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ABSTRACT. In the seminal work [5], Ben Arous and Černý give a general characterization of aging for
trap models in terms of α-stable subordinators with α ∈ (0, 1). Some of the important examples that
fall into this universality class are Random Hopping Time (RHT) dynamics of Random Energy Model
(REM) and p-spin models observed on exponential time scales. In this paper, we explain a different
aging mechanism in terms of extremal processes that can be seen as the extension of α-stable aging
to the case α = 0. We apply this mechanism to the RHT dynamics of the REM for a wide range of
temperature and time scales. The other examples that exhibit extremal aging include the Sherrington
Kirkpatrick (SK) model and p-spin models [6, 9], and biased random walk on critical Galton-Watson
trees conditioned to survive [11].

1. INTRODUCTION

A striking feature common to many disordered systems is that in an out-of-equilibrium phase conver-
gence to equilibrium is very slow, and it gets slower as the system gets ‘older’. This phenomena is
usually called aging and has been studied extensively in physics community, both experimentally and
theoretically. Spin glasses constitute an important class of disordered systems where aging occurs,
and the dynamics of mean field spin glasses is one of the focal points of this article.

On the theoretical side, trap models have become the central paradigm to study aging properties of
disordered systems. They are simple enough to track analytically and many examples exhibit aging
that can be established in a mathematically rigorous way. The general description of trap models is the
following. Let G = (V , E) be a countable, connected graph where V and E denote the set of vertices
and edges, respectively. Consider a random collection of positive numbers τ = {τx : x ∈ V}. A trap
model, (X(t) : t ≥ 0), is a continuous time Markov process on V whose dynamics is described as
follows: at a vertex x ∈ V , it waits for an exponential time with mean τx and then moves to one of
the neighbors of x uniform at random. Here, one can view a vertex x as a trap and τx as the depth of
the trap x. Let (Y (i) : i ∈ N0) denote the discrete time simple random walk on V . Another view of
trap models is that X follows Y that gets trapped at vertices, collecting exponential random variables,
and hence, is a time change of it. This time-change process S, called the clock-process, is defined for
k ∈ N by

S(k) =
k−1∑
i=0

τY (i)ei, t ≥ 0 (1.1)

where (ei : i ∈ N0) is a collection of i.i.d. exponential mean-one random variables. The clock process
and the Markov chain Y completely describes X via

X(t) = Y (S←(t)) (1.2)

where S← is the generalized right inverse of S.

One central question in the study of the trap models is the analysis of the clock process, more precisely,
the influence of the random trapping landscape. If the trapping landscape is very heterogenous on
certain large times, one expects that the main contribution to the clock process come from few ‘deep
traps’. Moreover, if the graph is transient enough on these time scales, the walk, upon leaving a deep
trap, will get throughly lost before finding a new deep trap, and as a result, the jumps of the clock
process will be i.i.d. with the completely annealed distribution as the common distribution. Summation
of random variables being dominated by few large ones signifies a stable convergence for the clock
process. In the situations just described, the properly rescaled clock process converges to an α-stable
subordinator with 0 < α < 1. From this, one can easily deduce that the system exhibits aging,
namely, the two-time correlation function

R(t1, t2) := P(Xn(t1) = Xn(t2)|τ) (1.3)
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can be approximated, for large t1 and t2 corresponding time scales of observation, by the probability
that an α-stable subordinator jumps over the interval [t1, t2]. The latter is a function of the ratio t1/t2
and is given by the classical arcsine law. The existence of a correlation function that depends only on
the trajectory of X on a time interval [t1, t2] whose large time limit is a non-trivial function of the ratio
t1/t2 is usually described as aging both in mathematics and physics literature.

The picture described in the above paragraph has been made rigorous in [5] in the context of se-
quence of diverging finite graphs. In this article, too, we will study a growing sequence of finite graphs.
The reason to study trap models on finite graphs is twofold: Firstly, it allows one to employ potential
theoretical methods strongly. Secondly, our main motivation, the mean field spin glasses, is in this
setup.

Our main goal is to understand the one end of the spectrum of the α-stable aging, namely, the case
α = 0. More precisely, we are interested in the situations where as the graphs grow, the heavy-tail
index α converges to 0. In this case, heterogeneity becomes even stronger in the sense that the main
contribution to the clock process comes from the ‘deepest’ of the deep traps the walk can find. Hence,
the limiting clock process has a structure of a ‘record’ process, namely, it is an extremal process. More
precisely, after a linear rescaling, contributions from deep traps still grow on an exponential scale.
As a result, firstly, the maximal term dominates, and secondly, one has to perform a further non-linear
scaling, cohorent with case of sum of i.i.d. random variables with slowly varying tails (see e.g. [12, 14]).

In the spirit of [5] we will give a set of conditions on the trapping landscape and the potential theoretical
properties of the graph which will ensure that the clock process can be approximated, for appropriate
large time scales, by an extremal process. Next, we will describe two additional conditions that guar-
antees that the two-time correlation function in (1.3) can be approximated using extremal processes.
Here, in order to get a non-trivial limit, one has to slightly enlarge the ratio of the two times with the
volume, due to the non-linear scaling of clock process. We have called this type of aging extremal
aging.

Let us now discuss the trap model dynamics of spin glass models, also known as Random Hopping
Time (RHT) dynamics. Our focus is on mean field models. The simplest mean field spin glass model is
Random Energy Model (REM) introduced by Derrida in [13], where there are no correlation between
energies. The first aging results for REM were proved in [3] and [4] for time scales only slightly shorter
than equilibration times, using renewal techniques. Later, [5] proved that the dynamics of REM model
ages with the arcsine law as the limiting aging function. The time scales where REM exhibits aging
were later extended in [10]. In the second part of this article we extend these results to include extremal
aging. We will let the temperature vary with the volume of the system in order to get a richer picture
and prove that the dynamics of REM exhibits extremal aging for a wide range of temperature and time
scales. More precisely, extremal aging occurs for fixed positive temperatures and subexponential time
scales (in dimension of the system); for temperatures vanishing with the volume and for exponential,
subexponential and superexponential time scales; and, for temperatures diverging with the volume
and for (very) subexponential time scales. These results also signify that the aging is related to how
transient the relaxation of the system is when far from equilibrium and it might have little to do with the
actual equilibrium properties of the system. The occurrence of aging even in infinite temperature is a
strong demonstration of this fact.

Let us mention the results on correlated mean field spin glass models. The arcsine law as an aging
scheme, surprisingly, proved to be true even for some correlated spin glasses. In [2], authors proved
that the same aging mechanism essentially holds true for short enough time scales for the p-spin
models. Later, finer results on the aging of p-spin models were achieved in [8].

