
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Collision detection between robots moving along specified

trajectories

Nelson Feyeux1, Chantal Landry2

submitted: December 10, 2013

1 Ecole Centrale de Lyon
36 Avenue Guy de Collongue
69134 Ecully Cedex
France
E-Mail: Nelson.Feyeux@ecl2013.ec-lyon.fr

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: chantal.landry@wias-berlin.de

No. 1892

Berlin 2013

2010 Mathematics Subject Classification. 51M20, 51K99, 52B10, 68T40.

Key words and phrases. Collision detection, distance computation, motion planning, robotics.

This work was partially supported by the German Research Foundation MATHEON.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

An algorithm to detect collisions between robots moving along given trajectories is pre-
sented. The method is a combination of the adaptive dynamic collision checking developed
by Schwarzer et al. and Lin and Canny’s algorithm, which computes efficiently the distance
between two polyhedra. The resulting algorithm is part of a global model that computes
the optimal task assignment, sequencing and kinodynamic motion planning in a robotic
work-cell.

1 Introduction

The application of our research lies in automotive industry and their production lines. A pro-
duction line is divided into work-cells, which consists of a workpiece, several robots and some
obstacles. Typical obstacles are the conveyor belt, which connects the cells to each other. In a
work-cell, the robots perform tasks on the same workpiece. The total time taken by the robots
to complete all the tasks is called the makespan of the work-cell.

To ensure the competitiveness of car manufacturers, the makespan of the work-cells must be
as small as possible. The makespan is minimal when the following three points are optimized:

1 kinodynamic motion planning of each robot,

2 task assignment between the robots,

3 sequencing of the tasks of each robot.

The kinodynamic motion planning computes the fastest trajectory that relies two locations and
does not collide with the obstacles. Task assignment involves deciding which robot performs
which tasks. The sequencing determines in which order the robot executes its assigned tasks.
One sequence is defined per robot. The first and last elements of a sequence are the initial posi-
tion of the robot. The elements in between are task locations. The traversal time of a sequence
is the sum of the travel time of the fastest collision-free trajectory between two consecutive
elements of the sequence. The travel times are obtained by solving the kinodynamic motion
planning problem. The makespan is then equal to the largest traversal time.

The problem of minimizing the makespan is called the Work-Cell Problem (WCP). A complete
description of (WCP) can be found in [13]. This problem is a typical instance of Vehicle Routing
Problem [25]. Therefore, (WCP) is modelled by a directed graph. The nodes of the graph are
the task locations and the initial position of the robots. Two nodes are connected by an arc if a
robot can move from one node to the other. The weight on the arc is the travel time.

1

An iterative method is used to solve (WCP). First, a discrete optimization method computes a
sequence of tasks for each robot. These sequences are such that the makespan is minimized.
By definition of (WCP), the trajectories between two consecutive nodes avoid the obstacles. The
collision avoidance between the robots has not been taken into consideration yet. That is why
the second step involves detecting such collisions. If the robots hit each other, the algorithm
goes back to the first step and looks for new sequences. If no collision occurs, then (WCP) is
solved. The aim of this paper is to present how to achieve the second step efficiently.

There exist two classes of collision detection methods: the static and the dynamic collision de-
tection. The static approach checks if there is a collision between two objects at each time step
[19]. The dynamic collision checking determines if for all configurations given on a continuous
path a collision occurs between the objects. Cameron in [2] compared the static approach with
two types of dynamic checking:

� The space-time approach: build for each object a volume that represents the spatial oc-
cupancy of the object along its trajectory. The volume is obtained by extruding the original
configuration of the object.

� The sweeping approach [1]: compute the volume swept out by the object.

Once these volumes are built, both methods check a possible intersection between the volume
of each object.

Cameron pointed out the advantages and drawbacks of each approach. The static detection is
simple, but can miss a collision if the time discretization is too rough. On the other side taking
small time steps is time consuming. The choice of a good number of time steps is still a difficult
task. The space-time approach is an elegant method. However, extruding the volume can be
complicated when the object undergoes rotations and has complex geometry. The sweeping
approach has the same drawback. Moreover the technique can detect a collision even though
no intersection exists between the objects. In conclusion, none of theses methods is the best.

After Cameron’s article new techniques have been introduced such as (See Jiménez et al. [12]
and Lin and Gottschalk [18] for a good survey)

� The trajectory parameterization method [4, 8, 23]: the collision checking is modelled by
finding numerically roots of an algebraic polynomial in a single variable t.

� The feature-tracking method [5, 17, 21]: there exist three kinds of features: vertices, edges
and faces. The feature-tracking methods involves computing the pair of closest features
(one feature per object) and looking if this pair remains separated along the trajectory.

� The bounding volume hierarchy (BVH) method [6]: this technique computes first a hier-
archy of bounding volumes (spheres [11, 22], oriented bounding boxes [10], axis-aligned
bounding boxes [5], rectangular swept sphere [14], ...) to describe each object at various
levels of details. Then the algorithm checks for collision by considering first the volumes
of the roughest level. If a collision is detected, then the next level is considered and the
associated volumes are tested for overlaps. If a pair of volumes in the finest level of de-
tail is overlapping, a collision between the objects occurs. This method is then applied at

2

given configurations on the trajectory. If all these configurations are collision-free, then no
collision occurs between the objects.

As Schwarzer et al. observed in [24], all these methods have drawbacks. The trajectory parame-
terization technique is computationally expensive and could suffer of numerical problems when
the polynomials have high degree. Feature-tracking requires small increments to avoid missing
collisions, which can become computationally expensive when working with real robots. (BVH)
methods is a static collision detection method. So, (BVH) could miss a collision if the number of
time steps is too small.

Schwarzer et al. suggested in [24] a new dynamic collision detection method. They established a
sufficient condition to determine if two polyhedra do not collide over a time interval. The condition
involves checking if an inequality holds. If the inequality is not satisfied, then the time interval
is split into two subintervals and the condition is checked on both subintervals. This method is
simple, never fails and adapts automatically the sampling resolution. For all these reasons, we
choose to follow Schwarzer et al.’s method.

In Section 2, the input data for the second step in the iterative method to solve (WCP) are
presented. In Section 3, Schwarzer et al.’s inequality to determine if a collision occurs between
two moving robots is established. The computation of the left hand side of the inequality is given
in Section 4, whereas Section 5 is concerned with the right hand side. Finally, numerical results
are given in Section 6.

2 Input data

Let us consider two robots that we denote, without loss of generality, R1 and R2. Both robots
are a two-dimensional convex polyhedron. The robot R1 is assumed to move from the position
V 1
I to V 1

F , whereas the robot R2 goes from V 2
I to V 2

F during the same period. We would like to
know if R1 and R2 collide during this period. In the sequel let Ri denote the robots R1 and R2

in a general way.

The motion of the robots between their initial and final position, is given. As part of (WCP), the
trajectory was obtained by solving a kinodynamic motion planning problem [13]. This problem
was solved with a time discretization [7]. Therefore, the motion is a discretized trajectory given
in the following manner: if 0 ≤ t1 < . . . < tn denote the time discretization with n time steps,
then the configuration of the robot Ri at time step tk is approximated by the tuple

p
(k)
i := (G

(k)
i , v

(k)
i , θ

(k)
i , µ

(k)
i),

whereG(k)
i = (x

(k)
i , y

(k)
i) is the position of the center of gravity of the robot, v(k)i = (v

(k)
i,x , v

(k)
i,y)

is the velocity of the center of gravity, θ(k)i is the angle of rotation and µ(k)
i is the velocity of the

angle of rotation. The axis of rotation is placed at the center of gravity of the robot. In particular,
we have G(1)

i = V i
I and G(n)

i = V i
F .

In the sequel, the trajectory must be evaluated at intermediate times. For that purpose, the
trajectory is approximated by a linear interpolation. If we consider the time interval [tk, tk+1],

3

the intermediate configurations are approximated by

p̄
(k)
i (t) :=

tk+1 − t
tk+1 − tk

p
(k)
i +

t− tk
tk+1 − tk

p
(k+1)
i , ∀t ∈ [tk, tk+1]. (1)

With each robot, we associate a Cartesian coordinate system (Gi, e
i
x, e

i
y), i = 1, 2, whose

origin is the center of gravity Gi. The pair (eix, e
i
y) is the x− and y− axes respectively. This

coordinate system is called body frame according to [15]. A Cartesian coordinate system is also
associated to the workspace. This system is named world frame and denoted by (O, ex, ey).

The configuration p(k)i allows us to represent the robot Ri at time step tk in the world frame.

The position of the robot is obtained by rotating the robot counterclockwise of angle θ(k)i and

translating it along the vector
−→
OG

(k)
i , see Figure 1.

ex

ey

O

R1

G1

θ1

e
1
x

e
1
y

x1

y1

R2

G2

θ2 e2x

e2y

x2

y2

Figure 1: The position of the robot R1 (resp. R2) in the world frame (O, ex, ey), is given by its
center of gravity G1 (resp. G2 = (x2, y2)) and the rotation angle θ1 (resp. θ2).

