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Abstract 

Pulse stability is crucial to the effective propagation of information in a soliton-
based optical communication system. It is shown in this paper that pulses in optical 
fibers, for which attenuation is compensated by phase-sensitive amplifiers, are stable 
over a large range of parameter values. A fourth-order nonlinear diffusion model 
due to Kath and co-workers is used. The stability proof invokes a number of math-
ematical techniques, including the Evans function and Grillakis' functional analytic 
approach. 

Keywords. solitons, nonlinear optical pulse propagation, optical fibers, stability 
AMS subject classification. 35Q55, 35B35, 78A60 

1 Permanent address: WIAS, MohrenstraBe 39, 10117 Berlin, Germany 





1 Introduction 
Attenuation of pulses in optical fibers is a major obstacle to the efficacy of a nonlinear 
optical communication system. It has been suggested recently by Kath and co-workers, 
see [13], that periodically-spaced phase-sensitive amplifiers offer a realistic alternative to 
Erbium-doped amplifiers, see Hasegawa and Kodama [10] as well as Mollenauer and co-
workers [15]. These amplifiers affect different parts of the signal according to phase, so 
that the part of the signal in phase with the amplifier is most accentuated and that out 
of phase is actually attenuated. The detailed mechanism is discussed by Kath in [13]. 
The amplifiers are placed approximately every 20-50 km and the typical dispersion length 
of an optical fiber is 200-500 km. It is thus reasonable to treat the amplifiers as closely 
spaced, see Figure 1. In the mathematical formulation, the amplification can be treated as 
a rapidly-varying function of space. It is shown in [13], [14] that the equations can then 
be written 

8q i 82q . 2 1 (z) 1 (z) ·,1..( ) - + -- + i lql q - /q + -h - q + - f - ei'f' z q* = 0, 8z 2 8T2 <: <: <: <: 
(1) 

where q is the envelope of the electric field and / is the linear loss rate in the fiber. 
The convention of optical scientists is used here so that the evolution variable is z which 
measures distance along the 'fiber; and the variable T E R represents time in a translating 
frame. The functions h and f encode the amplification, which is expressed using delta 
functions at points where the amplifiers are located. It is based upon the formula 

qout = ( cosh a)qin + ei<P(sin~ a)qin, 

where 'efJ = ef>(z) is the reference phase associated with the amplifier. The spacing of the 
amplifiers is of the order d, where l is 0(1). On account of the rapidly-varying terms in 
the equations, it is natural to perform averaging and Kath et al. [13] use a multi-scale 
averaging procedure to derive a fourth order equation that governs the amplitude of the 
scaled in-phase· component of the wave: 

1 - c2rz ( i.P. 
U = ( 2r 1 ) Re qe- 2 ) , (2) 

where r.= c/. In the limit rz __,, 0 the equation has a useful structure - it can be factored 
into second order operators. Since we systematically exploit this structure, we write the 

PSA PSA PSA 

z 

Figure 1: Phase sensitive amplifiers denoted by PSA periodically spaced along an optical 
fiber. The distance of the amplifiers is of the order tl compared to the dispersion length 
scale z. 

1 



full equation as a perturbation of this case: 

au 
8( 

where the variable (is a long length scale ( = ckz, k is 0(1), and 

tanh rz 
a=l- rz . 

(3) 

We consider here exclusively the case where a = 0, which is tantamount to assuming that 
the amplifiers are spaced together closely in the asymptotic limit, or that the damping is 
weak. Indeed, we see that as rz -7 0 then a -7 0. In order to explain the parameters a and 
77 in (3), we introduce the quantity ~a which measures the O(c2) discrepancy between the 
decay and amplification rates: 

z2 
a - rz = c2~a(2tanhr)· 

With the characteristic frequency of the amplifier depending linearly on the frequency, we 
set a 2 = d¢ /dz and determine 77 from the formula 

(4) 

Since the scaling of close spacing of amplifiers is u·sed in the averaging procedure, the 
further assumption that O' -7 0 appears to be of questionable value. However, this limit is 
so useful that it turns out to be advantageous to view the full equations as a perturbation 
of this limiting case. In a companion paper to this we consider the case of non-zero a and, 
in particular, the possibility of multiple pulses existing on such a fiber with both a small, 
by analytic techniques, and a large, by numerical techniques. 

