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Abstract

Motivated by the Jaynes-Cummings (JC) model, we consider here a quantum dot coupled si-
multaneously to a reservoir of photons and to two electric leads (free-fermion reservoirs). This
Jaynes-Cummings-Leads (JCL) model makes possible that the fermion current through the dot
creates a photon flux, which describes a light-emitting device. The same model also describes a
transformation of the photon flux into a fermion current, i.e. a quantum dot light-absorbing device.
The key tool to obtain these results is an abstract Landauer-Buttiker formula.
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1 Introduction

The Landauer-Biittiker formula is widely used for the analysis of the steady state current flowing trough
a quantum device. It goes back to [18] and [7] and was initially developed based on phenomenological
arguments for non-interacting electrons (free-fermions). The essential idea was to describe a quantum
system as an inner or sample system (dot) with left and right leads attached to it, i.e. free-fermion
reservoirs with two different electro-chemical potentials. The goal was to calculate the steady electron
current going from one lead through the dot to another one.

It was Landauer and Biittiker who found that this current is directly related to the transmission
coefficients of some natural scattering system related to this particle transport problem. The phe-
nomenological approach of Landauer and Biittiker later has been justified in several papers by de-
riving the formula from fundamental concepts of the Quantum Mechanics, see the series of papers
[1, 5, 8,9, 10, 11, 12, 13, 14] and [19].

Note that this quantum mechanical approach is possible since for the case of free-fermion reservoirs
the corresponding transport problem reduces to study the Hamiltonian dynamics of extended “one-
particle” system. During last decade there has been an important progress in rigorous development of
the Quantum Statistical Mechanics of Open Systems [2, 3, 4]. This is a many-body approach adapted
for interacting systems. It also allows, besides the Hamiltonian [2], to develop a Markovian description
of effective microscopic dynamics of the sample system (dot) connected to environment of external
reservoirs [3]. Then evolution the sample system is governed by a quantum Master Equation. Although
powerful and useful the Markovian approach needs a microscopic Hamiltonian justification, which is a
nontrivial problem [3].

In the present paper we follow the one-particle quantum mechanical Hamiltonian approach. Motivated
by the quantum optics Jaynes-Cummings (JC) model, we consider here a two-level quantum dot coupled
simultaneously to environment of three external reservoirs. The first is the standard JC one-mode photon
resonator, which makes the JC quantum dot an open system [16]. Two others are free-fermion reservoirs
coupled to the quantum dot. They mimic two electric leads. This new Jaynes-Cummings-Leads (JCL-)
model makes possible that the fermion current through the dot creates a photon flux into the resonator,
i.e. it describes a light-emitting device. The same model is also able to describe a transformation of the
external photon flux into a current of fermions, which corresponds to a quantum dot light-absorbing
device.

The aim of the paper is to analyze the fermion current going through the dot as a function of electro-
chemical potentials on leads and the contact with the photon reservoir. Although the latter is the
canonical JC-interaction, the coupling of the JC model with leads needs certain precautions, if we like
to stay in the framework of one-particle quantum mechanical Hamiltonian approach and the scattering
theory.

We discuss the construction of our JC'L-model in Sections 2.2-2.7. For simplicity, we choose for the
leads Hamiltonians the one-particle discrete Schrddinger operators with constant one-site (electric)
potentials on each of leads. Notice that these Hamiltonians are one band bounded self-adjoint operators.
The advantage is that one can easily adjust the leads band spectra positions (and consequently the
dot-leads transmission coefficients) shifting them with respect to the two-point quantum dot spectrum
by varying the one-site electric potentials (voltage). In Section 2.5 we show that the our model fits
into framework of trace-class scattering and in Section 2.7 we verify the important property that the
coupled Hamiltonian has no singular continuous spectrum.

Our main tool is an abstract Landauer-Biittiker-type formula applied in Sections 3.1 and 3.2 to the case
of the JC'L-model. Note that this abstract formula allows to calculate not only the electron current but
also fluxes for other quantities, such as photon or energy/entropy currents. In particular, we calculate
the outgoing flux of photons induced by electric current via leads. This corresponds to a light-emitting
device. We also found that pumping the JCL quantum dot by photon flux from resonator may induce
current of fermions into leads. This reversing imitates a quantum light-absorbing cell device. These are
the main properties of our model and the main application of the Landauer-Biittiker-type formula of



Sections 3.1 and 3.2. They are presented in Sections 4 and 5, where we distinguish contact-induced
and photon-induced fermion currents.

To describe the results of Sections 4 and 5 note that in our setup the sample Hamiltonian is a two-level
quantum dot decoupled from the one-mode resonator. Then the unperturbed Hamiltonian Hj describes
is a collection of four totally decoupled sub-systems: the sample, the resonator and the two leads. The
perturbed Hamiltonian H is a fully coupled system and the feature of our model is that it is totally
(i.e. including the leads) embedded into the external electromagnetic field of resonator. This allows a
systematic application of the abstract Landauer-Biittiker-type formula, c.f. Sections 3.1 and 3.2.

As we see there is a variety of possibilities to switch on interactions between sub-systems, i.e. to produce
intermediate Hamiltonians. We distinguish the following two of them:

(a) First to switch on the coupling between sample and resonator: the standard JC model H j¢, see
e.g. [16]. Then to connect it to leads, which gives the Hamiltonian H;cp := H of the fully
coupled system.

(b) First to couple the sample to leads: the corresponding Hamiltonian Hgy, is a standard “Black
Box" SL-model for free-fermion current, see [1], [4]. Then to embed it into resonator and to
couple the sample with electromagnetic field by the JC-interaction. This again produces our
JCL-model with Hycr, = H.

Similar to the SL-model {Hgr,, Ho}, it turns out that the JC'L-model also fits into the framework of
the abstract Landauer-Biittiker formula, and in particular, is a trace-class scattering system {H ;o =
H,Hgy}. The current in the SL-model is called the contact-induced current J¢,. It was a subject of
numerous papers, see e.g. [1, 5], or [4] and references quoted there. Note that the current J,; is due to
the difference of electro-chemical potentials between two leads, but it may be zero even if this difference
is not null [12, 13].

The fermion current in the JC L-model, takes into account the effect of the electron-photon interaction
under the assumption that the leads are already coupled. It is called the photon-induced component Jflh
of the total current. Up to our knowledge the present paper is the first, where it is studied rigorously. We
show that the total free-fermion current J in the JC L-model decomposes into a sum of the contact-
and the photon-induced currents: Jo; := J + th. An extremal case is, when the contact-induced
current is zero, but the photon-induced component is not, c.f. Section 5.1. In this case the flux of
photons J,;, out of the quantum dot (sample) is also non-zero, i.e. the dot serves as the light emitting

device, c.f. Section 5.2. In general the Jp,; # 0 only when the photon-induced component Jflh’ #0.

In this paper we derive explicit formulas for these currents in the following three cases which are
important for the understanding of the JC L-model:

(i) The electro-chemical potentials of fermions in the left and right leads are equal. Note that in this
case the (contact-induced) current in the JCL-model is zero.

(ii) The spectrum of the left and right lead Hamiltonians do not overlap. Again, in this case the
contact-induced electron current JS of the current in the JCL-model is zero, and only the

photon-induced electron current Jflh of the total current is possible.

(iii) The leads are coupled to the Jaynes-Cummings model such that left and right leads interact only
by virtue of the photon interaction in the Jaynes-Cummings model. Then the contact-induced
electron current Jg is also zero.

For these cases we find that the photon induced electron current Jé)flel entering the left (o = 1) or right



(a =) lead is given by

Y o /R dX GP" (M) x

m,nENg

(0" (1) frD (A = pta = 1) = pP"(m) frp(A = pe —mw))

where Eﬁzmw (A\) > 0 is a partial scattering cross-section between the left channel with m-photons
and the sc-channel with n-photons at energy A € R. By ¢ > 0 the magnitude of the electron charge is
denoted. The photon current is given by

To= X = m) g [ A frp (= —me) L, ().
m,n€Ng
a,xe{l,r}

Both formulas become simpler if it is assumed that the JC'L-model is time reversible symmetric. In
this case we get

JlZ)Zl - Z / dA Aghml B

m neNo
(PP (n) frp(X = pu — nw) — pP* (m) frp (A — pr — M)

and

_ Aph
Jph = / dx ob . (A)x
m rLENg,rL>m
se,ae{l,r}

(n = m) (" (m) frp (A = e — me) = P (1) frp (A = e — ) -
It turns out that choosing the parameters of the model in an suitable manner one gets either a photon
emitting or a photon absorbing system. Hence JC L-model can be used either as a light emission device

or as a light-cell. Proofs of explicit formulas for fermion and photon currents Jl’?Zl . Jpn is the contents
of Sections 4 and 5.

Note that the JCL-model is called mirror symmetric if (roughly speaking) one can interchange left
and right leads and the JC L-model remains unchanged. In Section 5 we discuss a surprising example
of a mirror symmetric JC L-model such that the free-fermion current is zero but the model is photon
emitting. This peculiarity is due to a specific choice of the photon-fermion interaction in our model.

2 Jaynes-Cummings quantum dot coupled to leads

2.1 Jaynes-Cummings model

The starting point for construction of our JC L-model is the quantum optics Jaynes-Cummings Hamil-
tonian H'C Its simplest version is a two-level system (quantum dot) with the energy spacing ¢, defined
by Hamiltonian hg on the Hilbert space hs = C?, see e.g. [16]. It is assumed that this system is “open”
and interacts with the one-mode w photon resonator with Hamiltonian A?".

Since mathematically A?" coincides with quantum harmonic oscillator, the Hilbert space of the resonator
is the boson Fock space h?" = F, (C) over C and

P = wb*h . (2.1)

Here b* and b are verifying the Canonical Commutation Relations (CCR) creation and annihilation
operators with domains in §4(C) ~ ¢*(Ny). Operator (2.1) is self-adjoint on its domain

dom(h?") = {(ko,kl,kg, L) €Ny Y nPlka? < oo}.

n€Ng



Note that canonical basis {¢,, :== (0,0,...,k, = 1,0,...) }nen, in £3(Ng) consists of eigenvectors of
operator (2.1): hP"¢,, = nw ¢,,.

To model the two-level system with the energy spacing &, one fixes in C? two ortho-normal vectors

{e5,e7}, for example
0 1
ey = <1) and e} = (O) ) (2.2)

which are eigenvectors of Hamiltonian hg with eigenvalues {\5 = 0, \{ = ¢}. To this end we put

hs ;=g<(1) 8) , (2.3)

and we introduce two /adder operators:

ot = <8 é) o= (? 8) . (2.4)

Then one gets hg = ¢ ot~ as well as
S_ _+.8 s_ -8 -~ s_ (0
el =o0"e; , eg =0 e} and o ej = o) - (2.5)
So, €5 is the ground state of Hamiltonian hg. Note that non-interacting Jaynes-Cummings Hamiltonian
HJC lives in the space §7¢ = hg @ h*" = C2 ® F;(C) and it is defined as the matrix operator
H{® := hg @ Iyon + Iy, @ BP" . (2.6)

Here Iy»n denotes the unit operator in the Fock space hP" whereas Iy, stays for the unit matrix in the
space hg.

With operators (2.4) the interaction Vg, between quantum dot and photons (bosons) in the resonator
is defined (in the rotating-wave approximation [16]) by the operator

Vsp := gsp (0’+®b+0’_®b*) . (2.7)

Operators (2.6) and (2.7) define the Jaynes-Cummings model Hamiltonian
Hyc=H{+Va , (2.8)

which is self-adjoint operator on the common domain dom(HJ“) Ndom(Vs;). The standard interpre-
tation of H ;¢ is that (2.8) describes an “open” two-level system interacting with external one-mode
electromagnetic field [16].

Since the one-mode resonator is able to absorb infinitely many bosons this interpretation sounds rea-
sonable, but one can see that the spectrum o(H’¢) of the Jaynes-Cummings model is discrete. To this
end note that the so-called number operator

mJC = O’+O'_ (024 Ibph + Ihs & b*b
commutes with Hjc. Then, since for any n >0
970 = {Coef ® pn + C1e] @ dn_1}co,ec » 90 = {Coeh ® do}eoec (2.9)

are eigenspaces of operator Mo, they reduce Hjc, ie. Hjo : .ﬁ’)ic — ﬁic. Note that $7/¢ =
D,.~o .6;1’0, where each 5’9;{0 is invariant subspace of operator (2.8). Therefore, it has the representation

Hic= @ HSY , n>1, H =0. (2.10)
n€Np



Here operators Hf;g are the restrictions of H j, which act in each ﬁic as

HS)(Co e @b+ ef @ p1) = (2.11)
[Conw + C1gspv/n] €5 @ dn + [Ci(e + (n — Dw) + Cogspy/n] €5 @ dn1 .

