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Abstract

Consider a finite weighted oriented graph. We study a probability measure on the set of span-

ning rooted oriented forests on the graph. We prove that the set of roots sampled from this mea-

sure is a determinantal process, characterized by a possibly non-symmetric kernel with complex

eigenvalues. We then derive several results relating this measure to the Markov process associ-

ated with the starting graph, to the spectrum of its generator and to hitting times of subsets of the

graph. In particular, the mean hitting time of the set of roots turns out to be independent of the

starting point, conditioning or not to a given number of roots. Wilson’s algorithm provides a way

to sample this measure and, in absence of complex eigenvalues of the generator, we explain how

to get samples with a number of roots approximating a prescribed integer. We also exploit the

properties of this measure to give some probabilistic insight into the proof of an algebraic result

due to Micchelli and Willoughby [13]. Further, we present two different related coalescence and

fragmentation processes.

1 A random set problem and a forest measure

1.1 “Well distributed points” in a given graph

Let us consider the following problem. We have a square chessboard with sides of length 2l and
a simple random walk on it. More precisely, think the chessboard as the square lattice box X :=
{1, · · · , 2l}2 with the simple random walk X on X . Denote by TR the hitting time of a set R ⊂ X
for the walk X and by Px the law of X starting from x ∈ X . Can you find a probability law P on the
subsets R of X with cardinality |R| = |X |/2 such that

E [Ex [TR]] does not depend on x ?

In other words, can you sample 2l2 “well distributed points” among the 4l2 points of X ? In this exam-
ple, a possible simple answer is the following. Take R to be the set of either white or black squares of
the chessboard with probability 1/2.

One could then raise the following questions:

• What if the random subsets R are required to have any other cardinality |R| = m ≤ 4l2?

• What if, instead of the chessboard X , we consider any other finite weighted (possibly oriented)
graph?

We notice that the case m = |X | is trivial, and that in the case m = 1, it is known that it suffices to
choose the point in X according to the stationary measure of the walk (see e.g. [11]). One of the main
goals of this paper is to answer these questions for 1 < m < |X |.
In the sequel, we work on a finite oriented weighted graph with the natural irreducible Markov chain
associated with it. We study a certain probability measure on the set of spanning rooted oriented
forests on this graph. It will turn out that the set of roots of the forest sampled from this measure, with
conditioning on the number of roots, provides a solution to this problem in full generality. As far as
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practical sampling issues are concerned, by using an algorithm due to Wilson and Propp [19, 15] we
can sample this measure without conditioning. Furthermore, under the assumption that the generator
of the random walk associated with the starting weighted graph has only real eigenvalues, we explain
how to get a sample with an approximate prescribed number m of roots within an error of order

√
m.

In Section 1.2 below, we introduce the main framework and notation, and in Section 1.3 we describe
the structure of the paper and the results we derive.

1.2 Forest measures

Let X be a Markov process on a finite state space X , with |X | = n. Assume X is irreducible with
generator given by

(Lf)(x) =
∑

y∈X

w(x, y)[f(y)− f(x)], x ∈ X , (1.1)

with f : X → R arbitrary and {w(x, y) ∈ [0,∞) : (x, y) ∈ X × X} a given collection of
non-negative transition rates. Note that such a Markov process has variable speed depending on the
current state, namely, if the chain is at position x, the next jump will be performed after an exponential
time of rate

w(x) =
∑

y∈X\{x}

w(x, y) <∞. (1.2)

The collections of rates induces a structure of oriented weighted graph on X . In fact, consider the set
of oriented edges

E := {(x, y) ∈ X × X : x 6= y and w(x, y) > 0} , (1.3)

then G := (X , E) is a weighted oriented graph.

The main object of our investigation is a measure on the spanning rooted oriented forests in E . Let F
denote the set of spanning forests constituted by oriented rooted trees (oriented towards their roots).
For φ ∈ F , define the weight of a such a forest by

w(φ) :=
∏

e∈φ

w(e). (1.4)

Definition 1.1. (Standard forest measure) Denote by ρ(φ) ⊂ X the set of roots of a forest φ ∈ F ,

i.e., the set of points which are the roots of the trees constituting φ. Fix q > 0 and define on F the

measure wq given by

wq(φ) := q|ρ(φ)|
∏

e∈φ

w(e) = q|ρ(φ)|w(φ). (1.5)

By normalizing it via the partition function:

Z(q) :=
∑

φ∈F

wq(φ), (1.6)

we denote the resulting probability measure by

νq(φ) :=
wq(φ)

Z(q)
, φ ∈ F . (1.7)

We call standard measure, standard partition function and standard probability measure, the objects

defined by equations (1.5), (1.6), and (1.7), respectively.
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Remarks: There are obvious similarities between the weights appearing in equation (1.5) and those of
Fortuyn-Kasteleyn model. We stress here the main differences. FK-percolation is defined on spanning
graphs that are not required to be forests. However, in the zero limit of its main parameters, properly
rescaled, the model does converge to a measure on spanning forests (see e.g. [7]). Nevertheless, our
forests are rooted and this extra structure introduces an entropic factor in comparison (by projection
on unrooted forests) with this zero limit of FK-percolation.