Steady state solutions of (3) can easily be found and these represent the propagation 
of information along the fiber. The steady state equation can be solved by a function R 
that satisfies 

82R ar2 + 2R3 - 772 R = o (5) 

and such is easily found having the form 

R(T) = 77sech17T, 

where 
1] = ±/a2 ±~, 

It is clear that R(T) has the form of a pulse, but it should be noted that, even though 
these solutions are described as steady states, they are actually independent of space and 
not time. 

Of interest here is the stability of these pulses. We use the linearization 

aQ -+LQ=O 
8( 
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Figure 2: The bifurcation diagram. Dotted lines correspond to unstable R(T'), while solid 
lines correspond to stable R( T). 

of equation (3) at the pulse R(T) as the avenue for assessing stability. The criterion for 
stability is that the linearization L has no spectrum in the closed left half plane other than 
a simple eigenvalue at zero due to invariance under time translation. This criterion guar-
antees that perturbation.s of the wave, in the full nonlinear problem, decay to a translate 
of ~he wave, see Henry [11], Bates and ·Jones [3] - which is nonlinear stability for the 
family of waves that consists of the pulse and all its translates. Note that the physicists' 
convention in the sign of the linear operator, entailing that stable spectrum has positive 
real part, is used here. 

These steady state solutions can be organized in a bifurcation diagram, see Figure 2, 
which is suggestive of stability. It is shown by Kath and Kutz [14] that the lower branch 
is unstable in the neighborhood of the point where the bifurcation curve touches the axis, 
namely ( a4 / 4, 0). More importantly, they show that, in the neighborhood of the turning 
point (0, a), the lower branch is unstable while the upper branch is stable. They also 
observe that the upper branch suffers a radiation instability, i.e. the essential spectrum 
moves into the right half plane, as ~a passes through a4 / 4. This is a curious phenomenon 
as it occurs at the same value of damping as that at which the lower branch bifurcates 
subcritically from the zero state. Whether this radiation instability is accompanied by a 
bifurcation is not presently known; it is a question concerning bifurcation from the essential 
spectrum. 

The main issue addressed in the present paper is the stability of the remainder of the 
upper branch between the region near the turning point, where stability is guaranteed by 
the result of Kath and Kutz [14], and the point at which the radiation instability sets in. 
The difficulty in the analysis is that the linearization of (3) is not self-adjoint and thus 
many of the standard techniques of stability theory are unavailable. Indeed, there is even 
the potential for oscillatory instabilities, which are notoriously difficult to prevent. 

For the sake of completeness, we give a precise definition of stability for this pulse. 
The term asymptotic stability would be more appropriate as decay to some translate of 
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the pulse is sought. The natural underlying space is L2 (R) with the usual norm denoted 
1 

!lull == { fR lul2 dT p·. Indeed, as q is the field envelope, the intensity of the elect.ric field 
is llqll· The 1 2 norm of q is thus the energy of the pulse, compare [14, p. 3]. In particular, 
q E L2 (R). By (2), then U E L2(R), too. 

Definition 1 The pulse R(T) is said to be stable if there is a 8 > 0 so that if 
llu(O, T) - R(T)ll < 8 then there is ab> 0 so that llu(z, T) - R(T + b)ll->- 0 as z->- +oo. 

The physical significance of stability is apparent. Only stable pulses can be realistically 
expected to be relevant to communications models as other pulses necessarily respond 
to perturbations, so readily supplied by their environment, by losing their form. By the 
same token, any potential instabilities are important to understand. In this paper we 
show, however, that the entire upper branch up to the point of the radiation instability 
consists of stable pulses. Thus the stability noted by Kath and Kutz [14] is not just a 
local phenomenon and a sizeable range of parameter values is available at which a stable 
pulse exists. In particular, the over-amplification ~a can be chosen arbitrarily within 
the interval (0, a4 /4). The main result of this paper can be encapsulated in the following 
theorem. 