Hence, the spectrum o(H;c) = U, >0 a(H&Tg). By virtue of (2.11) the spectrum J(HL(;Q) is defined

for n > 1 by eigenvalues E(n) of two-by-two matrix I/{T(,"C) acting on the coefficient space {(p, (1}

=(n —Nw gspy/n\ (G G
At <1> - (” (n - . 2.12
/e (Co gspy/n nw Co (n) Co (2.12)
Then (2.10) and (2.12) imply that the spectrum of the Jaynes-Cummings model Hamiltonian H ;¢ is
pure point:

o(Hjo) = opp.(Hio) = (2.13)

{0} U U {nw—i—;(e—w):t\/(5—w)2/4+g§bn} .

neN

This property is evidently persists for any system Hamiltonian hg with discrete spectrum and linear
interaction (2.7) with a finite mode photon resonator [16].

We resume the above observations concerning the Jaynes-Cummings model, which is our starting point,
by following remarks:

(a) The standard Hamiltonian (2.8) describes instead of flux only oscillations of photons between
resonator and quantum dot, i.e. the system hg is not “open” enough.

(b) Since one our aim is to model a light-emitting device, the system hg needs an external source
of energy to pump it into dot, which then be transformed by interaction (2.7) into the outgoing
photon current pumping the resonator.

(c) To reach this aim we extend the standard Jaynes-Cummings model to our JCL-model by at-
taching to the quantum dot hg (2.3) two leads, which are (infinite) reservoirs of free fermions.
Manipulating with electro-chemical potentials of fermions in these reservoirs we can force one of
them to inject fermions in the quantum dot, whereas another one to absorb the fermions out the
quantum dot with the same rate. This current of fermions throughout the dot would pump it and
produce the photon current according scenario (b).

(d) The most subtle point is to invent a leads-dot interaction Vg, which ensures the above mechanism
and which is simple enough that one still be able to treat this JC L-model using our extension of
the Landauer-Biittiker formalism.

2.2 The JCL-model

First let us make some general remarks and formulate certain conditions indispensable when one follows
the modeling (d).

(1) Note that since the Landauer-Biittiker formalism [13] is essentially a scattering theory on a
contact between two subsystems, it is developed only on a “one-particle” level. This allows to
study with this formalism only ideal (non-interacting) many-body systems. This condition we
impose on many-body fermion systems (electrons) in two leads. Thus, only direct interaction
between different components of the system: dot-photons Vg, and electron-dot Vg are allowed.



(2) It is well-known that fermion reservoirs are technically simpler to treat then boson one [13]. More-
over, in the framework of our model it is also very natural since we study electric current although
produced by “non-interacting electrons”. So, below we use fermions/electrons as synonymous.

(3) In spite of precautions formulated above, the first difficulty to consider an ideal many-body
system interacting with quantized electromagnetic field (photons) is induced indirect interaction.
If electrons can emit and absorb photons, it is possible for one electron to emit a photon that
another electron absorbs, thus creating the indirect photon-mediated electron-electron interaction.
This interaction makes impossible to develop the Landauer-Biittiker formula, which requires non-
interacting framework.

Assumption 2.1 To solve this difficulty we forbid in our model the photon-mediated interaction. To
this end we suppose that every electron (in leads and in dot) interacts with its own distinct copy of
the electromagnetic field. So, to consider electrons together with its photon fields as non-interacting
“composed particles”, which allows to apply the Landauer-Biittiker approach. Formally it corresponds
to the “one-electron” Hilbert space h' @ hP", where hP" is the Hilbert space of the individual photon
field. The fermion description of composed-particles h* @ hP" corresponds to the antisymmetric Fock
space F_(h° ® h*").

The composed-particle assumption 2.1 allows us to use the Landauer-Biittiker formalism developed for
ideal many-body fermion systems. Now we come closer to the formal description of our JCL-model with
two (infinite) leads and a one-mode quantum resonator.

Recall that the Hilbert space of the Jaynes-Cummings Hamiltonian with two energy levels is $7¢ =
C? ® §4(C). The boson Fock space is constructed from a one-dimensional Hilbert space since we
consider only photons of a single fixed frequency. We model the electrons in the leads as free fermions
living on a discrete semi-infinite lattices. Thus

b = 2(N) ® C? @ (2(N) = b} © hs ® he! (2.14)

is the one-particle Hilbert space for electrons and for the dot. Here, h%!, o € {I,r}, are the Hilbert

o

spaces of the left respectively right lead and hg = C? is the Hilbert space of the quantum dot. We

denote by
{ontnen,  {03}j=0

the canonical basis consisting of individual lattice sites of fj a € {l,r}, and of hg, respectively. With

the Hilbert space for photons, h?" = F, (C) ~ ¢2(Ny), we define the Hilbert space of the full system,
i.e. quantum dot with leads and with the photon field, as

H=h"@p" = (*(N)® C* @ (*(N)) ® £2(No). (2.15)

Remark 2.2 Note that the structure of full space (2.15) takes into account the condition 2.1 and
produces composed fermions via the last tensor product. It also manifests that electrons in the dot as
well as those in the leads are composed with photons. This makes difference with the picture imposed
by the the Jaynes-Cummings model, when only dot is composed with photons:

H=LN)DC?(Ny) @ 2(N) , $/¢=C?®*A(Ny), (2.16)

see (2.6), (2.7) and (2.8), where /¢ = h5 ® hP". The next step is a choice of interactions between
subsystems: dot-resonator-leads.

According to (2.14) the decoupled leads-dot Hamiltonian is the matrix operator

R0 0 w
hgl = 0 hg 0 on u=\|us s {Ua S KQ(N)}QG{Z’T} , Us € C? s
0 0 hd Uy



where h¢! = —AP 4v,, with a constant potential bias v, € R, a € {I,7}, and hg can be any self-adjoint
two-by-two matrix with eigenvalues {\5, A7 := \§ + ¢}, € > 0, and eigenvectors {e5, ey}, cf (2.3).
Here, AP denotes the discrete Laplacian on ¢2(N) with homogeneous Dirichlet boundary conditions
given by

(AP f) (=) fle+1)=2f(x)+ flz-1), zeN,
dom(AP) = {fe€P(Np): f(0):=0},
which is obviously a bounded self-adjoint operator. Notice that o(AP) = [0, 4].
We define the lead-dot interaction for coupling g.; € R by the matrix operator acting in (2.14) as
0 «,55>5i 0

Vel = et | (-, 6465 0 (0067 | (2.17)
0 (-, 67)07 0

where non-trivial off-diagonal entries are projection operators in the Hilbert space (2.14) with the scalar
product u, v +— (u,v) for u,v € h'. Here {55, 07} is ortho-normal basis in h¥, which in general may
be different from {5, ef'}. Hence, interaction (2.17) describes quantum tunneling between leads and
the dot via contact sites of the leads, which are supports of 6} and 47.

Then Hamiltonian for the system of interacting leads and dot we define as h®! := h& + v,;. Here both
het and b are bounded self-adjoint operators on he.

Recall that photon Hamiltonian in the one-mode resonator is defined by operator h?" = wb*b with do-
main in the Fock space § (C) ~ ¢?(Np), (2.1). We denote the canonical basis in £2(Ng) by {T,, }nen,-
Then for the spectrum of h?" one obviously gets

a(hPh) = o, (WP") = U {nw}. (2.18)
n€Ny

We introduce the following decoupled Hamiltonian Hj, which describes the system when the leads are
decoupled from the quantum dot and the electron does not interact with the photon field.

Hy := HS + HP", (2.19)

where
HE' := h§l @ Iy and  HP" := Iy @ hP".

The operator Hy is self-adjoint on dom(Hy) = dom (I« @ hP"). Recall that h§' and h*" are bounded
self-adjoint operators. Hence HS! and H are semi-bounded from below which yields that Hy is semi-
bounded from below.

The interaction of the photons and the electrons in the quantum dot is given by the coupling of the
dipole moment of the electrons to the electromagnetic field in the rotating wave approximation. Namely,

Vor = gpn (- €)ef @b+ (-, e7)eg @ b7) (2.20)
for some coupling constant g, € R. The total Hamiltonian is given by
H:=H" + H" + V), = Hy + Vi + Vpp, (2.21)

where H¢ := p¢l @ Typn and Ve := vy @ Tgpn.

In the following we call s = {H, Hy} the Jaynes-Cummings-leads system, in short JC'L-model, which
we are going to analyze. In particular, we are interested in the electron and photon currents for that
system. The analysis will be based on the abstract Landauer-Biittiker formula, cf. [1, 13].

Lemma 2.3 H is bounded from below self-adjoint such that dom(H) = dom(Hy).



Proof. Let ¢ > 2. Then
6L, |2 < [B* Yl =n+1<c 'n*+¢, neN.

Consider elements f € hs ® h*" N dom(Iyer ® hP") with

f=> Bue;®Y, je{0,1}, leN,,
5l
which are dense in 7€ := hg @ hP". Then [|f]* = 32, ,181]* and [|(Tyer @ b*b) fI* = 32, 128?12,
We obtain
(G e¥)eg @ b)FIIP < DBl IbYl|* <
5l
DBl P o) = [Ty @ U0)fIP + €| £
5l

Similarly,

(- ef)eg @ b*) fI1? < e[ (Lyer @ LD FII* + £
If ¢ > 2 is large enough, then we obtain that Vj;, is dominated by HP" with relative bound less than
one. Hence H is self-adjoint and dom(H,) = dom(H). Since H§' and V,; are bounded and HP" is

self-adjoint and bounded from below, it follows that H = H§' + HP" + V,; + V,;;, is bounded from
below [17, Thm. V.4.1]. O

2.3 Time reversible symmetric systems

A system described by the Hamiltonian H is called time reversible symmetric if there is a conjugation
I' defined on $ such that TH = HT. Recall that T' is a conjugation if the conditions I'> = I and

(L'f.Tg) = (f.9). f.9€9.
Let h2", n € Ny, the subspace spanned by the eigenvector T, in h?". We set

o =b8 P neNy, ae{lr} (2.22)

H= @ ﬁna

n€Ng,ae{l,r}

Notice that

Definition 2.4 The JCL-model is called time reversible symmetric if there is a conjugation T'
acting on ) such that H and H are time reversible symmetric and the subspaces 9,_, n € Np,
a € {l,r}, reduces I'.

Example 2.5 Let ¢! and v¢ be conjugations defined by

'Y(ilfoé = ﬁ = {fa(k)}kENa fa S hgl’ a € {lrr}7

and

el _ el fS(O)> o <f5(0)>
’7SfS Vs (fS(l) . fS(l)
We set v := v¢ & 7¢ @ v¢. Further, we set

¢
Y= = () bnen,, ¥ € B
We set I' := ¢ ® 4P". One easily checks that T is a conjugation on $ = h* @ hP".




Lemma 2.6 Let v<, a € {S,1,r}, and v*" be given by Example 2.5.

(i) If the conditions v&'es = ef and vge? = ef are satisfied, then Hy is time reversible symmetric

with respect to T" and, moreover, the subspaces $),,., n € No, a € {l,r}, reducesT.

(ii) If in addition the conditions v§ 65 = 85 and v&07 = &7 are satisfied, then JC L-model is time
reversible symmetric.

Proof. (i) Obviously we have

elhel _ hel’you a € {l,’f’}, and ,yphhph _ hph,yph.

If ~¢ es = e and g ef = ef is satisfied, then vghd = hg~yg which yields v¢'hg! = h§ly® and,

hence, THy = I'Hy. Since 7*'h¢ = h¢l and ?"hP" = bP" one gets T'H,.. = $H,. which shows that
., reduces I

(ii) Notice that 731(5“ = 6%, a € {l,r}. If in addition the conditions y&d5 = &5 and y&dy = 67 are
satisfied, then v, = vemel is valid which yields 4°'h¢" = h¢ly°. Hence TH = HT'. Together with

(i) this proves that the JC'L-model is time reversible symmetric. O
Choosing
1 0 1 /1 1 1
5, 5, s, S .
0 (0> CaT (1> 0 V2 <1> SRl V2 (_1> 223)

one satisfies the condition y&es = ef and yge? = ef as well as y&es = ef and ygey = ef.

2.4 Mirror symmetric systems

A unitary operator U acting on §) is called a mirror symmetry if the conditions
Uf.)na == STLQI7 057 O/ e {l? T}, « 7& O/

are satisfied. In particular, this yields U$'¢ = §7¢, §7¢ .= p¥ @ prh.

Definition 2.7 The JC L-model is called mirror symmetric if there is a mirror symmetry commut-
ing with Hy and H.

One easily verifies that if Hy is mirror symmetric, then
H, U=UH,,, neNy, o, e{l,r}, a#d,
where
H,, =h"® Igpn + Ige @ h = pe fnw, neNy, a,d €f{l,r}, a#d.

