)../filN L 0. 
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Proof: The proves of (i) and (ii) are fairly immediate, using point (iv) of lemma 2.3 (and assuming 
m large, for simplicity). To prove (iii), just notice that on AN, 

(2.52) 

Now we will always assume that m/N goes to zero as N goes to infinity. Therefore, t~ is effectively 
bounded by, say, 71 I rm, for N large enough. Moreover' 'Y will be taken to zero with N, so that 
we may assume it to be as small as desired. It is then a trivial matter to realize that all four sums 
in (2.52) converge and that moreover 

'°"' (1 + 821-1 )N2 tu 221 m. · < N2 '°'(l + 8 21-1)621-11 21-1 · 21 m/2 ( *)21-1 ( rzr ) 212"i"1 m/2 [121-1 

~ (21- 1)! (m - l)! - ~ (21- 1)! (2.53) 

~ C1N213 

and similarly 
m/2 ( * )21 1[1 '°'(l 821)N2~ 21 m. · C N2 4 
~ + (2l)! 2 (m - l)! ~ 2 'Y (2.54) 

while the last two sums are bounded by 

(2.55) 

and are thus completely negligible. Combining these bounds yields (iii). O 

We are finally ready to merge these results into a bound for Q N: 

PROPOSITION 2.8: Assume that m/N L 0 and pN j oo as N j oo and choose 'Y s.t. pN1 2 > c 

for some constant 0 < c < oo . Then, for w E AN and for N sufficiently large, there exists p > 0 
s.t. 

(2.56) 
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Proof: Inserting the bounds from the previous lemma. into (2.27), we get that 

(2.57) 

Choosing nowN large enough and 1(N) such that 

32 
pN12 > 1 - 32K1ln2 (2.58) 

we get the bound (2.56). O 

From this proposition and lemma 2.6 we now get immediately our theorem 3. 00 

III. Convergence of the free energy 

In this section we discuss the consequences of the uniform bounds obtained in the previous 
section for the convergence of the free energy of the dilute Hopfield model. Let us denote by fN,13(() 
the free energy of the standard Hop:field model, and let us introduce 

(3.1) 

We have the following 

PROPOSITION 3.1: Assume that p(N)N j oo and J;J{k L 01 as N j oo. Then, for all /3 1 

(3.2) 

Proof: By theorem 3 there exists an event CN E F€ x FE s.t. 

(3.3) 

such that on C N, for a.11 u E SN, 

(3.4) 
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for any decreasing func~ion 'Y satisfying 1(N) l 0 as as N j oo and p(N)N1(N) 2 > c for some 

constant 0 < c < oo. But IEeHN(~; f.j er) is nothing but HN(~; er), and hence a trivial calculation 

shows that (3.4) implies that 

(3.5) 

If we moreover choose 'Y such that with 1(N)y'm l 0 as Ni oo, setting c =UN >o nN>.N: CN, we . . o_ _ 0 

s~e immediately that on C, 

lim !J.fN,{3(~; €) = lim 1(N)Jm(N) = 0 
Njoo Njoo 

(3.6) 

Now combining the constraints on 'Y gives the condition P";, l 0 as N j oo while (3.3) and the 
Borel-Cantelli lemma imply that IP(C) = 1, which proves the proposition. O 

Therefore, to prove theorem 1, we just need to prove the almost sure convergence of the free 
energy of the standard Hop:field model. Now in a recent paper, Koch [Ko] has shown that under 
the assumption that m/ N l O, 

(3.7) 

Tirozzi and Sherbina [TS] also very recently proved this convergence in probability (with a bound 
on the probabilities that cannot yield almost sure convergence). As a matter of fact, it is very 
easy to modify the approach of Koch to prove the almost sure convergence (this would even seem 
a more natural consequence of his computations). Let us state this result and give the proof for 
completeness. 

