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Abstract

In this paper the evolution of a binary mixture in a thin-film geometry with a
wall at the top and bottom is considered. Bringing the mixture into its miscibility
gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias
of the walls towards each one of the constituents ensures the nucleation of thin
boundary layers that grow until the constituents have moved into one of the two
layers. These layers are separated by an interfacial region, where the composi-
tion changes rapidly. Conditions that ensure the separation into two layers with
a thin interfacial region are investigated based on a phase-field model and using
matched asymptotic expansions a corresponding sharp-interface problem for the
location of the interface is established.

It is then argued that a thus created two-layer system is not at its energetic
minimum but destabilizes into a controlled self-replicating pattern of trapezoidal
vertical stripes by minimizing the interfacial energy between the phases while
conserving their area. A quantitative analysis of this mechanism is carried out via
a new thin-film model for the free interfaces, which is derived asymptotically from
the sharp-interface model.

1 Introduction

Structure formation in mixtures such as polymer blends and metal or semiconductor
alloys is abundant in nature and in many technological processes. This phenomenon
generally occurs when, due to a change in the external conditions such as temper-
ature, pressure, applied stresses or a change in the composition, it becomes ener-
getically preferable for the materials to be in a non-homogeneous structured state
rather than the homogeneous state. The system will tend to a new minimum of its
associated total free energy by undergoing phase transformations through spinodal
decomposition or nucleation events, thereby forming new spatial domains of differ-
ent composition, polymer phases, crystal structure or orientation, giving rise to new
material properties. The newly created interfaces that bound the domains coarsen on
much slower time scales until a global energetic minimum has been reached. For a
review on structure forming processes in materials see, for example, [1].

Throughout the whole process different physical effects and material properties such
as, interfacial stresses, elastic strain, chemical reactions at interfaces, electrostatic
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forces, bulk and interfacial diffusion may have to be taken into account. Moreover,
in confined geometries, as it is the case for most nano-technological applications,
the influence of nearby walls will have a significant impact on the phase separation
by introducing additional geometric length scales and through their surface energies,
which determine their wetting properties.

In fact, for a thermally-quenched mixture in a confined geometry it has been shown,
experimentally [2, 3] and theoretically [4], that phase separation can be induced by
the surface energy of the nearby walls. Various scenarios of these so-called surface-
directed phase separation phenomena have been investigated on the basis of appro-
priate boundary value problems for the stochastic Cahn-Hilliard model, including off-
critical quenches, i.e., where no phase separation would occur for unconfined case,
see e.g [5]. Their numerical results exhibit cases where typical bulk phase separation
occurs together with a wetting layer as well as cases where only the growing wetting
layer emerges. These studies were extended further using different free energies and
different intermolecular potentials, see [6, 7] for a discussion of these models.

Similarly, during spin-coating of a mixture of two polymers blended in a common
volatile solvent a stratified film of nano- to micrometer thickness that exhibits an in-
ternal interfacial microstructure is produced. For such processes it has been sug-
gested in [8–11], using PFB/F8BT and PS/PMMA systems, that phase separation
starts with the formation of a vertically stratified bilayer, followed by a destabilisation
of the polymer-polymer interface and it is speculated that this is due to a solvent-
concentration gradient through the film.

Developing a systematic quantitative understanding of such complex evolutionary pro-
cesses is the key to predict and control the structure morphology and hence the ma-
terial properties, such as the optical and electrical properties of the active component
of organic polymer-polymer solar cells, or other advanced multifunctional materials. In
[12] a new mechanism that induces a well-defined sequence of repeating structures in
a geometrically-confined binary mixture is presented. A qualitative argument is given
under which conditions a horizontal bilayer state transitions into a striped state of alter-
nating phases. The metastable horizontal layered state enters a cascade of rupture
events that lead to a state with regular well-defined trapezoidal stripes, minimising
their interfacial energies.

The focus of this study is to determine under which conditions the horizontal bilayer
state can form and at the same time allow for subsequent stripe formation. While it
is possible to create the bilayers e.g. by imposing an external field that is switched
off, by placing the two layers on top of each other, or by using initial compositional
gradients that can selectively drive the coarsening of the structured state created by
the initial phase separation and give rise to long-lived metastable bilayer states [13],
we will explore another possibility. Here, we use surfaces that are biased towards one
of the components and then bring the system slowly into the miscibility gap. The bias
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of the walls will create a slight compositional gradient across the thin film between the
substrates that continues to build up as the species are driven towards separation.

Within the framework of a phase-field theory of Cahn–Hilliard type with appropriate
surface energies at the walls, which we introduce in Section 2, we address the ques-
tion of when the mixture phase separates into two horizontal layers with a diffuse
interface that is thin compared to the transversal length scale of the thin film in Sec-
tion 3. The scale separation between the large homogeneous regions and the thin
regions of steep compositional changes are then exploited in Section 4 to reduce the
model to a sharp-interface model via the method of matched asymptotic expansions.
Here we point out that for cases where the interfaces do not intersect an exterior
boundary, such as a wall, the derivation of such models go back to Pego [14], fol-
lowed by analysis in [15] and [16]. For the cases where the interfaces intersect an
exterior boundary, which is the focus of our investigation, an additional condition at
the contact line is required. We will use the expression derived rigorously through a
sharp interface limit for the stationary Cahn–Hilliard equation by Modica [17]. The ex-
pression yields a Young-type condition for the contact angle in terms of the surface
free energy contribution from the walls that closes the sharp-interface model.

We further exploit the length scale separation between the lateral and the vertical
length scales of the sharp-interface profile to derive a new thin-film model for the free
interface. This model greatly facilitates the systematic quantitative numerical study as
well as a thorough understanding of the dynamics via the mathematical properties of
the associated thin-film boundary value problem. This is used to discuss the bilayer
breakup in Section 5. In Section 6, we give our conclusions and an outlook.