Our original motivation to study the α = 0 case, or rather the dynamics of mean field spin glasses on
subexponential time scales, stemmed from the aim of extending the REM universality to the dynamics
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of the Sherrington Kirkpatrick (SK) model. The results on the statistical properties of the SK model
(see [1]) indicated that in order to not feel the correlations in the model, one has to investigate the
dynamics on subexponential time scales. The dynamics on such time scales are in the category of
extremal aging. In [6] we proved that on subexponential time scales the clock process of the SK model
and p-spin SK models converge to extremal processes and these systems exhibit extremal aging.
Finer analysis was carried out later in [9].

Recently, extremal aging has been observed for a type of model different than spin glass models. In
[11], it was proved that biased random walk on critical Galton-Watson trees conditioned to survive
exhibits extremal aging.

The rest of the article is organized as follows: In Section 2 we describe precisely the models we study,
give a set of conditions on the trapping landscape and potential theoretical properties of the graph,
and prove that these conditions imply the convergence of the rescaled clock process to an extremal
process. In Section 3 we set two additional conditions that leads to extremal aging. In Section 4 we
prove our results on the dynamics of REM.

2. CONVERGENCE OF THE CLOCK PROCESS TO AN EXTREMAL PROCESS.

We start this section by introducing precisely the type of trap models we will study. Let Gn = (Vn, En),
n ∈ N, be a sequence of finite, connected graphs with Vn and En denoting the set of vertices and
edges, respectively. We use the notation x ∼ y for an edge (x, y) ∈ En. For each n ∈ N and
vertex x ∈ Vn we attach a positive number τx which constitutes the "depthöf the trap at site x. We
denote the collection of depths by τ n = {τx : x ∈ Vn}. We will call τ n the ‘trapping landscape’
or ‘environment’ and later we will choose τ n random. Given the trapping landscape τ n we define
a continuous time Markov process {Xn(t) : t ≥ 0} on Vn whose transition rates are given by
wτn
xy = 1 {x ∼ y} /(dxτx) where dx = #{y ∈ Vn : x ∼ y} is the degree of the vertex x. In

other words, at a vertex x, the Markov process Xn waits an exponential time with mean τx and than
it moves to one of its neighbors chosen uniformly at random. We denote by Px and Ex the distribution
and expectation ofXn starting from x ∈ Vn. We will always startXn from an arbitrary but fixed vertex
we denote by 0 that does not depend on τ n and write for simplicity P = P0 and E = E0. Note that,
although Xn depends on τ n we surpressed it in the notation.

For each n ∈ N we take the trapping landscapes τ n ∈ (0,∞)Vn random with Pn and En denoting
its distribution and expectation, respectively. We embed all the random variables τ n, n ∈ N, indepen-
dently into a common probability space and P and E stands for the distribution and expectation of
this probability space. For the events that happens P almost surely, we will simply say ‘for a.s. random
environment τ ’.

For any n ∈ N, let {Yn(i) : i ∈ N0} be the simple random walk on the graph Gn, that is, the
discrete time Markov chain on Vn with the transition probabilities pxy = 1 {x ∼ y} /dx and we set
the starting point Yn(0) = 0. We assume that the distribution of Yn is defined in the probability space
P0. We define the clock process Sn by setting Sn(u) = 0 for u ∈ [0, 1) and for u ∈ [1,∞)

Sn(u) :=

buc−1∑
i=0

τYn(i)ei (2.1)

where {ei : i ∈ N} is an i.i.d. collection of exponential mean-one random variables independent from
anything else. In words, for k ∈ N, Sn(k) is the time it takes for Xn to make k jumps. Clearly we
have,

Xn(t) = Yn(k) if Sn(k) ≤ t < Sn(k + 1). (2.2)
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For τ n fixed, Sn is a random variable taking values in D([0,∞)), the space of cádlág function on
[0,∞). Similarly, for any fixed T > 0 the restriction of Sn to [0, T ] is a random variable on D([0, T ]),
the space of cádlág function on [0, T ].

We need now further notation. Let Tn be a stopping time for the chain Yn. We defineGn
Tn

(x, y), x, y ∈
Vn to be the Green’s function of Yn, that is, the mean number of times Yn visits y before Tn, started
from x:

Gn
Tn(x, y) := Ex

[
Tn−1∑
i=0

1 {Yn(i) = y}

]
. (2.3)

For A ⊆ Vn we define the first hitting time of A by

Hn(A) := inf{i ≥ 0 : Yn(i) ∈ A}. (2.4)

For ease of notation we write Gn
A for Gn

Hn(A). Finally, we say that a random subset A ⊆ Vn is a
percolation cloud with density ρ ∈ (0, 1) if x ∈ A with probability ρ, independently of all other
vertices.

Presently, we set 4 conditions that are about the trapping landscape and the properties of the walk Yn
on Vn. This set of very general, potential theoretical conditions will be used to prove our main result.

The first condition tells that a certain density of traps exceed a depth scale in a very heterogeneous
way.

Condition A: For any n ∈ N let τ n be i.i.d. in x ∈ Vn. There exists a depth rate scale αn, a depth
scale gn and a density scale bn with gn →∞ and αn, bn → 0 as n→∞ such that

b−1
n Pn

(
τx ≥ u1/αngn

) n→∞−→ 1/u (2.5)

uniformly in u on all compact subsets of (0,∞). Moreover, there exists a constant C such that for all
u > 0 and d > 0, for all n ∈ N

Pn
(
τx ≥ u1/αndgn

)
≤ Cbn
udαn

. (2.6)

The next two conditions concern the potential theoretical properties of the graph.

Condition B: Let bn be as in Condition A. Let An, n ∈ N be a sequence of percolation clouds on
Vn with densities ρbn where ρ ∈ (0,∞). There exists a scale fn with fn → ∞ as n → ∞ and a
constant KG independent of ρ such that for a.s. sequence An

max
x∈An

∣∣f−1
n Gn

An\{x}(x, x)−KG
∣∣ n→∞−→ 0. (2.7)

Condition C: Let An be as in Condition B. There exists a constant Kr > 0 such that for all s > 0
and a.s. sequence An

max
x∈An∪{0}

∣∣∣∣Ex

[
exp(− s

rn
Hn(An \ {x}))

]
− Krρ
s+Krρ

∣∣∣∣ n→∞−→ 0, (2.8)

where rn = fn/bn.

The last condition contains technical restrictions.

Condition D:

(i) There exists a sequence of positive numbers λn and a positive constant Ks such that for all
T > 0 and n large enough∑

x∈Vn

(
eλnGTrn (0,x) − 1

)
≤ KsλnTrn (2.9)
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and
∑∞

n=1 exp(−cλnfn) <∞ for some c > 0.

(ii) αn log(fn) −→ 0 as n→∞.