In particular, this yields that v, = v,/. Moreover, one gets UHgs = HgU where Hg := hgl ® Igpn +
Tpa ® hprh.
b

Notice that if H and Hy commute with the same mirror symmetry U, then also the operator H. :=
hel @ Typn + Iyer ® hPh commutes with U, i.e, is mirror symmetric.
Example 2.8 Let S = {H, Hy} be the JOL-model. Let v; = v, and let 5 and ef as well as §5 and
87 be given by (2.23). We set

ules :=ef and ulef = —ef (2.24)
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as well as

P, = e Y, n € N. (2.25)
Obviously, Us := u¥ ® uP" defines a unitary operator on $7¢. A straightforward computation
shows that
USHS = HSUS and Usvph = VphUs. (226)
Furthermore, we set
utsl :=or, and wflem =6, neN, (2.27)
and
0 0 u
u =1 0 ug 0
w00
We have
fi < fs, (ug)*d5 > o
vau | fs | = | < fry (ugh) 6t > 65+ < f1, (uch) 67 > 67 (2.28)
fr < [fs, (ug) o7 > of
Since &5 = %(eg +e7) and 07 := %(eg —e7) we get from (2.24)
(wd)* 65 =67 and  (ug)*6y =65, (2.29)
Obviously we have
(ui)* 0y =07 (ug)*o7 = oy (2.30)
Inserting (2.29) and (2.30) into (2.28) we find
fl < f57618 > 6l1
vau | fs | = [ < fry 07 > 05+ < fi, 04 > 67 (2.31)
fr < fs,05 > oF
us Further we have
fi < fs,07 >4}
uou [ fs | = | < fi, ) > 65+ < fr,0] > 65 | . (2.32)
fr < fs, 05 > 6]

Comparing (2.31) and (2.32) we get u®ve = vqu®l. Setting U := u® ® uP" one immediately proves
that UHy = HoU and UH = HU. Since U$,,, = o it is satisfied § is mirror symmetric.

Notice that in addition the Example 2.8 S is time reversible symmetric.

2.5 Spectral properties of H: first part

In the following our goal is to apply the Landauer-Biittiker formula to the JCL-model. By £,(%9),
1 < p < o0, we denote in the following the Schatten-v.Neumann ideals.

Proposition 2.9 Ifs = {H, Hy} is the JCL-model, then (H+i)~*—(Ho+i)~' € £1(9). In particular,
the absolutely continuous parts H*¢ and H§¢ are unitarily equivalent.

Proof. We have

(H+4d) ' = (Ho+i) ' = (Hy +i)'V(H +4) ' =
(Ho+4) "V (Ho +1i)~" — (Ho + i)'V (Ho + i)' V(H +4)~ "

11



where V. = H — Hy = V¢ + Vpp,. Taking into account Lemma 2.3 it suffices to prove that (Hp +
i)"'V(Ho+i)"" € £,(9). Using the spectral decomposition of h?"" with respect to h*" = @@, ., b5,
where h2" are the subspaces spanned by T,,, we obtain

(Ho+) "' = @ (h§' +nw+i) " @ Iy (2.33)
neNy

We have (Ho + i)'V (Ho + i)™ = (Ho + @) (Veg + Vun)(Ho + i)t Since v is a finite rank
operator we have ||ve||¢, < co. Furthermore, h2" is obviously one-dimensional for any n € Nj. Hence
[Zyon ||, = 1. From (2.33) and Vi = ver ® Iyen we obtain

I(Ho + 1)~ Ver(Ho +4) ey = D II(AG + nw + ) va(hf! +nw + )" e,

n&eNp
< D +nw + )7 el e,
n€Ng
Since h§! is bounded we get
[(h§! +nw +i) 7 = sup (VA +nw)?+ 1)_1 <cn+1)7t (2.34)
Aea(hgh)

for some ¢ > 0. This immediately implies ||(Ho + i)™ Ve (Ho + i) 7t||e, < oo.
We are going to handle (Hy + i)'V, (Hq + i) 1. Let pE" be the projection from hP" onto hE". We
have
(Ho+1)7" (- e5)ey @b (Ho+14) 7"
= > (h +mw+i)T (- ef)ed (he! +nw +1i) 7" @ phrbph!
m,nENg

S (hi + (= Dw+i) 7 (ef)ed (b +nw +i) 7t @ Vo1, Tn)
neN

From (2.34) we get

[(RE" + (n = Dw + )" (- e5)ed (h§ + nw +9) ™) @VATa(, o),

n € N, which yields

o . VN
I(Ho +4)7" (- e5)ef @b (Ho+0)" e, SCZ%m“X’-

Since
[(Ho+1)~" (-, e)eg @b" (Ho +14) e, = [[(Ho+1) " (- e5)el @b (Ho+i) e,

one gets (Ho + ) "'V, (Ho + i)' € £1(9) which completes the proof. O

Thus, the JCL-model S = {H, Hy} is a £;-scattering system. Let us recall that h¢l = —AP + v,
a € {l,r}, on h¢! = pel = (2(N).

Lemma 2.10 Let o € {l,r}. We have

o (h) = 0ae(he) = [Va, 4 + va)-

12



The normalized generalized eigenfunctions of he! are given by
oz, N) = 2 (I—(=A+2+ 11a)2/41)_i sin (arccos((—A + 2 + va)/2)x)
forx € N, A € (va,4 + vq).

Proof. We prove the absolute continuity of the spectrum by showing that
{ga(z, M) [ A € (=2,2)}
is a complete set of generalized eigenfunctions. Note that it suffices to prove the lemma for
(AP +2)f)(@) = fle+ 1)+ fle—=1),  f(0)=0.
The lemma then follows by replacing A with —X + 2 + v,,. Let A € (—2,2) and
gap (z,A) = T2 (1-— /\2/4)_i sin (arccos(\/2)z)

Note that gan (0, A) = 0, whence the boundary condition is satisfied. We substitute u = arccos(\/2) €
(0,7), i.e. A = 2cos(p) and obtain

sin(u(z + 1)) + sin(u(z — 1)) = 2sin(ux) cos(u),

whence gap(x,\) satisfies the eigenvalue equation. It is obvious that gan(-,\) ¢ (2(Ny) for
A € (—2,2). To complete the proof of the lemma, it remains to show the ortho-normality and the
completeness. For the ortho-normality, we have to show that

Z gap (xa )‘)gAD (1’, V) = 5()‘ - l/)‘

zeN

Let ¢ € C5°((—2,2)). We use the substitution y = arccos(r/2) and the relation

S

sin(arccos(y)) = (1 — y?)~

to obtain

/ dv ZQAD z, \)gan (z,v)Y(v)

zeN

_1/ Z sin(p) sin arccos()\/Q)x) sin(px)
(sin(p

bm(arccos()\/g)))% Y(2cos(p))

zeN

1
Sln ;
27T d (61(arccos(k/2)7u)m+
/ Z (sin(arccos )\/2)))

e—i(arccos()\/2)—u)w _ ez(arccos(A/2)+u)w _ e—i(arccos(A/2)+u)w)w(2 COS([J,))

Observe that for the Dirichlet kernel

ST (€ o) 1 = 2mb(y),

x€Ng

whence

| @Y as0 (e Ngan (i)

—2 zeN

= ) (Sln(u)) % arccos —
- [ o i (arecos(32) = )+

arccos(A/2
b(arccos(A/2) + ) ) (2 cos(i)) = w(N).
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In the second equality we use that the summand containing d(arccos(A/2) + u) is zero since both
arccos(A/2) > 0 and p > 0. Thus, the generalized eigenfunctions are orthonormal. Finally, using once
more the substitution p = arccos(v/2), we get

| v oan@viasntur)
= [2 dv (1 - (V/2)2)_% sin (arccos(v/2)x) sin (arccos(v/2)y)

=250 [ d (sin(0) sin(usn()sin(y)

= 6xy

for z,y € N, whence the family of generalized eigenfunctions is also complete. O

From these two lemmas we obtain the following corollary that gives us the spectral properties of Hy.
Proposition 2.11 Let s = {H, Hy} be the JCL-model. Then o(Hy) = 04.(Ho) U opp(Hp), where

oac(Hp) = U [v + nw, v, + 4 4+ nw] U [v, + nw, v, + 4 + nw]
n€eNy

and
opp(Ho) = U {)\f +nw:j=0,1}.

n&eNp

The eigenvectors are given by G(m,n) = e5, @ Y, m = 0,1, n € Ng. The generalized eigenfunctions
are given by go (-, A,n) = ga (-, A —nw) @ T, for A € 04c(Hp), n € Ng, a € {I,7}.

Proof. It is well known (see e.g. [15]) that for two self-adjoint operators A and B with os.(A) =
0se(B) =0, we have 0,.(A®1+1® B) =0,

Gac(A® 1+ 1@ B) = (04c(A) + 0(B)) U (0(A) + 0ac(B))

and
opp(A@1+1® B) = 0pp(A) + opp(B).

Furthermore, if 9 4(A4a) and ¥p(Ap) are (generalized) eigenfunctions of A and B, respectively, then
Ya(Aa) @ Yp(Ap) is a (generalized) eigenfunction of A® I + I ® B for the (generalized) eigenvalue
Aa + AB.

The lemma follows now with A = h§' and B = h?" using Lemmata 2.10 and (2.18) and the fact that
hs has eigenvectors {5, e7'} with eigenvalues {\5, A\ = \5 + ¢} O

2.6 Spectral representation

For the convenience of the reader we define here what we mean under a spectral representation of the
absolutely continuous part K§¢ of a self-adjoint operator K, on a separable Hilbert space f. Let £ be
an auxiliary separable Hilbert space. We consider the Hilbert space L?(R,d), ). By M we define the
multiplication operator induced by the independent variable X in L*(R,d\, £). Let ® : R2°(Ky) —
L?(R,d), t) be an isometry acting from £%¢(Kj) into L?(RR, d), £) such that ®dom(K§¢) C dom(M)
and

MOf =dKi°f, fe€dom(Kj°).
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Obviously, the orthogonal projection P := ®®* commutes with M which yields the existence of a
measurable family {P(A)}er such that

(PHN=PWFN), [ el’® .
We set L2(R, d), E()\)) := PL%(R, \, £), &()\) := P(\)E, and call the triplet
I(K§©) == {L*(R,dX, B(N)), M, @}

a spectral representation of K§¢. If {L?(R,d)\,&()\)), M, ®} is a spectral representation of K%, then
K% is unitarily equivalent Mg := M | L%(R,d), €()\)). Indeed, one has ?K3°®* = M. The function
§ - (A) := dom(E(N)), A € R, is called the spectral multiplicity function of K§°. Notice that 0 <
% ()\)<oofor)\€R

For o € {I,7} the generalized eigenfunctions of h¢! define generalized Fourier transforms by ¢¢ : el =
hgl’ac(hgl) N L2(['Uaa Vo + 4]) and

(62 fa)N) = D galm, N falx), fo €. (2.35)
x€Ng
Setting
el ) C X€ [va,va +4]
bel(A) == {o N CR\ [ oo 4] (2.36)

one easily verifies that TI(hg) = {L*(R, dX, h% (X)), M, ¢} is a spectral representation of hg = h¢hee,
a = I, 7, where we always assumed implicitly that (¢/f,)(\) = 0 for A € R\ [vg, Ve + 4]. Setting

bi' (M)
N = @ CC?, MeER, (2.37)
by ()
and introducing the map
by
o s p(hG) = @ — LAR.dA B (V) (2.38)
by
defined by
el
¢l f = (iglﬂ , where f:= (Jfl> (2.39)

we obtain a spectral representation IT(hE"") = {L2(R, d), h'(\)), M, ¢°'} of the absolutely continu-
ous part hi"* = het @ hel of hel. One easily verifies that 0 < ghel( ) <2 for A € R. Introducing

)\el

e =min{v, v} and A, = max{v, + 4,0, + 4} (2.40)

max

one easily verifies that ﬁhd( )=0for A€ R\ [\, A& .

min?’ max

Notice, if v, +4 < v, then

ol )G, A € [Up, v + 4] U [, v + 4],
b (\) = .
{0}, otherwise

which shows that A& has simple spectrum. In particular, it holds §hel( ) =1 for A € [v,v, +4] U
[vr, v; + 4] and otherwise {h‘,,( )=0.
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Let us introduce the Hilbert space h := I>(Ny,C?) = @, cy, bn, bn := C?, n € Np. Regarding
he! (A — nw) as a subspace of b,, one regards

=P 1.V, ba(N) :=bYA—nw), NER, (2.41)

neNy

as a measurable family of subspaces in §. Notice that 0 < dim(h(\)) < oo, A € R. We consider the
Hilbert space L?(R, d\, h())).

Furthermore, we introduce the isometric map ® : §(HZ¢) — L?(R, d),h()\)) defined by

@pw =@ (IR Tm) . aew (2.42)

n€Ng

where
hph

@ (1)< @ronen - <"

neNy neNy neN f)fﬁl ® hfbh

where b, = @,y bY" and BB is the subspace spanned by the eigenvectors YT, of h?". One easily
verifies that @ is an isometry acting from $%¢(Hg) onto L%(R, d\, h(N)).

