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Abstract

We consider singularly perturbed reaction-diffusion equations with singularly perturbed
Neumann boundary conditions. We establish the existence of a time-periodic solution
u(x, t, ε) with boundary layers and derive conditions for their asymptotic stability The
boundary layer part of u(x, t, ε) is of order one, which distinguishes our case from the
case of regularly perturbed Neumann boundary conditions, where the boundary layer is
of order ε. Another peculiarity of our problem is that - in contrast to the case of Dirichlet
boundary conditions - it may have several asymptotically stable time-periodic solutions,
where these solutions differ only in the desribtion of the boundary layers. Our approach is
based on the construction of sufficiently precise lower and upper solutions.

1 Statement of the problem.

We consider the following singularly perturbed parabolic periodic boundary value problem with
singularly perturbed Neumann conditions

Nε(u) := ε2

(
∂2u

∂x2
− ∂u

∂t

)
− f(u, x, t, ε) = 0

for (x, t) ∈ D := {(x, t) ∈ R2 : −1 < x < 1, t ∈ R},

ε
∂u

∂x
(−1, t, ε) = u(−)(t), ε

∂u

∂x
(1, t, ε) = u(+)(t) for t ∈ R,

u(x, t, ε) = u(x, t+ T, ε) for t ∈ R, −1 ≤ x ≤ 1

(1.1)

for ε ∈ Iε0 := {0 < ε ≤ ε0}, 0 < ε0 � 1, f , u(−) and u(+) are sufficiently smooth and
T -periodic in t.

Our interest in such problems is motivated by reaction-diffusion problems with a strong flow
on the boundary. This fact is described in the paper by Nesterov [1], where a linear reaction-
diffusion equation was considered.
Another motivation comes from the study of singularly perturbed problems with multiple roots
of the degenerate equation. We illustrate this fact by the following problem with a double root of
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the degenerate equation (see a related problem in [2]).

ε3

(
∂2v

∂x2
− ∂v

∂t

)
−[

v − (ϕ(x, t) + εϕ1(x, t))
][
v − (ϕ(x, t) + εϕ2(x, t))

]
= 0

for (x, t) ∈ D,
∂v

∂x
(−1, t, ε) = v(−)(t),

∂v

∂x
(1, t, ε) = v(+)(t) for t ∈ R,

v(x, t, ε) = v(x, t+ T, ) for t ∈ R, −1 ≤ x ≤ 1.

(1.2)

It is obvious that the substitution u = (v − ϕ(x, t))/ε transforms problem (1.2) into a problem
of the type (1.1).

Our goal is to establish the existence of a T -periodic solution of problem (1.1) with a boundary
layer, and to investigate the stability of this solution in the Lyapunov sense. Our approach is
based on the asymptotic method of differential inequalities which has been applied success-
fully to different classes of singularly perturbed problems (see the survey paper [3]). The main
idea of this method is to construct sufficiently precise lower and upper solutions of the prob-
lem by means of formal asymptotic expansions and to apply the results from [4], where we
have developed an approach to investigate the asymptotic stability of periodic solutions to sin-
gularly perturbed reaction-advection-diffusion equations by using the theorem of Krein-Rutman.
The construction of lower and upper solutions to problem (1.1) extends the approaches in the
papers [5, 6, 7, 3].

2 Assumptions. Main result

We consider problem (1.1) under the following assumptions:

(A0). f , u(−) and u(+) are sufficiently smooth and T -periodic in t.

If we put ε = 0 in (1.1) we get the so-called degenerate equation

f(u, x, t, 0) = 0.

Concerning this equation we assume

(A1). The degenerate equation has a solution u = ϕ(x, t) such that

fu(ϕ(x, t), x, t, 0) > 0 for (x, t) ∈ D.