Now we introduce formally the extremal processes. Let F be a probability distribution function on
(−∞,∞). For l ∈ N and 0 ≤ t1 ≤ · · · ≤ tl define the finite dimensional distributions

Ft1,...,tl(x1, . . . , xl) = F t1

(
l∧

i=1

xi

)
F t2−t1

(
l∧

i=2

xi

)
· · ·F tl−tl−1

(
l∧
i=l

xl

)
(2.10)

where
∧

stands for the minimum. The family of finite dimensional distributions defined by (2.10) is con-
sistent and thus, by Kolmogorov extension theorem there exists a continuous time stochastic process
W = (W (t) : t ≥ 0) with these finite dimensional distributions. W is called an extremal process
generated by F or F -extremal process.

We give another description of an extremal process. Let F be as in the previous paragraph. Assume
that F is a continuous distribution with supp(F ) = R. Let N denote a Poisson Random Measure
(PRM) on [0,∞) × (0,∞) with mean measure dt × ν(dx) where ν(x,∞) = − logF (x). Let us
denote by (tj, ξj) the marks of N . Then if we define

W (t) = max
ti≤t

ξi, t ≥ 0 (2.11)

W is an F -extremal process. It is enough to check that W satisfies (2.10) for any 0 ≤ t1 ≤ · · · ≤ tl
and for any x1 ≤ x2 ≤ · · · ≤ xl. By the continuity of F and the independence properties of a PRM
we get

P (W (t1) ≤ x1, . . .W (tl) ≤ xl)

= P
(
N([0, t1]× [x1,∞)) = 0

)
· · ·P

(
N([tl−1, tl]× [xl,∞)) = 0

)
= e−t1ν(x1,∞) · · · e−(tl−tl−1)ν(xl,∞)

= F t1(x1) · · ·F tl−tl−1(xl).

(2.12)

For details about extremal processes we refer readers to [15].

For our convergence results of clock processes we use two different topologies on D([0, T ]), namely,
M1 and J1 topologies. We will indicate the topology of weak convergence by simply writing ‘inD([0, T ], J1)’
and ‘in D([0, T ],M1)’. The essential difference between these two topologies is that while M1 topol-
ogy allows approximating processes make several jumps in short intervals of time to produce one
bigger jump of the limiting process, while J1 does not. See [16] for detailed information on these
topologies.

Below is our main result about the convergence of clock processes to an extremal process.

Theorem 1. Assume Conditions A-D are satisfied. Set tn = fngn. Then for a.s. random environment
τ , for any T > 0 (

Sn(· rn)

tn

)αn
n→∞−→ W (·) in D([0, T ];M1) (2.13)

where W is the extremal process generated by the distribution function F (x) = e−1/x. Moreover, the
above convergence holds in the stronger topology D([0, T ]; J1) if f(n) = 1 and KG = 1.

Remark 2.1. Theorem 1 can be stated in a more general way. Namely, Condition A can be generalized
such that (2.5) is replaced by

bnPn(τx ≥ L←(uhn))
n→∞−→ 1

u
(2.14)
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and (2.6) by

Pn(τx ≥ L←n (udαnhn)) ≤ Cbn
udαn

(2.15)

where hn is a diverging scale. Here, for each n ∈ N, Ln is positive, as u → ∞, Ln(u) → ∞ and
for any λ > 0

Ln(λu)

Ln(u)
−→ λαn (2.16)

in a mildly uniform way in n. Also, in this setup one can have αn = 0 which would mean that Ln is a
slowly varying function for such an n. Then (2.13) in Theorem 1 becomes

Ln (Sn(· rn)/fn)

hn
=⇒ W (·). (2.17)

Since such a setup makes the notation very difficult and does not bring a new conceptual insight we
preferred to use the current setup. Finally, note that, choosing Ln(u) = uαn and gn = h

1/αn
n gives

Theorem 1.

In the rest of the current section we prove Theorem 1. We start by defining set of deep traps, very
deep traps and shallow traps determined by the depth scale and the depth rate scale αn and gn: for
0 < ε < M

TMε (n) := {x ∈ V : ε1/αngn ≤ τx ≤M1/αngn } deep traps,
TM(n) := {x ∈ V : τx > M1/αngn} very deep traps,
T ε(n) := {x ∈ V : τx < ε1/αngn} shallow traps.

(2.18)

Let dn(j) be sequence of times where a deep trap different from the last deep trap visited is found.
We set dn(0) = 0 and for j ∈ N define recursively

dn(j) := min
{
i > dn(j − 1) : Yn(i) ∈ TMε (n) \ {Yn(dn(j − 1))}

}
. (2.19)

We define the process (Un(j) : j ∈ N0)

Un(j) := Yn(dn(j)), (2.20)

and ζn as the last time the random walk finds a deep trap before Trn:

ζn(T ) := max{j : dn(j) ≤ Trn}. (2.21)

Let sn(j) be the time Xn spends at Un(j) between the first time it visits Un(j) until it finds a different
deep trap, that is,

sn(j) =

dn(j+1)∑
i=dn(j)

eiτYn(i)1 {Yn(i) = Un(j)} . (2.22)

We call sn(j) the score of Un(j). Note that, for given environment τ n and Un(j), the expectation of
sn(j) over all the other random sources is

τUn(j)G
n
TMε (n)\{Un(j)}(Un(j), Un(j)). (2.23)

Finally, we define mn, the record process of sn, for we expect it to be a good approximation of the
clock process. For technical convenience we set mn(0) = 0 and mn(1) = Sn(dn(1)), and define
for j ≥ 2

mn(j) := max
i=1,...,j−1

sn(i). (2.24)

As a first step of the proof, we need to control the distribution of depths of deep traps visited. We
introduce the following notation:

ρba := a−1 − b−1, 0 < a < b. (2.25)

We need the following lemma which is from [5], stated in a slightly different way.
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Lemma 2.1. (Lemma 2.5 on page 304 in [5]) Recall that An is a percolation cloud with density ρbn
and assume Condition C. Let A1

n and A2
n be such that A1

n ∪ A2
n = An and A1

n ∩ A2
n = ∅ and

lim
n→∞

|A1
n|

|An|
=
ρ1

ρ
, lim

n→∞

|A2
n|

|An|
=
ρ2

ρ
with ρ1 + ρ2 = 1. (2.26)

Then

lim
n→∞

max
x∈An∪{0}

∣∣∣∣Px(Hn(A1
n \ {x}) < Hn(A2

n \ {x})
)
− ρ1

ρ

∣∣∣∣ = 0. (2.27)

Let (σMε (j) : j ∈ N) be an i.i.d. sequence of random variables with distribution

P (σMε (j) ≥ u) =
ρMu
ρMε

. (2.28)

Proposition 2.1. The collection
((
τUn(j)/g(n)

)αn
: j ∈ N

)
converges weakly to (σMε (j) : j ∈ N)

as n→∞.