Similarly, if Pi is a vertex of the robot Ri, whose coordinates are given in the body frame, then
the coordinates of Pi in the world frame at time t(k) are

P
(k)
i := R(θ

(k)
i)Pi +G

(k)
i , (2)

where

R(θ
(k)
i) =

(
cos(θ

(k)
i) − sin(θ

(k)
i)

sin(θ
(k)
i) cos(θ

(k)
i)

)
(3)

is the rotation matrix.

In summary, the approximated trajectory of a robot Ri is given by a sequence of time steps
(tk)nk=1 and the associated sequence of configurations (p

(k)
i)nk=1. Since the number and values

4

of time steps are specific to each robot, we define (τk)nk=1 and (p(k))nk=1 as the sequences as-
sociated with R1, and (Tk)Nk=1 and (q(k))Nk=1 as those with R2. Knowing these four sequences,
we would like to detect if a collision occurs between R1 and R2.

Since the robots have usually a different time discretization, we need first to classify the time
steps (τk)nk=1 and (Tk)Nk=1 in an ascending order as illustrated in Figure 2. The time interval is
then decomposed on subintervals [tl, tu] of type: [τ`, τ`+1], [τ`, Tj], [Tj, τ`] and [Tj, Tj+1].

In the next section, we check on each subinterval if a collision between the robots occurs.
For that purpose, the configuration of the robots must be evaluated at the boundary of the
subinterval [tl, tu]. If tl (resp. tu) belongs to [τ1, τn], then the configuration pl (resp. pu) of the
robot R1 is given by the linear interpolation defined in (1). The case tl < τ1 means that the
robot R2 moves during the time interval [tl, τ1], whereas the robot R1 stays at its initial place.
In that case, we have pl = p(1). Similarly, the scenario tu > τn signifies that the robot R1 has
reached its final destination V 1

F and the robot R2 is still moving. Consequently, pu = p(n). In
summary, the configuration of robot R1 at tl and tu is given by

ps :=


p(`) if ts = τ`,
p(1) if ts = Tj and Tj < τ1,
p̄(`)(Tj) if ts = Tj and Tj ∈ [τ`, τ`+1], ` = 1, . . . , n− 1,
p(n) otherwise,

(4)

where s ∈ {l, u} and p̄(`) is the linear interpolation defined in (1). For robot R2, the configura-
tion at the boundary of the time interval is determined similarly:

qs :=


q(j) if ts = Tj,
q(1) if ts = τ` and τ` < T1,
q̄(j)(τ`) if ts = τ` and τ` ∈ [Tj, Tj+1], j = 1, . . . , N − 1,
q(N) otherwise ,

(5)

with s ∈ {l, u}.

tτ1 τ2 τ3 τ4 τ5 τ6 τ7

T1 T2 T3 T4 T5 T6

Figure 2: Ascending order of the time steps (τk)nk=1 and (Tk)Nk=1. The case T1 > τ2 means
that the robot R2 stays at its initial position V 2

I when R1 is moving. Likewise, τ7 < T4 signifies
that the robot R1 has reached its final destination V 1

F , whereas the robot R2 is still moving.

3 Collision detection algorithm

In this section, the dynamic collision detection method developed by Schwarzer, Saha and
Latombe [24] is presented. Let us consider the time subinterval [tl, tu] as defined in Section 2.

5

Let us remind that the robots are a convex compact polyhedron. Therefore, the word robot is
equivalent to polyhedron in the sequel.

The idea of Schwarzer et al. is to compare lower bounds of the distance travelled by the points
of the robots during [tl, tu] with an upper bound of the distance between both robots. Let us
define the following quantity

� η(t) is a non-trivial lower bound of the Hausdorff distance between the robots at time t.
The robots overlap when η(t) = 0. Actually, we consider that the robots overlap when
η(t) < δ, where δ is a small positive parameter. In this way, a safety margin around the
robots is guaranteed.

� λi(ta, tb) is an upper bound of the length of the curves traced by all points in the robot
Ri between ta and tb, with ta, tb ∈ [tl, tu], i ∈ {1, 2}.

Schwarzer, Saha and Latombe established the following sufficient condition

Lemma 1 Two polyhedra R1 and R2 do not collide at any time t ∈ [tl, tu] if

λ1(tl, tu) + λ2(tl, tu) < η(tl) + η(tu). (6)

Hence, this inequality, which only depends on the boundary values tl and tu, allows us to know
if R1 and R2 are collision-free over the whole interval [tl, tu].

Proof of Lemma 1 (Schwarzer et al. [24]): Let us assume that the polyhedra R1 and R2 overlap
at time t̃ ∈ [tl, tu]. Then, a point S1 of R1 must coincide with a point S2 of R2 at t̃. Let
`1(ta, tb) (resp. `2(ta, tb)) define the length of the curve traced by S1 (resp. S2) during [ta, tb].
An illustration is given in Figure 3, whereR1 is the white square andR2 is the black square. The
robots are represented at tl, t̃ and tu. Intermediate locations are illustrated with dotted lines.
The grey lines are the curves followed by S1 and S2. Because S1 and S2 coincide at t̃, we have

`1(tl, t̃) + `2(tl, t̃) ≥ η(tl), (7)

`1(t̃, tu) + `2(t̃, tu) ≥ η(tu). (8)

Summing (7) and (8), we obtain:

`1(tl, tu) + `2(tl, tu) ≥ η(tl) + η(tu). (9)

The quantities λ1(tl, tu) and λ2(tl, tu) being an upper bound, we deduce from (9):

λ1(tl, tu) + λ2(tl, tu) ≥ `1(tl, tu) + `2(tl, tu) ≥ η(tl) + η(tu),

what contradicts the inequality (6).

�

6

3 4 5 6 7 8 9

2

3

4

5

6

7

tl

t̃

tu

S1tl

t̃

tu

S2

η(tl)

η(tu)

ℓ1(tl, t̃)

ℓ1(t̃, tu)

ℓ2(tl, t̃)

ℓ2(t̃, tu)

Figure 3: Illustration of the colliding case. The robot R1 is the white square and the robot R2 is
the black square. The robots collide at time t̃.

Table 1: Collision detection algorithm on [tl, tu]

If η(tl) < δ or η(tu) < δ then
return false

else
return Inequality(tl, tu)

end if

where the recursive function Inequality(ta, tb) is

If λ1(ta, tb) + λ2(ta, tb) < η(ta) + η(tb) then
return true

else if η(1
2
(ta + tb)) < δ then

return false
else

return Inequality(ta,
1
2
(ta + tb)) or Inequality(1

2
(ta + tb), tb)

end if

7

Lemma 1 is a sufficient condition. Therefore, the reverse of the lemma is not true. We cannot
conclude the collision-freeness on [tl, tu], when the inequality is not satisfied. In that case, the
time interval is split into two subintervals [tl, tm] and [tm, tu], where tm = 1

2
(tl + tu). Then,

the lower bound η(tm) is computed. If η(tm) < δ, a collision between the robots is detected.
Otherwise, the sufficient condition of Lemma 1 is checked on both subintervals [tl, tm] and
[tm, tu]. If the inequality (6) is not satisfied for a subinterval, then the subinterval is divided into
two parts again and (6) is tested on each part. This process is repeated until either a collision is
detected or all subintervals satisfy (6). The collision detection algorithm between R1 and R2 on
[tl, tu] is summarized in Table 1, where the output “true” means that R1 and R2 are separated
and “false” indicates that a collision occurs.

A key point of this collision detection checking is that the algorithm automatically decides whether
a time interval must be divided further. Furthermore, the method can never fail. To prove this
fact, let us observe first that the upper bounds λi(ta, tb) → 0 when |tb − ta| → 0. Then, let
us distinguish the cases:

� If no collision occurs in [tl, tu], there exists a constant ηmin ≥ δ > 0 such that

η(t) ≥ ηmin, ∀t ∈ [tl, tu].

With the bisection, the length of the new subintervals is always smaller. The left-hand
side of the inequality (6) becomes smaller with the bisection, whereas the right-hand side
remains lower-bounded by ηmin. Therefore, there exists a set of subintervals of [tl, tu]
such that

1 the union of all subintervals is equal to [tl, tu],

2 the inequality (6) is satisfied on each subinterval.

� If the polyhedra overlap, then there is a time subinterval [ta, tb] ⊆ [tl, tu] such that

η(t) < δ, ∀ t ∈ [ta, tb],

since the motion of the polyhedra is continuous. Then, by splitting the time intervals,
the inequality (6) remains unsatisfied until the new middle point of the time interval falls
into [ta, tb]. Let us illustrate this argument with the situation depicted in Figure 4. The
time interval [ta, tb] is represented by the grey segment. The algorithm checks first if
the polyhedra collide at tl and tu. The second step of the algorithm establishes that the
inequality (6) is not satisfied. The first bisection is executed by computing t1 = 1

2
(tl+tu).