For a formal asymptotic solution U(x, t, ε) of (1.1) we use the ansatz

U(x, t, ε) = U(x, t, ε) +Q(ξ, t, ε) +R(η, t, ε)

=
∞∑
i=0

εi
(
U i(x, t) +Qi(ξ, t) +Ri(η, t)

)
,

(2.1)

2



where U denotes the regular part and Q and R denote the boundary layer parts of the formal
asymptotic solution U , the stretched variables ξ and η are defined as

ξ =
1 + x

ε
, η =

1− x
ε

.

To formulate the next assumptions we consider the boundary value problems

∂2Q0

∂ξ2
= f

(
ϕ(−1, t) +Q0,−1, t, 0

)
for ξ > 0, t ∈ R,

∂Q0

∂ξ
(0, t) = u(−)(t), Q0(∞, t) = 0,

(2.2)

∂2R0

∂η2
= f

(
ϕ(1, t) +R0, 1, t, 0

)
for η > 0, t ∈ R,

∂R0

∂η
(0, t) = u(+)(t), R0(∞, t) = 0,

(2.3)

which determine the zeroth order terms of the boundary layer functions near the left and the
right boundary, respectively.

(A2). For any fixed t, the boundary value problem (2.2) has a solution monotone in ξ satisfying

∂2Q0

∂ξ2
(0, t) = f

(
ϕ(−1, t, 0) +Q0(0, t),−1, t, 0

)
> 0(< 0)

for Q0(0, t) > 0 (Q0(0, t) < 0).

(A3). For any fixed t, the boundary value problem (2.3) has a solution monotone in η satisfying

∂2R0

∂η2
(0, t) = f

(
ϕ(1, t, 0) +R0(0, t), 1, t, 0

)
> 0 (< 0)

for R0(0, t) > 0 (R0(0, t) < 0).

Our main result on the existence and stability of a boundary layer solution to (1.1) reads as
follows.

Theorem 2.1 Let the assumptions (A0) – (A3) be satisfied. Then, for sufficiently small ε, there
exists a solution u(x, t, ε) of problem (1.1) satisfying

∣∣∣u(x, t, ε)−
[
ϕ(x, t) +Q0

(1 + x

ε
, t
)

+R0

(1− x
ε

, t
)]∣∣∣

≤ c ε for x ∈ [−1, 1], t ∈ R,

where c is a constant independent of ε, which is asymptotically stable.
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As mentioned above, our approach to construct lower and upper solutions consists of two steps:
1. Construction of a formal asymptotic expansion for a boundary layer solution.
2. Modification of this formal solution to get lower and upper solutions of the problem. These
steps will be described in what follows.

3 Construction of a formal asymptotic solution

In order to construct a formal solutionU(x, t, ε) of problem (1.1) we use the standard procedure
proposed by Vasil’eva (see e.g. [9]):

To determine the terms in the expansions (2.1) we represent the nonlinear function f(u, x, t, ε)
in a form which is similar to (2.1). According to [9], f(u, x, t, ε) will be represented in D in the
form

f(u, x, t, ε) = f(U(x, t, ε), x, t, ε)+[
f
(
U(x, t, ε) +Q(ξ, t, ε), x, t, ε

)
− f

(
U(x, t, ε), x, t, ε

)]
|x=−1+εξ

+[
f
(
U(x, t, ε) +Q(ξ, t, ε) +R(η, t, ε), x, t, ε

)
− f

(
U(x, t, ε) +Q(ξ, t, ε), x, t, ε

)]
|x=1−εη

.

(3.1)

We also represent the differential operator

Lε = ε2 ∂2

∂x2
− ε2 ∂

∂t

when it acts on the boundary layer functions Q and R by using the stretched variables ξ and η
respectively. Thus, for the Q-function we have

Lε =
∂2

∂ξ2
− ε2 ∂

∂t
.

For the R-function the differential operator Lε is transformed similarly.
Substituting the representations for U, f, and for Lε into equation (1.1) and equating separately
the parts depending on x, ξ and η, we obtain equations determining the terms of the asymptotic
expansion (2.1).