Proof. Since (Un(j) : j ∈ N) is a Markov sequence, it is enough to show that for any j ∈ N, as
n→∞

P
((
τUn(j)/g(n)

)αn ≥ u|Un(j − 1)
)
−→ ρεu

ρMε
. (2.29)

We have

P
((
τUn(j)/g(n)

)αn ≥ u|Un(j − 1)
)

= Px
(
Hn(TMu (n) \ {x}) < Hn(T uε (n) \ {x})

)
(2.30)

where x = Un(j − 1). Note that TMε (n) = TMu (n) ∪ T uε (n) and TMu (n) ∩ T uε (n) = 0. Moreover,
by Condition A

lim
n→∞

|TMu (n)|
|TMε (n)|

=
ρMu
ρMε

and lim
n→∞

|T uε (n)|
|TMε (n)|

=
ρuε
ρMε

. (2.31)

Hence, (2.30), Condition A and Lemma 2.1 finish the proof. �

Lemma 2.2. The collection ((sn(j)/tn)αn : j ∈ N) converges weakly to (σMε (j) : j ∈ N) as n →
∞.

Proof. Using the Markov property of the random walk we see that

P
(
(sn(j)/tn)αn ≥ u

∣∣sn(1), . . . , sn(j − 1)
)

=

∫ M

ε

P
(
sn(j) ≥ u1/αntn

∣∣τUn(j) = v1/αngn, sn(1), . . . , sn(j − 1)
)

× P
(
(τUn(j)/gn)αn ∈ dv

∣∣sn(1), . . . , sn(j − 1)
)
.

(2.32)

Note that the first term inside the integral in the above display is equal to

P
(
sn(j) ≥ u1/αntn

∣∣τUn(j) = v1/αngn
)
≤
(u
v

)1/αn gn
tn
Gn
TMε (n)\{Un(j)}(Un(j), Un(j)) (2.33)

where we use Chebyshev’s inequality and (2.23) for the upper bound. By Condition B we have
Gn
TMε (n)\{x}(x, x) = KGfn(1 + o(1)) as n → ∞ and the error term is uniformly bounded in

x ∈ TMε (n). Hence, recalling that fngn = tn, if u > v we have

P
(
sn(j) ≥ u1/αntn

∣∣τUn(j) = v1/αngn
)
−→ 0. (2.34)

Since
∑dn(j+1)

i=dn(j) 1 {Yn(i) = Un(j)} is always at least one and tn = fngn, using Condition D part

(ii) one we have for u < v

P
(
sn(j) ≥ u1/αntn

∣∣τUn(j) = v1/αngn
)
≥ P(e1v

1/αn ≥ u1/αnfn) −→ 1. (2.35)
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Using (2.34) and (2.35) in (2.32), than applying Proposition 2.1 finishes the proof. �

We next show that the contribution from the shallow traps are negligible.

Proposition 2.2. For any a, d > 0 and T > 0, for any δ > 0 given, τ a.s. for n large enough

E

[
Trn∑
i=0

τYn(i)ei1 {Yn(i) ∈ T a(n)}
∣∣∣ τ] ≤ (a+ d)1/αntn. (2.36)

Proof. We first prove that τ a.s. for n large enough, for all j ∈ N

E

[
Trn∑
i=1

eiτYn(i)1
{
Yn(i) ∈ T a2−jαn+αn

a2−jαn (n)
} ∣∣∣ τ] ≤ (a+ d/2)1/αntn2jαn−j+1. (2.37)

By Condition A we have for all n ∈ N and j ∈ N

pn,j := P
(
1
{
x ∈ T a2−jαn+αn

a2−jαn (n)
})
≤ C2jαn

a
bn. (2.38)

We have

P

(
E

[
Trn∑
i=1

eiτYn(i)1
{
Yn(i) ∈ T a2−jαn+αn

a2−jαn (n)
} ∣∣∣ τ] ≥ (a+ d/2)1/αntn2jαn−j+1

)

= P

(∑
x∈Vn

GTrn(0, x)τx1
{
x ∈ T a2−jαn+αn

a2−jαn (n)
}
≥ (a+ d/2)1/αntn2jαn−j+1

)

≤ P

(∑
x∈Vn

GTrn(0, x)1
{
x ∈ T a2−jαn+αn

a2−jαn (n)
}
≥
(
a+ d/2

a

)1/αn

2jαnfn

)
(2.39)

Using exponential Chebyshev inequality with λn from Condition D, (2.38) and the bound log(1+x) ≤
x, for x ≥ 0; we conclude that (2.39) is bounded above by

exp

(
−λn

(
a+ d/2

a

)1/αn

2jαnfn +
C2jαn

a
bn
∑
x∈Vn

(
eλnGTrn (0,x) − 1

))
. (2.40)

Now using Condition D and that bnrn = fn, we arrive at that (2.40) is bounded above by

exp
(
−2jαnλnfnDn

)
(2.41)

for all n large enough, for all j ∈ N, where

Dn :=

{(
a+ d/2

a

)1/αn

− CKsT
a

}
. (2.42)

We have for all n
∞∑
j=1

exp
(
−2jαnλnfnDn

)
≤ exp (−2αnλnfnDn) +

exp (−2αnλnfnDn)

αn(log 2)2αnλnfnDn

(2.43)

Since both αnDn → ∞ and Dn → ∞ as n → ∞; by the part of Condition D that states that∑∞
n=1 exp(−cλnf(n)) < ∞ for some c > 0, we can conclude that the right hand side of (2.43) is

summable in n. Hence, Borel-Cantelli lemma yields (2.37). Finally, summing over j finishes the proof
of Lemma 2.2. �

The next proposition shows that the sum of scores is dominated by the largest score.
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Proposition 2.3. For any δ > 0 given, for any ε small and M large enough, τ a.s. there exists a
constant K ≥ 1 such that for n large enough

P
(
Sn(dn(j)) ≤ Kmn(j), ∀j s.t. dn(j) ≤ Trn

)
≥ 1− δ. (2.44)

Proof. Recall that ζn(T ) is the last time the random walk finds a deep trap before Trn. Note that for
j = 0, 1 we have by definition Sn(dn(j)) = mn(j). Hence, we assume that ζn(T ) ≥ 2 and prove
that

P
(
Sn(dn(j)) ≤ Kmn(j), ∀j = 2, . . . , ζn(T )|τ

)
≥ 1− δ. (2.45)

We define the sequence of events that the random walk cannot find a very deep trap before time Trn:

I1
n := {Hn(TM(n)) ≥ Trn}. (2.46)

We can use Condition C with ρ = 1/M to conclude that for M large enough

P(I1
n |τ ) ≥ 1− δ/4. (2.47)

For d > 0 define the sequence of events

I2
n := {sn(1) ≥ (ε+ d)1/αntn}. (2.48)

Using Proposition 2.1, for d small enough, τ a.s. for n large enough

P(I2
n |τ ) ≥ 1− δ/4. (2.49)

We define another sequence of events

I3
n :=

{
Trn∑
i=0

eiτYn(i)1 {Yn(i) ∈ T ε(n)} ≤ (ε+ d/2)1/αntn

}
. (2.50)

By Proposition 2.2 we have τ a.s. for n large enough

P(I3
n |τ ) ≥ 1− δ/4. (2.51)

Finally, defining

I4
n := {ζn(T ) ≤ K − 1}, (2.52)

using Condition C, for K large enough, τ a.s. for n large enough

P(I4
n |τ ) ≥ 1− δ/4. (2.53)

For d and M chosen as above, for j = 2, . . . , ζn(T ), we partition the sum Sn(dn(j)) as follows

Sn(dn(j)) =

dn(j)−1∑
i=0

eiτYn(i)1 {Yn(i) ∈ T ε(n)}+

dn(j)−1∑
i=0

eiτYn(i)1 {Yn(i) ∈ TM(n)}+

j∑
k=1

sn(k).