2 Formulation of the phase field model

Bulk equations For a mixture of two species, A and B that undergo phase separa-
tion below a critical temperature T = Tc we introduce a phase-field model based on
the Cahn–Hilliard equation. Besides the original work by Cahn and Hilliard [18] and
by Cahn [19], there is a vast original literature and reviews on such types of phase-
field models including differences in the derivation and the scope of the modelling,
e.g. [20–23]. In our formulation, the phase-field parameter φ is a conserved order pa-
rameter, obtained, for example, as a scaled volume or mole fraction, where φ = 1
represents the pure A-species and φ = −1 the pure B species, and φ = 0 a sym-
metric, or 50:50 mixture of the two species. The nondimensional bulk equations in the
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domain Ω = {(x, z); 0 < z < d} is given by

φt = ∇ ·
[

(1− φ2)∇µ
]

, (2.1a)

µ =
1

T

[

f ′(φ)− ε2∆φ
]

, (2.1b)

f(φ) = −φ2 + T [(1− φ) ln(1− φ) + (1 + φ) ln(1 + φ)] , (2.1c)

where µ is the chemical potential and T the temperature. We will vary the temper-
ature and therefore, the explicit dependence on T has been retained in (2.1a). The
parameter ε is the ratio of the microscopic length scale of the interaction between the
two species—a quantity that can be expressed in terms of the lattice parameter in the
case of nearest neighbour interactions in a cubic lattice, see, for example, [18]—and
the macroscopic length scale use to nondimensionalise the system. For the latter, we
can assume, for example, the thickness of one of the layers in the bilayer state that
we will investigate has been scaled to one.

The boundary conditions are

µz = 0, εφz = f ′

0((1 + φ)/2) at z = 0, (2.2a)

µz = 0, εφz = f ′

0((1− φ)/2) at z = d, (2.2b)

where the left two conditions, µz = 0, correspond to no-flux through the substrate, and
the other two represent the interaction of the species with the substrate. The chemical
potential and the latter two boundary conditions arise as the first variation of the free
energy F/T of the system, where F is given by

F [ϕ] =

∫ d

0

∫ +∞

−∞

f(φ(x, z)) +
ε2

2
|∇φ(x, z)|2 dxdz

+ 2ε

∫ +∞

−∞

f0((1 + φ(x, 0))/2) dx+ 2ε

∫

−∞

+∞

f0((1− φ(x, d))/2) dx.

For T below the critical temperature Tc, which here has been scaled to one, the ho-
mogeneous contribution f to the bulk has a double-well structure and will drive the
system to phase separate into domains with compositions that correspond to the min-
ima of f . The choice of substrate-material interface energy density assumes antisym-
metric substrates, since the integrand in the substrate integral at z = 0 is transformed
into the integrand of the integral at z = d if φ is replaced by −φ. Thus, the affinity
of the upper substrate to species A is the same as the affinity of the lower substrate
to B. A specific choice for f0 is introduced further below. Using such interface energy
distributions assumes that we only consider short-range surface interactions; other
possibilities also include contributions to the bulk free energy [24].

We are mostly interested in phase-separating situations close to criticality, with T
below and close to 1, where the minima of f , denoted by φ±, are close to zero. In
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addition, we intend to consider different choices for the temperature and in section 3,
we also prescribe time-dependent temperature profiles. Thus, we let (1/T − 1) =
χ0χ(t) with a new parameter χ0 � 1, and a function χ(t), 0 ≤ χ(t) ≤ 1. It is then
convenient to let

φ = (3χ0)
1/2φ̂, µ = 31/2χ

3/2
0 µ̂, t = ε−1(χ0 + χ2

0)
−1/2t̂, (2.3)

in (2.1), (2.2), so that, to leading order in χ0 � 1, we obtain

ε̂φ̂t̂ = ∆µ̂, (2.4a)

µ̂ = f̂ ′(φ̂)− ε̂2∆φ̂, (2.4b)

f̂(φ) =
1

2
(φ̂2 − χ(t))2, (2.4c)

where ε̂ ≡ ε(1 + 1/χ0)
1/2. We remark that in Section 4.1 we will consider a sharp-

interface limit where ε̂ � 1 which effectively puts a lower bound on the value of
χ0, namely ε2 � χ0. Furthermore, f̂ has been altered by a function of time that is
independent of φ which is immaterial here. The corresponding rescaled boundary
conditions are

µ̂z = 0, ε̂φ̂z = β̂(1− φ̂2) at ẑ = 0, d, (2.4d)

where we have made a specific choice for f̂0,

f̂0(φ̂) = β̂(φ̂− φ̂3/3), (2.5)

so that the surface energies at z = 0 and z = d are now f̂0(φ̂) and f̂0(−φ̂), respec-
tively. Other typical choices for f0 involve quadratic polynomials [5]. For the determina-
tion of the effective surface energies and the contact angle when χ = 1 (see section 4)
it is more convenient to use the expression above [25] for which the derivative of f0
vanishes at the minima of the bulk free energy f̂ .

In the following, we drop the hats from the variables and from ε̂ and β̂.

3 Formation of bilayers

Using the model developed in the previous section, we can now investigate the con-
ditions in which the two constituent components of the mixture separate and form a
horizontal bilayer. This investigation will be guided by linear stability results and nu-
merical simulations. We assume the initial condition is a small random perturbation
with mean value zero to the homogeneous 50:50 state (the later of which corresponds
to φ ≡ 0). We typically set ε = 0.127 and for the numerical simulations, the domain
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is truncated at x = 0 and x = L∞ with L∞ � d, and we impose periodic boundary
conditions.

For definiteness and to facilitate the discussion we interpret the function χ(t) as the
temperature of the system in the remaining part of our study. The arguments, however,
are general and can equally be made for other realisations, such as the concentration
of the species.

Stability analysis We investigate the linear stability of one-dimensional stationary
solutions when the temperature is held at a constant value. Thus, we set χ(t) ≡ χ
and write the order parameter and the chemical potential as

φ(x, z, t) = φ̄(z) + αφ̃(z)eλt+ikx, (3.1a)

µ(x, z, t) = µ̄(z) + αµ̃(z)eλt+ikx, (3.1b)

where bars are used to represent the stationary solution and tildes denote pertur-
bations to it. The parameters α � 1, λ, and k denote the initial amplitude of the
perturbation and its growth rate and wavenumber, respectively. The solution in (3.1)
is inserted into the governing equations and their boundary conditions (2.4), and the
system is expanded in powers of α.