For the regular part we have

ε2

(
∂2U(x, t, ε)

∂x2
− ∂U(x, t, ε)

∂t

)
− f(U(x, t, ε), x, t, ε) = 0 for (x, t) ∈ D. (3.2)

For ε = 0 we get from (3.2) the degenerate equation and therefore by hypothesis (A1) we have

U0(x, t) = ϕ(x, t) for (x, t) ∈ D.

We can use (3.2) to derive linear algebraic equations to determine Uk(x, t) for k = 1, 2, ...

fu(ϕ(x, t), x, t, 0))Uk = fk(x, t) for (x, t) ∈ D. (3.3)

4



The functions fk(x, t) are determined by the functions U j(x, t) with j < k, in particular we
have

f1(x, t) = −fε(ϕ(x, t), x, t, 0).

According to assumption (A1) the problems (3.3) can be solved uniquely.

Concerning the boundary layer function Q we get

∂2Q

∂ξ2
− ε2∂Q

∂t
= f

(
U(−1 + εξ, t, ε) +Q,−1 + εξ, t, ε

)
−f
(
U

(±)
(−1 + εξ, t, ε),−1 + εξ, t, ε

)
, (3.4)

∂Q

∂ξ
(0, t, ε) + ε

∂U

∂x
(−1, t, ε) = u(−)(t).

For Qk(ξ, t) we also use the additional condition

Qk(∞, t) = 0. (3.5)

For the zeroth order boundary layer function Q0 we obtain from (3.4) the boundary value prob-
lem (see (2.2))

∂2Q0

∂ξ2
= f

(
ϕ(−1, t) +Q0,−1, t, 0

)
for ξ > 0, t ∈ R,

∂Q0

∂ξ
(0, t) = u(−)(t), Q0(∞, t) = 0.

(3.6)

The differential equation in (3.6) is a second order autonomous ordinary differential equations (t
is a parameter), which can be analyzed in the phase plane (Q0, Q

′
0), where the origin (0, 0) is a

saddle point of equation (3.6). From the phase plane analysis it follows that problem (3.6) has a
solution in the case when the straight line (for a fixed t) Q′0 = u(−)(t) intersects the separatrix
tending to the rest point (0,0). It is known that the boundary layer function Q0 satisfies the
estimate

|Q0(ξ, t)| ≤ c exp(−κξ) for ξ > 0, t ∈ R, (3.7)

where κ and c are some positive numbers. Different from the case of the Dirichlet problem, (3.6)
can have several solutions. Our choice of a solution is determined by the assumption (A2).

Using (3.4) we get that the boundary layer functions Q1(ξ, t) can be determined from the prob-
lem

∂2Q1

∂ξ2
− fu

(
U0(−1, t) +Q0,−1, t, 0

)
Q1 = q1(ξ, t) for ξ > 0, t ∈ R,

∂Q1

∂ξ
(0, t) = −∂U0

∂x
(−1, t), Q1(∞, t) = 0,

(3.8)
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where

q1(ξ, t) =
[
fu

(
U0(−1, t) +Q0,−1, t, 0

)
− fu

(
U0(−1, t),−1, t, 0

)]
×
(∂U0

∂x
(−1, t)ξ + U1(−1, t, 0)

)
+
[
fx

(
U0(−1, t) +Q0,−1, t, 0

)
− fx

(
U0(−1, t),−1, t, 0

)]
ξ (3.9)

+
[
fε

(
U0(−1, t) +Q0,−1, t, 0

)
− fε

(
U0(−1, t),−1, t, 0

)]
.

The solution of this problem can be given explicitly

Q1(ξ, t) =
z(ξ, t)
∂z
∂ξ

(0, t)

−∂U0

∂x
(−1, t) +

1

z(0, t)

∞∫
0

z(χ, t)q1(χ, t)dχ


− z(ξ, t)

ξ∫
0

1

z2(η, t)

 ∞∫
η

z(χ, t)q1(χ, t)dχ

 dη.
(3.10)

where

z(ξ, t) ≡ ∂Q0

∂ξ
(ξ, t).