Theorem 1 If a < T/ < v/2a) then the pulse on the upper branch i.e.) 

R == T/ sech T/T, 
is stable relative to equation {3). 
A central issue for optical communications is whether the fiber under consideration is 

capable ,of supporting multiple pulses. It is obviously of interest for a fiber· to be able 
to carry multiple pulses as these represent the propagation of mariy pieces of information 
along the fiber. In the companion paper, it is shown that multiple pulses bifurcate from 
the base pulses on the upper branch as O" is increased from zero. The stability of the base 
pulse allows us to ascertain which of these multiple pulses are stable. 

In section 2, the stability is set up and the key relationship of the linearized version 
of (3) at the pulse to the linearized nonlinear Schrodinger equation is exposed. As a by-
product of this relationship, the instability of the lower branch is easily concluded from 
results of Jones [12] and Grillakis [7]. The strategy of the stability proof is a continuation 
argument. It is shown that as T/ increases from a no instability can occur. In other words, 
every possibility of an eigenvalue crossing the imaginary axis, which would entail an insta-
bility, is ruled out. There are two separate cases to consider. In section 3, it is shown that 
no eigenvalue passes through 0 and in section 4 it is shown that no eigenvalue can pass 
through the imaginary axis at a point other than zero, thus ruling out the possibility of any 
oscillatory instability. Two different approaches are used. In section 3, the key technique 
is the Evans function and in section 4 functional analytic techniques due to Grillakis are 
applied. 

Acknowledgement. We wish to thank Bill Kath for many useful conversations con-
cerning this work. MG was partially supported by the National Science Foundation under 
grant DMS-91-517512 and a Sloan Fellowship. CJ was partially supported by the Air 
Force Office of Scientific Research under grant F49620-95-1-0085 and the National Science 
Foundation under grant DMS-94-03774. BS was partially supported by a Feodor-Lynen-
Fellowship of the Alexander von Humboldt Foundation. 
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2 Linearization 
The stability of the pulse to perturbations in the initial conditions is ascertained from 
collecting sufficient information about the linearization of the evolution equations, in this 
case equation (3). In order to compute this equation, write (3) with G" = 0, as 

au 8{ + ~(U) = 0, (6) 

where 

Rewriting~ as 

we calculate the derivative of ~ as 

D~(R)Q = (D2 - (2a2 - 772))(D2Q + 6R2Q - 772Q) 
+ 4RQ(D2 R + 2R3 - 772 R) + 2R2(D2Q + 6R2Q - 772Q), 

and, since D2 R + 2R3 - 77 2 R = 0, see(5), we see that D~(R) can also be factored as 

LQ = D~(R)Q = (D2 + 2R2 - (2a2 - 772))(D2 + 6R2 
- 77 2)Q. (7) 

The linearized evolution equation can thus be written 

For stability it must be shown that the spectrum of the operator L lies in the open right 
half plane {Re..\> O} except for a simple eigenvalue at zero, which is inevitable due to 
translation. 

The factored form of L proves critical in our analysis of its spectrum. A factoring of 
exactly the same form appears in the linearization of the nonlinear Schrodinger equation, 
see Weinstein [17, 18]. We borrow the notation for the factors from that context: 

L+ = -(D2 + 6R2 - 772) 

L_ = -(D2 + 2R2 
- (2a2 - 77 2

)), 

(8) 

(9) 
so that L = L_L+. The spectra of both L+ and L_ are readily determined as they 
are second order operators of a simple form. Appropriate qualitative information, such 
as number of negative eigenvalues, can be determined using Sturm-Liouville theory, or 
eigenvalues can be exactly computed using the explicit form of R. The spectrum of L+ 
consists of essential spectrum which is { ,\ : ,\ ~ 77 2 } together with an eigenvalue at ,\ = 0 
(with eigenfunction R'(T)). Since R'(T) has one zero, Sturm-Liouville theory implies that 
L+ has exactly one negative eigenvalue. (Indeed L+ has negative eigenvalue -3772 with 
eigenfunction 