No collision occurs at t1 since η(t1) ≥ δ. Inequality (6) may be satisfied on [tl, t1], but
not on [t1, tu]. Consequently, the middle point of [t1, tu]: t2 = 1

2
(t1 + tu) is computed.

The quantity η(t2) is larger than δ. The bisection is then executed and we obtain the
following subintervals [t1, t2] and [t2, tu]. The inequality (6) is not satisfied on [t1, t2].
Next, let us compute t3 = 1

2
(t1 + t2) and check if η(t3) is larger than δ. Let us do so on

until t4 = 1
2
(t3 + t2). For that point, we have η(t4) < δ. The collision is detected.

The algorithm in Table 1 is applied to all intervals [tl, tu] issued from the ordering of (τk)nk=1

and (Tk)Nk=1. There exists different techniques to decide in which order the subintervals are

8

tℓ t1 t2t3 t4 tu

ta tb

Figure 4: The collision detection algorithm when the polyhedra overlap. The collision is detected
by checking if η(t4) < δ.

checked, see e.g. [24]. These techniques allow us to detect the collisions faster. In our case, no
technique has been implemented since we are interested in detecting the first collision. In the
next sections, the computation of the upper and lower bounds in the inequality (6) are presented.

4 Computation of the upper bounds λ1 and λ2

In this section, we are interested in finding an upper bound of the length of the curves traced by
the points of the robot between tl and tu. Schwarzer et al. established in [24] an upper bound
when the robot is a planar linkage, whose joints are either revolute or prismatic. In that case,
the configuration of the robot is either a rotation angle for the revolute joints or a translation
vector for the prismatic joints. In our case, the robot is a polyhedron that moves freely in the
workspace. We do not have any joints. The configuration space of the robot Ri is composed of
the position of the center of gravity of the robot, Gi, the velocity of the center of gravity, vi, the
rotation angle, θi and the velocity of the rotation angle µi as mentioned in Section 2. Hence, we
develop our own upper bound, but recommend to use the upper bound of Schwarzer et al. as
soon as the robot is a linkage.

Let us consider the subinterval [tl, tu] and two time steps ta, tb ∈ [tl, tu] with ta < tb. The
quantity λi(ta, tb) is defined as an upper bound of the distance travelled by each point of the
robot Ri. Consequently, λi(ta, tb) satisfies

λi(ta, tb) ≥ max
Mi∈Ri

∫ tb

ta

∥∥∥∥ ddt−−→OMi(t)

∥∥∥∥ dt,
where Mi is a point in Ri.

The right-hand side of the above inequality is hard to calculate exactly, since the robots are

rotating. So, let us find an upper bound of the integral by exploiting the definition of
−−→
OMi. This

vector can be decomposed as follows (compare (2)):
−−→
OMi(t) =

−−→
OGi(t) +

−−−→
GiMi(t) =

−−→
OGi(t) +R(θi(t))

−−−→
GiMi,

whereR(θi(t)) is the rotation matrix defined by (3). Note that
−−−→
GiMi is fixed. Then, we have:

d

dt

−−→
OMi(t) =

d

dt

−−→
OGi(t) +

d

dt
R(θi(t))

−−−→
GiMi,

= vi(t) + θ′i(t)R
(
θi(t) +

π

2

) −−−→
GiMi,

= vi(t) + µi(t)R
(
θi(t) +

π

2

) −−−→
GiMi.

9

For all rotation matricesR and all vectors x in R2 we have

||Rx||2 = ||x||2.
Using this relation, we obtain:∥∥∥∥ ddt−−→OMi(t)

∥∥∥∥
2

≤ ‖vi(t)‖2 + |µi(t)|
∥∥∥R(θi(t) +

π

2

)−−−→
GiMi

∥∥∥
2

= ‖vi(t)‖2 + |µi(t)|‖
−−−→
GiMi‖2.

Let Rmax,i be the radius of the smallest disc centered at Gi and containing all vertices of Ri,
that is:

Rmax,i = max
Mi∈Ri

||−−−→GiMi||2.

An illustration is given in Figure 5. Introducing Rmax,i in the last inequality yields:∥∥∥∥ ddt−−→OMi(t)

∥∥∥∥
2

≤ ‖vi(t)‖2 + |µi(t)|Rmax,i.

Let us now integrate the above relation on both sides:∫ tb

ta

∥∥∥∥ ddt−−→OMi(t)

∥∥∥∥
2

dt ≤
∫ tb

ta

‖vi(t)‖2dt+Rmax,i

∫ tb

ta

|µi(t)|dt. (10)

G

Rmax

Figure 5: Disc of radius Rmax and center G that contains the polyhedron.

The values of µi and vi, i = 1, 2, are given according to the following linear interpolation

µi(t) = a(t)µi(ta) + (1− a(t))µi(tb),

vi(t) = a(t) vi(ta) + (1− a(t)) vi(tb), with a(t) =
tb − t
tb − ta

∈ [0, 1]. (11)

The integrals in the right-hand side of (10) become∫ tb

ta

‖vi(t)‖2 =

∫ tb

ta

‖a(t)vi(ta) + (1− a(t))vi(tb)‖2dt,

≤ ‖vi(ta)‖2
∫ tb

ta

a(t) dt+ ‖vi(tb)‖2
∫ tb

ta

(1− a(t)) dt,

=
1

2
(tb − ta)(‖vi(ta)‖2 + ‖vi(tb)‖2).

10

Similarly, we have∫ tb

ta

|µi(t)| ≤ |µi(ta)|
∫ tb

ta

a(t) dt+ |µi(tb)|
∫ tb

ta

(1− a(t)) dt,

=
1

2
(tb − ta)(|µi(ta)|+ |µi(tb)|).

Finally, we get∫ tb

ta

∥∥∥∥ ddt−−→OMi(t)

∥∥∥∥
2

dt ≤ 1

2
(tb − ta)(Rmax,i(|µi(ta)|+ |µi(tb)|)

+ ‖vi(ta)‖2 + ‖vi(tb)‖2), i = 1, 2.

We define the upper bound λi(ta, tb) as the right-hand side of the above inequality:

λi(ta, tb) :=
1

2
(tb − ta) (Rmax,i(|µi(ta)|+ |µi(tb)|) + ‖vi(ta)‖2 + ‖vi(tb)‖2) . (12)

In this formula, the terms µi(ta), µi(tb), vi(ta) and vi(tb) come also from a linear interpolation.
Since [ta, tb] ⊆ [tl, tu], we have

µi(ta) = b(ta)µi(tl) + (1− b(ta))µi(tu),

µi(tb) = b(tb)µi(tl) + (1− b(tb))µi(tu),

vi(ta) = b(ta) vi(tl) + (1− b(ta)) vi(tu),

vi(tb) = b(tb) vi(tl) + (1− b(tb)) vi(tu), with b(t) =
tu − t
tu − tl

∈ [0, 1],

and

pl = (G1(tl), v1(tl), θ1(tl), µ1(tl)), pu = (G1(tu), v1(tu), θ1(tu), µ1(tu)),

ql = (G2(tl), v2(tl), θ2(tl), µ2(tl)), qu = (G2(tu), v2(tu), θ2(tu), µ2(tu))

derive from (4)-(5).

Remark 1 The upper bound λi(ta, tb) tends to zero when |tb− ta| tends to zero. This fact was
used to justify the convergence of the collision detection algorithm at the end of Section 3.

5 Computation of the lower bound η

The function η in the inequality (6) is defined as a non-trivial lower bound of the real distance
between two polyhedra. As in [5, 21], a two-phase approach is considered. This approach is
composed of a broad phase and a narrow phase. In the broad phase, the polyhedra are approx-
imated by a simple bounding volume such as an axis-aligned box or a sphere. The lower bound
η is defined as the distance between the bounding volumes. As long as the bounding volumes

11

are disjoint, the broad phase is applied. Once the bounding volumes overlap, the narrow phase
is used. This phase computes the exact distance between the polyhedra. Thus the two-phase
approach induces a minimal cost in the computation of η since the exact distance is determined
only when the polyhedra are close to each other. If the robots would have a more complex
geometry, then a hierarchy of bounding volumes would be defined such as in [5, 10, 11, 14, 22].

In our two-dimensional case, we define the bounding volume of the broad phase as the smallest
disc surrounding the polyhedron and whose center is the center of gravity of the polyhedron. An
illustration is given in Figure 5. Then, η is defined as the distance between the two disks, i.e.:

η(t) = max(‖G1G2(t)‖2 −Rmax,1 −Rmax,2, 0), (13)

where Gi and Rmax,i are respectively the center and the radius of the disc Di surrounding the
robot Ri, i = 1, 2.