(2.54)
Recall that mn(j) = maxi=1,...,j−1 sn(i). Let In := I1

n ∩ I2
n ∩ I3

n ∩ I4
n. We have τ a.s. for n large

enough P(In) ≥ 1− δ. On the event In, the first term on the right hand side of is bounded above by
mn(j) for any j ≥ 1 using (2.49) and (2.50); the second term is 0 since on I1

n no deep trap has been
found; the third term is bounded by K − 1 since on I4

n ζn(T ) ≤ K − 1. Hence, on In, Sn(dn(j)) is
bounded Kmn(j) and we are finished with the proof. �

Proposition 2.4. For any δ > 0 given, for ε small and M large enough, τ a.s. for large enough n

P
(

max
j≤ζn(T )

∣∣∣∣(Sn(dn(j))

tn

)αn
−
(
mn(j)

tn

)αn∣∣∣∣ ≥ δ
∣∣∣τ) ≤ δ. (2.55)
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Proof. By definition we have mn(j) ≤ Sn(dn(j)) for any j. Using Proposition 2.3 we can find a
positive constant K s.t. τ a.s. for n large enough

P
(
Sn(dn(j)) ≤ Kmn(j), ∀j = 1, . . . , ζn(T )|τ

)
≥ 1− δ/4. (2.56)

For K as above, using Lemma 2.2 we can choose a small enough d so that τ a.s. for n large enough

P
(
mn(j) ∈ [(ε− d)1/αntn, (M + d)1/αntn], ∀j = 1, . . . , K

)
≥ 1− δ/4. (2.57)

Finally, for K and d as above, for n large enough

|Kαn − 1|(M + 2d) ≤ δ/2. (2.58)

We denote by In the intersection of the events inside the probability displays in (2.56) and (2.57). Then
using (2.56), (2.57) and (2.58) we get

P
(

max
j≤ζn(T )

∣∣∣∣(Sn(dn(j))

tn

)αn
−
(
mn(j)

tn

)αn∣∣∣∣ ≥ δ
∣∣∣τ)

≤ δ/2 + P
(

max
j≤ζn(T )

∣∣∣∣(Kmn(j)

tn

)αn
−
(
mn(j)

tn

)αn∣∣∣∣ ≥ δ
∣∣∣In, τ) = δ/2.

(2.59)

�

Proof of Theorem 1. We start the proof with the proof of convergence of the finite dimensional dis-
tributions. Let 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T and 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk be given.
Consider the random variables ζn(ti), i = 1, . . . , k. For convenience, we denote byN(λ), a Poisson
random variable with mean λρMε . Let {N(ti − ti−1) : i = 1, . . . , k} be an independent collection.
By Condition C, we have as τ a.s. n→∞

{ζn(ti)− ζn(ti−1) : i = 1, . . . , k} =⇒ {N(ti − ti−1) : i = 1, . . . , k} (2.60)

where =⇒ stands for convergence in distribution. For ease of notation we defined the rescaled clock
process

S̄n(t) :=

(
Sn(trn)

tn

)αn
. (2.61)

By Proposition 2.4 and using Proposition 2.2 as in the proof of Proposition 2.4, we can conclude that
τ a.s. the sequence of events that for all i = 0, 1, . . . , k(

mn(ζn(ti))

tn

)αn
− δ ≤ S̄n(ti) ≤

(
mn(ζn(ti))

tn

)αn
+ δ (2.62)

has probability larger than 1 − δ for all n large enough. Hence, the sequence of finite dimensional
distributions

P
(
S̄n(t1) ≤ x1, . . . , S̄n(tk) ≤ xk

∣∣∣τ) (2.63)

is bounded above by

P
((

mn(ζn(t1))

tn

)αn
≤ x1 + δ, . . . ,

(
mn(ζn(tk))

tn

)αn
≤ xk + δ

∣∣∣τ) (2.64)

and below by

P
((

mn(ζn(t1))

tn

)αn
≤ x1 − δ, . . . ,

(
mn(ζn(tk))

tn

)αn
≤ xk − δ

∣∣∣τ) . (2.65)

We prove only the upper bound for the lower bound can be achieved similarly. By Lemma 2.2 and
(2.60) (also recall (2.28)), τ a.s. as n→∞, the sequence of probability terms in (2.64) converges to

E
[(
ρx1+δ
ε /ρMε

)N(t1)
]

E
[(
ρx2+δ
ε /ρMε

)N(t2−t1)
]
· · ·E

[(
ρxk+δ
ε /ρMε

)N(tk−tk−1)
]
. (2.66)
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A simple calculation yields that for any x, λ ≥ 0

E
[(
ρxε /ρ

M
ε

)N(λ)
]

= exp(−λρMx ). (2.67)

Hence, (2.66) is equal to

exp

(
− t1
x1 + δ

)
exp

(
−t2 − t1
x2 + δ

)
· · · exp

(
−tk − tk−1

xk + δ

)
. (2.68)

Finally, letting δ → 0 finishes the proof of the convergence of finite dimensional distributions.

For tightness characterizations we need the following definitions:

wf (δ) = sup
{

min
(
|f(t)− f(t1)|, |f(t2)− f(t)|

)
: t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ

}
,

w′f (δ) = sup{ inf
α∈[0,1]

|f(t)− (αf(t1) + (1− α)f(t2))| : t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ},

vf (t, δ) = sup{|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)}.
Following is from Theorem 12.12.3 of [16] and Theorem 15.3 of [7].

Theorem 2. The sequence of probability measures {Pn} on D([0, T ]) is tight in the M1-topology if

(i) For each positive ε there exists a c such that

Pn[h : ||h||∞ ≥ c] ≤ ε, n ≥ 1 (2.69)

(ii) For each ε > 0 and η > 0, there exists a δ, 0 < δ < T , and an integer n0 such that

Pn[h : w′h(δ) ≥ η] ≤ ε, n ≥ n0 (2.70)

and
Pn[h : vh(0, δ) ≥ η] ≤ ε and Pn[h : vh(T, δ) ≥ η] ≤ ε, n ≥ n0 (2.71)

Moreover, the same is true for J1 topology with w′h(δ) in (2.70) replaced by wh(δ).