From (3.9) and (3.7) it follows

|q1(ξ, t)| ≤ c1 exp(−κ1ξ).

Therefore, we get from (3.10) that the function Q1 satisfies the estimate

|Q1(ξ, t)| ≤ c exp(−κξ) for ξ ≥ 0 t ∈ R,
where c and κ are some positive numbers.

The higher order terms Qk can be determined by problems, which have the same structure as
(3.8) (the index 1 has to be replaced by the index k and qk is a known function) and can be
represented explicitly analogously to Q1 satisfying

|Qk(ξ, t)| ≤ c exp(−κξ) for ξ ≥ 0, t ∈ R.
If we take into account this estimate we have (see (3.1))[

f
(
U(x, t, ε) +Q(ξ, t, ε) +R(η, t, ε), x, t, ε

)
−f
(
U(x, t, ε) +Q(ξ, t, ε), x, t, ε

)]
|x=1−εη

=[
f
(
U(x, t, ε) +R(η, t, ε), x, t, ε

)
− f

(
U(x, t, ε), x, t, ε

)]
|x=1−εη

+ Π(η, t, ε),

where Π is exponentially small in η. Thus the boundary layer functions Rk can be determined
analogously to the functions Qk . In particular, R0 is determined by the problem (2.3) under
assumption (A3).

Since f, u(±) are sufficiently smooth, the formal asymptotics can be constructed to any order
n. From these constructions it follows that the corresponding approximations satisfy (1.1) up to
order εn+1.
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4 Construction of upper and lower solutions, existence re-
sult

For the convenience of the reader we recall the definition of lower and upper solutions to the
boundary value problem (1.1) and the corresponding basic result.

Definition 4.1 Let α and β be functions mappingD× Iε0 continuously intoR, which are twice
continuously differentiable in x, continuously differentiable in t and T -periodic in t. Then α and
β are called ordered lower and upper solutions of (1.1) for ε ∈ Iε0 , if they satisfy for ε ∈ Iε0
the following conditions:

1◦. α(x, t, ε) ≤ β(x, t, ε) for (x, t) ∈ D,
2◦. Nε(α) ≥ 0 ≥ Nε(β) for (x, t) ∈ D,

3◦. ε
∂α

∂x
(−1, t, ε) ≥ u(−)(t) ≥ ε

∂β

∂x
(−1, t, ε) for t ∈ R,

ε
∂α

∂x
(1, t, ε) ≤ u(+)(t) ≤ ε

∂β

∂x
(1, t, ε) for t ∈ R.

We also call the functions α and β as ordered lower and upper solutions asymptotic order of q
if they additionally satisfy the inequalities

Nε(α) ≥ cεq, Nε(β) ≤ −cεq,

where q and c are some positive constants independent of ε.

Remark 4.1 It is known (see, e.g., [10]) that the existence of ordered lower and upper solutions
implies the existence of a solution u(x, t, ε) of (1.1) satisfying

α(x, t, ε) ≤ u(x, t, ε) ≤ β(x, t, ε) for (x, t) ∈ D and ε ∈ Iε0 .

In what follows we describe a method to construct upper and lower solutions to (1.1) by some
modification of the formal asymptotic solution to (1.1).

Let Un be the partial sums of order n of the expansions (2.1), that is

Un(x, t, ε) =
n∑
i=0

εi
(
U i(x, t) +Qi(ξ, t) +Ri(η, t)

)
.

We define an upper solution β(x, t, ε) = βn(x, t, ε) and a lower solutionα(x, t, ε) = αn(x, t, ε)
to (1.1) for ε ∈ Iε0 in D by

βn(x, t, ε) = Un(x, t, ε) + εn+1
(
Ūn+1(x, t) + γ

+Qn+1(ξ,t) +Qβ(ξ,t) +Rn+1(η, t) +Rβ(η, t)
) (4.1)
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and

αn(x, t, ε) = Un(x, t, ε) + εn+1
(
Ūn+1(x, t)− γ

+Qn+1(ξ,t) +Qα(ξ,t) +Rn+1(η, t) +Rα(η, t)
) (4.2)

Here, γ > 0 is a number independent of ε . The functions Qα and Qβ , Rα(η, t) and Rβ(η, t)
are chosen in such a way that αn and βn fulfill the conditions in Definition 4.1.