This distance is smaller than the real distance between two polyhedra, but automatically calcu-
lated once Gi and Rmax,i are known. The radius Rmax,i, i = 1, 2, are constant, whereas the
position of the center Gi, i = 1, 2, evolves in time. The components of Gi at t ∈ [tl, tu] is
given, as mentioned in the previous sections, by the linear interpolation:

Gi(t) = b(t)Gi(tl) + (1− b(t))Gi(tu), ∀t ∈ [tl, tu],

with b(t) = tu−t
tu−tl

and Gi(tl), Gi(tu) derive from (4)-(5).

In the narrow phase, the exact distance between the robots is computed. Two main methods
exist for distance calculation. The first method is Gilbert, Johnson and Keerthi’s algorithm pub-
lished in 1988 [9] and referred as GJK. This algorithm computes the Hausdorff distance of the
Minkowski differenceR2−R1 from the origin. The second method is Lin and Canny’s algorithm
[16, 17]. This algorithm tracks the closest pair of features between the polyhedra, where the
features of a polyhedron are its vertices, its edges and its faces located on its boundary. Several
extensions of both approaches exist such as Enhanced GJK [3], I-collide [5] and V-Clip [20]. We
choose to follow Lin and Canny’s algorithm since the approach is fast, easy to implement and
perfectly suited when polyhedra move slightly between two time steps, as it is the case with the
robots R1 and R2.

In two dimensions, the features of a convex polyhedron are the vertices and the edges of the
polyhedron. As described in [15], the vertices of the polyhedron are given in counterclockwise
order. Let m be number of vertices of the polyhedron. Let Ei be the edge going from the vertex
Pi to Pmod(i,m)+1 for 1 ≤ i ≤ m, where mod(i,m) means i modulo m. For simplicity, we
write the vertex Pmod(i,m)+1 as Pfo(i), where fo is the following transformation

fo : {1, . . . ,m} → {1, . . . ,m}
b 7→ fo(i) = mod(i,m) + 1.

More generally, the edge Ei, i = 1, . . . ,m is an open subset defined as follows

Ei = {x ∈ R2 |x = Pi + k ei, k ∈ (0, 1) },

where ei =

(
ei,x
ei,y

)
=
−−−−→
PiPfo(i). Hence, the vertices Pi and Pfo(i) do not belong to the

edge.

12

With this definition, the interior of the convex polyhedron is always located on the left side of
the edges as illustrated in Figure 6-(a). Finally, let ni be the outward normal vector to edge Ei

whose components stemmed from the vector ei as follows

ni =

(
ei,y
−ei,x

)
, ∀i = 1, . . . ,m.

P1

P2

P3

P4

P5

P6

e1

e2

e3

e4

e5

e6

n1

n2

n3

n4

n5

n6

P1

P2

P3

P4

P5

P6

E1

E2

E3

E4

E5

E6

V(P1)

V(P2)

V(P3) V(P4)

V(P5)

V(P6)

V(E1)

V(E2)

V(E3)

V(E4)

V(E5)

V(E6)

(a) (b)

Figure 6: (a) The vertices Pi, i = 1, . . . , 6, of the polyhedron are given in counterclockwise
order. The edgesEi, i = 1, . . . , 6, are generated by the direction vector ei, which connects the
tail Pi to the head Pfo(i) of the edge. The vectors ni, i = 1, . . . , 6, are the outward normal vec-
tors to the edges. (b) The Voronoi region of the vertices Pi and of the edges Ei, i = 1, . . . , 6.

Let fk denote a feature of a convex polyhedron R. With each feature, a Voronoi region is asso-
ciated. The Voronoi region of fk is the set of points that are located outside R and closer to fk
than any other features of R. If V(fk) denotes the Voronoi region of fk, then we have:

V(fk) = {x ∈ R2 \R | d(x, fk) ≤ d(x, fj), ∀j 6= k},

where the distance function is defined as: d(x, f) = inf{‖x − a‖2 | a ∈ f}. In two dimen-
sions, the Voronoi region of a vertex Pi of R is the area contained between the half-lines that
start from Pi and are perpendicular to the edges for which Pi is an endpoint. The Voronoi region
of an edge Ei is the region located above the edge and between the half-lines that start from
the endpoints of the edge Ei and are perpendicular to Ei. Hence, the Voronoi regions form a
partition of R2\R. An illustration of the Voronoi region of all features in polyhedron R is given
in Figure 6-(b).

The distance between the compact convex polyhedra R1 and R2 is

dR(R1, R2) = min
Sa∈R1,Sb∈R2

‖−−→SaSb‖2.

13

Since R1 and R2 are compact, the minimum is reached. A pair of points that achieves the
minimum is called the pair of closest points. This pair may not be unique. Lin and Canny’s
algorithm tracks the pair of features that contains the closest points. This pair of features is
named the closest pair of features and found when the following conditions are satisfied:

Theorem 1 LetR1 andR2 be disjoint compact convex polyhedra. Let Sa and Sb be the closest
points between the feature fa ofR1 and fb ofR2. If Sa ∈ V(fb) and Sb ∈ V(fa), then (Sa, Sb)
is the pair of closest points between R1 and R2 and (fa, fb) is the closest pair of features.

The proof of this theorem can be found in [16]. Lin and Canny’s algorithm starts with an initial
pair of features and loops on the following three steps until the conditions in Theorem 1 are
fulfilled:

1 compute the pair of closest points (Sa, Sb) between the features,

2 test if Sa ∈ V(fb),

3 test if Sb ∈ V(fa).

If both tests succeed, then Theorem 1 implies that the pair (Sa, Sb) is the closest pair of points

and the distance between R1 and R2 is equal to ‖−−→SaSb‖2. On the contrary, if Sa /∈ V(fb),
then there exists a feature f ′b of R2 that is closer to Sa than fb. The pair (fa, f

′
b) is the new

candidate pair and the method continues with the first step of the loop, i.e. the computation of
the pair of closest points between fa and f ′b. Similarly, if Sb /∈ V(fa), there exists a feature f ′a
of R1 that is closer to Sb than fa and a new pair of features is to be tested. Hence, Lin and
Canny’s algorithm builds a sequence of pair of features whose next candidate is always closer
to the previous one. The algorithm stops when Theorem 1 is satisfied or a collision is detected.
A sketch of the algorithm is given in Figure 7.

Initial pair (fa, fb) Compute (Sa, Sb)

Test if Sa ∈ V(fb)

Test if Sb ∈ V(fa)

Find a new pair
The closest pair

of features yes

yes

no

no

Figure 7: Lin and Canny’s algorithm.

In two dimensions, only four kinds of pair of features exist: Vertex-Vertex, Vertex-Edge, Edge-
Vertex and Edge-Edge. In the next subsections, we present our two-dimensional version of Lin
and Canny’s algorithm. We establish how to check if a point belongs to the Voronoi region of a
feature and how to choose the next pair of features.

14

5.1 Case Vertex-Vertex

Let us start with the first case, where the pair of features is the vertices (Pa, Pb). An illustration
is given in Figure 8, where the pair of vertices is (P5, Q1). In this first case, the pair of closest
points between the features is naturally the pair of features itself. The next step in the loop
of Lin and Canny’s algorithm is to check if Pa ∈ V(Pb). By definition, the Voronoi region
of V(Pb) is the area between the half-lines starting at Pb and perpendicular to the preceding
edge, Emod(b−2,m)+1, and the following edge, Eb, of the vertex Pb (compare Figure 6-(a)). For
simplicity, we write the preceding edge as Epr(b), where pr is the following transformation

pr : {1, . . . ,m} → {1, . . . ,m}
i 7→ pr(i) = mod(i− 2,m) + 1.

The point Pa belongs to V(Pb) if and only if Pa is located in the lower half-plane π(Pb, eb)
generating by the outward normal vector eb and the point Pb, and in the lower half-plane
π(Pb,−epr(b)).

Let us consider the orthogonal projection of Pa onto the line `(eb, Pb) defined by the direction
vector eb and the point Pb. By definition, the orthogonal projection, noted S, is given by

S = Pb + αb eb, with αb =

−−→
PbPa · eb
‖eb‖22

. (14)

If the projection coefficient αb ≤ 0, then the projection S is located before Pb on the line
`(eb, Pb). If αb ∈ (0, 1), then the projection is between Pb and Pfo(b), and if αb ≥ 1, then S
is located after Pfo(b) on the line `(eb, Pb). Consequently, the point Pa belongs to π(Pb, eb) if
and only if its projection coefficient is negative. Similarly, the point Pa belongs to π(Pb, epr(b)) if
and only if the projection of Pa on the line `(epr(b), Ppr(b)) is located after the point Pb. In other
words, Pa ∈ π(Pb, epr(b)) if and only if the projection coefficient is larger than 1. Therefore,
Pa ∈ V(Pb) when:

αb =

−−→
PbPa · eb
‖eb‖22

≤ 0 and αpr(b) =

−−−−−→
Ppr(b)Pa · epr(b)
‖epr(b)‖22

≥ 1. (15)

To avoid numerical problems, the above inequalities are relaxed as follows

αb ≤ δc, and αpr(b) ≥ 1− δc. (16)

where δc is a small positive parameter.