For the first claim in Theorem 1, we check tightness in M1 topology, using Theorem 2. Since S̄n(t) is
non-decreasing in t, to check condition (i) it is enough to check that S̄n(T ) is tight. In this case, the
convergence of fixed time distribution gives the desired result.

Since for monotone functionsw′h(δ) is 0 in part (ii) of Theorem 2 we only need to control vS̄n(0, δ) and
vS̄n(T, δ). Again, using the monotonicity, controlling vS̄n(0, δ) boils down to check that P[S̄n(δ) ≥
η] ≤ ε for small enough δ and large enough n. By convergence of the fixed time distribution it is
enough to check P(W (δ) ≥ η/2) ≤ ε/2. Since P(W (δ) ≥ η/2) = 1 − e−2δ/η, this claim is true
for small enough δ. Similarly, to control vS̄n(T, δ) it is enough to find η small enough so that

P[W (T )−W (T − δ) ≥ η] ≤ ε/2. (2.72)

Observe that by (2.12)

P[W (T )−W (T − δ) = 0] =
T − δ
T

, (2.73)

then

P[W (T )−W (T − δ) ≥ η] ≤ 1− P[W (T )−W (T − δ) = 0] =
δ

T
.

Hence, (2.72) follows by taking δ ≤ Tε/4. Hence, we are finished with the proof of the first part of
Theorem 1.

Now we assume that fn = 1 andKG = 1 and prove the tightness of S̄n in J1 topology. We only need
to check that (2.70) with wS̄n . It is enough to show that τ a.s. as n→∞

max
x∈TMε (n)

Px
(
Yn(i) /∈ TMε (n), i = 1, . . . δrn

)
≤ ε (2.74)
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for δ small enough. Since Condition B is satisfied with fn = KG = 1 we have

max
x∈TMε (n)

Px(H ′n(x) < Hn(TMε (n) \ {x})) −→ 0 (2.75)

where
H ′n(x) := min{i ≥ 1 : Yn(i) = x} (2.76)

Combining this with Condition C yields (2.74). Hence, we have proved the J1 convergence.

�

3. EXTREMAL AGING

Next, we give two extra conditions that ensure extremal aging occurs. For this purpose we need to
control the random walk between record sites. First, we define the sequence of times when a new
record site is found. We define qn(1) = 1 and for j ≥ 2

qn(j) = min{i > qn(j − 1) : mn(i) > mn(qn(j − 1))}. (3.1)

Hence, qn(j)th score is greater than all the scores before it. To keep track of the times when the
random walk visits a record site we introduce

kn(j) = dn(qn(j)), j ∈ N. (3.2)

Finally, we define the process Vn(j) that records the trajectory of Yn restricted to deep traps whose
score is a record:

Vn(j) = Un(qn(j)). (3.3)

We fix numbers a and b with 0 < a < b. We set ξn = Trn, the number of steps of the random
walk that we observe. Later we will choose T large enough so that the clock process reaches the level
a1/αntn. The first condition is that in the time between the record site Vn(j) is found and the next
record site Vn(j + 1) is found, with a high probability the trap model is at Vn(j). More precisely, let
tn be a deterministic sequence of times satisfying (a/2)1/αntn ≤ t′n ≤ b1/αntn and let δ > 0. We
define jn ∈ N by (

Sn(kn(jn))

tn

)
+ δ ≤

(
t′n
tn

)αn
≤
(
Sn(kn(jn + 1))

tn

)
− δ (3.4)

and jn =∞ if the above inequalities are not satisfied by an integer. Let An(δ) be the event

An(δ) := {0 < jn < ζn(T )}. (3.5)

Condition 1: For any δ > 0 it is possible to choose ε small and M large enough so that τ a.s. for n
large enough

P(Xn(t′n) = Vn(jn)|An(δ), τ ) ≥ 1− δ. (3.6)

The second condition states that there are no repetitions among record sites.

Condition 2: For any ε and M , τ a.s.

lim
n→∞

P(∃i, j s.t. i 6= j, qn(i), qn(j) ≤ ζn(T ), Vn(i) = Vn(j)|τ ) = 0. (3.7)

As discussed before, our choice of he two-time correlation function Rn is

Rn(t1, t2) := P(Xn(t1) = Xn(t2)|τ n) (3.8)

Now we are ready to state our extremal aging result.

Theorem 3. Assume that Conditions A-D and 1-2 hold and let 0 < a < b. Then τ a.s.

lim
n→∞

Rn(a1/αntn, b
1/αntn|τ ) =

a

b
. (3.9)
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Proof of Theorem 3. We first calculate the probability that the record process jumps over an interval.
We define the range of mn by

R(mn) :=

{(
mn(j)

tn

)αn
: j ∈ N

}
. (3.10)

Note that, mn depends on ε and M for the choice of TMε (n).

Lemma 3.1. For ε < a < b < M , τ a.s.

lim
n→∞

P
(
R(mn) ∩ [a, b] = ∅

)
=
ρMb
ρMa

. (3.11)

Proof. By definition we have mn(1) = Sn(dn(1)). Since ε < a, by Lemma 2.2, as n → ∞ the
probability that mn(1) ≥ a1/αntn vanishes. Hence, using the weak convergence result in Lemma 2.2
and the fact that the distribution of σMε has no atoms

lim
n→∞

P
(
R(mn) ∩ [a, b] = ∅

)
= P

({
max
i=1,...,j

σMε (i) : j ∈ N
}
∩ [a, b] = ∅

)
(3.12)

Since (σMε (i) : i ∈ N) is an i.i.d. sequence we have (3.12) equal to

P
(
σMε (1) ≥ b

)
+
∞∑
j=0

P
(

max
i=1,...,j

σMε (i) ≤ a
)
P
(
σMε (j + 1) ≥ b

)
=
∞∑
j=0

P(σMε (1) ≤ a)jP(σMε (1) ≥ b) =
P(σMε (1) ≥ b)

P(σMε (1) ≥ a)
=
ρMb
ρMa

.