(10) 
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The spectrum of L_ includes essential spectrum {A : ,\ ~ 2a2 - 77 2 } and one eigenvalue at 
,\ = 2(a2 - 77 2 ), with eigenfunction R(T). · There are no other eigenvalues ,\ of L_ with 
,\ ::;; 0. Indeed, for a =/= 17, two linearly independent solutions of L_r = 0 are given in (20) 
using the transformation (12). Because both of them are unbounded, no eigenvalue except 
for ,\ = 2( a2 - 77 2 ) can cross the imaginary axis. Note that on the upper branch L_ has 
exactly one eigenvalue with,\ < 0 and on the lower branch its spectrum is entirely positive. 

Unfortunately, it is far from clear how to build the spectrum of L from those of its 
component parts L+ and L_. Indeed, this issue has led to considerable research, see 
Weinstein [17, 18], Jones [12], Strauss, Shatah and Grillakis [8, 9] and Grillakis [6, 7]. The 
operator L is not even self-adjoint and spectrum that is not real is a definite possibility, 
see Grillakis [7]. The criterion of Jones [12] can be restated as follows. Define the following 
quantities: 

1. P = number of eigenvalues of L+ in ,\ ::;; 0, 

2. Q = number of eigenvalues of L_ in,\ ::;; 0. 

It was shown in [12] that if P - Q > 1 then L has an eigenvalue ,\ < 0, and thus the 
pulse is unstable. In fact, the result of [12] has strict inequalities in the definitions of P 
and Q, but it also holds with P and Q as defined here. From the above considerations, 
it follows then t:P.at the lower branch consists of unstable pulses and we have proved the 
following theorem. 

Theorem 2 If 0 < 17 < a then the pulse R(T) is unstable. 

It should be noted that this result is far simpler than the stability of the upper branch 
and almost every technique we apply, each providing a different piece of the stability puzzle 
for the upper branch, entails this instability result. 

In order to prove stability, as stated in Theorem 1, it suffices to verify the following: 

1. If ,\ E O"( L) and ,\ =/= 0 then Re,\ > 0, 

2. ,\ = 0 is a simple eigenvalue. 

The sufficiency of these conditions follows from Henry [11] or Bates and Jones [3] as the 
linearized operator -L satisfies the general conditions needed, such as being the generator 
of a C0-semigroup. 

The first step in verifying the above conditions is to calculate the essential spectrum of 
L, denoted O"e(L). This is a standard calculation that follows the lines described in Henry 
[11, appendix to section 5, Thm. A.2]. It is easily calculated that 

The fact that O"e(L) is real is deceptive in that one might then expect L to be self-adjoint. 
However, it is not and Grillakis [7] shows that in a problem with the same formal structure 
non-real eigenvalues are a possibility. 

The strategy for the proof of Theorem 1 is to exploit the known result of Kath and 
Kutz [14] that R(T) is stable if 17 > a, but 17 is sufficiently close to a. There are then only 
two possibilities for an instability to occur: 

6 



(A) As 'lJ increases, an eigenvalue crosses through 0 into Re>.. < 0, 

(B) as 'lJ increases, a pair of eigenvalues crosses Rd. == 0 at A. =I= 0. 

Note that no eigenvalue of L with non-positive real part can come in from infinity via 
continuation. Indeed, let J == -D4 and K == -(J + L). Then, J is sectorial and 1-1/ 2 K 
is bounded uniformly in a and 'r/· Hence, by [11, Thm. 1.4.4 and Cor. 1.4.5], -L == J + K 
is sectorial, too, with its spectrum contained in a sector which is independent of 'lJ and a. 
In particular, any eigenvalue of L in the closed left half plane has to be the continuation 
of an eigenvalue that crossed the imaginary axis. 

The next section is devoted to proving that (A) cannot happen. In the final section, 
it is shown that, even though non-real eigenvalues are a possibility, they must all have 
positive real part so (B) also cannot occur. 