Similarly, we check if the vertexPb belongs to the Voronoi regionV(Pa). If so, the pair of features
(Pa, Pb) is the closest pair. In Figure 8-(a), we can observe that the vertex P5 belongs to the
lower half-planes π(Q1, e1) and π(Q1,−e3). We deduce that P5 ∈ V(Q1). In Figure 8-(b),
the vertex Q1 does not belong to V(P5) since Q1 is located above the half-plane π(P5,−e4).
The second inequality in (16) is therefore violated. In fact, Q1 is closer to the feature e4 than to
P5. The pair of features is updated to (E4, Q1), the violated condition in (16) indicating the new
feature to consider. The algorithm to handle the case Vertex-Vertex is summarized in Table 2
where the projection coefficients αa, αpr(a), αb and αpr(b) are computed according to (14) and
(15).

15

P1

P2

P3

P4

P5

P6

e1

e2

e3

Q1

Q2

Q3

R1

R2

V(Q1)

π(Q1,−e3)

π(Q1, e1)

P1

P2

P3

P4

P5

P6

e1

e2

e3

e4

e5

e6

V(P5)

Q1

Q2

Q3

R1

R2

π(P5, e5)

π(P5,−e4)

(a) (b)

Figure 8: The pair of features (P5, Q1) is considered. (a) The vertex P5 belongs to V(Q1) since
P5 is located in the lower half-planes π(Q1, e1) and π(Q1,−e3). (b) The vertex Q1 does not
belong to V(P5) since Q1 is located above the lower half-plane π(P5,−e4). The vertex Q1 is
actually closer to the edge e4 than to the vertex P5.

Table 2: Algorithm “Vertex(Pa)-Vertex(Pb)”

If αb > δc then
return new pair (Pa, Eb)

Else if αpr(b) < 1− δc then
return new pair (Pa, Epr(b))

Else
If αa > δc then
return new pair (Ea, Pb)

Else if αpr(a) < 1− δc then
return new pair (Epr(a), Pb)

Else
return (Pa, Pb) is the closest pair

End if
End if

16

5.2 Case Edge-Vertex

Let us assume that the feature Ea is an edge of R1 and the feature Pb is a vertex of R2. To
apply Theorem 1, one needs to compute first the closest points Sa and Sb between the pair of
features (Ea, Pb). Then, Sa ∈ V(Pb) and Sb ∈ V(Ea) are checked. The former relation is
verified thank to (16), whereas the point Sb belongs to V(Ea) if

Sb lies in the lower half-plane π(Pa,−ea), (17)

Sb lies in the lower half-plane π(Pfo(a), ea), (18)

Sb is above the edge Ea. (19)

These three conditions follow directly from the definition of the Voronoi region of an edge.

Since Pb is a vertex, the point Sb is equal to Pb. For the point Sa, one needs to compute the
orthogonal projection of Sb onto the line `(ea, Pa) defined by the direction vector ea and the
point Pa. By definition, the orthogonal projection, noted S, is given by

S = Pa + α ea, with α =

−−→
PaSb · ea
‖ea‖22

. (20)

If α ≤ 0, then the projection S is located before Pa on the line `(ea, Pa). This means that the
vertex Pb is closer to the vertex Pa than to the edge Ea. Hence, the pair of features (Pa, Pb)
is a closer pair than (Ea, Pb). This case is illustrated in Figure 9-(a), where Pb is Q1 and Ea

is the edge E5. With the help of the figure, we can notice that α ≤ 0 also means that Pb lies
above the lower half-plane π(Pa,−ea). Consequently, the vertex Pb cannot belong to V(Ea).
The case, α ≤ 0 implies that Pb /∈ V(Ea) and the new candidate pair of features is (Pa, Pb).
The case α ≥ 1 is treated similarly. It follows that Pb /∈ V(Ea) and the new candidate pair is
(Pfo(a), Pb).

P1

P2

P3

P4

P5

P6

e1

e2

e3

e4

e5

e6

Q1

Q2

Q3

S

ℓ(e5, P5)

R1

R2

V(E5)
π(P5,−e5)

π(P6, e5)

P1

P2

P3

P4

P5

P6

e1

e2

e3

e4

e5

e6

Q1

Q2

Q3

R1

R2

V(E1)

π(P1,−e1)

π(P2, e1)

P1

P2

P3

P4

P5

P6

S5

e1

e2

e3
Q1

Q2

Q3R1 R2

V(Q1)

π(Q1,−e3)

π(Q1, e1)

(a) (b) (c)

Figure 9: (a) The pair (E5, Q1) is considered. Q1 /∈ V(E5) since Q1 is above π(P5,−e5). (b)
The pair (E1, Q1) is considered. Q1 /∈ V(E1) since Q1 is beneath E1. (c) The pair (E5, Q1)
is considered. Q1 ∈ V(E5), but S5 /∈ V(Q1).

If α ∈ (0, 1), then the projection lies in Ea and Sa is set to S. This case also implies that the
vertex Pb is located between the lower half-planes π(Pa,−ea) and π(Pfo(a), ea). Therefore,

17

the first two relations for Pb to be an element of V(Ea) are checked (compare with (17)-(19)).
The last relation involves verifying whether Pb lies above the edge Ea. Let na be the outward
normal vector to Ea. Then Pb lies above Ea if

−−→
PaPb · na > 0. (21)

If this inequality is not satisfied, then Pb does not belong to V(Ea) and a new pair of features
must be found. This new pair is composed of Pb and the closest feature of R1 to Pb, so that
the new pair is closer in distance than the previous one. Let us see how to find such a feature.
Since the Voronoi regions define a partition of R2 \ R1, Pb lies either in the Voronoi region of
an edge of R1 or in the Voronoi region of a vertex of R1. On one hand, Pb lies in the Voronoi
region of the edge Ei of R1 if and only if

� the projection of Pb on Ei lies in Ei, i.e.:

αEi
∈ (0, 1), (22)

� and Pb lies above the line containing Ei, i.e.:
−−→
PiPb · ni > 0. (23)

On the other hand, Pb lies in the Voronoi region of the vertex Pi of R1 if and only if

� the projection parameter of Pb onto Epr(i), whose endpoint is Pi is larger than 1, i.e:

αEpr(i)
≥ 1, (24)

� and the projection parameter of Pb onto Ei, whose startpoint is Pi is negative, i.e.:

αEi
≤ 0. (25)

Therefore, to determine in which Voronoi region the point Pb belongs to, we enumerate the
edges onR1 until an edge satisfies (22)-(23) or two successive edges satisfy (24)-(25). Figure 9-
(b) illustrates such a case. The original pair of features is (E1, Q1). The point Q1 does not
belong to V(E1) since Q1 is beneath E1. The new pair of features is (E4, Q1), E4 being the
first edge of R1 that verifies (22)-(23).

It may happen that no edge satisfies (22)-(23) and no pair of successive edges verifies (24)-
(25). This case means that the point Pb lies inside the polyhedronR1. Thus, a collision between
the robots is detected. The algorithm to find the feature that is the closest to Pb is summarized
in Table 3.

Suppose now that Pb ∈ V(Ea). The last check of the case Edge-Vertex is to verify whether
Sa ∈ V(Pb). This test corresponds to the case Vertex-Vertex since Sa and Pb are both vertices.
Thus, if Sa /∈ V(Pb), the feature Pb is replaced by Eb or Epr(b) depending on which inequality
in (16) is violated. In Figure 9-(c), an example is represented where Q1 ∈ V(E5), but the
orthogonal projection S5 /∈ V(Q1). The first inequality in (16) is here not satisfied. Then, the
new candidate pair is (E5, E1).

As in the case Vertex-Vertex, we relax the tests on the value of α and of (21) with the positive
parameter δc to avoid numerical problems. Eventually, the case Edge-Vertex is summarized in
Table 4.

18

Table 3: Algorithm “Find the Closest Feature to Pb”

Compute αpr =
−−−→
PmPb·em
‖em‖22

For I = 1, ...,m

Compute α =
−−−→
PIPb·eI
‖eI‖22

If α ∈ [δc, 1− δc] and
−−→
PIPb · nI > δc‖nI‖2‖

−−→
PIPb‖2 then

return new pair (EI , Pb)
Else if αpr > 1− δc and α < δc then
return new pair (PI , Pb)

Else
Set αpr = α

End if
End for
return collision

Table 4: Algorithm “Edge (Ea) - Vertex (Pb)”

Compute α =
−−−→
PaPb·ea
‖ea‖22

If α > 1− δc then
return new pair (Pfo(a), Pb)

Else if α < δc then
return new pair (Pa, Pb)

Else
If
−−→
PaPb · na < δc‖na‖2‖

−−→
PaPb‖2 then

fa ← Find the Closest Feature to Pb

return new pair (fa, Eb)
Else
Compute Sa = Pa + αea
If Sa /∈ π(Pb, eb) then
return new pair (Ea, Eb)

Else if Sa /∈ π(Pb, epr(b)) then
return new pair (Ea, Epr(b))

Else
return (Ea, Pb) is the closest pair

End if
End if

End if

19

5.3 Case Edge-Edge

Let us consider the pair of features (Ea, Eb) where Ea is an edge of R1 and Eb is an edge of
R2. The case when the edges are parallel must be set apart from the non-parallel case.