We define the function Qβ(ξ, t) by the boundary value problems

∂2Qβ

∂ξ2
− fu

(
U0(−1, t) +Q0,−1, t, 0

)
Qβ = qβ(ξ, t) for ξ > 0, t ∈ R,

∂Qβ

∂ξ
(0, t) = −δ, Qβ(∞, t) = 0,

(4.3)

where δ is some positive constant and

qβ(ξ, t) =
[
fu

(
U0(−1, t) +Q0,−1, t, 0

)
− fu

(
U0(−1, t),−1, t, 0

)]
γ −M exp(−κξ).

From the exponential estimate of Q0 in (3.7) it follows that the first term in the representation
for qβ satisfies an exponential estimate. Therefore, we can choose M sufficiently large and
κ sufficiently small such that qβ is an exponentially decaying negative function. The function
Qα(ξ, t) is defined by the problem

∂2Qα

∂ξ2
− fu

(
U0(−1, t) +Q0,−1, t, 0

)
Qα = qα(ξ, t) for ξ > 0, t ∈ R,

∂Qα

∂ξ
(0, t) = δ, Qα(∞, t) = 0,

(4.4)

where

qα(ξ, t) = −[fu

(
U0(−1, t) +Q0,−1, t, 0

)
− fu

(
U0(−1, t),−1, t, 0

)
]γ +M exp(−κξ).

It is clear that qα is an exponentially decaying positive function.

The functions Rα and Rβ are defined analogously.

The solutions of the problems (4.4), and (4.3) can be given explicitly analogously to the problem
(3.8). We have

Qα(ξ, t) =
z(ξ, t)
∂z
∂ξ

(0, t)
δ +

z(ξ, t)
∂z
∂ξ

(0, t)

1

z(0, t)

∞∫
0

z(χ, t)qα(χ, t)dχ

− z(ξ, t)

ξ∫
0

1

z2(η, t)

 ∞∫
η

z(χ, t)qα(χ, t)dχ

 dη.
(4.5)
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and

Qβ(ξ, t) =
z(ξ, t)
∂z
∂ξ

(0, t)
(−δ) +

z(ξ, t)
∂z
∂ξ

(0, t)

1

z(0, t)

∞∫
0

z(χ, t)qβ(χ, t)dχ

− z(ξ, t)

ξ∫
0

1

z2(η, t)

 ∞∫
η

z(χ, t)qβ(χ, t)dχ

 dη.
(4.6)

From (4.5) and (4.6) it follows that functions Qα(ξ, t) and Qβ(ξ, t) are exponentially decaying.

Using also that qβ < 0 and qα > 0 and assumption (A3) which says that ∂2Q0

∂ξ2
(0, t) =

∂z
∂ξ

(0, t) > 0 and z(ξ, t) < 0 for Q0(0, t) > 0 and ∂2Q0

∂ξ2
(0, t) = ∂z

∂ξ
(0, t) < 0 and z(ξ, t) > 0

for Q0(0, t) < 0, we have that Qβ > 0 and Qα < 0. Similarly we have that Rβ > 0 and
Rα < 0. Therefore the lower solution αn(x, t, ε) and the upper solution βn(x, t, ε) satisfy
condition 10 in Definition 4.1, that is they are ordered.

Now we have to check that from the representation for αn(x, t, ε) and βn(x, t, ε) it also follows
that they satisfy the boundary conditions. We just check it for βn(x, t, ε) at the left boundary.
For sufficiently small ε we have

ε
∂β

∂x
(−1, t, ε) = u(−)(t) + εn+1∂Ūn+1

∂x
(x, t) + εn

∂Qβ

∂ξ
(0, t) =

u(−)(t) + εn+1∂Ūn+1

∂x
(x, t) + εn(−δ) < u(−)(t).