We note that the weights in (1.4) are those associated by Freidlin and Wentzell with the so called “W -
graphs” [6] and we will recover some of their results in this paper. Our standard forest measure has
also been studied in various works. For example to sample points from the stationary measure of the
random walk [15], or to study in [8] recurrent configurations of Abelian dissipative sandpile introduced
in [18]. This spanning forest measure and other associated objects we will discuss later are actually a
variation on the theme of uniform spanning trees and loop-erased random walks. We refer to [10] and
references therein for the vast literature on the subject.

As it will become clear, the measure in Definition 1.1 and the associated partition function encode
several information related to the chainX . At the occurrence, we will derive several results related with
slightly more general measures and partition functions. To this aim, we introduce here some further
notation. Let us first introduce a natural generalization of the measure in Definition 1.1. Let Mn×n be
the space of square matrices of size n. Given a collection of extra weights {q(x) ∈ [0,∞] : x ∈ X},
let Q be the diagonal matrix in Mn×n defined by (Q)i,i := q(xi) with xi ∈ X for i = 1, . . . , n. We
anticipate that these extra weights will be interpreted as killing rates for the chain X . Set S := {x ∈
X : q(x) = +∞} and define the measure wQ by

wQ(φ) := w(φ)
∏

x∈ρ(φ)\S

q(x)1{S⊂ρ(φ)}. (1.8)

By assuming that there is at least one x ∈ X with q(x) > 0 we can turn wQ into a probability
measure on F by normalizing it via the partition function:

ZQ :=
∑

φ∈F

wQ(φ), (1.9)

and we denote the resulting probability measure by

νQ(φ) :=
wQ(φ)

ZQ

, φ ∈ F . (1.10)

This is the general form of the probability measure at the core of our investigation.

When answering the questions raised in Section 1.1, we need the following special case of the gen-
eralized measure in (1.8). For a given subset R ⊂ X , suppose that the collection of extra weights
{q(x) ∈ [0,∞], x ∈ X} is such that

q(x) =

{

+∞ if x ∈ R,
q ≥ 0 (q > 0 if R = ∅) otherwise.

(1.11)

In this case, S = R, and we write

wq,R(φ) := q|ρ(φ)\R|w(φ)1{R⊂ρ(φ)} and ZR(q) :=
∑

φ∈F

wq,R(φ), (1.12)

for the measure and the partition function, wQ(·) and ZQ, respectively. In particular, for q = 0,
w0,R(φ) = w(φ)1{ρ(φ)=R} and ZR(0) =

∑

φ:ρ(φ)=R w(φ). Note further that, when R = ∅, we

recover the standard measure and partition function, wq,∅(·) = wq(·) and Z∅(q) = Z(q).

In the sequel we will denote by Φ a random variable on a probability space (Ω,P) with values in F
and law νQ. To avoid ambiguities, when needed, we write PQ, Pq,R or Pq in place of P.
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1.3 Results and structure of the paper

1.3.1 Main results

Our analysis of the forest measures introduced above will lead us to several results. Before describing
them and the organization of the paper, we emphasize herein what we consider as our three main
results.

First, in Theorem 3.4 we prove that the set of roots ρ(φ) sampled from the standard measure in (1.5)
is a determinantal process. More precisely, denoting by K(x, y) = Px(X(Tq) = y), for x, y ∈
X , the transition probabilities of the Markov chain X in (1.1) observed at independent exponentially
distributed times of parameter q, we have that

Pq (A ⊂ ρ (Φ)) = detA(K), A ⊆ X ,

with detA(K) being the determinant of K restricted to A (see Section 1.3.3 below for the notation).
This echoes Burton and Pemantle transfer current theorem ( [2], Thm 1.1). Our kernel K is however
not required to be reversible (and with possibly complex eigenvalues), and we present a direct proof
not relying on transfer currents.

The second result is an answer to the questions in the introductory Section 1.1. In fact, in Theorem 3.5
we give a formula for the hitting times of random sets constituted by the roots of our standard random
forests, with or without conditioning on having a fixed number of roots. In particular, such a formula
is independent of the starting point x. While Wilson and Propp algorithm gives a way to sample the
unconditioned measure, in Section 3.2 we explain how to obtain, in absence of complex eigenvalues,
a sample with approximately m roots, with an error of order

√
m, for any m ≤ n.

Our third result concerns a non-trivial algebraic statement on symmetric matrices derived in [13], Thm
3.2 therein. This theorem has been used in some recent probabilistic works [5, 14] to study absorption
times of reversible Markov chains on general finite graphs, as a key tool to define, in such a general
setting, the local equilibria introduced in [3]. In [14], the author motivates the importance of having a
probabilistic interpretation of Micchelli and Willoughby algebraic result. In Section 3.3 we restate their
result and give, by means of our standard forest measure, probabilistic insights into their proof.

1.3.2 Organization of the paper and results description

The rest of the paper is organized as follows.