5.3.1 Parallel edges

Let us assume here that the edges Ea and Eb are parallel. Two possibilities exist. Either the
edges overlap. In that case, there are several pairs of points that achieve the minimal distance
between the edges. The edges may be the closest pair of features. Or, the edges do not overlap.
Then, there exists a pair of vertices that are closer in distance than the pair (Ea, Eb).

To determine if the edges overlap, the smallest edge is projected onto the largest one. Let us
assume that ‖eb‖2 ≤ ‖ea‖2. Then, the vertices Pb and Pfo(b) are projected onto Ea. Following
(14), the projection coefficient are given by

αb =

−−→
PaPb · ea
‖ea‖22

and αfo(b) =

−−−−−→
PaPfo(b) · ea
‖ea‖22

. (26)

The edges do not overlap when αb, αfo(b) are both negative or both larger than 1. In that case,
a new pair of features must be determined. If αb, αfo(b) are both negative, then Eb is closer
to Pa than to Pfo(a). Consequently, the first component of the new pair is Pa. For the second
component, the distance between Pa and the vertices of Eb is tested. The new pair of features
is {

(Pa, Pb), if ‖−−→PaPb‖2 ≤ ‖
−−−−−→
PaPfo(b)‖2,

(Pa, Pfo(b)), otherwise.

Similarly, if αb, αfo(b) are both larger than 1, the new pair of features is equal to{
(Pfo(a), Pb), if ‖−−−−−→Pfo(a)Pb‖2 ≤ ‖

−−−−−−−→
Pfo(a)Pfo(b)‖2,

(Pfo(a), Pfo(b)), otherwise.

An illustration is given in Figure 10-(a). The edge E2 of R1 is parallel to E3 of R2. The edge E3

is projected onto E2 and the resulting projection coefficients α1, α3 are both larger than 1. The
next pair of features is the pair of vertices (P3, Q1) since the vertex P3 is closer to P1 than to
Q3.

The edges overlap when at least one of the projection coefficients is in (0, 1). All the points in
the overlapping region achieve the minimum distance between the edges. However, the edges
are not necessarily the closest pair of features. The edges are the closest pair, if each edge
is located above the other edge. For instance, let us consider the pair of edges (E1, E1) in
Figure 10-(b). These edges are parallel and overlap. However, they are not the closest pair of
features, the edge E1 of R2 being located beneath E1 of R1.

Let us assume that αb ∈ (0, 1). The point Sa is defined as the projection of Pb onto Ea, i.e.

Sa = Pa + αb

−−−−−→
PaPfo(a). The pair of points (Sa, Pb) achieves the minimum distance between

20

P1

P2

P3

P4

P5

P6

e2

e3

Q1

Q2

Q3

R1

R2

P1

P2

P3

P4

P5

P6

e1

e1
e2

e2

e3

e3

e4

e5

e6
Q1

Q2

Q3

R1

R2

(a) (b)

Figure 10: (a) The edges E2 of R1 and E3 of R2 are parallel and do not overlap. The pair
(P3, Q1) is closer than (E2, E3). (b) The edges E1 of R1 and E1 of R2 are parallel and
overlap, but (E1, E1) is not the closest pair since E1 of R2 is beneath E1 of R1.

the edges, that is, Sb is equal to Pb. According to (21), the edge Ea is above Eb if and only if
the following inequality is satisfied −−→

PbPa · nb > 0.

If the inequality is not satisfied, then a new pair of features is searched. This new pair is such
that the feature on R1 is the closest to Pb. The pair is obtained by applying the algorithm “Find
Closest Feature to Pb”. Similarly, we check if Eb is above Ea. If Eb is not above, then we look
for the feature onR2 that is the closest to Sa. The algorithm to handle the case Edge-Edge with
paralle edges is sketched in Table 5.

5.3.2 Non-parallel edges

Let us consider here the non-parallel case. If the edges are not parallel, then this pair of features
can not be the closest pair. At least one vertex of the edges achieves the minimum distance
between the edges. The goal of this section is then to find the next pair of features. This pair is
composed by the features that contain the points minimizing the distance between the edges.
So, let us compute the minimum distance.

Let us consider the lines that support the edges Ea and Eb:

`(ea, Pa) = {x ∈ R2 |x = Pa + ka ea, ka ∈ R},
`(eb, Pb) = {x ∈ R2 |x = Pb + kb eb, kb ∈ R}.

Let dE be the distance function between any pair of points (Sa, Sb), with Sa = Pa + ka ea ∈
`(ea, Pa) and Sb = Pb + kb eb,∈ `(eb, Pb). The function dE is defined as follows:

dE : R× R → [0,+∞[

(ka, kb) 7→ dE(ka, kb) = ‖Pa + ka ea − Pb − kb eb‖22.

21

Table 5: Algorithm “Edge (Ea) - Edge (Eb) parallel”, when ‖eb‖2 ≤ ‖ea‖2
Compute αb and αfo(b) as in (26)
If αb < δ and αfo(b) < δ then

If ‖−−→PaPb‖2 ≤ ‖
−−−−−→
PaPfo(b)‖2 then

return new pair (Pa, Pb)
Else
return new pair (Pa, Pfo(b))

End if
Else if αb > 1− δ and αfo(b) > 1− δ then

If ‖−−−−−→Pfo(a)Pb‖2 ≤ ‖
−−−−−−−→
Pfo(a)Pfo(b)‖2 then

return new pair (Pfo(a), Pb)
Else
return new pair (Pfo(a), Pfo(b))

End if
Else

If αb ∈ [δ, 1− δ] then

Set Sa = Pa + αb

−−−−−→
PaPfo(a) and Sb = Pb

Else
Set Sa = Pa + αfo(b)

−−−−−→
PaPfo(a) and Sb = Pfo(b)

End if

If
−−→
PaPb · na > δ‖na‖2‖

−−→
PaPb‖2 then

If
−−→
PbPa · nb > δ‖nb‖2‖

−−→
PbPa‖2 then

return (Ea, Eb) is the closest pair
Else
fb ← Find the Closest Feature to Sa

return new pair (Ea, fb)
End if

Else
fa ← Find the Closest Feature to Sb

return new pair (fa, Eb)
End if

End if

22

The function dE can be rewritten as

dE(ka, kb) = (Pa + ka ea − Pb − kb eb)T (Pa + ka ea − Pb − kb eb),
= ‖ea‖22 k2a − 2 eTa eb kakb + ‖eb‖22 k2b + 2 eTa

−−→
PbPa ka − 2 eTb

−−→
PbPa kb

+‖−−→PbPa‖22.

Hence, dE is a quadratic function in ka and kb. Furthermore, the Hessian matrix of dE is positive
definite. Indeed, the Hessian matrix is given by

H(dE)(ka, kb) = 2

(
‖ea‖22 −eTa eb
−eTa eb ‖eb‖22

)
.

On one hand, we have ‖ea‖22 > 0 since the edges are supposed to be not degenerate. On the
other hand, the determinant of the Hessian matrix is

detH(dE)(ka, kb) = 4(‖ea‖22‖eb‖22 − (eTa eb)
2) = 4‖ea‖22‖eb‖22(1− cos(β)),

where β is the angle between ea and eb. Since the edges are not parallel, cos(β) < 1 and we
deduce

detH(dE)(ka, kb) > 0.

Sylvester’s criterion implies that H(dE)(ka, kb) is positive definite. Consequently, the quadratic
function dE is convex.

By assumption, the lines `(ea, Pa) and `(eb, Pb) are not parallel. Therefore, the lines are se-
cant and the minimum distance is equal to 0. This minimum is global since dE is convex and
quadratic. The minimum is given by solving

∇dE(ka, kb) =

(
2 ‖ea‖22 ka − 2 eTa eb kb + 2 eTa

−−→
PbPa

2 ‖eb‖22 kb − 2 eTa eb ka − 2 eTb
−−→
PbPa

)
=

(
0
0

)
.

The solution of the above linear system is

k∗a =
(eTa eb) e

T
b

−−→
PbPa − ‖eb‖22 eTa

−−→
PbPa

‖ea‖22 ‖eb‖22 − (eTa eb)
2

, (27)

k∗b =
‖ea‖22 eTb

−−→
PbPa − (eTa eb) e

T
a

−−→
PbPa

‖ea‖22 ‖eb‖22 − (eTa eb)
2

. (28)

The denominator of the above fractions is always positive since it is equal to the quarter of the
determinant of the Hessian matrix, which is positive definite.