Lemma 2.12 The triplet {L?(R,d),h()\)), M,®} forms a spectral representation of HS¢, that is,
I(H§®) = {L*(R,d\,b(\)), M, ®} where there is a constant d € Ng such that 0 < £§f (X) < 2dmax

e el
for A € R where dpax = w and \¢l. and \¢L.  are given by (2.40).

max min

Proof. It remains to show that ® transform H{“ into the multiplication operator M. We have

ac (hi" fi)(n) + nwfi(n)
Ho'f = @ (hellfl (n) -I—nwfi.(n))

neNg

which yields

(PHGf)(N)

_ oy (G R)0) O — nw) + (65 fu(n) (A 1)
- (wl(helfr)( DA~ nw) + nw(¢%lfr(n))()\—nw)>

- (@7 fi(n) (A —nw)\ _
- @ < (¢”fr(n))( )> =Mof)(N), AeR

which proves the desired property.

One easily checks that h(\) might be only non-trivial if A —nw € [A¢L Al ] Hence we get that h(\)
is non-trivial if the condition
\— )\el P )\el

max < < min
w w

is satisfied. Hence

) A — )\ A — )\
ngl‘ﬁf()()\)§2cau1rd{n€No:]m"gn<"““}7 A ER.
w

w
or
, A — e
OSf?{)(A)SQcard{neNo O<n<m}, A €eR.
w
Hence 0 < &3 (N) < dpax for A € R. O
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In the following we denote the orthogonal projection from h(\) onto b, (A) by P,(N), A € R, cf (2.41).
Since h(A) = D,,cn, Hn(A) we have Iyn) = >, oy, Pu(A), A € R. Further, we introduce the subspaces
B, () == (N —nw), AER, neNp.

Notice that
hn(N) = P b (V), AER, neN.

ae{l,r}

By P,_(\) we denote the orthogonal projection from h(A) onto b, (A), A € R. Obviously, we have
Py(A) = Eae{l,r} Py, (/\), AER.

Example 2.13 In general the direct integral II( H{¢) can be very complicated, in particular, the
structure of h(\) given by (2.41) is difficult to analyze. However, there are interesting simple cases:

(i) Let v =1, = v, and 4 < w. In this case we have h* (\) = C2 for [v,v + 4] and

b(\) = C% MNe[v+nw,v+nw+4], neN,
~ 1{0}, otherwise.

(ii) Let v, =0, v; =4, wy = 4. Then

where l
ba (M)
(exla/()‘) = @ , a, o e{l,r}, a#d
bel (M)
Hence dim(h(\)) = 2 for A > 4. O

Let Z be a bounded operator acting on $%¢(Hy) and commuting with H§¢. Since Z commutes with
H§* there is a measurable family {Z(\)}xer of bounded operators acting on h(A) such that Z is
unitarily equivalent to the multiplication operator induced by {Z(\)}xcr in II(HE®). We set

Zman,,(A) i= P, (N Z(A) T hr (A), XER, m,n € Ng, a,»x€{l,r}.

Let Zp n, = Pm._ ZP,, where P, is the orthogonal projection from ) onto $.,,, C H%(Hy), cf.
(2.22). Obviously, the multiplication operator induced {Z,,,_ .. (A) }aer in II(H§®) is unitarily equivalent
t0 Zmon,, -

Since by Lemma 2.12 h(\) is a finite dimensional space, the operators Z(\) are finite dimensional ones
and we can introduce the quantity

Oman,, (A) =t0(Zmon, N Zmon,, (A), AER, m,n € Ng, «,x € {l,r}.

Lemma 2.14 Let Hy be the self-adjoint operator defined by (2.19) on $). Further let Z be a bounded
operator on $°(Hy) commuting with H§¢

(i) Let T be a conjugation on $), cf. Section 2.3. If T' commutes with Hy and P,,_, n € Ny, a € {l,r}
and TZT = Z* holds, then o, n,. (A) = 0, m,(A), A €R.

(ii) Let U be a mirror symmetry on $). If U commutes with Hy and Z, then oy, (A) = Om_,n_, (),
ANeR, mneNy, a,a, 5,5 €{l,r}, a # ', 3 # 5.
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Proof. (i) Since I' commutes with Hj the conjugation I" is reduce by $H%(Hy). So without loss of
generality we assume that T" acts on $%“(Hy). We set T',,, ;=T | $,,... Notice that

r= @ Do

n€Ng,ae{l,r}

There is a measurable family {I'(A\)} xer of conjugations such that the multiplication operator induced
by {T'(A) }aer in TI(H§C) is unitarily equivalent to I'. Moreover, since I' commutes with P, we get
that the multiplication operator induced by the measurable family

Fna (>‘) = P()‘) f bna ()‘)7 NS R, m e NO» ac {l,?"},
is unitarily equivalent to I'y, . Using I'ZT" = Z* we get 'y, Zyyon, I, = Z;%ma. Hence

Lo N Zmn,, N0, (N) = Znm, (N, AER. (2.43)

If X is trace class operator, then tr(I'XT) = tr(X). Using that we find

Tman. (N) =T (Tn. (M) Zmon. (N Zmon. NTn. (V) =
tr(Tn,, (A) Zman,, A T T Ziman,, (M, (A))

From (2.43) we obtain

Oman,, (A) =t1(Zn,m, (N Zn,ma (N)*) = 0npoma (A), A ER,

which proves (i).

(i) Again without loss of generality we can assume that U acts only $%°(Hy). Since U commutes
with Hj there is a measurable family {U(\)} er of unitary operators acting on h(A) such that the
multiplication operator induced by {U())}acr is unitarily equivalent to U. Since U$),, = $Hn_, we
have U(A)by,, (A) = by, (A), A € R. Hence

Timan, (N) = 0 (UN) Zinn, (N Zinon, (NU (X)) =
r(UA) Zme . N UA) U (A) Zimin,. (MU A))-

Hence

Tman,. (A) =tr(Pp_,UN)Z(N)*UN) Py, (NUNZ(NUN)P,_, (N)).
Since U commutes with Z we find

Oman,, (N) = tr(Pp_, Z(N) P, (M Z(AN) P, (N) = 0mn (A), AER.

P

which proves (ii). O

2.7 Spectral properties of H: second part

Since we have full information on the spectral properties of Hy we can use this to show that H has
no singular continuous spectrum. Crucial for that is the following lemma: with the help of [6, Cor.
IV.15.19], which establishes existence and completeness of wave operators and absence of singular
continuous spectrum through a time-falloff method. We cite it as a Lemma for convenience, with slight
simplifications that suffice for our purpose.

Lemma 2.15 ([6, Corollary IV.15.19]) Let {Hy, H} be a scattering system and let A be a closed
countable set. Let F'y and F_ be two self-adjoint operators such that F', + F_ = P{ and

s — lim eTito p, EitHo — ),

t—oo

18



If(H—i)"' = (Ho—i)7" € £0(9), (1 = Pi)v(Ho) € £50(9), and
+oo
[ a0 = a1 = e o) e < oo

for all v € C°(R\ A), then W1 (H, Hy) exist and are complete and os.(H) = 04.(Hy) = . Further-
more, each eigenvalue of H and Hy in R\ A is of finite multiplicity and these eigenvalues accumulate
at most at points of A or at +oo.

We already know that the wave operators exist and are complete since the resolvent difference is trace
class. Hence, we need Lemma 2.15 only to prove the following proposition.

Proposition 2.16 The Hamiltonian H defined by (2.21) has no singular continuous spectrum, that is,
osc(H) = 0.

Proof. At first we have to construct the operators F.. To this end, let F : L?(R) — L?(R) be the
usual Fourier transform, i.e

~

(FHW) = f(w e M f(x)dx, fe L*R,dx), peR.

e
Further, let I be the orthogonal projection onto L?(R.) in L?(R). We set

Fy = O*FIILLF*®
where ® is given by (2.42). We immediately obtain F_ + Fy = P,.(Hp). We still have to show that

s — lim ||eTHo®* FII f*@ei”HofH

t—o0

for f € H9¢(Hy). We prove the relation only for F since the proof for F_ is essentially identical. We
have

(I F= e’ f) () = (27) 2 Xk, () /]R dp e T F(1) = xe, (@)@ + 1)
with ¢ = Ff. Now
le= "0 o+ FIL F* ettho |2 =
[T F*dettHo |2 = /R dz|p(z +1)|* = /t dz|w(x)|> == 0.
N

Concerning the compactness condition, we already know that (H —i)~!—(Hg—1i) "' € £1(§) C £o0(9)
from Proposition 2.9. Let

A= U {v + nw, v, + nw,v; + 4 + nw, v, +4 + nw},
n€Ng

which is closed and countable. We know from Corollary 2.11 that Hj has no singular continuous
spectrum and the eigenvalues are of finite multiplicity. It follows that (1 — P,.(Hg))y(Hy) is compact
for every v € C§°(R \ A). The remaining assumption of Lemma 2.15 is

+oo
’/0 dt [ ((H = i)™" = (Ho — i)~ )y(Ho)e ™ P || < ox.

If we can prove this, then we immediately obtain that H has no singular continuous spectrum. Now
(H—i)"' = (Hy—i)' = (H — i) (Vey + Vpn)(Ho — i) ~'. But (H —)~! is bounded,

ran(Fy) C $°°(Ho) = (hi' & he') @ p?",
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and Vp, P*“(Hp) = 0. Also, Vei = ve; @ Ippn and
ker(ve) ™ C Cot @ hs @ Coy.

Hence, it suffices to prove
+oo )
‘/ dt | P (Ho — i) y(Ho)e 0 P || < o,
0

o € {l,7}, where P{* = p ® Iy,n and p§ is the orthogonal projection onto h?. In the following we
treat only the case Fly. The calculations for F_ are completely analogous. We use that ® maps H§*
into the multiplication operator M induced by \. Hence we get

| PR3 (Ho)e Mo d* Ff|| = || Pr®* ®(Ho)e Mo o* F f|| =
2\ L
_ -3 _ ~ —iX(z+t) 2
= (27) ( g ’/5 dX ga(1, A nw)’y()\)/R dze t f(ac)’)

neNg  dan +

where supp (f) € Ry, (A) := (A — i) 71y (A), A € R, and 844 = [v4 + nwo, Vo + nw + 4]. Notice
that 7(\) € C5°(R \ A). We find

/ dA ga (LA —nw)F(A) [ dze ) f(z) =
0j,n

Ry
vat+4 )
/ dA ga (1, )Y (A + nw) / dx e*l()‘+"“)(w+t)f(:c)
Va R+

which yields
|| Pf@* @ (Ho)e *Hod* F f|| =

— (277)—%( > ‘/:a+4d>\ 9o (1, (N 4 nwg) x

n€Ny v

1
dr e—i()\+nw0)(z+t)f(x) ’2) 2 .
Ry

Since the support of v(\) is compact we get that the sum ZneNo is finite. Changing the integrals we
get

/ dA go (1, — nw)F(N) / dz e @+ £(g) =

5(1771 R+
[ et [0 o (1A -+ e
R+ Vo
Integrating by parts m-times we obtain

/ dA ga (LA —nw)F(A) [ dze T f(z) =
da,n

Ry

) efinw(:r+t) Vo +4 ix(at) am _
+ v

a

Hence

[ gaA = mai) [ dee e o)
6(1,71,

Ry
2
) 1
= (/R dz|f(x)|(x+t)m>
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which yields

[ rgaA =i [ dee 1)
Sav,m

Ry

1
< Cim”f\\z

for m € N where

C, = /vva+4 dA ‘d‘% (90 (1 2T+ 1))

Notice that C,, = 0 for sufficiently large n € N. Therefore

1/2
|PPF(Hy)e e F f | < (Z c) il e LRy, da),

n€Np

which shows that | P5(Ho)e "o F, || € L'(Ry, dt) for m > 2. O

3 Landauer-Biittiker formula and applications

3.1 Landauer-Biuttiker formula

The abstract Landauer-Biittiker formula can be used to calculate flows through devices. Usually one
considers a pair § = {K, Ky} be of self-adjoint operators where the unperturbed Hamiltonian K
describes a totally decoupled system, that means, the inner system is closed and the leads are decoupled
from it, while the perturbed Hamiltonian K describes the system where the leads are coupled to the
inner system. An important ingredient is system § = {K, Ky} is represents a complete scattering or
even a trace class scattering system.

In [1] an abstract Landauer-Biittiker formula was derived in the framework of a trace class scattering
theory for semi-bounded self-adjoint operators which allows to reproduce the results of [18] and [7]
rigorously. In [13] the results of [1] were generalized to non-semi-bounded operators. Following [1] we
consider a trace class scattering system § = { K, Ky }. We recall that § = {K, Ky} is called a trace class
scattering system if the resolvent difference of K and K| belongs to the trace class. If s = {K, Ky}
is a trace class scattering system, then the wave operators W (K, K) exists and are complete. The
scattering operator is defined by S(K, Ky) := W, (K, Ko)*W_(K, Ky). The main ingredients besides
the trace class scattering system § = {K, Ky} are the density and the charge operators p and Q,
respectively.