3 Real Spectrum 
We consider the Evans function E(A.) for the operator L evaluated at the pulse solution 
R(T). From the general theory developed in Evans [4, 5], for the case of nerve impulse 
equations, and in Alexander, Gardner and Jones [1], for the more general case, eigenvalues 
of L are zeroes of the Evans function. Here we develop the Evans function along the lines of 
Pego and Weinstein [16] and Alexander and Sachs [2]. The details differ from the approach 
of Alexander, Gardner and Jones [1], but the resulting Evans function is the same (see Pego 
and Weinstein [16, Proposition 1.15]), and the stability theory holds. The Evans function 
is defined in terms of solutions of the eigenvalue equation, written as a first order system, 
and solutions of its adjoint. The eigenvalue equatio~ for L is given by 

(11) 

For ease of computation, it behooves us to introduce new parameters and variables as 
follows 

'lJ 
µ== ' y2a2 - 'r/2 t == rJ2a2 - ry 2 , (12) 

by which (11) becomes 

(D2 + 2R2 - l)(D2 + 6R2 - µ2)r ==Ar. (13) 

Here, with an abuse of notation, we have also used D to denote a I 8t and R == µ sech µt. 
Note that the value 'lJ =a now corresponds toµ== 1. The adjoint equation of (13) is then 

(D 2 + 6R2 
- µ2 )(D2 + 2R2 

- l)u ==Au. (14) 

We need to view both (13) and (14) as first order system of ODEs. As such we write them, 
respectively, in the form 

X' == AA(t)X, (15) 

and 
Y' == -Y AA(t), (16) 
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where 
0 
0 
1 

1-2R2 

1 0 ) 0 1 
0 0 . 
0 0 

Indeed, denoting x = (r, q, s, u) and y = (r, q, s, u), we see that 

r' s ( D2 + 6R2 - µ2
) r q 

q' u (D2 + 2R2 - 1) q Ar, 

and 
s' - -r (D2 + 6R2 - µ2 ) s - Au 
u' - -q ( D2 + 2R2 

- 1) u - s, 

(17) 

(18) 

once X and Y solve (15) and (16), respectively. Below, we construct X1 (A, t), X3 (A, t), 
linearly independent solutions of (15), which decay to 0 as t -r +oo, and linearly indepen-
dent solutions Yi(A, t), Y;(A, t) of (16) that decay to 0 as t -r -oo (the rationale for the 
unorthodox indexing will become apparent below). One can easily check from the eigen-
values 'of the limiting matrix limt-+±oo A.\(t) that two independent solutions are expected 
in each case. In such a case, the Evans function is defined in terms of exterior products. 
See [1] for the theory and [2] for an explicit computation. The exterior product X1 /\ X 3 is 
a six-dimensional vector 

where 
.. - I X1i X1j I 

aiJ - ' 
X3i X3j 

with Xmi, i = 1, ... , 4 the components r, q, s, u of Xm in the obvious way. Similarly, the 
six-dimensional exterior product Yi/\ }3 is defined. The Evans function is then 

(19) 

which ostensibly depends on t, but which can be easily shown, by differentiating with 
respect to t and using (15) and (16), to depend actually only on A. The theory of the 
Evans function, see [1], guarantees that eigenvalues of L correspond to zeroes of E(A), and 
moreover that the order of the zero equals the multiplicity of the eigenvalue. 

Lemma 1 Ifµ-/= 1 then E'(O)-/= 0. 

It follows directly from the Lemma that no eigenvalue can pass through zero on the 
upper branch, so that possibility (A) above is eliminated. Indeed, if an eigenvalue were 
to pass through zero the order of the zero of the Evans function at A == 0 would have to 
be greater than or equal to 2, and hence E'(O) would be zero. By the same token, the 
instability of the lower branch also follows from the Lemma as, from the work of Kath and 
Kutz [14], we know that there is exactly one negative eigenvalue near the two bifurcation 
points ( 17 = 0 and 17 = a) and no other unstable eigenvalues. For any of the pulses on the 
lower branch to be stable, an eigenvalue would have to pass through zero, which again is 
impossible. 
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The remainder of this section is devoted to proving the Lemma. This is done by con-
structing explicit solutions of (15) and (16). 