THEOREM 3.2: Assume that m(N)/N l 0 as N j oo. Then 

Hf! !N,f3(0 = fcw(f3), IPe - a.s. (3.8) 

Proof: We follow essentially the analysis of [Ko]. The first step consists in rewriting the partition 
function in terms of Gaussian integrals in a standard way: 
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where z is an m-compo~ent vector and (z,~i) = 2:;=1 zµ~r, etc .. Now notice that 

1 N 1 N 1-6 -2 N {3( z, z) + t; In cosh({3( z, ei)) = ...:. 2, N {3( z, z) + t;-2-{3( z, ei)2 

N 1-6 + L In cosh({3(z, ei)) - -2-{3(z, ei)2 

i=l 

1 ~1-6 2 
~ - 2Nf3(z,z)+ 6 - 2-{3(z,ei) 

i=l 

( 1-6 ) + N ~~ In cosh({3x) - - 2-{3x2 

1 = - -N{3(z,(ll - (1- 6)A)z) 
2 

( 1- 6 ) + N ~~ ln cosh({3x) - - 2-{3x2 

' (3.10) . 

where the m x m-matrix A has components Aµv = 1 2:~1 er er. Of course, this decomposition 
is only useful for a choice of 6 such that the matrix (ll - (1 - 6)A) is strictly positive. If this is 
the case, then inserting this inequality into (3.9) gives the following upper bound on the partition 
function 

ZN,€ ~ eNmax.,(lncosh(/3x)- 1; 6 /3x2 ) det (ll - (1- 6)A)-1/2 

~ eNmax.,(tncosh(/3x)- 1 ; 6 /3x2 ) (.Amin(ll _ (1- 6)A))-m/2 
(3.11) 

where Amin(M) denotes the smallest eigenvalue of the matrix M. (3.11) yields immediately the 
lower bound 

!N,13(e) ~ -{3-1 m;:x (In cosh(f3x) - 1 ; 6 {3x 2) + 2;N In (.Amin(ll - (1 - 6)A)) (3.12) 

If we could choose 6 = 6(N) in such a way that 6(N) l 0 as N j oo, this lower bound would converge 
to the Curie-Weiss free energy, and since the Curie Weiss free energy is trivially an upper bound 
for the Hop:field free energy, this would give the desired convergence. The following proposition 
tells us that with probability one this is indeed the case. 

PROPOSITION 3.3: Let Amax(A) denote the largest positive eigenvalue of A. Then, for any 
constant c and for N large enough, we have that 

(3.13) 

Bounds on largest eigenvalues of random matrices can be found for instance in [KF]. They prove 
results like (3.13) for symmetric matrices with i.i.d. entries. Their method is in fact well-suited to 
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be ·adopted to the present situation. The basic input into the proof of (3.13) is the following bound 
on the trace of the powers of the matrix A: 

LEMMA 3.5: Let k::; N 116 • Then 

IE tr Ak < 2N e2kp/(l+P) € - (3.14) 

where p = ..;mJN. 
Remark: Koch [Ko] and Tirozzi and Sherbina [TS] announced analogous bounds on the traces 
of (A - II )k. We present a proof along the lines of [KF] in an appendix. Let us also note that 
our proof has the additional virtue that it also holds when the ~f are centered but not necessarily 
symmetric random variables. 

Let us now show how lemma 3.5 implies proposition 3.4. 

Proof: (of proposition 3.4, using lemma 3.5) Notice first that Amax(A)k::; trAk, for all k (note 
that A is a positive matrix). Thus, using the Chebychev inequality and lemma 3.4, for all k ::; N 116 

IP (Amax( A) > e2P/(l+p) + X) ::; IP (tr (A k) > ( e 2P/(l+p) + x )k) 

< JEtr(Ak) 
- ( e2P/(l+p) + x )k 

2e2p(1-p)k 
<N------ ( e2P/(l+p) + x )k 

-( xe2p/(1+p) ) k 
= 2N 1 - ---,.---~ 1 + xe2p(l-p) 

{ xe-2p/(1+p) } 
::; 2N exp -k 1 + xe-2p/(l+P) 

(3.15) 

Now we choose k as large as possible, i.e. k = N 116 and x = (1 + c)N-116 ln N. Then (3.15) yields 

( p/(l+p) _) { 116 (1 + c)N-116 ln N } 
IP Amax( A) > e + x ::;2N exp -N e2P/(l+p) + (1 + c)N-1/6 ln N (3.16) 

which proves the proposition. 0 

We are now ready to prove theorem 3.2. 