The O(1) contribution to this system describes the steady, one-dimensional problem.
From this we find that the chemical potential satisfies µ̄zz = 0 with µ̄z = 0 on the
boundaries. Therefore, the chemical potential is constant to leading order and we
write µ̄(z) ≡ µ̄. The problem for order parameter can be written as

µ̄ = f ′(φ̄)− ε2φ̄zz, (3.2a)

with boundary conditions

εφ̄z = β
(

1− φ̄2
)

, z = 0, d. (3.2b)

The chemical potential is treated as a Lagrange multiplier that ensures the steady
solution corresponds to a 50:50 mixture; thus, we supplement the boundary value
problem with the integral condition given by

∫ d

0

φ̄(z) dz = 0. (3.2c)

The stability of the stationary solution is determined from the O(α) problem which can
be written as

ελφ̃ = −k2µ̃+ µ̃zz, (3.3a)

µ̃ = f ′′(φ̄)φ̃− ε2(−k2φ̃+ φ̃zz). (3.3b)
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Boundary conditions for this problem are as follows:

µ̃z = 0, εφ̃z = −2β φ̄ φ̃, z = 0, d. (3.3c)

Given that the steady solution φ̄ is generally a function of space, the linear stability
problem is non-autonomous and can only be solved in exceptional circumstances.
Such is the case when the substrate-material interface energy is neglected, i.e., when
β = 0, or when it is very small, β � 1. In both instances the steady solution is given
by φ̄ ≡ 0 (or to leading-order in the latter case) and the perturbations take the form

φ̃(z) = φ̃n cos(nπz/d), µ̃(z) = µ̃n cos(nπz/d), (3.4)

where n ∈ Z. The linearised problem can be solved and the growth rates are found to
be

λ(ξ) = −ε−1ξ2
(

ε2ξ2 − 2χ
)

, (3.5)

where ξ2 = k2 + (nπ/d)2 represents an average wavenumber that is composed of a
continuous horizontal wavenumber k, and a discrete vertical wavenumber n. Pertur-
bations with average wavenumbers that satisfy

0 < ξ2 < ξ2c =
2χ

ε2
, (3.6)

have positive growth rates and hence the one-dimensional stationary solution is lin-
early unstable. The fastest-growing perturbations have wavenumbers that satisfy ξm =
ξc/

√
2 and these lead to the formation of distinct domains that are rich in one partic-

ular phase. The initial size of these domains is approximately equal to half of the
wavelength of the most unstable modes. Over time these domains will coarsen until
the total interfacial area between them is a minimum. Due to the assumption of the
film being longer than it is higher, it becomes energetically favourable for the system
to form domains that resemble a series of vertical columns instead of a horizontal
bilayer.

When β 6= 0, the energetic interactions between the substrates and the constituent
materials induce a layered morphology in the steady-state solution of the one-dimensional
problem. Examples of these solutions have been computed numerically and are shown
as stars in Fig. 2 (d)–(f) when β = 0.063 and for temperatures given by χ = 0.01, 0.1,
and 1, respectively. For temperatures below, but close to criticality (panel (d)), the
steady state solution resembles a small, approximately linear perturbation to the ho-
mogeneous 50:50 state. For cooler temperatures, the solutions correspond to bilayer
configurations (panels (e)–(f)). By solving the corresponding linear stability problem
numerically as well, we find that these steady states are linearly stable; that is, the
growth rates are negative for each value of the perturbation wavenumber k. The func-
tional forms of λ, i.e., λ = λ(k), are shown in Fig. 2 (g)–(i).
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In the case when ε � 1 and χ = 1, the stability problem can be solved by matched
asymptotic expansions. The leading-order composite solution to the stationary prob-
lem corresponds to a bilayer and is given by

φ̄(z) = tanh

(

z − 1/2

ε

)

. (3.7a)

The perturbation to the order parameter and its growth rate are, to leading order, given
by

φ̃(z) = A sech2

(

z − 1/2

ε

)

, (3.7b)

λ(k) = −2

3
k3 tanh(k/2), (3.7c)

respectively, where A is a multiplicative constant. A comparison of the asymptotic and
numerical growth rates is shown in Fig. 2 (i). There is good agreement between the
two, particularly when the wavenumber k is small.

The linear stability of the bilayer configuration over a wide range of temperatures
suggests that a robust method for driving the system into such a state is to slowly cool
the system from a near-critical temperature. By starting from a temperature close to
the critical value, the influence of the substrates will induce a layered morphology and
push the mixture towards its stable steady state profile. Decreasing the temperature
at a sufficiently slow rate will then allow the mixture to evolve in a quasi-stationary
manner that follows the stable steady state profile, thus yielding a bilayer configuration
for cooler temperatures.

Numerical solution of the phase-field model The numerical simulations are based
on an implicit-explicit spectral method. The time derivative is discretised using the
standard first-order finite difference approximation and any linear terms are handled
implicitly, whereas nonlinear terms are treated explicitly. The solutions are assumed
to be periodic in the horizontal direction and hence derivatives with respect to x are
computed using Fourier spectral methods. Chebyshev spectral methods are used to
compute derivatives in the vertical direction.

Using this numerical scheme, we first explore the dynamics that occur when the tem-
perature of the system is fixed a constant value that is below criticality. The interface
energy between the substrates and the components is also taken into consideration.
Thus, we set χ ≡ 1 and β = 0.063. The computational domain is cut off L∞ = 10, and
the initial condition is a random perturbation of amplitude 0.2 to the homogeneous
50:50 state. The simulations results, which are shown in Fig. 1, indicate that the initial
fluctuations in the solution are rapidly amplified by spinodal decomposition, produc-
ing small domains that are nearly pure in the two constituent species. The width of
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Figure 1: Spinodal decomposition and coarsening in a system held at a constant
temperature below the critical value. The temperature was fixed at χ ≡ 1 and the
initial condition was a randomly-perturbed homogeneous 50:50 mixture. The solution
is shown at times t = 1.7× 10−3, 1.7× 10−2, 0.084, 0.84, 1.7, and 2.8.
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Figure 2: Bilayer formation when the temperature of the system is slowly decreased
according to the function χ(t) = 1− exp(−t/τc). The initial condition was a randomly-
perturbed homogeneous 50:50 mixture. Top (a)–(c): Evolution of the order parameter.
The solution is shown at times t = 0.17, 1.7, and 169, corresponding to χ(t) = 0.01,
0.1, and 1, respectively. Middle (d)–(f): Comparison of the laterally-averaged order
parameter 〈φ〉l (solid line) with the instantaneous stable steady state solution (stars)
at the same times as in panels (a)–(c). . Bottom (g)–(i): The growth rate λ of pertur-
bations to the steady state solutions shown above as functions of the perturbation
wavenumber k. See text for the definition of 〈φ〉l and the specific choice of τc that was
used.
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these domains is approximately 0.4, which is in good agreement with the size that is
predicted from the linear stability analysis; in this case the wavenumber of the fastest
growing mode is ξm ' 7.9. For t > 1.7 × 10−2 these domains coarsen to form large-
scale structures that eventually settle into columns.