The density operator p is a non-negative bounded self-adjoint operator commuting with K. The charge
Q is a bounded self-adjoint operator commuting also with K. If K has no singular continuous spectrum,
then the current related to the density operator p and the charge @ is defined by

TS @ = —ite (W_ (K, K)pW_ (K, ) [K. Q]) (3.1)

where [K, Q)] is the commutator of K and Q. In fact, the commutator [K, Q)] might be not defined. In
this case the regularized definition

B o= —itr (W (K, Ko)(I + K2)pW_(K, KO)*ﬁ[K, %) K1+ Z) (32)

is used where it is assumed that (I + KZ2)p is a bounded operator. Since the condition (H —
i)"HH,Q)(H + i)~ € £1(9) is satisfied the definition (3.2) makes sense. By £1() is the ideal
of trace class operators is denoted.
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Let K be self-adjoint operator on the separable Hilbert space 8. We call p be a density operator for
K if p is a bounded non-negative self-adjoint operator commuting with K. Since p commutes with
K one gets that p leave invariant the subspace 8%¢(Kj). We set

Pac = p | R*(Kp).
call p,. the ac-density part of p.

A bounded self-adjoint operator () commuting with K is called a charge. If Q) is a charge, then

Qac = Q fﬁac(Ko)~
is called its ac-charge part.

Let II(K§¢) = {L*(R,d\,¥()\)), M, ®} be a spectral representation of K{¢. If p is a density oper-
ator, then there is a measurable family {psc(A)}rer of bounded self-adjoint operators such that the
multiplication operator

(Moo FYN) = pac(N) F(N),  F € dom(M,,,) = L*(R, dX, £(N)),

is unitarily equivalent to ac-part pg., that is, M, = ®p,.®*. In particular this yields that
ess-sup \er [l Pac(NBe(x) = [|PacllB(rac(ky))- In the following we call {pac(A)}rcr the density ma-
trix of pge.

Similarly, one gets that if @), then there is a measurable family {Qu.(A)}rer of bounded self-adjoint
operators such that the multiplication operator

-~ ~

Ma.. [N = Qac(N) (N,
fedom(Qu) = {f€L*R,dNEN): Qac(N) F(N) € LA(R,dA, E(A)},

is unitarily equivalent to Qqc, i.e. Mg, . = ®Qq.P*. In particular, one has

ess-sup xeg [|Qac(N)B(e(rn) = [|QacllB(sec (ko)) (33)
If Q is a charge, then the family {Qac(A)}aer is called the charge matrix of the ac-part of Q.

Let s = {K, Ko} be a trace scattering system. By {S(A\)} cr we denote the scattering matrix which
corresponds to the scattering operator S(K, Ky) with respect to the spectral representation II(K§°).
The operator T := S(K, Ky) — P*(Kj) is called the transmission operator. By {T(\)} er we denote
the transmission which is related to the transmission operator. Scattering and transmission matrix are
related by S(\) = Tyx) + T(A) for a.e. A € R. Notice that T'()\) belongs for to the trace class a.e.
AeR.

Theorem 3.1 ([13, Corollary 2.14]) Let 5 := {K, K} be a trace class scattering system and let
{S(N\)}rer be the scattering matrix of S with respect to the spectral representation II(K§°). Further
let p and Q be density and charge operators and let {pac(A)}aer and {Qqc(\) }rcr be the density and
charge matrices of the ac-parts p,. and charge Q.. with respect to II(KJ), respectively. If (I + K3)p
is bounded, then the current J3 , defined by (3.2) admits the representation

1 *
T == [ 5(pae)(Que) = 5" (NQue(NS(1)) oA (34)
where the integrand on the right hand side and the current Jff’Q satisfy the estimate

‘tr (pac()‘)(Qac()‘) - S*<>‘)Qac()‘)s()‘)))| S (35)
M) lleceon TN e, o lQM N ecery)

for a.e. A € R and
5.l < Coll(H +4) " = (Ho +14)"ley () (3.6)

where Co := 2|(1 4+ H3)p||g(5)-
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In applications not every charge @ is a bounded operator. We say the self-adjoint operator () commuting
with K is a p-tempered charge if Q(Hy —4)? is a bounded operator for p € Ny. As above we can
introduce Quc := @ | dom(Q) N RY*(Kyp). It turns out that QEk,(A) is a bounded operator for any
bounded Borel set A. This yields that the corresponding charge matrix {Qac(\)}rcr is @ measurable
family of bounded self-adjoint operators such that

ess-sup yer (1 + /\2)17/2“@(1(:()\)“2(?@)) < oo.

To generalize the current Jj}Q to tempered charges @ one uses the fact that Q(A) := QFk,(A) is a
charge for any bounded Borel set A. Hence the current J[f Q) is well-defined by (3.2) for any bounded
Borel set A. Using Theorem 3.1 one gets that for p-tempered charges the limit

S N S
T = lim J5 o) (3.7)

exists provided (Hy — i)P*2p is a bounded operator. This gives rise for the following corollary.

Corollary 3.2 Let the assumptions of the Theorem 3.1 be satisfied. If for some p € Ny the operator
(Ho—i)P™2p is bounded and Q is a p-tempered charge for Ky, then the current defined by (3.7) admits
the representation (3.4) where the right hand side of (3.4) satisfies the estimate (3.5). Moreover, the
current JiQ can be estimated by

175,01 < Gull(H +49)7" = (Ho + 1) ey () (38)

where Gy := 2||(1+ H)"**/2p|l o) |QU + HE) /2|l (-
At first glance the formula (3.4) is not very similar to the original Landauer-Biittiker formula of [7, 18].
To make the formula more convenient we recall that a standard application example for the Landauer-
Biittiker formula is the so-called black-box model, cf. [1]. In this case the Hilbert space £ is given
by

N
fR=fso@PR;, 2<N<o (3.9)
j=1
and Kg by
N
Ky=Kso@PEK,;, 2<N<o. (3.10)
j=1

The Hilbert space £g is called the sample or dot and Kg is the sample or dot Hamiltonian. The Hilbert
spaces R, are called reservoirs or leads and K; are the reservoir or lead Hamiltonians. For simplicity we
assume that the reservoir Hamiltonians K; are absolutely continuous and the sample Hamiltonian K¢
has point spectrum. A typical choice for the density operator is

N
p=fs(Ks)®@fj(Kj)v (3.11)

where fg(-) and f;(-) are non-negative bounded Borel functions, and for the charge

Q:gS(Hs)@@gj(Hj)v (312)

j=1

where gs(-) and g;(-) a bounded Borel functions. Making this choice the Landauer-Biittiker formula
(3.4) takes the form

N
Ta=5r 2[5O~ ANg Ny (3.13)
k=1
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where

k(A = tr(Tjn(A\) " Tje(N), J,k=1,...,N, XeR, (3.14)
are called the total transmission probability from reservoir k to reservoir j, cf. [1]. We call it the cross-
section of the scattering process going from channel k to channel j at energy A € R. {T;x(A\)}aer is
called the transmission matrix from channel k to channel j at energy A € R with respect to the spectral
representation II(/X§°). We note that {T)j;(\)}rcr corresponds to the transmission operator

Tjk = P]T(K, K())Pk, T(K, KQ) = S(K, Ko) - PGC(KQ), (315)

acting from the reservoir k to reservoir j where T(K, Kj) is called the transmission operator. Let
{T(X)}rer be the transmission matrix. Following [1] the current JgQ given by (3.13) is directed from
the reservoirs into the sample.

The quantity || T(A)|| e, = tr(T(A)*T(X)) is well-defined and is called the cross-section of the scattering
system S at energy A € R. Notice that

o(N) = ITW)lle, = x(TN)TN) = Y aju(N). AeR,

jk=1

We point out that the channel cross-sections o5 (A) admit the property

N N
Zajk(x) = Zakj(x), A eR, (3.16)

which is a consequence of the unitarity of the scattering matrix. Moreover, if there is a conjugation
J such that KJ = JK and KyJ = JKj holds, that is, if the scattering system S is time reversible
symmetric, then we have even more, namely, it holds

oin(\) = orj(\), A€ER. (3.17)

Usually the Landauer-Biittiker formula (3.13) is used to calculated the electron current entering the
reservoir j from the sample. In this case one has to choose ) := Q;l := —eP; where P;j is the orthogonal
projection form & onto K; and ¢ > 0 is the magnitude of the elementary charge. This is equivalent to
choose g;(A) = —e and gi(A) = 0 for k # j, A € R. Doing so we get the Landauer-Biittiker formula
simplifies to

I, Qg, =5 Z/ 210) A)ajk(N)dA. (3.18)
To restore the original Landauer-Buttiker formula one sets
fi) =FX=p;), AeR, (3.19)

where 1; is the chemical potential of the reservoir &; and f(-) is a bounded non-negative Borel function
called the distribution function. This gives to the formula

J ot = Z/ FO— 1) — FO— p))asn(N)dA. (3.20)
In particular, if we choose one
1

where frp(-) is the Fermi-Dirac distribution function, and inserting (3.21) into (3.20) we obtain

N
T s === 2 [ (Fep (=) = frp(h = pw)osu(ax (3.22)
T =1 /R
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If we have only two reservoirs, then they are usually denoted by [ (left) and r (right). Let j = [ and

k =1r. Then
¢

F o = = / (froh = ) = Frn(h — p))or(A)dA, (3.23)

One easily checks that J5Q < 0if w; > p,r. That means, the current is leaving the left reservoir and
is entering the right one which is accordance with physical intuition.

Example 3.3 Notice that s. := {h¢! h&'} is a £ scattering system. The Hamiltonian h¢ takes
into account the effect of coupling of reservoirs or leads b; := I2(N) and b, := [?(N) to the sample
hs = C2? which is also called the quantum dot. The leads Hamiltonian are given by he! = —AP 4,
a = [l,r. The sample or quantum dot Hamiltonian is given by hgl. The wave operators are given
by

wa (W hE) = s lim e ith! g—ithi! pac(pel) (3.24)

t—oo

The scattering operator is given by s. := wy(h®, h§)*w_(he, hE'). Let H(hgl’ac) the spectral
representation of hgl’ac introduced in Section 2.6. If p and ¢° are density and charge operators

for h&', then the Landauer-Biittiker formula takes the form
Se 1 el el * el
T g = g [ 40 (O o = 5o g )5 (0) (325)

where {s.(A)}rer, {¢°(\)}acr and {p°(N\)}rer are the scattering, charge and density matrices
with respect to TI(hg "), respectively. The condition that ((h&!)? +Iye)p is a bounded operator is
superfluous because hgl is a bounded operator. For the same reason we have that every p-tempered
charge ¢° is in fact a charge, that means, ¢® is a bounded self-adjoint operator.

The scattering system s, is a black-box model with reservoirs h! and h¢'. Choosing
= fih) @ fs(hg) @ fr(hy')

where f,(-), @ =1, r, are bounded Borel functions, and
¢* = q(h{") @ gs(h%) © g- (A7),

where g,(-), a € {l,r}, are locally bounded Borel functions, then from (3.13) it follows that

Torgr =50 2 [ (al) = £0)ga (o0
a%i{l'r}

where {o.(\)}rer is the channel cross-section from left to right and vice versa. Indeed, let
{te(A)}aer the transition matrix which corresponds to the transition operator t. := s. — Ipe.
Obviously, one has t.(A) = Iyn) — sc(A), A € R. Let {p¢(A)}rer be the matrix which corre-
sponds to the orthogonal projection p¢ from h* onto he. Further, let t¢,(\) := p<(A\)t.(\)pf!
and t§, = pf(A)t.(\)pe. Notice that both quantities are in fact scalar functions. Obviously, the
channel cross-sections of.(\) and o< () at energy A € R are given by o.(\) := of,.(\) = [t.(N)|*> =
[t (VP = a5 (V), A€ R.

In particular, if g;(A) =1 and g, = 0, then

Sc . 1
T = 37 () = ()0 (3.26)
and qle = pll Following [1] J* lz gt denotes the current entering the quantum dot from the left

lead.
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3.2 Application to the JC L-model

Let s = {H, Hy} be now the JC L-model. Further, let p and @ be a density operator and a charge for
Hy, respectively. Under these assumptions the current Jg’Q is defined by

1 1
— ; 2 *
Jlva = —itr (W (H, H(])(I + HO)pW, (H7 H()) ﬁ[H, Q]}m> s (327)

and admits representation (3.4). If Q is a p-tempered charge and (Hy — i)P™2p is a bounded operator,
then the current J3 , is defined in accordance with (3.7) and the Landauer-Biittiker formula (3.4) is
valid, too.

We introduce the intermediate scattering system S, := {H, H.} where
H, = h® @ Iypn + Iye @ WP = Hy + V.

The Hamiltonian H, describes the coupling of the leads to quantum dot but under the assumption that
the photon interaction is not switched on.