Proof: (of proposition 3.2) By proposition 3.3, and using the triangle inequality, we see that with 
probability greater than 1 - 2N-2 , 

>-min(II - (1 - o)A);:::: 1 - (1 - o)(eVmfii + 3N-116 ) 

"'o ~ ( ..;mJN + 3N-116 ) + o( ..;mJN + 3N-116 ) 
(3.17) 
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so that we may choose 6(N) = ( ~ + 3N-116 ) which tends to zero with N and get that 

f N,i;(f3) ~ - m;x (1n cosh(f3p) - 1 - ~( N) {3p2) + ; ln( ~ + 3N-116 ) 2 (3.18) 

Now the last term in (3.18) goes to zero with N, while the first converges (by continuity) to 

maxp (ln cosh(f3p) - tf3p2 ) = fcw(f3). Since (3.18) holds on an event whose complement has sum-
mable probability, a standard Borel-Cantelli argument as in previous instances yields convergence 
on a set of full measure. ¢ 

Theorem 1 is now a direct corollary of proposition 3.1 and theorem 3.2. ¢¢ 

IV. Limit distributions of the the overlap parameters 

In this section we will assume that m( N) < ln N / ln 2, which is the restriction under which 
the analogue of theorem 2 could be proved in the standard Hopfield model ([KP], [G]). We first 
present an extended form of theorem 2 to the case where the external magnetic field couples a 

finite number of patterns with equal strength. That is, for any finite l < m and any family 
{o:i, ... ,o:z} E {1, ... ,m} we define the Hamiltonian 

l N 

H~~h .. ,a1(e;e; u) = HN(e; e; u)- h LL O"ic; ( 4.1) 
j=li=l 

We denote by 9~~E:hai ( ej 0 the corresponding finite volume Gibbs measure. Futhermore, for any 
finite integer k < m and any family {µ1 , ... , µk} E {1, ... , m} we define the map 

M~, ... ,µi.(e): sN ----t [-1, 11k 

O" ~ (m~(e; u), ... , m';; (e; u)) 
( 4.2) 

and we denote by .cai, ... ,a 1 [M~· .. ··l-'1& (0] the law of M~, ... ,µ,.(e) under 9~~E:;t1 (e; e). Now defining 

m,±_ {" }([3) = a±(f3)(5a . .. 1 , ••• ,0a .... ) where Oa .. is the Kronecker symbol, and denoting by a,' ,....1 .... ,µ" ',,.... ',,....,. ,,_ 
o{x} the Dirac measure on JRk concentrated at :z:, we have the following 

THEOREM 4: Suppose that all the assumptions of theorem 2 are satisfied. Then for h ~ 0 and for 
all 0 ::; f3 < oo 

( 4.3) 
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We shall only give the proof of the particular case of theorem 4 given by theorem 2 and 

moreover, we only consider the case h ~ 0. This proof will closely follow that given in (GJ and 
makes direct use of some results established therein. Therefore, in order to be concise, we will only 
stress the aspects due to the dilution and refer for details to [G]. 

One main ingredient of the proof consists in a random partition of the set A = {1, ... , N} 
which can be briefly described as follows. Let us fix an arbitrary enumeration of the d = !Sm I = 2m 
elements of the set sm and write 

( 4.4) 

with ek = (el;, ... ,e~, ... ,e;:). For allµ= 1, ... ,m, we denote byeµ the d-components vector 
eµ = (ei, ... , e~, ... , e~). Note that the vectors eµ are orthogonal to each other, i.e., 

1 ( µ I.I) - J: d e , e - uµ,v ( 4.5) 

Now any given realization of the r.v. ~ together with the enumeration (4.4) induces a random 

partition of the set A into d disjoint (possibly empty) subsets Ak(fl, defined as 

( 4.6) 

The random partiti~n ( 4. 7) has the property that, form < ln N /In 2, the cardinality of each subset 

Ak(~) remains close to its mean value ~. More precisely, remembering that~= f(w) is a r.v. on 
the probability space (ne, Fe, IPe) we recall from (G] the following 

LEMMA 4.1: (G,KP] Define the event 1JN E Fe as 

1JN = { w E ne j IAk(~)I = ~ (1 + Ak), !Aki < o(N), 1 ~ k ~ d} ( 4.7) 

where 6( N) = /lt In N tends to zero as N tends to infinity. Then 3N0 s. t. V N > N 0 

II'E(VN) ~ 1- 2dexp {-~ ( 1 - D-l 52 (N)} ( 4.8) 

Now let us defi;ne the map Xe: 

d 

Xe: sN ~ 2.e = Q {-1, -1 + IAk~~)I' .. . , 1- IAk~f)I' 1} 
{

Xe( er)= (Xe,1(cr), ... , Xe,k(cr), ... , Xe,d(cr)) 
er--+ 

Xe,k(cr) = J1hCe)I :EiEA1oW cri 

( 4.9) 
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Note that Xe(u) is ad-components vector. Using the random partition of A, the overlap parameters 

can be rewritten in term of Xe( u) as 

(4.10) 

where M is the d X d diagonal matrix with entries Mkk = Ak. Thus given any x E 3e the overlap 
m'f.r(u,~), regarded as a function of the configurations u, takes the value 

1 m'fv(u; ~) = d(eµ, [M + Id]x) (4.11) 

for all u in the subset {u E SNJXe(u) = x}. 