We now investigate how the system evolves when it is slowly cooled from the critical
temperature. In particular, the temperature is decreased according to χ(t) = 1 −
exp(t/τc) with τc = 16.9. The values of the other parameters are the same as in
Fig. 1; we take β = 0.063, L∞ = 10, and the initial noise has an amplitude of 0.2. The
results of the simulation are presented in Fig. 2. Panels (a)–(c) of the figure display the
evolution of the order parameter, whereas panels (d)–(f) compare, at various times,
the laterally-averaged order parameter, defined as

〈φ〉l(z, t) =
1

L∞

∫ L∞

0

φ(x, z, t) dx, (3.8)

to the instantaneous, stable steady-state solution of the one-dimensional problem.
The figure clearly shows that the cooling procedure is able to produce the bilayer mor-
phology for parameter values that lead to a columnar topology when the temperature
was held at a fixed value. The comparison of the laterally-averaged order parameter
and the stable steady state shows that the solution quickly adopts the steady-state
profile and evolves in a quasi-stationary manner to the bilayer state.

The system will also tend to a bilayer configuration if the substrate-material interface
energy of is high. However, in this case it is possible for the bilayer state to globally
minimise the energy of the system and hence it would be expected to be stable.
That is, no topological transition could be initiated by nucleating a hole in the bilayer.
This situation relates to the substrates being perfectly wetting, so that any hole in the
bilayer will close up.

4 Asymptotic approximations

4.1 Sharp-interface limit

For the topological transition, we will consider the system at a fixed temperature cor-
responding to χ ≡ 1. At this temperature the width of the diffuse interface between
A-rich and B-rich domains is O(ε). Thus, for ε � 1, the thickness of the transition layer
is small and the phase-field model (2.4) can be reduced to a sharp-interface model as
described, for example, by Pego [14]. The order parameter and the chemical potential
are written as an asymptotic series of the form

φ = φ0 + εφ1 +O(ε2), (4.1a)

µ = εµ1 +O(ε2). (4.1b)
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The leading-order solution for the order parameter is φ0 = ±1. The O(ε) problem is
given by

∆µ1 = 0, (4.2a)

in the regions 0 < z < h(x, t) and h(x, t) < z < d. Along the sharp interface z =
h(x, t) we have the boundary conditions

2µ1 =
σhxx

(1 + h2
x)

3/2
, (4.2b)

ht =
1

2

(

[µ1,x]
+
−
hx − [µ1,z]

+
−

)

. (4.2c)

The parameter σ is defined through the expression

σ =

∫

∞

−∞

(Φ0,ηη)
2 dη =

4

3
, (4.2d)

where Φ0 is the solution to the leading-order inner problem given by 2(Φ3
0−Φ0) = Φ0,ηη

subject to Φ0 → ±1 as η → ±∞ and Φ0 = 0 at η = 0. The solution is given by
Φ0 = tanh η which can be directly used to show σ = 4/3.

Along the substrates z = 0 and z = d we have the conditions

µ1,z = 0. (4.2e)

The corresponding leading-order composite solution for a known sharp interface h(x)
is useful to know, in particular, when constructing initial conditions for the phase-field
model. This solution can be written as

φ(x, z) = tanh

(

z − h(x)

ε
√

1 + h2
x

)

, (4.3)

which is a generalisation of the expression presented in (3.7a).

Where the interface touches a substrate, a condition for the contact angle is needed.
In the limit considered here, the system is nearly in equilibrium, so we use the equi-
librium contact angle which can be expressed in terms of the surface and interface
energies via a Young-Laplace formula,

cos θ =
γ(1)− γ(−1)

σ̄
, (4.4a)

with

σ̄ =

∫ 1

−1

(2f(r))1/2 dr = σ, (4.4b)
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and where the appropriate surface energies need to include contributions from bound-
ary layers near the substrates [26],

γ(ρ) = inf
ω

{

f0(ω) +

∣

∣

∣

∣

∫ ρ

ω

(2f(r))1/2 dr

∣

∣

∣

∣

}

. (4.4c)

A rigorous proof of (4.4) is given in [17]. If β ≤ 1 then one finds that γ(±1) = f0(±1) =
±2β/3; moreover, σ̄ = 4/3. The expression for the contact angle reduces to simply

cos θ = β. (4.5)

Since we have assumed that the interface is given as the graph of a function z =
h(x, t), we need to restrict 0 ≤ θ ≤ π/2. The conditions at the contact line x = s(t)
are

h → 0, hx → tan θ, q → 0, as x → s(t). (4.6)

The first condition is obvious and the last is a no-flux condition that ensures that no
mass is lost through the contact line. To the far right, the film flattens to a constant film
thickness and there is no flux,

h → 1, q → 0, as x → ∞. (4.7)

Notice that the thickness of a uniform layer is fixed to one by our choice of scalings
(see Section 2).

We conclude this section with two useful mass conservation properties for the sharp-
interface model. First, if we integrate (4.2a) twice with respect to z and use (4.2b)–
(4.2e), we obtain the following expression which relates the evolution of the interface
to the divergence of the cross-sectional flux of component A,

ht + qx = 0 with q =
1

2

∂

∂x

∫ d

0

µ1 dz. (4.8)

The last condition in (4.6) together with (4.7) ensure that the area of the film cross
section between the contact line and an arbitrary but fixed cut-off x̂ = L∞ remains
constant,

d

dt

∫ L∞

s(t)

h(x, t) dx = 0, (4.9)

or, for L∞ → ∞,

d

dt

∫

∞

s(t)

(h(x, t)− 1) dx =
ds

dt
. (4.10)
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4.2 Thin-film approximation

We can further approximate (4.2), (4.6), (4.7) in the limit of small contact angles,
θ � 1. We introduce the scalings

x =
1

θ
x̃, s =

1

θ
s̃, t =

2

σθ4
t̃, (4.11a)

µ1 =
σθ2

2
µ̃, q =

σθ3

2
q̃, (4.11b)

and leave z and h unchanged. Inserting these we obtain

θ2µ̃x̃x̃ + µ̃zz = 0, (4.12a)

in the domains 0 < z < h(x̃, t̃) and h̃(x̃, t̃) < z < d, which is supplemented with the
conditions

µ̃ =
hx̃x̃

(1 + θ2h2
x̃)

3/2
, (4.12b)