Obviously, Sy, := {H, H.} and S := {H,, Hy} are £;-scattering systems. The corresponding scattering
operators are denote by S, and S, respectively. Let II(H%¢) = {L?(R, d\, h.(\)), M, ®.} of H® be
a spectral representation of H.. The scattering matrix of the scattering system {H, H.} with respect
to II(HZ°) is denoted by {Spn(A)}acr. The scattering matrix of the scattering system {H., Hy} with
respect to II(H§®) = {L?(R,d)\, ho(N)), M, o} is denoted by {S.(A)}rcr.

Since S, is a £1-scattering system the wave operators W (H,.., Hy) exists and are complete and since
O Wy (H., Hy)®P§ commute with M, there is a measurable families {4 ()} xer of isometries acting
from ho(A) onto h.(A) for a.e. A € R such that

~ -~

(B W (He, Ho) 25 [)(N) = WaW) F(N), AR, F e L2R.dX ho()).
The families {W(A)}aer are called wave matrices.

A straightforward computation shows that §ph =Wy (He, Ho)*Spn W4 (H,, Hy) commutes with Hy.
Hence, with respect to the spectral representation II(H§®) the operator Sy, is unitarily equivalent

to a multiplication induced by a measurable family {§ph (M) }aer of unitary operators in ho(A). A
straightforward computation shows that

Sn(0) = Wi () Sy ()W () (3.28)
for a.e. A € R. Roughly speaking, {§ph (M) }aer is the scattering matrix of Sp;, with respect to the
spectral representation II(H§°).

Furthermore, let

p° 1= W_(H,, Ho)pW_(H,, Hy)* (3.29)
and

Q° =W, (He, Ho) QW (He, Ho)" (330)

The operators p¢ and Q¢ are density and tempered charge operators for the scattering system Spp.
Indeed, one easily verifies that p¢ and Q¢ are commute with H.. Moreover, p¢ is non-negative. Further-
more, if @ is a charge, then Q€ is a charge, too. This gives rise to introduce the currents JpC’Q = JjCQ,

c . L 1 1
J/LQ = —tr (”/_(HC,HO)p”/_(HC,HO) -H_C_Z[HC7Q]H_CJ’_Z) 5 (331)
and J2Y, = T
1 1
ph . c * c
TP = it (W(H, H)p W (H, He)' g [H. Q7 Z) (3.32)

26



which are well defined. If @ is p-tempered charge and (Hy — i)?*2p is a bounded operator, then one
easily checks that Q¢ is a p-tempered charge and (H. — i)?*2p¢ is a bounded operator. Hence the
definition of the currents Jiﬁch can be extended to this case and the Landauer-Biittiker formula (3.4)
holds.

Finally we note that the corresponding matrices {pS.(A)}rer and {QS.(A\)}rcr are related to the
matrices {pac(A)}aer and {Qac(A)}rer by

PacA) = W_(N)pac(NW_(A)" and  QG.(A) = Wi (A)Qac(MNW1(A) (3.33)
for a.e. A € R.
Proposition 3.4 (Current decomposition) Let S = {H, H} be the JCL-model. Further, let p and

be a density operator and a p-tempered charge, p € Ny, for Hy, respectively. If (Hy — i)PT2p is a
Q y op p-temp ge, p P y. p
bounded operator, then the decomposition

c h

holds where J; o, and Jﬁfé are given by (3.31) and (3.32).

In particular, let {Sc(A) }aer, {Pac(AN) Faer and {Qac(A)}rer be scattering, density and charge matrices
of S¢, p and Q with respect to II(H§) and let {Spn(A)}rer, {p5.(M)}rer and {QS.(A)}rer be the
scattering, density and charge matrices of the scattering operator Sy, density operator p°, cf. (3.29),
and charge operator Q°, cf. (3.30), with respect to the spectral representation II(H?}. Then the
representations

fo = g [ (@) SOV QueVS )N (3.35)
Ty = g [ R OQeN) — SO Q28 ()i (330

take place.

Proof. Since S. and S, are £;-scattering systems from Theorem 3.1 the representations (3.35) and
(3.36) are easily follow. Taking into account (3.33) we get

tr(pGe (M) (Qac(A) = Spn(A) " Q5c(N)Spn(N))) =
tr(Wo(A)pacW-(A)* (Wi () Qac(MW(A) = Spn(A)*Qgc(A) Spn(A)))-

Using Sc(A) = W (A)*W_()) we find

tr(pGe(A(Qae(A) = Spr(X)*Qgc(AN)Spn(A))) = tr (pac(A) X (3.37)
(Se(A)*Qac(A)Se(A) = W (A)"Spn(A) Wi (N)Qac (MW (A) " Spr (MW (A))) -

Since {H., Ho} and {H, H.} are £-scattering systems the existence of the wave operators W (H, H,)
and Wy (H., Hy) follows. Using the chain rule we find W1 (H, Hy) = Wy (H, H.)W4(H,., Hy) which
yields

S = Wy (H,Hoy)"Wy(H, Hy)

Wi (H.,Hy)"W,(H,H.)W_(H,H.)W_(H,, Hy)
W4 (He, Ho)* Spn W_(H,, Hp).

Hence the scattering matrix {S(\)}acr of {H, Hy} admits the representation

S(N) = Wi (A S WW_(A), A€eR. (3.38)
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Inserting (3.38) into (3.37) we get

L / (e (V) (Se(N)* Que(N)Se(N) — S(N)* Que(NS(A))dA (339)

Using (3.39) we obtain

Tiqt Ty = o / (PaeN) (QaelN) = S Que(NSON)))dA.

Finally, taking into account (3.4) we obtain (3.34). O

Remark 3.5

(i) The current J¢ 5. 1s due to the coupling of the leads to the quantum dot and is therefore called
the contact /nduced current.

(ii) The current J: ph 1,0 1s due to the interaction of photons with electrons and is therefore called the
photon induced current Notice the this current is calculated under the assumption that the leads
already contacted to the dot.

Corollary 3.6 Let the assumptions of Proposition 3.4 be satisfied. With respect to the spectral repre-
sentation TII(H§¢) of H§¢ the photon induced current JZ”% can be represented by

: 7/“ ) (Qae\) = Spn(A)* Qac(A) Spn (A)))dA (3.40)

where the measurable families { §ph(A) taer and { pac() }aer are given by (3.28) and
Pac(A) 1= Sc(N)pac(A)Sc(\)" A ER, (3.41)

respectively.

Proof. Using (3.33) and S.(A) = W (A)*W_()) we find

tr(PGe (A (Qac(A) = Spr(X) QM) Spn(A))) = tr (Se(A)pac(A)Se(A)™ %
(Qac(A) = W (A" Spn(A) Wi (A)Qac MW (A)" Spn (MW () -
Taking into account the representations (3.28) and (3.41) we get
tr(pae (A (@A) = Spr(X)*Qc(N) Spn(N))) =
8. 0)paeNe 0 (©ur2) — Sy Qo) Ss))

which immediately yields (3.40). O

Remark 3.7 In the following we call { puc(A) }acr, cf. (3.41), the photon modified electron den-
sity matrix. Notice that { puc(N) }aer might be non-diagonal even if the electron density matrix

{Pac(A) }rer is diagonal.
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4 Analysis of currents

In the following we analyze currents J , and J;’ZQ under the assumption that p and @) have the tensor
product structure

p=p"®@p" and Q=q¢"®q¢" (4.1)
where p¢ and pP" as well as ¢° and ¢P" are density operators and (tempered) charges for hgl and hP",
respectively. Since pP* commutes with hP", which is discrete, the operator p?"has the form

pph = pph(n)('7 T,)Yn, n €Ny, (4.2)
where pP"'(n) are non-negative numbers. Similarly, ¢?" can be represented by
qph = qph(n)(', TTL)TTH n e N07 (43)

where gP"(n) are real numbers.

Lemma 4.1 Let S = {H, Hy} be the JCL-model. Assume that p # 0 and Q have the structure (4.1)
where p° is a density operator and q°' is a charge for h¢'.

(i) The operator (Hy — i)P*2p, p € Ny, is bounded if and only if the condition

sup p"*(n)nP? < oo (4.4)

neNp
is satisfied.
(ii) The charge Q is p-tempered if and only if

sup |gP" (n)|n"P < oo. (4.5)
neN

is valid
Proof. (i) The operator (Hy — i)?*2p admits the representation

(Ho —i)"*2p = @D 0" (n) (g} + nw — i)7+2prl.

pENy
We have
I(Ho — )" 2plles) = Sup PP ()| (R + nw — )72 p | e (4.6)
preiio
= sug]) pph(n)np+2n_(p+2) H(hgl + nw — i)p+2pel’|2(hel) .
pelNo

Since lim,, .o, n~(P+2) H(hgl + nw — i)p”de}:(hel) = wp+2||pel||£(hez) we get for sufficiently large

n € Ny that
wpP+?
2
Using that and (4.6) we immediately obtain (4.4). Conversely, from (4.6) and (4.4) we obtain that

(Ho — i)P*2p is a bounded operator.

10 || epery < n~PFD (R + nw — §)PF2p% || ¢ gy -

(i) As above we have
Q(Hy —i)™P = @ qph(n)qel
n€Ng
Hence

|Q(Ho — 1) Plles) = Séll\? |qph(n)|qul(h81 +nw — i) 7P| g (gery-
n 0

Since limp, o0 1P || (h§ + nw — i) 7P| g ey = w ||| ¢(per) We get similarly as above that (4.5) holds.
The converse is obvious. 0
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4.1 Contact induced current

Let us recall that S, = {H., Ho} is a £1-scattering system. An obvious computations shows that
Wy (H,, Hy) = wi (h®, h§) @ Igon
where w4 (he, he') is given by (3.24). Hence

Se = 8¢ @ Iypn, where s.:= wy (h, he)*w_(he, heh).

Proposition 4.2 Let s = {H, Hy} be the JCL-model. Assume that p and Q are given by (4.1) where
p¢ and q° are density and charge operators for h§' and pP"* and ¢P" for hP", respectively. If for some
p € Ny the conditions (4.4) and (4.5) are satisfied, then the current J , is well defined and admits
the representation

T = gr 7= D, @ (n)p"(n) (4.7)
n€Np
where J:fez’qel is defined by (3.2). In particular, if tr(pP") = 1 and ¢?" = Ty, then Jj o = J;Zz,qez-

Proof. First of all we note that by lemma 4.1 the operator (Hy—i)?*2p is bounded and Q is p-tempered.
Hence the current Jng is correctly defined and the Landauer-Biittiker formula (3.4) is valid.

With respect to the spectral representation II( H§¢) of Lemma 2.12 the charge matrix {Qqc(A\)} xer of
Quc = q°1. ® gP" admits the representation

QueN) = P ¢LA —nw)g™'(n), A€ R. (4.8)

neNp

Since S, = 5. ® Iyen the scattering matrix {S.(\)}rer admits the representation

Sc(\) = € se(A —nw), AeR.

neNp
Hence
Q(w( ) - ( )*ch( ) C(/\) = (4-9)
@ @ (n) (gL (N — nw) — se(X — nw)*gEL (A — wn)se(A — nw)) .

n€eNg

Moreover, the density matrix {pa.(\)}rcr admits the representation

p(lC @ pph pac - nw) (410)
n€Ng

Inserting (4.10) into (4.9) we find

Pac()\) (QaC()‘) - ( ) Qac c @ qph

neNy
pglc()\ — nw) (qglc()\ —wn) — sc(A — nw)*qglc()\ —wn)se(A — nw))

Since v =3, e, q""(n)pP" (n) is absolutely convergent by (4.4) and (4.5) we obtain that

tr (pac()\) (Qac()\) - ( ) Qac c Z qph (411)

n€Ng
tr (5L — ) (gL (0 — wn) — se(A — 1w EL A — wn)so(A — nw)))
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Obviously, we have

|tr (pzlc()\ — nw) (qu:()\ —wn) — Sc(A — nw)*qfllc()\ —wn)se(A — nw)))‘ <
4| ph (A = nw) e, o l25E A = 1)l gm0y, A ER.

We insert (4.11) into the Landauer-Biittiker formula (3.35). Using (4.4) and (4.5) as well as

/R 1055 L 0 192 D oy A < 00

we see that we can interchange the integral and the sum. Doing so we get

0= X " (05 [ b (- o)

neNy
(qac(/\ wn) — se(A —nw)* gL (A — wn)se (A — nw))) dA.

Using (3.25) we prove (4.7).
If tr(pP") = 1, then > N pP(n) = 1. Further, if pP" = Iy,n, then ¢?"(n) = 1. Hence v = 1. O

4.2 Photon induced current
To calculate the current J;’fb we used the representation (3.40). We set
St () 1= Pu(N) Spn (N) 1 Ba(Y), A €R.

where {§ph (M) }aer is defined by (3.28) and P,,(\) is the orthogonal projection from h(A), cf. (2.41),
onto b, (A) := b (A — mw), A € R.