From now on we assume that h ~ 0. To prove theorem 2, it is enough to show that under its 
assumptions, for any continuous function g: [-1, l] --t IR, 

{ 
g(O) 

lim lim '°' g(m'f.r(u;l))91f1-1h(e;~;o-)= 
h!O NToo ~ ''"'' 

uESN g( a((3)6 µ,v) 

By (4.11) we have 

if 0 ~ (3 ~ 1 
IPe x IP€ - a.s. ( 4.12) 

if (3 ~ 1 

( 4.13) 

where v!f,13 ,h( e; ~) is the probability measure on 3e induced by 9.N,13 ,h( e; ~) through the map Xe 
which to each x E 3e assigns the probability 

v.N,13 ,h(e;~;x)= L 9.N,13,h(e;~;o-) ( 4.14) 
uESN: 

Xe(u)=x 

Thus, to compute the expectation ( 4.13) we are left to study the measure v!f,13 ,h( Ej l). 

Let us denote by O.N,13 ,h(~; o-) the finite volume Gibbs measure associated to the mean Hamil-
tonian 

( 4.15) 
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that is to say the Hamiltonian of the standard Hopfield model with a magnetic field coupling to 

the pattern e1-. Let il_N,,e,h(E; l) be the measure induced by Q_N,,e,h(l; a) under the map Xe. The 
following lemma presents a bound on the density v.N,,e,h( fj l; x) in terms of the density v.N,,e,h(l; x ). 

LEMMA 4.2: There exists an event CN E :Fe X :Fe such that on CN, for all x E Se 

e-2,BN../ffl-y(N)i)rx (t· x) < vrx (€' t. x) < e2,BN../ffl-y(N)z;rx (t· x) N,,B,h c,., - N,,B,h 'c,., - N,,B,h c,., ( 4.16) 

where 1(N) is chosen as in theorem 3. Moreover, for N large enough 

( 4.17) 

where p and K are positive constants. 

Proof: By theorem 3 there exists an event CN E :Fe x :Fe whose probability satisfies the bound 
(4.15) such that on CN, for all a E SN and for any function/ satisfying 1(N) l 0 as Ni oo and 
pN 1 2 > c for some co~stant 0 < c < oo, 

( 4.18) 

Now note that 

(4.19) 

and (4.18) and (4.19) together with the definitions of il.N,,e,h(l,x) and v.N,,e,h(l,x) easily yields 
( 4.16), which proves the lemma. O 

Let us now consider the measure v_N,,e,h(l). Since the mean Hamiltonian ( 4.15) can be expressed 
in terms of the overlap parameters as 

( 4.20) 

we have by (4.11) that, for any given x E Se, the right hand side of (4.18) takes the same value for 
all the configurations a such that Xe( a)= x. Therefore the density v.N,,e,h(l; x) can be written as 

exp{-N prx (x)} z;rx (l,x)= • N,,B,h,M 
N,,B,h 2:; L. exp{-N prx (x)} 

xE~e N,,B,h,M 
( 4.21) 

for all x E Se, where 

{
m 1 . 1 } F/1,,e,h,M(x)=-{3 ~[d(e'"',[M+Id]x)]2 +hd(erx,[M+Id]x) +lnj{aESN:Xe(a)=x}I 

( 4.22) 
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( 4.21) has now a convenient form in that, roughly speaking, the point at which ( 4.22) takes its 
minimum value can be computed exactly and vN,,B,h(e;x) can be shown to be concentrated at that 
point. We collect the result we will need in the following 

LEMMA 4.3, [G] :Let a(/3, h) be the largest solution of the equation x = tanh(/3[a: + h]) and denote 
by xa.(h,/3) E [-1, l]d the vector 

xa. ( h, /3) = a(/3, h )ea. . ( 4.23) . 