Proof. We first construct solutions of (13) and (14). The function r1(t) = R'(t) is a 
solution of 

(D2 + 6R2 
- µ2 )r = 0, 

as can be easily verified and hence it satisfies (13). A second solution of (13) can be found 
by reduction of order 

are 

( ) 
_ sech2 µt (9 cosh µt - cosh 3µt - l2µt sinh µt) r2 t - 3 . 

8µ 
Ifµ =/= 1 then two linearly independent solutions of 

( D2 + 2R2 
- 1 )u = 0 

ih(t) = et(l - µ tanh µt) 
u4(t) = e-t(l + µ tanh µt). (20) 

For each equation a further two solutions can be found by variation of parameters. 
Noting that the Wronskian of r1 ( t) and r2 ( t) is 1, as is al ways the case for reduction of 
order, and that the Wronskian of u3 and u4 is W = 2(µ2 -1). Accordingly the computations 
are valid for µ =/= l. . 

In particular, using standard formulae for variation of parameters, we set 

r3(t) -r1(t) r r;(r)u4(r) dr - r2(t) r<) r1(r)u4(r) dr lo · lt 
r4(t) - -r1(t) l r2(r)U3(r) dr + r2(t) l

00 
ri(r)U3(r) dr 

U1 (t) - (1/W) (-U3(t) j~ ri(r)U4(r) dr + U4(t) l
00 

ri(r) Us(r) dr) 

U2(t) (1/W) (-u3(t) l r2{r)U4(r) dr + U4(t) l r2(r) U3(r) dr), 

where xi = (ri, % Si, Ui) and Yi = (ri, qi, Si, ui), see (17) and (18). An inspection of the 
above described solutions will convince the reader that X1 ( t) and X3 ( t) decay to 0 as 
t-+ +oo. Moreover, as solutions of the adjoint Yi(t) and Ya(t) decay to 0 as t-+ -oo. As 
in Pego and Weinstein [16], we apply the Melnikov method to conclude the formula 

j +oo 8A(2\t) 
E'(O) = - _

00 
(Yi(t) /\ Y3(t)) ;A (X1 (t) /\ X3 (t))dt, (21) 

where A~)(t) is the 6 x 6 matrix induced by AA(t) on the exterior power space A2(R4), see 
again [2] for details. The matrix 8A~)(t)/8A is rather sparse and has only two non-zero 
components. One checks then that the integrand in (21) can be written as 

det ( ~3(t) 
qi(t) 

d t ( 
s3(t) 

+ e s1(t) 

u3(t) ) d t ( ri(t) 
u1(t) e qi(t) 

u3(t) ) d t ( ri(t) 
u1(t) e s1(t) 

9 

r3(t) ) 
q3(t) 

r3(t) ) 
83( t) . 



This simplifies greatly. The relevant facts are q1 = 0, 83 = 0, 'ifj = -uj, Si = r~·, q3 = u4, 
81 = r1 and the expressions for r3 and u3 above. The integrand (21) then reduces to 

(22) 

Note that the t derivative of 

[,, ri ( T )ii.3( T) dr [" ri( T )ii.4( T) dr, 

is the difference of the terms in (22) so that both terms of (22) integrate to the same 
value. Therefore, integrating the second term of (22), written out in full, using the above 
expressions for r 1 , u1 , u2 , and changing the independent variable yields 

- ~E'(O) = : 2 J: [eK'(11: - tanh t) tanh t sech t x 

x J, 00
e-Kr(11: + tanh r) tanh T sech T dr] dt, 

where K, = 1 / µ. Note that the derivative of e-/'i,t tanh t sech t is 

-K,e-}'i,t tanh t sech t + e-/'i,t sech3 t - e-/'i,t tanh2 t sech t, 

so that, integrating by parts, the inner integral in (23) is 

J.
00 

e-/'i,r sech3 r dr + e-Kt tanh t sech t. 
' t 

Note that 
yK(t) = J. 00 

e-<(r-t) sech3 T dr 

is the solution of the differential equation 

y~( t) - K,y/'i,( t) = sech3 t, 

From (25), we note that if K,1 > K, ~ 0, then, pointwise, 

Moreover 
7r sech t tanh t 

Yo= 4 - arctan(tanh t/2) - 2 , 

so that all y/'i,(t) are bounded. Hence, the integral (23) can be written J: (11: - tanh t) tanh t sech t yK(t) dt 