(3.13)

�

Let δ > 0 be small enough so that ε < a− 2δ < b+ δ < M . Define the sequence of events I1
n, I

2
n

and I3
n as follows:

I1
n :=

{
dist(a,R(mn)) ≤ δ or dist(b,R(mn)) ≤ δ

}
,

I2
n :=

{
dist(a,Rmn) ≥ δ, dist(b,R(mn)) ≥ δ and [a+ δ, b− δ] ∩R(mn) 6= ∅

}
,

I3
n :=

{
[a− δ, b+ δ] ∩R(mn) = ∅

} (3.14)

We also define Fn :=
{
mn(ζn(T )) ≥ b1/αntn

}
. Since a.s. W (t)→∞ as t→∞, using Theorem

1 we can choose T > 0 large enough so that τ a.s. for n large enough

P(Fn|τ ) ≥ 1− δ/4. (3.15)

Finally, let us define the sequence of events we want to approximate

Gn :=
{
Xn(a1/αntn) = Xn(b1/αntn)|τ

}
. (3.16)

We want to show that Gn can be well approximated by I3
n. Since the jumps of mn have continuous

distribution we have (I3
n)c = I1

n ∪ I2
n and (I2

n)c ⊂ I1
n ∪ I3

n. This yields to

P(Gn ∩ I3
n) ≤ P(Gn) ≤ P(I1

n) + P(I3
n) + P(Gn ∩ I2

n). (3.17)

On Fn and I2
n there exist j1 and j2 with 0 < j1 < j2 and qn(j1), qn(j2) < ζn(T ) such that(

mn(qn(j1))

tn

)αn
+ δ ≤ a ≤

(
mn(qn(j1 + 1))

tn

)αn
− δ(

mn(qn(j2))

tn

)αn
+ δ ≤ a ≤

(
mn(qn(j2 + 1))

tn

)αn
− δ.

(3.18)
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Using Proposition 2.4 this yields to(
Sn(qn(j1))

tn

)αn
+ δ/2 ≤ a ≤

(
Sn(qn(j1 + 1))

tn

)αn
− δ/2(

Sn(qn(j2))

tn

)αn
+ δ/2 ≤ a ≤

(
Sn(qn(j2 + 1))

tn

)αn
− δ/2.

(3.19)

Hence, by Condition 1 we have τ a.s. for n large enough

P(Xn(a1/αn) = Vn(j1), Xn(b1/αn) = Vn(j2)|I2
n, Fn, τ ) ≥ 1− δ. (3.20)

Combining this with Condition 2 and (3.15) we get

P(Gn ∩ I2
n) ≤ δ. (3.21)

Similarly on Fn ∩ I3
n there exists a j1 such that(
mn(qn(j1))

tn

)αn
+ δ ≤ a ≤ b ≤

(
mn(qn(j1 + 1))

tn

)αn
− δ. (3.22)

Hence, by Condition 1 we have τ a.s. for n large enough

P(Xn(a1/αntn) = Xn(b1/αntn) = Vn(j1)|τ ) ≥ 1− δ, (3.23)

and since P(Gn) ≥ P(Xn(a1/αntn) = Xn(b1/αntn) = Vn(j1)|τ ) we get

P(I3
n)− δ ≤ P(I3

n ∩Gn). (3.24)

By Lemma 3.1 we have P(I1
n) → 0 and P(I3

n) → ρMb /ρ
M
a as δ → 0. Finally, taking M → ∞ and

δ → 0 finishes the proof. �

4. EXTREMAL AGING FOR RANDOM ENERGY MODEL

The Random Energy Model was first introduced by Bernard Derrida in [13] as an exactly solvable mean
field spin glass model. The state space is Vn = {−1,+1}n, the n dimensional hypercube. To each
configuration σ ∈ Vn is attached a random Hamiltonian Hn(σ). The choice for the energy landscape
in REM is that of i.i.d. Gaussians with mean zero and variance n. More precisely, Hn(σ) = −

√
nZσ

where {
Zσ : σ ∈ Vn

}
(4.1)

is an i.i.d. sequence of standard Gaussian random variables. Let β > 0 be the inverse temperature
(later we will let β vary with the dimension n), then the Gibbs measure at inverse temperature β is
given by

µn(σ) =
1

Zn,β
e−βHn(σ) =

1

Zn,β
eβ
√
nZσ , σ ∈ Vn (4.2)

where Zn,β is the usual partition function.

We will study the trap model dynamics of REM. In our setting, the graph is Gn = (Vn, En) where the
set of edges En is given by

En =
{

(σ, σ′) :
1

2

n∑
i=1

|σi − σ′i| = 1
}
. (4.3)

In other words, two configurations in Vn are neighbors if they differ only at one spin. For the trapping
landscape {τσ : σ ∈ Vn} we choose the Gibbs waits

τσ := exp(−βHn(σ)) = exp(β
√
nZσ), σ ∈ Vn. (4.4)
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As before we denote the corresponding trap model by (Xn(t) : t ≥ 0). It is trivial that the Gibbs
measure of REM is the unique invariant measure of Xn. We want to note there that in the literature
this type of dynamics is sometimes called Random Hopping Time dynamics.

We will study the dynamics of REM model in the following context. We let the temperature vary by the
volume of the system, hence, here after we parameterize the inverse temperature by n and replace β
with βn in the above equations. Let us rewrite the trapping landscape in this new setup

τ :=
{

exp(βn
√
nZσ) : σ ∈ Vn

}
(4.5)

where the sequence {Zσ : σ ∈ Vn} is as in (4.1). As before, we denote by Yn the simple random
walk on the hypercube Vn and the clock process by Sn.

Next we choose the time scales that we will observe the dynamics at. We set first our depth rate scale
αn; as in Section 2, αn → 0 as n→∞. We consider the following scales:

gn = tn = exp(αnβ
2
nn), b−1

n = rn = αnβn
√

2πn exp(α2
nβ

2
nn/2), fn = 1. (4.6)

We will always assume that

lim sup
n→∞

αnβn <
√

2 log 2. (4.7)

Furthermore, we will assume that αn and βn are chosen such that

n log n� rn as n→∞. (4.8)

The following theorem describes the extremal aging for the dynamics of REM.

Theorem 4. For a.s. random environment τ

(i) for any T > 0, as n→∞(
Sn
(
· rn

)
tn

)αn

=⇒ W (·) in D([0, T ], J1) (4.9)

where W is the extremal process generated by the distribution function F (x) = e−1/x,
(ii) for any 0 < a < b as n→∞

Rn

(
a1/αntn, b

1/αntn
∣∣τ) −→ a

b
. (4.10)

Remark 4.1. Note that the ratio of the two times tna1/αn and tnb1/αn diverges with n but the logarith-
mic ratio log(tna

1/αn)/ log(tnb
1/αn) converges to 1 as n→∞, due to (4.8). Hence, we can think of

the extremal aging result of Theorem 4 as “just before aging".

Remark 4.2. Let us describe the cases that Theorem 4 covers. For constant temperature case
βn ≡ β > 0, the time scales in Theorem 4 consist of subexponential time scales (in n). For the
case that 1 � βn, that is, zero temperature dynamics, depending on βn and αn, it covers superex-
ponential, exponential and subexponential time scales. Finally, for βn � 1, time scales covered are
subexponential.

Proof of Theorem 4. In order to prove Theorem 4 we will check Conditions A-D and Conditions 1-2;
and to achieve convergence in J1 we will check Condition B with KG = 1.