Proposition 4.3 Let s ={H, Hy} be the JCL-model. Assume that p and Q are given by (4.1) where

p¢ and q¢ are density and charge operators for h§' and pP" and ¢P" for hPh, respectively. If for some
p € Ny the conditions (4.4) and (4.5) are satisfied, then the current J/’J’% is well-defined and admits
the representation

TV =" pPm) Y ¢ (n /dA tr (PeL(A — mw) x (4.12)
meNy neNy
(@O = ) — S5, ()" gib (A = nw) S5, (1))

where { p<L()\) }acr is the photon modified electron density defined, cf. (3.41), which takes the form

L (N) = s.(N)p?(N)se(N)*, NeR. (4.13)
Proof. By Lemma 4.1 we get that that the charge @) is p-tempered and (Hy — i)Pp is a bounded
operator. By Corollary 3.2 the current Jph = JSShQr is well-defined.

Since (Qac()\) - Sph(A)* Qac(N) Sph (/\)) is a trace class operator for A € R we get from (3.40) and
(4.10) that

tr (PueN) (QueN) = o) QueN) Son (V) ) = D= o () x

meNy

tr( ()\ mw) ( )(an( )* ph( ) Qac( ) ph (A)) Pm(>‘))
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Further we have
P ) (Que() = Spn(A)* QuelX) Spn (1)) Pn(N)
= 7" (m) (/3 = m) = Pu(3) Sy (A)” Que(N) Sy ()] PV

= " (m)g (A —mw) = > ¢ (n) S0 (N)" ¢ (A — nw) SE1, ()
n€Ng

for A € R where SE (\)* == P, (A) Sy (M) P (M), A € R. Notice that 3, .y, is a sum with a finite
number of summands. Hence

tr (PacN) (Quel) = Sn(N) QueN) S (V) ) = 32 7" (m) 3 ¢ (n) x

meENg neNy
tr (700 = mw) (g = me)dn — 200" ¢ (A= ) S (V) ))

We are going to show that

Z PP (m Z l¢"" (n) |/ ‘tr LN — mw) x

meENg n€eNy

(qel(A — W)Em — P (A)* g (A — nw) SEE (N )) \ d\ < oo
Obviously one has the estimate
tr (20— mw) (a1 = me)omn — St (V)" 0 (A =) Sa, (1) ) )| <
2[ 2% (A = mw) [l ev,.. 0 (14X = mw)ll e, (3 Fnm + 147N = 170) [ 26, (2)) -
Further, we get

A 7= ) 0, 0 1978 = 1) 50, e <
S

/ 15 e 14 ) £t (1))
AER

and

/|| (A= mw) e, 1 (A = 70) s, dA <

1ol oty / 15O — (m— 1)) llegp,, oy
AER

If the conditions (4.4) and (4.5) are satisfied, then

S Pl )] [ 1570 sty o™ Ol A < o0
meENy

Further, we have

Z pph Z |qph |/ Tl)CL)) ||£(hmfn(>‘))dA S

méeNy neNg

(vmax — Umin T 4)||p2lc||£(hel) Z pph(m) Z ‘qph(n)| <00

me&Ny [m—n|<dmax

where dpax is introduced by Lemma 2.12. To prove

STpMm) > ¢ (n) < oo

mENg |m_n|§dmax
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we use again (4.4) and (4.5). The last step admits to interchange the integral and the sums which
immediately proves (4.12) O

Corollary 4 4 let s ={H,Hy} be the JCL-model. Assume that p and Q) are given by (4.1) where
p° and q° are density and charge operators for hgl and pP" and qP" for hP", respectively. If p® is an
equ1//br/um state, i.e. p = fe(hgl), then

o= > qph(“)i/R(Pph(")fel(/\—W)—pph(m)fel(A—mw))><

2w
m,n€Ng

tr (S8, (A gih (A — nw) S5, (V) dA. (4.14)

Proof. From (4.12) we get

o =3 ") Y pmg- [ ax s me)
n€Ny meNy R
tr (GEL O\ = 1) 0 — Sy (V) @Gh (A — ) S, ().
Hence
Jgfé? = Z " (n /d/\ Z PP (m) FEH N — mw) x
neNy meENg
tr (gL (N = 1) O — Sty (V) @5h (A = nw) S, ().
This gives
Jé)}é) = Z qph(n)% / dX (" (n) F (N — nw)tr (¢5L(\ — nw)) — (4.15)
neNp R
> o) e O = mew)tr (S5, () gL\ nw) 2, (V).
mENg
Since
> o) O = mw)tr ( S5k () gib(h = nw) S5k, (1)) =
mENy
3 (P m) A — mw) — P () £ A nw)) x
m&ENy
tr ( St () a5 = ne) St (V) +
) I =) Yt (Shh () g5k — nw) St (V)
meENg
Inserting this into (4.15) we obtain (4.14). O

5 Electron and photon currents

5.1 Electron current

To calculate the electron current induced by contacts and photons contact we make the following choice
throughout this section. We set

Q% :=q¢l ¢, ¢ = —epd and ¢ = Iyon, a€{l,r}, (5.1)
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where p¢! denotes the orthogonal projection from b onto h¢!. By e > 0 we denote the magnitude of
the elementary charge. Since p¢! commutes with h¢ one easily verifies that Q¢ commutes with H
which shows that Q¢ is a charge. Following [1] the flux related to Q¢! gives us the electron current

Jng, entering the lead o from the sample. Notice Q¢! = —¢P,, where P, is the orthogonal projection
from $ onto 9, := h% @ hP. Since ¢?" = Iyon the condition (4.5) is immediately satisfied for any

p > 0.

Let f(-) : R — R be a non-negative bounded measurable function. We set

pd = pld ©® peSl @ pilv PZZ = f(hgl — o), a€{l,r} (5.2)

and p = p® ® pP". By po the chemical potential of the lead « is denoted. In applications one sets
f(\) :== frp(A), A € R, where frp(A) is the so-called Fermi-Dirac distribution given by (3.21). If
B = oo, then frp(\) := xr_()\), A € R. Notice that [p¢, p¢] = 0. For pP* we choose the Gibbs state

1 h h 1
h._ —BR? - —BRP"Y
pp = Ee s 7 = tr(e ) = m, (53)
Hence pP" = (1 — e’ﬁ“’)e*ﬁhph. If B = oo, then pP" := (-, o) Yy. Obviously, tr(pP") = 1. We note
that pP(n) = (1 — e #¥)e " n € Ny, satisfies the condition (4.4) for any p > 0. Obviously,
po = p @ pPP is a density operator for H.

Definition 5.1 Let S = {H, Hy} be the JOL-model. If Q := Q¢, where Q¢ is given by (5.1), and
p = po = p @ pP" where p! and pP" are given by (5.2) and (5.3), then J;éggl = Jjo,Qg’ is called
the electron current entering the lead «. The currents Jpc0 Qe and J;’ ;L Qe Are called the contact

induced and photon induced electron currents.

5.1.1 Contact induced electron current
The following proposition immediately follows from Proposition 4.2.

Proposition 5.2 Let S = {H,Hy} be the JCL-model. Then the contact induced electron current

J;O Qer @ E {l,r}, is given by Qe = J;Z; gl In particular, one has

Jooqet = —ié(f(k—ua) — fOAN = p)oc(N)dA, a,x € {l,r}, a# x, (5.4)

where {o.(\)}recr is the channel cross-section from left to the right of the scattering system s, =
{hel, e}, cf. Example 3.3.

Proof. Since tr(pP") = 1 it follows from Proposition 4.2 that JpcO Qu = J;‘;l gl From (3.26), cf.

Example 3.3, we find (5.4). O

If w > p and f(-) is decreasing, then J;O g < 0. Hence the electron contact current is going from
]

the left lead to the right which is in accordance with the physical intuition. In particular, this is valid
for the Fermi-Dirac distribution.

Proposition 5.3 Let s = {H, Hy} be the JCL-model. Further, let p°* and pP"* be given by (5.2) and
(5.3), respectively. If the charge Q¢ is given by (5.1), then the following holds:

(E) If i = pr, then Joga =0, a € {l,r}.

(S) Ifu; > v +4, then g, =0, a € {l,r}, even if u; # .

0,Q¢!
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(C) Ifeg =65 and ey = 67, then Joqa =0, a € {l,7}, even if p # .

Proof. (E) If y; = pr, then f(A — ) = f(A — pr). Applying formula (5.4) we obtain J¢

=0.
po,Q¢!

(S) If v > v, + 4, then hE""® has simple spectrum. Hence the scattering matrix {s.(\)}rer of the
scattering system s. = {h®, h§'} is a scalar function which immediately yields o.()\) = 0, A € R, which
yields J;D Qe = 0.

(C) In this case the Hamiltonian h®’ decomposes into a direct sum of two Hamiltonians which do not
interact. Hence the scattering matrix of {s.(\)}er of the scattering system s. = {h¢!, h&'} is diagonal
which immediately yields J;'O Qe = 0. ([

5.1.2 Photon induced electron current

To analyze (4.12) is hopeless if we make no assumptions concerning p° and the scattering operator s..
The simplest assumptions is that p® and s. commute. In this case we get p (\) = p?(\), A € R.

Lemma 5.4 Let S = {H, Hy} be the JCL-model. Further let p° be given by (5.2). If one of the cases
(E), (S) or (C) of Proposition 5.3 is realized, then the p®* and s. commute.

Proof. If (E) holds, then p¢ = f(h§!) which yields [p¢, s.] = 0. If (S) is valid, then the scattering
matrix {s.(\)}xer is a scalar function which shows [p,s.] = 0. Finally, if (C) is realized, then the
scattering matrix {s.(\)}acr diagonal. Since the p is given by (5.2) we get [p¢, s.] = 0. O

We are going to calculate the current Jg’erl, see (4.12). Obviously, we have Py (A\) =3, cn, P\ —

nw) and Iy(n) = Pi(A) + P-(A), A € R. We set
P, (\) := Po(\)Py(\) = Po(N) P (N) = (X — nw), a € {I,7},

n € Ng, A € R. In the following we use the notation fph N\ = Aph (A) = Iyny, A € R, where
{Tph(\) }rcr is called the transition matrix and { Spx()) }acr is given by (3.28). We set

~

TP (A) = Po, (A) Tyh AP, (A), AER, a,x€{l,r}, kmeN,.

kam,.

and
ah ) =w(T (T (V). AER, (5.5)

aMlse

which is the cross-section between the channels &k, and m,,.

Proposition 5.5 Let s = {H, Hy} be the JCL-model.

(i) If p° commutes with the scattering operator s, and ¢, then

ph _ ¢
Thos== 2 5= [ (56)

m,nENg
swe{l,r}

(0" () FON = pra = nw) = pP"(m) f(A = poc — mw)) T8, (X) dA.

(ii) If in addition s = {H, Hy} is time reversible symmetric, then

ph ¢
Thag== % 5= [ 67)

m,n€Ng
(PP (n) F A = . = nw) = PP (M) fA = pror — mw)) T, (A) dA,
a, o e{l,r}, a#d.
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Proof. (i) Let us assume that

qd: Z g%(hil)v

we{l,r}

Notice that
N = Y gL, MeR
we{l,r}

Inserting (5.8) into (4.12) and using g™ = Ij,n we get

JO,Q_ Z Z /d)\ Do (A — mw) g, (A — nw) x

m€ENy n€Ng
ae{l,r} xe{l,r}

tr (PO = meo) (PN = m)mn — St () ELON = ) St (V) )
where for simplicity we have set
PaN) = f(A—pa), AR, meNy, ae{lr}

Obviously, we have

1
Jﬁ(ﬁQ = Z pph(n)% /Rd)\ s (A — nw) g, (A — nw)tr (pil()\ —nw)) —
neNg
xe{l,r}

Z Z P (m /d)\ Do (A — mw) g, (A — nw)x

n€Ng  meNy
we{l,r} ac{l,r}

o (D (A = mew) St ()P = ) S, (WpEL (A = mw))
Since the scattering matrix { P ()} e is unitary we have

P =nw) = D pLA—nw) 8P (A)PE (A — mw) PR, (VpS (A — nw)
m&ENp
ae{l,r}

for n € Ny and » € {I,r}. Inserting (5.11) into (5.10) we find
Tha= X Pz [ 30— nwlgnh - nw)

n€Ng meNy

we{l,r} ae{l,r}
tr (SO — ) S8, () PO — ) B2, ()P (A — ) ) —
S % g [ AN Guh = melge(h - ne)x
neNg meNy

we{l,r} ae{l,r}

tr (P (A — mw) Sk, ()P (X = nw) S, (P (A = mw))

Using the notation (5.5) we find

po,Q_ Z Z %/Rd/\ d)%()\—nw)g%()\—nw)g%’nhn (\) —

neENg  meNy
we{l,r} ac{l,r}

S Y g [ aha(h—melgn 3= )57, ()

n€Ng  meNy
xe{l,r} ae{l,r}
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By (3.16) we find
oo, )= > G, () AeR

mENg mENg
ae{l,r} ac{l,r}
Using that we get
1
ph
o= > ). (5.12)
m,n€Ng
a,xe{l,r}
(PP (1) — 1) — P ()X — 1)) gl — 1) 2, (N) A,

Setting go(\) = —e and g,.(\) =0, 3 # «, we obtain (5.6).