θ2ht̃ =
1

2

(

θ2[µ̃x̃]
+
−
hx̃ − [µ̃z]

+
−

)

(4.12c)

on the sharp interface z = h(x̃, t̃) and

∂zµ̃ = 0 (4.12d)

on the substrates at z = 0, d. The relation (4.8) remains unchanged in the rescaled
variables. From the leading-order parts of (4.12a), (4.12b), (4.12d), we immediately
find µ̃ = hx̃x̃, and with the leading-order part of (4.8), we obtain

ht̃ + q̃x̃ = 0, where q̃ =
d

2
hx̃x̃x̃. (4.13a)

The leading-order contact line and far-field conditions are, respectively,

h = 0, hx̃ = 1, q̃ = 0, at x̃ = s̃, (4.13b)

h → 1, q̃ → 0 at x̃ → ∞. (4.13c)

From (4.10), we get
ds̃

dt̃
=

d

dt̃

∫

∞

s̃(t̃)

(

h(x̃, t̃)− 1
)

dx̃. (4.14)
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5 Topological transitions

5.1 Bilayer breakup

The horizontal bilayer with an A-rich phase on top of a B-rich phase that is created
in the first step is only metastable. The energy of the layer can be further decreased
by reducing the length of the interface between the two phases if the bilayers are re-
placed by an arrangement of trapezoidal stripes. If, for example, we have a 50:50 ratio
of the species, which in our scalings implies a distance between the two substrates of
d = 2, and we have neutral substrates, β = 0, then the only contribution to the energy
comes from the interface between the phases. Moreover, the stripes are rectangular
in this case. If the width of each stripe is on average w, then a total interface length of
2nd for 2n stripes replaces a single interface of length 2nw for the bilayer state. Thus,
the energy is reduced if and only if w > d.

A refined energy argument, in combination with mass conservation, has been given
in [12] for antisymmetric substrates with general substrate-material interface energy
densities (i.e. general β). This reveal additional details about the transition between
the two states if the A-B interface is forced to touch one of the two substrates by a
finite perturbation when β < 1. The newly formed contact lines retract, to either side,
each collecting the A-rich phase in a growing trough. These troughs eventually hit the
bottom substrate and each give rise to a new pair of contact lines. The shedded A-rich
material stabilises in a stripe, while growing rims now appear in the B-rich phase until
they hit the upper substrate. The energy estimates show that the energy difference
for subsequent stripe formation is less than what is need for the formation of the first,
so the process is self-sustaining: Once an initial “hole” is formed, the entire bilayer
will transform into an array of stripes through a sequence of rupturing events. The
argument also yields estimates for the width of the stripes, which are w = 13.2/θ for
small contact angles and not more than w = 13.8/θ for angles up to π/2, measured
at the center line.

We begin with the case where the substrate-material interface energy is weak and
the equilibrium contact angle is large. Thus, we set the equilibrium contact angle
equal to 90◦ which is equivalent to neglecting the energy of the substrate-material
interfaces. It is assumed that a bilayer has formed, for example, by slowly cooling the
system, and we now investigate the dynamics after this bilayer has been ruptured.
The corresponding initial condition for the phase-field model is constructed with the
leading-order solution of the sharp-interface problem (4.3) and taking the interface
profile to be of the form

h(x) =

{

2−
√

1− (x− 1− s0)2, s0 < x < s0 + 1,

1, x > s0 + 1,
(5.1)
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Figure 3: Top (a)–(c) and middle (d)–(f): The subsequent evolution of the solution in
Fig. 2, showing, in particular, the dynamics that occur when a hole is introduced into
the upper layer so that material from the bottom layer comes into contact with the
upper substrate (a). The hole widens and the displaced mass creates a growing dip
in the top layer that eventually touches the bottom substrate (b), creating new contact
lines and a hole in the bottom layer. The new hole rapidly opens ((c) and (d)), and
the material that is displaced in the bottom layer forms a growing ridge that eventually
comes into contact with the upper substrate (e). The process then repeats itself until
the bilayer has been tranformed into a sequence of columns. The solution is shown at
times t = 0, t = 20.2, t = 20.6, t = 21.8, t = 44.4, and t → ∞, i.e., the steady state.
Bottom (g): The evolution of the free energy F . This can be proven to be monotonic;
see Appendix A. The sharp decreases correspond to creation of new contact lines
and the rapid widening of the associated holes. The dashed lines correspond to the
times shown in panels (b) and (e).
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which represents a ruptured 50:50 bilayer with an initial contact line at x = s0. Setting
θ = 90◦ implies that β = 0. We take ε = 0.127 and s0 = 2/5. The temperature is
assumed to be constant so we set χ ≡ 1. The computational domain is cut off at
L∞ = 50.

The results of a phase-field simulation are shown in Fig. 3, and it can be seen that
puncturing the bilayer will induce a topological transition into a striped state. The
stripes that form are perfect rectangles as a result of the equilibrium contact angle
being 90◦, and the width of the second to fifth columns are 8.4, 8.2, 8.2, and 8.4,
respectively. The qualitative arguments in [12] yield an estimate of 8.8 for the stripe
width, which is in good agreement with the simulations. Also shown in this figure is
the evolution of the free energy of the system, which for the rescaled model in (2.4)
is defined at the end of Appendix A. The free energy decreases monotonically, with
large jumps occurring immediately after new contact lines are created. For systems
held at constant temperatures, the free energy must be a monotonically decreasing
function of time, and a proof of this claim is given in Appendix A.

Reverse transformations Assume now that the mixture is separated into n pairs
of adjacent A-B columns, much like the final configuration shown in Fig. 3. Using the
same type of qualitative argument that was presented in the previous paragraph, we
find that such a configuration will not be energetically favourable compared to the
bilayer if the width of each column, w, is less than the height of the channel d, i.e., if
w < d. In such a situation, we expect that a reverse topological transition will occur if
the initial state is perturbed.