Let g(h, N) and {j(h, N) be two arbitrarily chosen functions that tend to zero as N tends to infinity. 
Define the subsetA E 3{ as 

A= { x E 2{ I Ila: - -xa.(h,/3)11 ~ ./dg(h, N)} ( 4.24) 

Then, for all w E 1J N and for N large enough 

"'\""""' va. (i: x) <eN{3o(N)-a'?(h,N)} 4...J N,,6,h <,,' -
xEA0 ( 4.25) 

where a and b are positive constants. 

We are now ready to complete the 

Proof of Theorem 2 : Subtracting from both sides of (4.13) the term g(~(e"',xa.(h,/3))) we 
get 

I L [g(m~(u;O)- g(~(e"',xa.(h,/3)))] 9N,J3,h(E;e;u)I 
uESN 

=I ~ [g(~(e"', [M + Id]x))- g(~(e"',xa.(h,/3)))] vN,,B,h(E; e; x)I 
xE.=.e 

( 4.26) 

and decomposing the sum over x E 3{ as the sums over x EA and x E Ac 

I ~ [g( ~( e"', [M +I d]x )) - g( ~( e"', xa.(h, /3)))] vN,,B,h( E; e; x )I 
xE.=.e 

~ L lg(~( e"' l [M +I d]x )) - g( ~( e"', xa.(h, /3))),vN,,B,h( E; e; x) 
xEA 

( 4.27) 

+ L lg(~(e"', [M + Id]x))- g(~(e"', xa.(h,/3))),vN,,B,h(E; e; x) 
xEA0 

so that we are left to show that each of the two terms in the right hand side of ( 4.27) goes to zero 
as N tends to infinity. To bound the former note that for all x E A and w E 1J N 

( 4.28) 
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since on DN, l(el', M:z:)I ~ d6(N), and by definition of A, l(el', [:z:_.x°'(h,,8)))1 ~ dg(h, N). Therefore, 
by continuity of g, 

( 4.29) 

for any arbitrarily small ( provided that N is sufficiently large and finally, for all w E 7J N 

2: lg(~( eµ, [M +I d):z: )) - g( ~( e1-', x°'(h, ,B)))lvN,,a,h( E; ~; :z:) ~ ( ( 4.30) 
xEA 

.. To treat the second term in the right hand side of ( 4.27) we use that since g is bounded, 
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lg(~(e1\ [M + Id]x)) - g(~(eµ,xa(h,,B)))I ~· 2ll9lloo where 11 · lloo denotes the norm of the 
supremum. Thus 

L lg(~( eµ' [M +I d]x )) - g( ~( eµ' xa(h, ,B)))lvN,{3,h( e; e; x) ~ 21191 loo L llN,{3,h( e; e; x) ( 4.31) 
xEA• xEA• . 

Inserting successively the bounds ( 4.14) and ( 4.23) of Lemma 4.2 and 4.3, we have that, on CN n 'DN 

~ 11a (e· c. x) <e2f3NVm-r(N) [eN{3o(N)-a'?(h,N)} L.J N,{3,h ''-' -
xEA• ( 4.32) 

and this last bound converges to zero as N tends to infinity provided that 'Y is chosen such that 
1(N)Jm(N) l 0 as N j oo and that e(h, N) and g(h, N) are chosen such that 

2,Bvm1(N) + 3o(N) - a'f'(h, N) < 0 ( 4.33) 

and 

2,Bvm1(N) + 3o(N) + b,Bhg(h, N) - b~h (e(h,.N) - e(h, N))2 < 0 ( 4.34) 

which is possible for any a and b. Note that putting together the above constraint on 'Y and 
those of theorem 3 imposes the condition m(N)/p(N)N l 0 as N j oo. Now setting £ = 
UNo>O nN>No {cNnvN}, (4.8), (4.17) and the Borel-Cantelli Lemma imply IP(£) = 1. Thus 
( 4.26) and ( 4.27) together with the previous bounds give 

fif!I L [g(mir(a;e))-g(~(eµ,xa(h,,B)))]QN-,13 ,h(e;e;a)l=O IPexIPE-a.s (4.35) 
crESN 

Finally using ( 4.5) 

( 4.36) 

uniformly in N, and since 

( 4.37) 

the case where h ~ 0 of theorem 2 is proven. 0 
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Appendix 

In this appendix we give a proof of lemma 3.4. Since this result may have some more general 
interest, we present it under more general conditions on the ~f. Our proof is largely inspired by an 
estimate on largest eigenvalues of random matrices given by Komlos and Fiiredi [KF]. 