Condition A: It is well-known for a standard Gaussian random variable Z that

P (Z ≥ u) =
1

u
√

2π
e−u

2/2(1 + o(1)) as u→∞, (4.11)
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and

P (Z ≥ u) ≤ 1

u
√

2π
e−u

2/2, ∀u > 0. (4.12)

By (4.8) we have 1� αnβn
√
n. Hence, using (4.5) and (4.11)(

αnβn
√

2πn
)
eα

2
nβ

2
nn/2P (τx ≥ u1/αneαnβ

2
nn)

=
(
αnβn

√
2πn

)
eα

2
nβ

2
nn/2P

(
Z ≥ αnβn

√
n+

log u

αnβn
√
n

)
−→
n→∞

1

u
.

(4.13)

This proves the first part of Condition A. The second part of Condition A follows trivially from (4.12)
and a calculation similar to the above.

Condition C: For proving Condition C we use the following theorem from [10]:

Theorem 5. (Theorem 1 in [10]) Let m̄(n) be such that

n log n� m̄(n)� 2n(log n)−1, (4.14)

and let An be a sequence of percolation clouds on Vn with densities m̄(n)−1. Then, for all a > 0,

lim
n→∞

max
x∈Vn

∣∣∣Px(Hn(An \ {x}) ≥ am̄(n)
)
− exp(−a)

∣∣∣ = 0. (4.15)

In our case, Condition C is equivalent to the result of the above theorem when m̄(n) = (ρbn)−1,
ρ > 0. We have in (4.6) b−1

n = αnβn
√

2πn exp(α2
nβ

2
nn/2) and, thus, (4.7) and (4.8) yield n log n�

(ρbn)−1 � 2n(log n)−1. Hence, we can apply the theorem and verify Condition C .

Condition B: Recall the notation ξn = Trn. It is trivial that for any k1, k2 with k1 ≤ k2, and for all
x, y ∈ Vn, Gn

k1
(x, y) ≤ Gn

k2
(x, y). Also, for any k ∈ N and x ∈ Vn, Gn

k(x, x) ≥ 1 by definition.
Hence, using part (a) of Lemma 3.9 in [5] we conclude that

lim sup
n→∞

Gn
ξn log ξn(0, 0) = 1. (4.16)

Now we claim that uniformly for x ∈ TMε (n) that

lim
n→∞

Gn
TMε (n)\{x}(x, x) = 1, (4.17)

which is enough to check Condition B with fn = 1 and KG = 1. Recalling that H ′n(x) = min{i ≥
1 : Yn(i) = x} we have

Gn
ξn log ξn(0, 0) =

(
Px(Hn(TMε (n) \ {x}) < H ′n(x))

)−1
. (4.18)

We have

Px(Hn(TMε (n)\{x}) ≥ H ′n(x)) ≤ Px(H
′
n(x) ≤ ξn log ξn)+Px(Hn(TMε (n)\{x}) ≥ ξn log ξn).

(4.19)
The first term on the right hand side of the above display is obviously independent of x and converges
to 0 by (4.16); using Condition C, that is, the fact that uniformly for x ∈ TMε (n), Hn(TMε (n) \
{x})/ξn is asymptotically an exponential random variables, we can conclude that the second term
also vanishes uniformly for x ∈ Vn. Hence, we have proved (4.17).

Condition D: By Lemma 3.9 in [5] we have for all x 6= 0, for all n large enough

Gn
ξn(0, x) ≤ C/n (4.20)

for some positive constant C > 0. By (4.8) we can choose a sequence λn such that

λn � n, λn � α2
nβ

2
nn (4.21)
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and
∑

n exp(−λn) < ∞ (recall that fn = 1). For such λn, using (4.20) we have λnGξn(0,x) � 1
uniformly for all x ∈ Vn \ {x}. Combining this with (4.16) we get that for some positive constant K ,
for all n large enough∑
x∈Vn

(eλnG
n
ξn

(0,x) − 1) ≤ e2λn +
∑

x∈Vn\{x}

(eλnG
n
ξn

(0,x) − 1) ≤ e2λn + λnTrn ≤ KTλnrn (4.22)

where in the last step we used that λn � α2
nβ

2
nn. Hence, we have checked the first part of Condition

D. The second part of Condition D is trivial since fn = 1.

Condition 1: Let t′n be a deterministic sequence of times satisfying (3.4) and An(δ) be defined as
(3.5). We check that Condition 1 is satisfies uniformly for 0 < a < b, conditioned on mn(qn(jn)) =
a1/αntn and mn(qn(jn + 1)) = b1/αntn. For ε > 0 small enough so that a+ 2ε < b− 2ε we define
the sequence of events:

Bn :=
{
τYn(i) ≤ (b− 2ε)1/αntn : ∀i = kn(jn), . . . , kn(jn + 1)− 1

}
. (4.23)

By Condition C and Proposition 2.1 we can choose ε small enough so that τ a.s. for n large enough
we have

P(Bn|τ ) ≥ 1− δ/4. (4.24)

By Proposition 2.4, τ a.s. for n large enough

P
(
Sn(kn(jn + 1))− Sn(kn(jn)) ≥ (b− ε/2)1/αntn − (a+ ε)1/αntn

∣∣τ) ≥ 1− δ/4. (4.25)

Note that (b − ε/2)1/αntn − (a + ε)1/αntn � (b − 2ε)1/αntn as n → ∞. Also, by Proposition
2.2, on In, the contribution from traps between kn(jn) and kn(jn + 1) is smaller than (b− ε)1/αntn
with a probability larger than 1 − δ/4. Hence, conditioned on In, An(δ) and the sequence of events
inside the probability term in the last display, the only way Xn(t′n) 6= Vn(jn) is if the random walk
comes back to Vn(jn) before visiting Vn(jn + 1). However, by (4.16) this probability goes to 0. Thus,
Condition 1 is satisfied.

Condition 2: By Condition C, the time for Yn to visit a deep trap divided by rn is approximately
exponentially distributed. Hence, by (4.16), we have that the probability of Yn revisits a deep trap
converges to 0. Thus, Condition 2 follows.

�
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[10] Jiří Černý and Véronique Gayrard. Hitting time of large subsets of the hypercube. Random Structures Algorithms,
33(2):252–267, 2008.

[11] D. A. Croydon, A. Fribergh, and T. Kumagai. Biased random walk on critical Galton–Watson trees conditioned to
survive. Probab. Theory Related Fields, 157(1-2):453–507, 2013.

[12] D. A. Darling. The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math.
Soc., 73:95–107, 1952.

[13] Bernard Derrida. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3),
24(5):2613–2626, 1981.

[14] Yuji Kasahara. A limit theorem for sums of i.i.d. random variables with slowly varying tail probability. J. Math. Kyoto
Univ., 26(3):437–443, 1986.

[15] Sidney I. Resnick. Extreme values, regular variation and point processes. Springer Series in Operations Research
and Financial Engineering. Springer, New York, 2008. Reprint of the 1987 original.

[16] Ward Whitt. Stochastic-process limits. Springer Series in Operations Research. Springer-Verlag, New York, 2002. An
introduction to stochastic-process limits and their application to queues.