In conclusion, the lines `(ea, Pa) and `(eb, Pb) crosses at Pa + k∗a ea = Pb + k∗b eb and it
follows

dE(k∗a, k
∗
b) = 0.

We look for the pair of points that minimizes the distance between the edgesEa andEb. There-
fore, the minimum is no longer searched in R2, but only in [0, 1]2. This minimum is obtained by

23

solving the following problem

(PdE) min dE(ka, kb)

s.t. 0 ≤ ka ≤ 1,

0 ≤ kb ≤ 1.

Let (k̄a, k̄b) be the solution of (PdE). If (k̄a, k̄b) lies in (0, 1)2, then the edges intersect
and a collision is detected. Indeed, (k̄a, k̄b) ∈ (0, 1)2 means that the minimum of (PdE) is
achieved by points located in the edges. Since the edges are not parallel and we work in a
two-dimensional space, these points necessarily coincide.

If, on the other hand, (k̄a, k̄b) /∈ (0, 1)2, then the solution of (PdE) is on the boundary of
[0, 1]2. To find this solution, let us consider the location of the global optimum (k∗a, k

∗
b) in R2.

The value of dE at (k∗a, k
∗
b) is null. Furthermore, the contour lines of dE are ellipses centered

at (k∗a, k
∗
b). The value of the contour lines increases as one moves away from (k∗a, k

∗
b).

Now, two cases must be distinguished, according to the values of k∗a and k∗b :

� case 1: either k∗a or k∗b is in [0, 1],

� case 2: k∗a and k∗b are both outside [0, 1].

Let us start with case 1. An instance of this case is k∗a > 1 and k∗b ∈ [0, 1]. For this instance,
there exists a contour line that is tangent to the line ka = 1. Let PI be the intersection point and
let kIb be the second coordinate of PI , that is PI = (1, kIb). By definition of the contour lines,
the value of dE along ka = 1 is such that

dE(1, kIb) < dE(1, kb), ∀kb ∈ R \ {kIb}.

If kIb lies in [0, 1], then (1, kIb) is the solution of (PdE). If kIb is larger than 1, then PI does
not belong to ∂[0, 1]2. Since the value of dE increases from PI to 0 along the line ka = 1, the
minimum of (PdE) is located at (1, 1). Similarly, if kIb is smaller than 0, the minimum of (PdE)
occurs at (1, 0).

An illustration of the contour lines is given in Figure 11-(a). This example corresponds to the pair
of edges (E4, E1) given in Figure 10-(b). The x-axis is the value of ka and kb is represented in
the y-axis. The intersection point PI is located on the boundary of [0, 1]2. PI achieves then the
minimum of (PdE).

From a mathematical point of view, the solution (k̄a, k̄b) of (PdE) is computed in the following
manner. Because k∗a > 1, k̄a is set to 1. The problem now is to find a value for k̄b. The variable
k̄b is found by solving

min
0≤ kb≤ 1

g1(kb) (29)

where

g1(kb) = dE(1, kb) = ‖eb‖22 k2b − 2 eTb (ea +
−−→
PbPa) kb + (ea +

−−→
PbPa)

2.

24

The function g1 is a second-order polynomial. The minimum is obtained at the root of the first
derivative of g1:

g′1(kb) = 0 ⇔ kb =
eTb (ea +

−−→
PbPa)

‖eb‖22
.

Thus, the intersection point PI is (1, kIb), where kIb is given by the above expression. The
minimum of (PdE) is then obtained at

(k̄a, k̄b) =


(1, 0) if kIb < 0,
(1, kIb) if kIb ∈ [0, 1],
(1, 1) if kIb > 1.

The pair (k̄a, k̄b) defines the pair of points (Pa + k̄aea, Pb + k̄beb). These points indicate the
next pair of features. For instance, if Pa + k̄aea is in the edge Ea, then the next feature is Ea.
If, in the other hand, Pa + k̄aea is an endpoint of the edge, then the next feature is the endpoint
itself. Finally, the next pair of features is defined as follows

(Pfo(a), Pb) if (k̄a, k̄b) = (1, 0),
(Pfo(a), Eb) if (k̄a, k̄b) = (1, kIb),
(Pfo(a), Pfo(b)) if (k̄a, k̄b) = (1, 1).

0 1 2
0

1

2

k∗a

k∗b

kIb
PI

0 1 2 3 4
0

1

2

3

4

k∗a

k∗b

PI

0 1 2 3 4
0

1

2

3

4

k∗a

k∗b

PI

(a) (b) (c)

Figure 11: Contour lines of the minimum distance dE for the pairs (a) (E4, E1), (b) (E5, E3)
and (c) (E3, E1) represented in Figure 10-(b). For these examples, the point PI achieves the
minimum of (PdE).

The other instances of case 1 are (k∗a, k
∗
b) ∈]−∞, 0[×[0, 1], (k∗a, k

∗
b) ∈ [0, 1]×]1,+∞[and

(k∗a, k
∗
b) ∈ [0, 1]×]−∞, 0[. They are handled similarly. For example, the instance (k∗a, k

∗
b) ∈

]−∞, 0[×[0, 1] is solved by setting k̄a to 0 and k̄b to the solution of

min
0≤ kb≤ 1

g0(kb) = dE(0, kb).

Now, let us consider case 2. This case contains the instances k∗a, k
∗
b > 1, k∗a, k

∗
b < 0, k∗a >

1, k∗b < 0 and k∗a < 0, k∗b > 1. Let us study the first instance, i.e. k∗a, k
∗
b > 1. The Figures 11-

(b) and 11-(c) illustrate such a case. Figure 11-(b) corresponds to the pair (E5, E3). The contour

25

line hits first the segment line [0, 1] × {1}. The minimum is then reached at (k̄a, 1) with k̄a ∈
(0, 1). The next candidate pair of features is (E5, P1). Figure 11-(c) illustrates the contour lines
of the distance function dE for the pair (E3, E1) in Figure 10-(b). The contour line hits the corner
(1, 1) of the square [0, 1]2. Hence, (1, 1) achieves the minimum of dE on [0, 1]2 and the next
candidate pair is (P4, P2).

Mathematically, the minimum of (PdE) is computed in a similar way to case 1. The additional
difficulty here is how to determine which from k̄a and k̄b must be initially set to 1. One possibility
is to evaluate the sign of the partial derivatives at the corner (1, 1). However we prefer to simply
apply the above computations to k̄a = 1, then to k̄b = 1 and compare the resulting pairs of
points. More precisely, let us first set the parameter k̄a,1 to 1. We associate here the index 1 to
indicate that we compute the first pair. Then, by solving (29), the pair (k̄a,1, k̄b,1) is obtained. To
this pair of parameters corresponds the pair of points (Pa + k̄a,1ea, Pb + k̄b,1eb).

In a second step, the parameter k̄b,2 is set to 1 and k̄a,2 is the solution of the following minimiza-
tion problem

k̄a,2 = arg min
0≤ ka≤ 1

dE(ka, 1).

The second pair of points is (Pa + k̄a,2ea, Pb + k̄b,2eb). The minimum of (PdE) occurs at the
closest pair of points, i.e. at

(k̄a, k̄b) =

{
(k̄a,1, k̄b,1) if dE(k̄a,1, k̄b,1) ≤ dE(k̄a,2, k̄b,2),
(k̄a,2, k̄b,2) otherwise.

(30)

The next pair of features is deduced from (k̄a, k̄b), as previously:
(Pa + k̄aea, Pb + k̄beb) if k̄a, k̄b ∈ {0, 1},
(Ea, Pb + k̄beb) if k̄a ∈ (0, 1), k̄b ∈ {0, 1},
(Pa + k̄aea, Eb) if k̄a ∈ {0, 1}, k̄b ∈ (0, 1).

We can observe that the next pair of features always contains at least one vertex. The case
Edge-Edge when the edges are not parallel is summarized in the algorithm of Table 6.

5.4 Convergence

The convergence of Lin and Canny’s algorithm is guaranteed since the new pair of features is
always closer in distance than the previous pair. Furthermore, the test algorithms ”Vertex (Pa)
- Vertex (Pb)”,”Edge (Ea) - Edge (Eb)”,”Edge (Ea) - Edge (Eb) parallel” and ”Edge (Ea) -
Edge (Eb) not parallel” are constant in time. Only the convergence of the algorithm "Find the
closest feature to Pb is of order m, the number of vertices in the robot. In the worst case, the
4m2 possible pairs of features are visited. Consequently, Lin and Canny’s algorithm is O(m3).
However, the order of the method can be drastically reduced, when the initial pair is well chosen.
In our particular application, the robots move slightly between two consecutive time steps tk and
tk+1. In this case, a good initial pair at tk+1 is the closest pair of features found at tk. The closest
pair at tk+1 is then either the initial pair itself or a neighboring pair, that is obtained by applying
the constant in time test algorithms.