+11: J: tanh2 tsech2 t dt- J: tanh3 tsech2 t dt. 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

The second integral of (28) has value 2K,/3 and the third one is zero, since the inte-
grand is an odd function. Consider the first integral of (28). Note that the derivative 
of Yk(t) tanh t sech tis 
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so, integrating by parts and using (26), the first integral of (28) can be written 

y.( t) tanh t sech t l~oo -1-: y.(t) sech3 t dt -1-: tanh t sech4 t dt. (29) 

Here the first and third terms are zero. Thus, in sum, (23) equals 

2x: 100 3 - _
00 

y,.(t) sech3 t dt. (30) 

From (27), we see that (30) is an increasing function of x:. Moreover direct calculation of 
(23) with x: = 1 establishes that it is zero. Hence (23) is positive for x: > 1 (µ < 1) and 
negative for x: < 1 (µ > 1). Thus the quantity E'(O) is non-zero ifµ =J l, and the lemma 
is proved. D 

4 Complex Spectrum 
In order to determine if eigenvalues of L pass through the imaginary axis as 'f/ is increased 
from a, we apply a completely different technique. rhe following is an application of the 
technique developed by Grillakis [7]. We do not need the full power of the theory and 
can prove the desired result by an adaptation of one of the key parts of the technique. 
Recalling that L can be expressed as L = L_L+ , where the factors are given by (9) and 
(8), respectively, the eigenvalue problem is written as L_L+ef> = >..¢>. If a < 'f/ < v'2a then 
~ero is not an eigenvalue of L_ and so L_ is invertible. Thus the eigenvalue problem can 
be rewritten as- · 

L+ef> = ).L=1 </>, 

which we express using the notation B = L+, C = L:1 as 

(B - >..C)¢> = 0. 

Note that both Band Care self-adjoint. Throughout, we assume that Im). =J 0 . 

(31) 

(32) 

. We decompose (32) into equations on the spaces Q = span{R} and P = Q\ where 
R(T) is the pulse solution (1). Let Jr: L2(R) -t P be the natural projection and set 
p = 7r( ¢), so that 

¢> = p + aR, 
where a is a complex scalar. With the notation B1 = 7r B and C1 == JTC, the eigenvalue 
equation (32) projected onto P becomes 

(33) 

In deriving (33) we have used the fact that R is an eigenfunction of L_ with eigenvalue 
2(a2 - ry 2 ), which implies that 

(34) 

and hence C1R = JTC R = 0. Projecting onto Q we obtain 

((B - >..C)(p + aR), R) == 0. (35) 
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Since C is self-adjoint and (34), (Gp, R) = O; thus (35) can be simplified to 

(Bp, R) +a [(BR, R) - A(CR, R)] = 0. (36) 

From ( 34), we calculate 

where j3 is some non-zero real number. Since Band 7r are self-adjoint and 7rp = p, the first 
term of (36) equals (p, B1R). Equation (36) thus reads 

(p, BiR) +a [(BR, R) + A,82
] = 0. (37) 

The sign of (BR, R) can be established easily. Since R satisfies (5), L+R = -4R3 . Hence, 

J_
+oo 

(BR, R) = -4 _
00 

R4 dt < 0. (38) 

The next step is to determine an expression for (p, B1R), given that p satisfies (33). 
The approach is to use the Spectral Theorem to obtain an expression for p; this is the 
heart of the technique. Note that since C leaves P invariant the operator C1 is self-adjoint. 
It is also positive since its negative eigenspace Q has been factored out. Thus C1 has a 

1 1 

. square root Cl; similarly 011 has a square root, denoted c;2 . Equation (33) can thus be 
rewritten as · 

1 1 . 