To explore this scenario, we perform simulations with the phase-field model using ini-
tial conditions that correspond to a repeating sequence of A-B columns. To perturb
the system and initiate the transformation, we shorten one of the columns which has
the effect of locally merging the two neighbouring columns. An example of such an
initial condition is shown in Fig. 4 (a), where two columns of material A are brought to-
gether in system that begins as 8 pairs of A-B columns. The other parameters values
are ε = 0.04, χ ≡ 1, β = 0, with L∞ = d = 2. Once the perturbation is added the sys-
tem evolves under the action of interface minimisation and this drives the shortened
B column upwards and material A fills the void, thus thickening the bridge that joins
the two columns of A. However, around t = 5.3× 10−4 (Fig. 4 (b)) the two A columns
pinch off from the bridge and are pulled towards the upper substrate in the same way
that the shortened column of B was. Interactions between the retracting A columns
and their neighbours lead to additional merging and pinch-off events (Fig. 4 (c) and
(d)), thus creating a very complex set of dynamics. For t = 1.1×10−2 the morphology
has been reduced to two pairs of deformed A-B columns, with the A columns con-
taining pockets of material B. These pockets are diffusively absorbed into the larger B
columns (Fig. 4 (e)), and eventually the system settles into a state consisting of two
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Figure 4: Top (a)–(c) and bottom (d)–(f): Joining two columns of A-rich material ini-
tiates a rapid sequence of merging events that leads to a coarser set of columns.
The columns of phase A are initially joined by creating a bridge between them at the
bottom substrate, effectively shortening the column of B that separates them (a). The
shortened column is pulled to the upper substrate to minimise its interface, but as this
happens the two columns of A detach from the bridge (b). These also begin to move
upwards but as they do they come into contact with other columns of A (c) to initiate
further detaching, merging, and coarsening events ((d) and (e)). The system then set-
tles into a state of coarser columns (f). The solution is shown at times t = 2.7× 10−5,
1.1× 10−3, 2.1× 10−3, 4.3× 10−3, 2.1 × 10−2, and 0.37. Merging two columns of the
same phase in panel (f) causes the shortened column to retract; however, while it
does it gets diffusively absorbed into the larger column of the same phase, resulting
in a system with only one column of each phase.
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pairs of A-B columns (Fig. 4 (f)). This process can be repeated in principle, leading to
a fast coarsening of the striped morphology.

5.1.1 Comparison to the thin-film model

For our comparisons we choose again a 50:50 ratio of the two constituents but a
shallow contact angle so that the thin-film model (4.13) can be used with d = 2. We
start from the bilayer situation where a layer of the B-rich phase has formed at the
bottom surface and a layer of A-rich phase at the top, as a result, for example, of the
slow quenching process discussed section 3.

For the numerical solution of the thin-film model, we truncate the domain at x̃ = L∞

(with a choice for L∞ that was larger than 100) and impose hx̃ = 1, hx̃x̃x̃ = 0 there. At
x̃ = s̃, we impose h = 0 and hx̃ = 1 and require global mass conservation to hold,

∫ L∞

s̃(t̃)

h(x̃, t̃) dx̃ =

∫ L∞

s̃(0)

h(x̃, 0) dx̃.

The truncated domain is mapped onto the unit interval by the linear transformation
x̃ 7→ (x̃− s̃(t̃))/(L∞ − s̃(t̃)) and the resulting problem is discretised using finite differ-
ences in space and implicit Euler in time. Step doubling was used to control the time
discretisation error. Initial conditions at t̃ = 0 are

s̃ = 0, h(x̃, 0) = d− hi(x̃) (5.2a)

where

hi(x̃) =

{

x̃− x̃2/4 for x̃ < 2

1 elsewhere.
(5.2b)

Notice that with this choice, we assume that initially, a thin hole filled by B-rich phase
has been created in the A-rich top layer giving rise to a contact line at the top sub-
strate, z = d = 2. The initial interface z = h(x̃, 0) satisfies the contact angle condition
hx̃ = −1 at x̃ = s̃.

In Fig. 5(a), the initial data (t̃ = 0) is shown by a dotted line: a hole filled with B-rich
material has been created in the A-rich phase. The contact line at x = s̃1(0) = 0
retreats, until the minimum minx h of the interface hits z = 0 at time t̃1 = 118 and
position x̃2 and forms a pair of new contact lines, one of which moves to the left, the
other, labelled s̃2(t̃), to the right. Thus, the B-rich layer is split into two parts. The left
part settles into an equilibrium, shown in Fig. 5(b), with the interface between the the
B- and A-rich phase located at z = 8.14 − x̃ as determined by conservation of the
B-rich phase in the leftmost stripe.
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The contact line z = 0, x̃ = s̃2(t̃) for the other part travels to the right, with a growing
rim forming in the B-layer ahead of it. The interface h(x̃, t̃) for x̃ < s̃2(t̃) is obtained
by restarting the simulations at t̃ = t̃1, with the initial position for the contact line at
s̃2 = x̃2 and using h(x̃, t̃1), for x > s̃2(t̃1) as initial profile (indicated by a dotted line in
(b)).

Eventually, in Fig. 5(b), the right moving and growing ridge hits the top substrate at
t̃3 = 229 and x̃ = x3, giving rise to another pair of contact lines. This splits the A-rich
layer into two parts. The left part equilibrates as a strip of A-rich phase between the
old B-A interface, at z = −x̃+8.14, and the new A-B interface at z = x̃−19.1. The last
expression follows from conservation of phase A. The contact line at z = 2, x̃ = s̃3(t̃)
for right part of the A-rich layer continues to evolve, with a decreasing minimum ahead
of it, that will eventually result in another rupture of the B-rich layer shown in Fig 5(c).
The evolution up to this point is obtained by restarting the simulation at t̃ = t̃3 with
s̃3(t̃2) = x2, using h(x̃, t̃2) for x̃ > s̃3(t̃3) as initial interface profile. As before, this initial
profile is indicated in the figure by a dotted line. The width of the first equilibrated A-
rich stripe is 13.0, which is very close to the prediction of 13.2 from the qualitative
argument made in the beginning of this section and in [12].

The accuracy of the thin-film model can be examined by running equivalent numerical
simulations using the phase-field model in (2.4) and applying the thin-film scalings in
(4.11) to the results. The thin-film initial condition given in (5.2) is converted into an
initial condition for the phase-field model using the leading-order composite solution
for the sharp-interface model (4.3) after the appropriate rescalings have been made.

When applying the thin-film scalings a value for the equilibrium contact angle θ is
needed. We choose a value of θ = 50◦, which is large enough to allow the topological
transition to be computed in a reasonable amount of time but small enough that the
thin-film limit is still captured in the phase-field model. We also approximate θ by
tan θ in the thin-film scalings to account for the loss of accuracy in the small-angle
approximation.

The bottom row of Fig. 5 shows the results of a phase-field simulation in the thin-film
limit. We have also taken χ ≡ 1 and ε = 0.2. A contact angle of 50◦ corresponds to a
substrate-material interface energy given by β = 0.64. The computational domain is
truncated at x = 80 which, in the thin-film scaling, corresponds to L∞ = 95.