26

Table 6: Algorithm “Edge (Ea) - Edge (Eb) not parallel”
Compute k∗a and k∗b according to (27)-(28)

If (k∗a, k
∗
b) ∈ [0, 1]2 then

return collision
Else if k∗a ∈ [0, 1] then

If k∗b > 1 then
Set k̄b = 1 and k̄a = arg min0≤ka≤1 dE(ka, 1)

Else
Set k̄b = 0 and k̄a = arg min0≤ka≤1 dE(ka, 0)

End if
Else if k∗b ∈ [0, 1] then

If k∗a > 1 then
Set k̄a = 1 and k̄b = arg min0≤kb≤1 dE(1, kb)

Else
Set k̄a = 0 and k̄b = arg min0≤kb≤1 dE(0, kb)

End if
Else

Compute (k̄a, k̄b) as in (30)
End if

If k̄a, k̄b ∈ {0, 1} then
return new pair (Pa + k̄aea, Pb + k̄beb)

Else if k̄a ∈ (0, 1) then
return new pair (Ea, Pb + k̄beb)

Else
return new pair (Pa + k̄aea, Eb)

End if

27

6 Numerical results

The collision detection algorithm is applied to the two-dimensional work-cell presented in Fig-
ure 12. The work-cell is composed of four obstacles (black quadrilaterals) and two robots R1

and R2. The robot R1 is depicted at several time steps by a light grey square. The robot starts
from V 1

I , follows the light grey trajectory and ends at V 1
F (black triangle). The markers on the

trajectory indicate the position of the center of gravity of R1 at the time steps τk, k = 1, . . . , n.
Similarly, the robot R2 is the dark grey square and its associated trajectory is the dark grey
curve. The robot R2 moves from V 2

I to V 2
F .

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

V 1
I

V 2
I

V 1
F

V 2
F

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

V 1
I

V 2
I

V 1,2
F

(a) (b)

Figure 12: A two-dimensional work-cell. The black quadrilaterals are the obstacles. The grey
squares are the robots, represented at several time steps. The robot R1 is light grey and the
robot R2 is dark grey. The associated trajectories follow the same color code. The black dia-
monds are the end point of the trajectories. (a) the trajectories are collision-free. (b) the robots
intersect just before reaching the end position V 1,2

F .

For the numerical example given in Figure 12-(a), the collision detection algorithm correctly
returns that the robots do not intersect. The example is composed of 52 time intervals of the
form [tl, tu]. Only one interval is split into two subintervals while checking Schwarzer et al.’s
inequality. The upper bound η of the distance between the robots is mostly computed in the
broad phase, even if the robots are close to each other while travelling along the trajectories.
The narrow phase is called only 7 times. For these 7 instances, only 14 test algorithms of Lin
and Canny’s method are applied.

In the example in Figure 12-(b), both robots have the same end point, denoted by V 1,2
F . Hence,

the robots collide. Moreover, the trajectories are such that the robots follow each other very
closely. With these trajectories, the detection algorithm must consider 71 time intervals [tl, tu].
The collision is detected while checking Schwarzer et al.’s inequality for the 56th time interval.
The robots at the end time of this interval are depicted in Figure 12-(b). We can observe that
the robots intersect just before reaching V 1,2

F . Before the collision is detected, about 30 time
intervals and subintervals are bisected. Lin and Canny’s algorithm is called 9 times and the test
algorithms are applied 12 times.

28

These two examples illustrate the good running of our collision detection algorithm. The algo-
rithm returns the good solution and always almost instantaneously. Indeed, the CPU time is
equal to 4 · 10−3 s for the first example, and to 5 · 10−3 s for the second example. Lin and
Canny’s algorithm is also well adapted to our two-dimensional examples since the number of
calls to the test algorithms is small. Finally, the few calls to the narrow pahse shows the good
estimation of the lower bound λ1 and λ2 in Schwarzer et al.’s inequality. We conclude, that the
collision detection algorithm is perfectly suited for the second step of the iterative method to
solve (WCP).

7 Conclusions

An algorithm to detect a collision between robots moving along specified trajectories has been
presented. This algorithm is used to solve the work-cell problem (WCP) described in [13]. There-
fore, the robots are two-dimensional convex polyhedra.

The collision detection algorithm follows the dynamic method developed by Schwarzer et al. in
[24]. The method involves comparing lower bounds of the distance travelled by the robots during
a time interval, with an upper bound of the distance between the robots. We have established
a formula of the lower bounds that perfectly suits the robots and the trajectories issued from
(WCP). To compute the upper bound of the distance, when the robots are close to each other, we
have adapted Lin and Canny’s algorithm to our two-dimensional case. The resulting algorithm
was applied to the second step of the iterative method to solve (WCP). Numerical examples
have shown the efficiency of the algorithm: a correct output is given almost instantaneously.

These good results encourage us to use the same strategy for a three-dimensional work-
cell that contains industrial robots. However, due to the complexity of the geometry of such
robot, a bounding volume hierarchy method must be included to compute the right hand side of
Schwarzer et al.s inequality efficiently.

References

[1] J. W. Boyse. Interference detection among solids and surfaces. Commun. ACM, 22(1):3–9,
1979.

[2] S. Cameron. A study of the clash detection problem in robotics. In Int. Conf. Robotics &
Automation, pages 488–493, 1985.

[3] S. Cameron. Enhancing GJK: Computing minimum and penetration distances between
convex polyhedra. In Proceedings of International Conference on Robotics and Automa-
tion, pages 3112–3117, 1997.

[4] J. Canny. Collision detection for moving polyhedra. Technical report, Massachussetts
Institute of Technology, October 1984.

29

[5] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-collide: An interactive and exact
collision detection system for large-scaled environments. In Symposium on Interactive 3D
Graphics, pages 189–196. ACM Siggraph, April 1995.

[6] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Journal of
Algorithm, 6, issue 3:381–392, 1985.

[7] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry. Path planning and collision avoidance
for robots. Numerical Algebra, Control and Optimization, 2(3):437 – 463, 2012.

[8] E.G. Gilbert and S.M. Hong. A new algorithm for detecting the collision of moving objects.
In IEEE Proc. Int. Conf. Robotics Automat., volume 1, pages 8–14, 1989.

[9] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for computing the dis-
tance between complex objects in three-dimensional space. IEEE Journal of Robotics and
Automation, 4(2):193–203, April 1988.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid inter-
ference detection. In ACM SIGGRAPH, editor, Computer Graphics Proceedings, Annual
Conference Series, 1996.

[11] P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection.
ACM Transactions on Graphics, 15:179–210, 1996.

[12] P. Jiménez, F. Thomas, and C. Torras. 3d collision detection: A survey. Computers and
Graphics, 25:269–285, April 2000. Preprint submitted to Elsevier Preprint.

[13] C. Landry, R. Henrion, D. Hömberg, M. Skutella, and W. Welz. Task assignment, sequenc-
ing and path-planning in robotic welding cells. In Methods and Models in Automation and
Robotics (MMAR), 2013 18th International Conference on, pages 252–257, 2013.

[14] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast distance queries with rectangular
swept sphere volumes. In Proc. of IEEE Int. Conference on Robotics and Automation,
pages 3719–3726, 2000.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.

[16] M. C. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis, Department
of Electrical Engineering and Computer Science, University of California, Berkeley, 1993.

[17] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation. Robotics
and Automation, 1991. Proceedings., 1991 IEEE International Conference on, page 1008,
1991.

[18] M. C. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In
In Proc. of IMA Conference on Mathematics of Surfaces, pages 37–56, 1998.

[19] K. Maruyama. A procedure to determine intersections between polyhedral objects. Inter-
national Journal of Computer & Information Sciences, 1:255–266, 1972.

30

[20] B. Mirtich. V-clip: Fast and robust polyhedral collision detection. Technical report, Mit-
subishi Electronics Research Laboratory, 1997.

[21] B. Mirtich. Efficient algorithms for two-phase collision detection. In K. Gupta and A.P.
del Pobil, editors, Practical Motion Planning in Robotics: Current Approaches and Future
Directions, pages 203–223. Wiley, New York, 1998.

[22] S. Quinlan. Efficient distance computation between nonconvex objects. In Proceedings
IEEE International Conference on Robotics & Automation, pages 3324–3329, 1994.

[23] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the problem of collision
detection for rigid polyhedral objects. In Proceedings of the 2000 IEEE International Con-
ference on Robotics and Automation, ICRA 2000, April 24-28, 2000, San Francisco, CA,
USA, pages 3733–3738. IEEE, 2000.

[24] F. Schwarzer, M. Saha, and J. Latombe. Adaptive dynamic collision checking for single and
multiple articulated robots in complex environments. IEEE Tr. on Robotics, 21:338–353,
2005.

[25] P. Toth and D. Vigo. The vehicle routing problem. pages 1–26. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001.

31