We will assume the following about the ~f here: 

(1.) {t"'}µ=l, ... ,m · - f "l f'' d ' .,,i i=l, ... ,N is a am1 yo 1.1. . r.v. s 

(ii) IE~f = 0 

(iii) IE( ~f )1 ~ u 1, for all l ~ 2. 

We shall also, without loss of generality, assume that m ~ N. Let us define the ( N + m) x 
(N + m) matrix B with elements 

Notice that then 

{ ~~-mi 
Ba13 = ~~-m, 

o, 

if a > m and f3 ~ m 
if f3 > m and a ~ m 
else 

{ 2:~1 et~?' if a~ m and /3 ~ m 
(B 2 )af3 = 2:;:1=1 ~~~~' if a> m and /3 > m 

O, else 

(A.1) 

(A.2) 

Clearly B 2 is the direct sum of two matrices B1 and B 2 , and the matrix A we are interested in is 
just A= 'JvB1. Let us introduce the two index sets 11 = {1, ... ,m} and 12 = {m+ 1, ... ,m+ N}. 
Clearly then we may write 

IE tr Bf= (A.3) 

We may think of the two sums as sums over sequences ( a 0 , ... , o:k-l) E If, etc. For such a sequence 
we will denote by 

(A.4) 

the set of different values the sequence runs through. We may then arrange the sums in (A.3) in 

such a way as to first sum over all possible subsets r 1 C Ii and r 2 C 12 and then over all sequences 
for which the values run through exactly these subsets. Thus 

IEtrBf = L L 
r1 Cli r2 Cl2 (ao·····a1i-iJEI; (Po·····Pi.-1 )EI; 

{(ao·····a1i-1 )}=r1 HP0 •... ,/31i-1n=r2 
(A.5) 
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Now it is obvious that ~he sums over the sequences in (A.5) do not depend on the exact sets r 1 

and r2, but only on the cardinalities of these two sets. Thus we may write 

k min(k,m) min(k,N) (m) (N) 
IE tr B1 = ""' ""' Ek rs ~ ~ r S II 

r==l s==l 
(A.6) 

where 

(cxo•···•"'Jo-1)Eit (/300···•'31o-1)EI; 
{(cxo•··· •"'lo-l )}={l, ... ,r} {(/30, ... ,/311-1 )}={,,.+l, ... ,,,.+•} 

(A.7) 
and where we have used that the combinatorial factors in (A.5) count the number of subsets of 
given cardinality. Note that Ek,r,s does not depend on m or N anymore (the appearance of min 
(A.7) being completely spurious). 

To estimate these last quantities, we would like to think of the sums in (A.7) in a slightly 
different way. Let us denote by Yr,s the complete bi-partite graph with vertex sets labelled by 
'R = {1, ... , r} and S = { m + 1, ... , m + s }, i.e. the graph with vertex set 'R U S and edge set 
'RX S. Each term in the sum (A.7) corresponds to a walk of length 2k, w, on this bi-partite graph 
(i.e. a sequence of edges linking alternately the sets 'R and S) with the property that each vertex 
of Yr,s is visited at least once. Moreover, it is clear that any walk which passes over any given edge 
of Yr,s exactly once will give a zero contribution as the expectation of the corresponding product 
of Ba13's vanishes by assumption (ii) on the distribution of thee. We will denote by 

the set of walks that give a non-zero contribution. By our assumptions, we then have 

LEMMA A.l: 
E < a21r+s-ll IW (r s)I k,r,s _ k 1 (A.8) 

We are thus left to estimate the number of walks in Wk ( r, s). 

Notice first that for fixed r and s, the shortest possible walk contributing must have length 

2k = 2(r + s - 1). Let us thus first consider the case k = r + s - 1. In this case, the walk must 
visit each edge either zero or two times. Moreover, the edges it does visit form a bi-partite tree 
on ('R, S). It turns out to classify all such walks according to the different trees they generate, to 
count the number of walks for a given tree and then to enumerate all bi-partite trees. We get 