The simulation confirms that an initial hole at the top of the bilayer can lead to a
receding contact line, which, in turn, will create a growing ridge in the bottom layer.
We find that at time t̃ = 162 this ridge comes into contact with the bottom substrate
and new contact lines are born at position x̃ = 8.7 (see Fig. 5(d)). The motion of
the new contact line on the bottom substrate creates a ridge in the upper layer which
comes into contact with the top substrate at time t̃ = 347 (shown in Fig. 5(e)). The
two contact lines on the bottom substrate settle into their equilibrium positions at at
x̃ = 8.6 and x̃ = 21.9. Moreover, the new contact line on the upper substrate creates
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Figure 5: Evolution of the interface between the phases after introduction of an initial
hole with B-rich phase (blue) penetrating the A-rich phase (red) at x̃ = 0, z̃ = 2.
The top row (with the subfigures labelled (a)-(c)) and the bottom row ((d)-(f)) show
the numerical results for the thin-film sharp-interface model (4.13) and for the phase-
field model (2.4) respectively. The initial hole widens and pushes the B-phase to the
right. This entails growth of the minima and maxima in the interface which gives rise
to alternating holes in the A- and B-layer and thus the formation of new contact lines.
Further details are given in the text.

21



h
(η
,t̃
)

t̃ = 0

 

 

0

1

2
Phase-field
Thin-film

h
(η
,t̃
)

t̃ = 29

0

1

2

η = (x − s(t̃))/(L∞ − s(t̃))

h
(η
,t̃
)

t̃ = 43

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

Figure 6: Comparison of the bilayer interface profiles computed using the phase-field
and thin-film models when the equilibrium contact angle is set to θ = 20◦. Before the
system is close to a topological transition (t̃ ≤ 29), the agreement between the two
models is excellent. However, when the maximum of the ridge is within an O(ε) dis-
tance from the upper substrate (t̃ = 43), a “suction” effect pulls the interface upwards
in the phase-field model, making the transition occur sooner than in the thin-film model
where this effect is absent.

another ridge in the lower layer which comes into contact with the bottom substrate at
time t̃ = 530. This is shown in Fig. 5(f).

We have continued the phase-field simulation until the topological transition is com-
plete and the bilayer has been transformed into a series of trapezoidal columns. The
widths of the second to fifth columns as measured from the line z = 1 are given by
15.3, 15.0, 15.0, and 14.8, respectively. These values are in good agreement with the
predicted value of 13.5 made using qualitative arguments.

From these results we can conclude that the thin-film and phase-field models agree
remarkable well on the geometrical aspects of the topological transition. However,
when comparing when each transition occurs in the two models, we see there are
significant quantitative discrepancies. To test whether these differences are a conse-
quence of using a large contact angle in the phase-field model which might prevent
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the thin-film regime from being accurately captured, the first topological transition has
been computed with the equilibrium contact angle reduced to 20◦. All of the other pa-
rameters are kept the same as above. Fig. 6 compares the interface profiles computed
using the phase-field and thin-film models at various times. The agreement between
the models is excellent for t̃ ≤ 29; however, differences in the solutions exist for larger
times. The source of this discrepancy is due to an apparent “suction” effect that oc-
curs in the phase-field model when the interfacial ridge gets within an O(ε) distance
from the upper substrate. This effectively pulls the ridge up towards the substrate,
making the topological transition occur sooner in the phase-field model than in the
thin-film model, where this suction effect is absent. Thus, the discrepancy between
the times of the topological transitions is not necessarily due to the phase-field model
being outside of the thin-film regime, but rather it is caused by substrate effects that
are neglected in the sharp-interface and thin-film models.

Competition between layer thickness and rim shedding We can use the thin-film
model easily explore what happens if the initial horizontal bilayer configuration does
not have an A-B ratio that is 50:50, in which case one of the layers will be thicker than
the other. If we consider a receding contact line at the bottom interface, then by setting
d to a value larger than two, we have a situation where the top, i.e., the A-rich layer
is thicker. The receding contact line forms a rim that eventually hits the top substrate,
provided d < 7.91. For larger d, the minimum immediately following the rim hits the
bottom substrate first, see Fig. 7 (a). Then, material is separated from the layer similar
to the shedding observed by Wong et al. [27] for surface diffusion. The material that
is left behind equilibrates into into a droplet configuration that typically touches only
one of the two substrates, rather than both as for the stripes. The numerical results
in Fig. 7 (a) were obtained for the thin-film model (4.13) with initial condition s̃ = 0,
h(x̃, 0) = hi(x̃), with hi as in (5.2b). The channel height was set to d = 20, although
the same results would be obtained for any d > 7.91 but with different values of t̃. This
behaviour is to be expected for thin-film equations with mobility n < 3/2, as shown
e.g. in [28, 29].

The same rim-shedding behaviour can also be observed in the phase-field model;
see Fig. 7 (b)–(d). In this case the thickness ratio of the upper to lower layer was
chosen to be 9:1, and the initial condition was formed using (5.2b) together with (4.3).
The equilibrium contact angle was set to 45◦ with ε = 0.32. The dynamics share
some quantitative and qualitative similarities with the thin-film model. By monitoring
the position of the contact line before the rim detaches, we find that it converges to the
t2/5 behaviour that is predicted from an asymptotic analysis of the thin-film equation
[29, 30]. However, a key difference between the models arises when the minimum
that follows the rim gets within an O(ε) distance from the lower substrate, as the rim
in the phase-field model is then rapidly pinched off from the main layer (Fig. 7 (b)).
This causes the rim to detach much sooner than it does in the thin-film model and as
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a consequence, the growth of the ridge is stunted. In this simulation the height of the
ridge when the rim detaches is approximately 4.3, which is significantly smaller than
the value of 7.9 found using the thin-film model. Upon detaching from the layer, the
rim evolves under the action of interface minimisation to form a droplet with a height
that is greater than the ridge of the rim; in this case the steady-state height of the
droplet is approximately 5.9. If the thickness of the upper layer is sufficiently small,
the top of the droplet will come into contact with the upper substrate and a column will
form. This suggests that for certain thickness ratios, the transformation from a bilayer
to a sequence of columns occurs via the intermediate processes of rim shedding and
droplet formation.