Cl [H1 - A] C{ p + aB1R = 0, (39) 

where 
1 1 

H1 = c;2 Bi c;--2. (40) 
Concerning the operator H1 we have the following lemma. 

Lemma 2 H1 is self-adjoint and H1 2:: 0. 

Proof. It is easily checked that H1 is self-adjoint. To check that it is non-negative, we 
calculate 

Thus, if we can show that (Bp, p) 2:: 0 for every p E P, then the desired result follows. 
It is convenient for the remainder of the proof to factor out by the kernel span { R'} 

of B. It is a general fact that if B : 1-l -+ 1-l is a self-adjoint non-singular operator on a 
Hilbert space (here 1-l = L2 / span{R'} ), with BR2 = -BR2 , () > 0 (see (10)) and Bl.Rt > 0 
for R2 # 0, then for R E 1-l with 

(B-1R,R) < 0 (41) 
we have (B ¢>, ¢>) > 0 for all non-zero ¢> E P = Rl.. For write 

R=(~), 
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where R_, <f>- E span{R2}, R+, ¢>+ E P. Write 

B-1 ( R_) == (-R_/B) 
R B-1R ' + + + 

B<f> B ( <f>-) == (-B<f;_ ) . 
¢+ B+¢+ 

We are given 

Suppose also 

for some nonzero ¢> E H. Then 

(ef>-, R_)2 (¢>+, R+)2 

~(R_, R_) > (B"+.1R+, R+) 
B(ef>-,ef>-) > (B+ef>+,¢+) 

(i) 
(ii) 
(iii) 

( 42) 

Since the "minus" subspace is I-dimensional, the LHS( ii) x LHS( iii)=LHS( i). By the 
Cauchy inequality, RHS(ii)xRHS(iii)2::RHS(i). Chasing around, this is a contradiction. 
(Note: the converse of this general result is also valid.) 

Hence it is sufficient to prove ( 4I ). D:lfferentiating (5) with respect to iJ == ry 2, we find 
B-1 R == -dR/ diJ, so that 

Id Id 100 I (B-1R, R) = ---,. (R, R) = ---,. ry 2 sech2 ryt dt = --. 
2 dry 2 dry -00 2ry 

Thus ( 4I) is verified. Hence B1 2:: 0 on P and the lemma is proved. 0 

Now (39) can be written 
1 1 

[H1 - ,\]Cf p = -ac; 2 B1R. (43) 

We see immediately from ( 43) and the above lemma that, if ,\ is an eigenvalue of L with 
non-zero imaginary part, then a -:f. 0. But also, with ,\ so set, the operator H1 - ,\ is 
invertible, and hence ( 43) can be rewritten as 

(44) 

The Spectral Theorem can be applied to obtain, from ( 44), an integral expression for p. If 
{ Ep} pER is a spectral resolution for Hi, then we have 

(45) 

13 



This can be substituted into (p, B1R) to obtain 

1+00 dv(p) (p, B1R) =a -, -, 
-oo /\ - p 

(46) 

1 1 

where dv(p) = (dEp(C; 2 B1R),C; 2 B1R). Note that supp(dv) c {p 2:: O} since H1 2:: 0. 
Using ( 46), (37) becomes 

1+00 dv(p) +(BR, R) + ,\(32 = 0, 
-oo ,\ - p 

for ,\ ~ {p 2:: O}, where a# 0 has been cancelled from each term. 

(47) 

Now we consider whether expression ( 4 7) is consistent with having an eigenvalue of 
non-positive real part. To this end, suppose that Re,\ ~ 0 and Im,\ # 0. Since supp( dv) C 
{p 2:: O}, the first term of (47) is negative, as is the second term by (38). The real part 
of the third term would then have to be positive in order for ( 4 7) to hold. However, it is 
not and we have a contradiction. Thus, any eigenvalue of L with non-zero imaginary part 
must have positive real part. This completes the proof of Theorem 1. D 
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