The other inequalities at the boundaries can be checked similarly. Hence, the conditions in 30 of
in Definition 4.1 are fulfilled. Finally, we have to check the condition 20 in Definition 4.1. For this
purpose, we substitute the expressions for αn and βn into the operator Nε(u) defined in (1.1).
We get

Nε(βn(x, t, ε)) = εn+1
[
− fu(ϕ(x, t), x, t)γ + qβ + rβ

]
+O(εn+2) for (x, t) ∈ D.

(4.7)

Using that qβ < 0, rβ < 0 by the construction and fu(ϕ(x, t), x, t) > 0 by assumption A1 we
get that the coefficient of εn+1 in (4.7) is negative and therefore we have for sufficiently small ε

Nε(βn(x, t, ε)) < −γ1ε
n+1,

where γ1 is some positive number. Similarly we obtain

Nε(αn(x, t, ε)) > γ2ε
n+1.

Thus conditions 20 are satisfied. We summarize the results of our construction of upper and
lower solutions in the following lemma.
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Lemma 4.1 The functions βn(x, t, ε) and αn(x, t, ε) defined by the expressions (4.1) and
(4.2) respectively satisfies the Definition 4.1, and therefore they are ordered upper and lower
solutions of problem (1.1). Moreover they obey the following estimate

βn(x, t, ε)− αn(x, t, ε) = O(εn+1) for x ∈ [0, 1], t ∈ R. (4.8)

Taking into account Remark 4.1 and the estimates (4.8), and the form of αn and βn (see (4.2)
and (4.1)) we get the following result.

Theorem 4.1 Suppose the assumptions (A0)− (A3) to be valid. Then, for sufficiently small ε,
there exists a solution u(x, t, ε) of (1.1) which has a boundary layer near x = −1 and x = 1
and satisfies for ε ∈ Iε0 the estimates

|u(x, t, ε)− Un(x, t, ε)| ≤ cnε
n+1 for (x, t) ∈ D,

where the positive constant cn does not depend on ε,

αn(x, t, ε) ≤ u(x, t, ε) ≤ βn(x, t, ε) for (x, t) ∈ D.

5 Stability results

In this section we investigate the stability (in the sense of Lyapunov) of the periodic solution
u(x, t, ε) established by Theorem 4.1 in [4]. For convenience we recall the theorem which we
will apply to obtain the asymptotic stability of our periodic solution u(x, t, ε) as the following
lemma.

Lemma 5.1 Let α(x, t, ε) and β(x, t, ε) be ordered lower and upper solutions of asymptotic
order q > 0 to (1.1,) and let u(x, t, ε) be the periodic solution to (1.1) corresponding to them.
Suppose that for sufficiently small ε and (x, t) ∈ D it holds

|u(x, t, ε)|+ |α(x, t, ε)|+ |β(x, t, ε)| ≤ κ1

and
|β(x, t, ε)− u(x, t, ε)|+ |α(x, t, ε)− u(x, t, ε)| ≤ κ2ε

p
2

where κ1, κ2 and p > q are constants. Then, for sufficiently small ε > 0, the solution u(x, t, ε)
to (1.1) is asymptotically stable in the sense of Lyapunov.

In our case it follows from Lemma 4.1 that q = n + 1 and p = 2n + 2. Thefore condition
p > q in Lemma 4.1 leads to the condition for the order of our lower and upper solution. We
get n > −1. Therefore, applying Lemma 4.1 we can state our theorem on the stability of the
periodic solution u(x, t, ε).

Theorem 5.1 Suppose the assumptions (A0)−(A3) to be satisfied. Then, for sufficiently small
ε, the periodic solution u(x, t, ε) of problem (1.1) with boundary layer is asymptotically stable.
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