LEMMA A.2: Lett be a bi-partite tree on ('R, S) with co-ordination numbers di, ... , dr, Cm+1, ... , Cm+s 
Let O(t) denote the set of all walks in Wr+s-1(r,s) that generate t. Then 

r m+s 

IO(t)l=(r+s-l)IT(di-1)! IT (cj-1)! (A.9) 
i==l j==m+l 
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Proof: Let us pick a particular vertex i, say in n. Suppose w arrives at i at time no for the first 
time. There are di - 1 branches emerging from i (other than the one the walk just comes from), 
and the walk must pass completely over them before it is allowed to return. So at the next step, 

there are (di - 1) choices for the walk to continue. Given that choice, the walk will return to i at 
some later time n 1 after having passed exactly over the entire chosen branch. Now there remain 
(di - 2) choices to continue and so on, until after the (di - 1 )st visit of the vertex i it leaves it in 
the direction it first came from to never return to it. Clearly, the total number of choices arising 
from the visits at this vertex amounted to (di - 1)!, and obviously each vertex contributes such a 
factor, whence the two products of factorials in (A.9). Finally, it remains to decide on the starting 

edge for the walk, of which there are (r + s - 1), which accounts for the first factor in (A.9). O 

By this result, we only have to know the number of bi-partite trees with given co-ordination 
numbers. However, this is a standard problem of graph-theory and one has the following generali-
zation of Cayley's formula: 

LEMMA A.3: Let T(r, s; di, ... , dri Cm+1, ... , Cm+a) denote the number of bi-partite trees with 
given co-ordination numbers di, c;. Then, if Ei di= E; c; = r + s - 1 

· (r - l)!(s - 1)! 
T(r,s;d1, ... ,driCm+1, ... ,cm+a) = (d _ )I (d _ )'( _ )1 ( -1)1 1 1 . . . . r 1 . Cm+l 1 .... Cm+a . 

(A.10) 

and zero otherwise. 

(The proof of this formula is by induction as in the standard version of Cayley's formula. See 

e.g. [BE]). 

Combining these results we get that 

LEMMA A.4: Let k = r + s - 1. Then 

( )
2 r+s-1 

IWk(r, s)I = (r + s - 1) (r - l)!(s - 1)! r-l 
(A.11) 

The proof of this formula is straightforward. 

Let us now return to the general case, k ~ r + s - 1. Using the previous results, it is fairly 

easy to prove the following rather crude bound: 

LEMMA A.5: 

IWk(r, s)I ~ ( 2k ) (.sr)2(k-r-a+l)(r + s - 1) (r + s - 1) 2 (r - 1)!(.s - 1)! 
2(r+.s-1) r-1 

(A.12) 
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Proof: To get (A.12) just note the following: First, for an arbitrary walk w, it is still possible to 
construct in a unique way a bi-partite tree, t(w) on (R, S). To do this, just follow the walk and 
include into t successively all edges that lead to a vertex not previously visited by the walk. Then, 
we may construct a new walk, w( w), of length 2( r + s - 1), whose associated tree is also t( w) by 
again following w and including an edge into w if it is an edge from t and is visited the first or 
the second time. Moreover, we give it the orientation + if it is visited the first time and - if it is 
visited the second time. It is easy to verify that this creates the desired walk. Now we know how 
many walks w exist; thus we need only to estimate the number of walks w giving rise to the same 
w. To do this, just squeeze 2(k - r - s + 1) edges between those of w. There are (2(r;;_1)) ways 
of distributing them, and there are no more then sr ways of placing each edge (in fact there are 
much fewer). But this gives the estimate in lemma A.5. 0 

Let us define the quantities 

We clearly have that 
E tr Bf ~ L L S N,m,k,r,a 

r a 
k+l q-1 

= L LS N,m,k,r,q-r 
q=l r=l 

Now a simple calculation shows that 

5k6 
SN,m,k,r,q-1-r ~ 120" 2 N(l _ k/ N) SN,m,k,r,q-r 

and therefore if k < N 1/6al/3 ' - ' 
1 

SN·,m,k,r,q-1-r ~ 2SN,m,k,r,q-r 

Thus 
k+lq-1 k 

LL SN,m,k,r,q-r ~ 2 L SN,m,k,r,k-r 
q=l r=l r=l 

and finally we arrive at 

LEMMA A.6: Fork< N 116 
- I 

E tr Bf ~ k max s N,m,k,r,k-r 
r 

29 ' 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 



What we are left with finally is to determine the maximum in (A.18). For N large, and using 
that k ~ N, we find that the minimum is realized for r ~ m1, where 'Y = 1fp (remember that 
p = y'm]N). Inserting this value, a simple calculation show that the right hand side of (A.18) is 
equal to Nk+le 2k-r, up to an irrelevant correction factor that goes to one as N j oo. But from this 
lemma 3 .4 is obvious. O O 
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