(i) A straightforward computation shows that
S [0 = o =) = ) 0 = = ) 5, () DA =
S ) £ g = ) = )£ g = ) 2, () DA

Since o (A) =02 (), A € R, we get

MaNa NaMa

3 / (PP () — o — 1) — P () F A — o — muw)) B (A) dA =

n,meNg

= 2 [ 0O~ o = 1) = ) P = = ) 5B, (V)

n,meNg
which yields
S [ IO~ o =) = 0 ) 8= o ) 2, () A =0
n,meNy R

Using that we get immediately the representation (5.7) from (5.6). O

Corollary 5.6 Let S = {H, Hy} be theJC L-model.

(i) If the cases cases (E), (S) or (C) of Proposition 5.3 are realized, then the representation (5.6)
holds.

(ii) If the case (E) of Proposition 5.3 is realized and the system § = {H,Hy} is time reversible
symmetric, then

']5:,623’ - (5:13)

- > % /R(P””(n)f(A — = nw) = g () O = p = mw)) 1, (N)dA

m,nENy
n € Ng, a € {l,r} where p:= py = p, and o # .

(iii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy} is time reversible and
mirror symmetric, then J;)thel =0.
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Proof. (i) The statement follows from Proposition 5.5(i) and Lemma 5.4.
(ii) Setting p1o = pos formula (5.13) follows (5.7).

(iii) If s = {H,Hp} is time reversible and mirror symmetric we get from Lemma 2.14 (i) that

ot A = a8, (M), A € R nym e Ny, a0 € {l,r}, @ # . Using that we get from
(5.13) that
ph —
JPmQ"l B
= 3 [ OO ) = ) SO = = ) 5T, VA
T
m,neENg

Interchanging m and n we get

ph _
JPO’QSZ -

= X o [0 = ) = ) O = = ) B2, A

m,n€Ng

Using that 5 is time reversible symmetric we get from Lemma 2.14 (i) that

ph _
JPmQ” -
= 3 o [P0 i)~ IO = ) A
m,neENg &
which shows that Jth‘,, = _‘]th;;' Hence Jp 0,05l = 0. U

We note that by Proposition 5.3 the contact induced current is zero, i.e. JC 0,08l = 0. Hence, if the §

is time reversible and mirror symmetric, then the total current is zero, i.e. J = 0.

00, Qel

Remark 5.7 Let the case (F) of Proposition 5.3 be realized, that is, y; = u,.. Moreover, we assume
for simplicity that 0 =: v, < v := ;.

(i) If B = oo, then pP"(n) = Son, n € Ny. From (5.6) we immediately get that Jpl . = 0. That
means, if the temperature is zero, then the photon induced electron current is zero.

(ii) The photon induced electron current might be zero even if 8 < co. Indeed, let § = {H, Ho}
be time reversible symmetric and let the case (E) be realized. If w > v + 4 and , then
het(N) == heH(N) = b (A — nw), n € Ny. Hence one always has n = m in formula (5.13) which
immediately yields Jg Oh,le =0.

(iii) The photon induced electron current might be different from zero. Indeed, let § = {H, Hy}
be time reversible symmetric and let v = 2 and w = 4, then one gets that to calculate the
Jﬁer, one has to take into account m =n + 1 in formula (5.13). Therefore we find

7

WQ = Z%/dxx

n€Ny
(" () f A = = nw) = p" (n+ 1) f(A = p = (n+ 1)) 35" ) (V).
If pP" is given by (5.3) and f(A\) = frp(A), cf. (3.21), then one easily verifies that
0
ﬁpph(x)fpp()\ —p—aw) <0, z,puAeR
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Hence pP"(n)frp(A — p — nw) is decreasing in n € Ny for \,u € R which yields

(PP (n) fF(X = p—nw) — pP"(n+ 1) f(A — p = (n+ 1)w)) > 0. Therefore J;': « < 0 which
7]

means that the photon induced current leaves the left-hand side and enters the right-hand

side. In fact J;’:Qel = 0 implies that 8ﬁ7(n+1) (A\) =0 for n € Ny and A € R which means
I T

that there is no scattering from the left-hand side to the right one and vice versa which can
be excluded generically.

5.2 Photon current

The photon current is related to the charge
Q:=Q" = —Iu®n,

where n = dI'(1) = b*b is the photon number operator on h?* = F,(C), which is self-adjoint and
commutes with AP". It follows that QP" is also self-adjoint and commutes with Hy. It is not bounded,
but since dom(n) = dom(hP"), it is immediately obvious that QP"(Hy + 6)~! is bounded, whence N
is a tempered charge. Its charge matrix with respect to the spectral representation II( H{¢) of Lemma
2.12 is given by

Q) = — @ nPan).

neNp

We recall that P, () is the orthogonal projection form h()\) onto b, (A) = b (A —nw), A € R. We are
going to calculate the photon current or, how it is also called, the photon production rate.

5.2.1 Contact induced photon current

The following proposition is in accordance with the physical intuition.

Proposition 5.8 Let s = {H, Ho} be the JCL-model. Then J; .. =0.

Proof. We note that ¢¢.(\) = Iyer(n), A € R. Inserting this into (3.25) we get J;Cel g1 = 0. Applying
Proposition 4.2 we prove JpcO orh = 0. 0

The result reflects the fact that the lead contact does not contributed to the photon current which is
plausible.

5.2.2 Photon current

From the Proposition 5.8 we get that only the photon induced photon current JPh contributes to

po,QPh
S H S __ 1ph ph .
the photon current Jpo,QPh' Since Jponp,L = Jpo,QPh we call Jponp,L simply the photon current.

Using the notation TP (X) := P,()\) fph (A) 15N —mw), A € R, m,n € Ng. We set

TPE(A) = TP" (N)se(A —mw), AER, m,neNg (5.14)
and _ _
T2 (A) = P (NTEE(A) THE (A —mw), XER, (5.15)

m,n € Ny, a, e € {I,7}, as well as 5" (\) := te(TP", (A)*TP", (M), A € R.

N Mey NeMey NacMe

Proposition 5.9 Let S = {H, Hy} be the JC'L-model.
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(i) Then
Tvam =D ("—m)P”h(m)%/Rf(A— o — mw)FP L (\)dA (5.16)

m,n€ENg
o,xe{l,r}

(ii) If p°' commutes with s, then

1
ph _ _ h = _ _ ph
S oo = EGN (n —m)pP (m)2W/Rf(/\ fo —mw) oh L (N)dA (5.17)
e (i}

(iil) If p°! commutes with s. and S = {H, Ho} is time reversible symmetric, then

T o = —/d)\x (5.18)

m nGNg,n>m
»,a€{l,r}

(n—m) (P"" (M) fF(X = pa — mw) — PP (n) f(A = poe — nw)) 38" (M)

where o' € {l,r} and o/ # a.

Proof. (i) From (4.12) we get

J/I;:L,Ql’h =— npph /d)\ tr (PEL(A — mw) x

mneNo
(Pa(N)dn — Sty (V)" gi (A — ) 52, (1)) ).

Hence

h
Po QP’L - Z mpp

meENy

3 [t (7= me (P (V) = S ()" Pu(3) SE5,(3) ) ) d +

> " m)g [ e (B me) SE ) P SR ) d
m,n€Ng 2m R

m¥#n
Using the relation P, (A) = Ig(x) — 2 peng man Pn(A), A € R, we get

ph _
JPO Qrh T
_ ph i ~el _ Aph * Aph
> mp(m) tr ( Phe(A —mw) ((SER (A Pa(A) SER(A) ) ) dA+
27T R
m,n€Ng
m#n
S g [ o (B me) SOV P SR OV ) d
m,nENp 2m R
m#n

Since Ty (\) = Spn (A) — Iyry, A € R, we find

> (m =" (m) = [ 10 (P = ma) T )" TR )

m,n€ENp
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Using (4.13) and definition (5.14) one gets

ph —
JPmQ”h’ B
1 - -
= Y e myg [ (O - ) TN TR W) dh.
m,n€Ng R
Since pl = pf! @ p¢! where p¢! is given by (5.2) we find
ph —
Jpoanh -
1 _ ~
= Y e g [ O = mr (T2, O) T2, () A
m,n€Ng R
a,xe{l,r}

where we have used (5.15). Using 62" | (\) = tr(ﬁfﬁma ()‘)*Tﬁﬁma (A)) we prove (5.16).

(ii) If pcL, commutes with s, then P&l (A) = pik(A), A € R which yields that one can replace 62" ())
by o&" . (A), A € R. Therefore (5.17) holds.

(iii) Obviously we have

T o = (5.19)
1 ~
S - m )y [ FO - o - ) 5T, (VA +
m,n€ENg,n>m R
a,xe{l,r}
1 ~
S - m )y [ FO - o )57, ().
m,n€ENg,n<m R
a,xe{l,r}
Moreover, a straightforward computation shows that
1 ~
S - m g [ SO s ) G, (A =
m,nENg,n<m R
o,xe{l,r}
ph 1 ~ph
S m ) e [ SO e )G (A
m,nENg,n>m R
o,ce{l,r}
Since s = {H, Hy} is time reversible symmetric we find
1 ~
S - m )y [ FO - i - ) T (Vi = (5.20)
m,nENg,n<m R
o, xe{l,r}
1 ~
S me g [ O - ), AN
m,n€ENg,n>m R
o,xe{l,r}
Inserting (5.20) into (5.19) we obtain (5.18). O

Corollary 5.10 Let s = {H, Hy} be the JCL-model and let f = frp. If case (E) of Proposition 5.3
is realized and S = {H, Hy} is time reversible symmetric, then Jﬁ;l@ph > 0.
Proof. We set i := p; = . One has
PP (m) fON = p = mew) = pP" (n) fF(A = p = nw) =
e (1 — em (TP L (N = — mw) frp (A — p— nw) > 0
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for n > m. From (5.18) we get J

Qph Z 0 D

Remark 5.11 Let us comment the results. If Jﬁ:QPh > 0, then system S is called light emitting.

Similarly, if J
absorbing, then JPh

(i)

(i)

(iii)

< 0, then we call it light absorbing. Of course if § is light emitting and
=0.

Qph iy

po, QP T

If B = oo, then pP""(m) = §g,n, m € Ny. Inserting this into (5.16) we get

T2 o = w5 [T =)o, (A >0

TLENO
a,xe{l,r}

Hence S is light emitting.

Let us show § might be light emitting even if 5 < co. We consider the case (E) of Proposition
5.3. If § is time reversible symmetric, then it follows from Corollary 5.10 that the system is
light emitting.

If the system $ is time reversible and mirror symmetric, then Jthel =0, a € {l,r}, by
Corollary 5.6(iii) . Since J Lo =0 by Proposition 5.3 we get that Jso Qe = 0 but the

photon current is larger than zero. So our JCL-model is light emitting I;y a zero total

electron current J 0,Qcl"

Let v, =0, v; = 2 and w = 4. Hence § is not mirror symmetric. Then we get from Remark

5.7(iii) that JthC, = —Jthel < 0. Hence there is an electron current from the left to the
<0.

right lead. Notice that by Proposition 5.3 J;O . = 0. Hence J* po.Qet =

To realize a light absorbing situation we consider the case (S) of Proposition 5.3 and assume
that $ is time reversible symmetric. Notice that by Lemma 5.4 s. commutes with p. We
make the choice

v, =0, vy>4 w=v, w=0, U =w=1.

It turns out that with respect to the representation (5.18) one has only tom =n—1, >c =r
and a = [. Hence

VAP % dAx
(0" (n = 1A = (n = Dw) — p™ () f(A = (n+ Dw)) 320,y ()
Since f(A) = frp(A) we find

P =1 f(A = (n = Dw) = p" (n) f(A = (n+ Dw) =
PP = 1) f(A = (n = Dw) f(A = (n + 1)w) x
(1 I R D eﬂ(A—w(n—m))

or

P =1 = (= Dw) = " () f(A = (n+ Dw) =
(0= 1)F0 — (0 — D) A — (n+ Dw)(1 — ) (1 — FO-om)).
Since A —nw > 0 we find pP(n —1)f(A— (n — 1)w) — p*"(n) (A — (n + 1)w) < 0 which yields

T2 o < 0.
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To calculate Jﬁ:Qe, we use formula (5.7). Setting o = [ we get o/ = r which yields
&y

PO Qel - Z 277 / dAX

m,neENy

(P (n) FON = pr = nw) — pP"(m) f(A = — mw)) GBE . (A)

One checks that Eglho (A) =0and 8" (X\) =0 for m #n+1, n € N. Hence

me = Z%/dAx

neN
(0" () fON = py = nw) = p" (n = 1) fA = pu = (n+ Dw)) 3571y (V)

Since p,, = w and pu; = 0 we find

po,Qe’ - Z 27T/

fO = (n+ l)w)pph(n —D(1—e )5t ) (AVdr<o.

Hence there is a current going from the left to right induced by photons. We recall that

Jﬁo,Qf‘l =0.
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