6 Conclusions and Outlook

In this paper, we considered substrate-induced phase separation and the dynamics
of the interfaces for a binary mixture in a thin film geometry, with a substrate at the top
and bottom but unconfined in the lateral direction. Using a Cahn–Hilliard model that
includes appropriate contributions from the substrate-material interfaces, we explored
the conditions under which multilayer domains form that are separated by thin inter-
face regions. In particular, we established when the cooling of the mixture below the
critical temperature gives rise to exactly two horizontal layers.

We show that a finite-size perturbation, specifically a hole in one of the layers, initiates
a cascade of transitions into a vertically striped state. While this is analysed via direct
numerical simulation of the initial boundary value problem for the Cahn–Hilliard model,
we exploit the multiple length scale separation to derive successively a sharp-interface
model and its corresponding thin-film approximation, and investigated the validity as
an approximation to the original phase-field model.

The thin-film model we have derived belongs to a class of parabolic PDEs for which
we can draw on a rich body of literature. For example, it was shown [28] that a thin-
film model with mobility of hn with n < 3 is consistent with a moving contact line
and a finite contact angle. Moreover, for dewetting problems, it was shown that for
a quadratic mobility, the static contact angle imposed by the intermolecular potential
also applies to the case where the contact line recedes [31], and in [30] that the
microscopic static contact angle is preserved. Similar arguments can be given for
n = 0, as is the case here, thus lending support to the assumption made here that
the static contact angle carries over to the dynamical (diffusive) case. Our analysis,
which is two dimensional, will benefit even more the study of application relevant
three-dimensional counterparts, since now we can exploit our new dimension-reduced
thin-film model. A well-known example, symmetry-breaking fingering instability of a
receding front in a 3D setting [28, 29, 32, 33].
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Figure 7: Evolution of the interface between the two phases in the thin-film (top) and
phase-field (bottom) models when the initial layers are not of equal thickness. When
this is the case, the location of the second hole depends on the relative thickness of
the layers. In both simulations shown here, the upper layer is sufficiently thick that the
second hole is nucleated on the lower substrate, causing a drop to form instead of a
column. Top (a): Simulation of the thin-film model. The initial condition is denoted by
a dotted line, and three profiles are shown at times t̃ = 2× 103, 8× 103 and 2.2× 104

by solid lines. The corresponding contact lines positions are s̃ = 64.4, 117 and 180
respectively. The arrow indicates the direction of time. The last profile is taken at the
moment where the minimum touches z = 0, and the height of the ridge at this time is
7.91. Bottom (b)–(d): Simulation of the phase-field model with an equilibrium contact
angle of 45◦. When the minimum ahead of the rim is within an O(ε) distance from the
lower substrate, the rim is rapidly pinched off from the layer which stunts the growth
of the ridge. Here, the height of the ridge is approximately 4.3 when the rim detaches,
which is much smaller than the corresponding height in the thin-film model.
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The combination of the phase-field, sharp-interface, and thin-film models developed
here provides efficient descriptions of structure formation as well as long-time dynam-
ics. For example, if one of the horizontal layers is much thinner than the other, the
thin-film model reveals that the cascading rupture events will only occur in the thinner
of the two layers by repeated shedding of the rim, thus leading to an array of droplets
of the minority phase rather than a series of vertical stripes. While for antisymmetric
substrates the stripes have straight edges, suggesting a very slow coarsening of the
domains, for symmetric substrate configurations the stripes are lense-like. It would
be interesting to look at the coarsening behaviour and how it can be captured by the
sharp-interface or thin-film model. If, on the other hand, we start from a structured
state with sufficiently narrowly spaced vertical stripes, a fast coarsening occurs by
merging stripes once initiated by a suitable perturbation. All this demonstrates how
the interplay of geometrical confinement, bulk phase separation, and interface energy
effects give rise to a large variety of structure-forming processes that can be tuned to
achieve design goals for specific technological applications.
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A Monotonically decreasing free energy

The evolution of the phase-field model given by

φt = ∇ ·
[

(1− φ2)∇µ
]

, (A.1a)

µ =
1

T

[

f ′(φ)− ε2∆φ
]

(A.1b)

with boundary conditions

µz = 0, εφz = f ′

0((1 + φ)/2) at z = 0, (A.1c)

µz = 0, εφz = f ′

0((1− φ)/2) at z = d, (A.1d)

is such that it monotonically decreases the free energy of the system when the tem-
perature is held at a fixed value. The free energy for this system is given by

F [ϕ]

T
=

1

T

∫ d

0

∫ +∞

−∞

f(φ(x, z)) +
ε2

2
|∇φ(x, z, t)|2 dxdz

+
2ε

T

∫ +∞

−∞

f0((1 + φ(x, 0, t))/2) dx+
2ε

T

∫

−∞

+∞

f0((1− φ(x, d, t))/2) dx.
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To see that this is a monotonically decreasing function of time, we differentiate with
respect to time and apply the divergence theorem to obtain

1

T

dF

dt
=

1

T

∫ d

0

∫ +∞

−∞

[

f ′(φ)− ε2∆φ
]

φt dxdz

+
ε

T

∫ +∞

−∞

[−εφz(x, 0) + f ′

0((1 + φ(x, 0, t))/2)]φt(x, 0, t) dx

+
ε

T

∫

−∞

+∞

[εφz(x, d, t)− f ′

0((1 + φ(x, d, t))/2)]φt(x, d, t) dx.

(A.2)

The boundary integrals vanish due to the boundary conditions in (A.1c) and (A.1d),
and using the bulk equations (A.1a) and (A.1b), this expression can be simplified to

1

T

dF

dt
=

∫ d

0

∫ +∞

−∞

µ∇ ·
[

(1− φ2)∇µ
]

dxdz. (A.3)

Another application of the divergence theorem yields

1

T

dF

dt
= −

∫ d

0

∫ +∞

−∞

(1− φ2)|∇µ|2 dxdz, (A.4)

where the boundary terms vanish because of the no-flux conditions on the substrates.
Assuming the order parameter satisfies −1 ≤ φ ≤ 1, we have

1

T

dF

dt
≤ 0, (A.5)

thus completing the proof.

The same result also holds for the rescaled system in (2.4) which has a free energy
given by (after dropping the hats)

F =

∫ d

0

∫ +∞

−∞

f(φ(x, z)) +
ε2

2
|∇φ(x, z, t)|2 dxdz

+ ε

∫ +∞

−∞

f0(φ(x, 0, t)) dx+ ε

∫

−∞

+∞

f0(−φ(x, d, t)) dx.

(A.6)
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