Background material: Section 2 is a warm-up section where we provide some known background
material. In Section 2.1 we prove in a slightly different way a result originally due to Marchal [12] on
loop-erased trajectories, Proposition 2.1. In Section 2.2 we recall Wilson’s algorithm, Definition 2.2,
and as a corollary of Proposition 2.1, following [12, 15], we show how to sample our unconditioned
measures, Corollary 2.3.

Results: Section 3 is the bulk of this work where we derive our results. Each subsection presents
some new results related with our forest measures. Section 3.1 presents the first analysis on the forest
measures, in Theorem 3.1 and Corollary 3.2 therein we show some connection of these measures
with the spectrum of the chain X . In Theorem 3.4 we prove that the set of roots is a determinantal
process. In Section 3.2 we prove Theorem 3.5 on the hitting times of the roots set, answering the
questions raised in Section 1.1. Section 3.3 concerns a partial probabilistic interpretation of the proof
and result by Micchelli and Willoughby [13]. In Section 3.4 we mention a couple of coalescence and
fragmentation processes associated with our measures. One of them is obtained by coupling together
all the standard forest measures for different values of q. The focus of Section 3.5 is on the ‘rooted
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partitions’ induced by our spanning forests, Proposition 3.11, and on the cumulants, or truncated
correlation functions, of the roots process, Section 3.5.2.

Appendix: Appendix A is devoted to technical known results used along the paper, which we derive
in our context in order to have a self-contained work. In Appendix A.1, we recall what is the Schur
complement for block matrices and its probabilistic interpretation, Proposition A.1. In Appendix A.2,
we give different proofs of two lemmas from Freidlin and Wentzell (Lemmas 3.2, 3.3 in [6]) on hitting
distribution and times of subsets of the graph, again by means of our forest measure. These lemmas
are used in Section 3.2. Appendix A.3 concerns the notion of divided differences which are used in
Section 3.3. We state three equivalent definitions and prove a related lemma.

To conclude this introductory section and to simplify the reading, we fix here some notation. Further
notation will be introduced at the occurrence.

1.3.3 Main notation

• Set theory

– Spaces: X will be our reference state space for the Markov process X . In the sequel,
we work with extensions of X which will be denoted by X̄ or with more general spaces
denoted by Y .

– Subsets: the symbols ⊂ and ( will be used as inclusion and strict inclusion, respectively.
Subsets will be generally denoted by capital letters: A,B,R, S.

– Complement: unless specified, we always deal with subsets of the space X . For a given
subset A ⊂ X , we denote by Ac := X \ A the complement of A in X .

• Graphs

– Edges: E introduced in (1.3) stands for the set of oriented edges on X .

– Extreme points of oriented edges: for an oriented edge e = (x, y) ∈ X × X , we
denote the starting and the ending points of e by e = x and e = y, and by w(e) :=
w(x, y) the weight associated to it.

– Forest space: F denotes the set of spanning rooted oriented forests on X .

– A given forest: elements of F are denoted by φ ∈ F , which can also be seen as subsets
of E .

– Roots: given φ ∈ F , ρ(φ) denotes the set of the roots of the trees constituting φ.

– Tree associated with a given vertex: given x in X and φ ∈ F we denote by τφ(x) the
unique tree in φ that covers x. We write ρ(τφ(x)) = {x} when τφ(x) is rooted at x.

• Matrix

– Square matrices space: the space of square matrices with n columns and n rows is
denoted by Mn×n.

– Restriction of a matrix: given a matrix M ∈ Mn×n with elements xi’s in X , for any
subset A of X , [M ]A stands for the matrixM restricted to its elements doubly indexed in
A.

– Determinants: detA(M) will denote the determinant of the matrix obtained from M
by removing all the lines and columns with indexes outside A ⊂ X , i.e., detA(M) =
det([M ]A).
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• Random walks

– Markov processes and discrete skeletons: X and Y will denote Markov processes on
the spaces X and Y , respectively. X̂ and Ŷ will denote some associated discrete-time
Markov chains.

– Generators: L and L denote the generators of the Markov processes X and Y respec-
tively. For a given subset A of X , LA stands for the generator of the Markov process X
restricted to the component A. While LA denotes the trace of the process Y on some
fixed subset A of Y .

2 Background material

2.1 On loop-erased trajectories

We introduce here a slightly more general setting than in Section 1.2.

Let Y be a Markov process on a finite state space Y . Assume Y is irreducible with generator given by

(Lf)(y) =
∑

z∈Y

α(y, z)[f(z) − f(y)], y ∈ Y , (2.1)

with f : Y → R arbitrary and {α(y, z) ∈ [0,+∞] : (y, z) ∈ Y × Y} a given collection of
non-negative transition rates. Let

α(y) :=
∑

z∈Y\{y}

α(y, z) ∈ [0,∞]. (2.2)

Let B be a subset of Y such that

{y ∈ Y : α(y) = +∞} ⊂ B ⊆ Y , (2.3)

so that, α(y) <∞ for any y ∈ Bc := Y \B, the complement of B in Y .

Denote by γ(B, l) = (y0, . . . , yl) a self-avoiding path of l + 1 points and length l such that yi ∈ Bc

for i = 0, . . . , l − 1 and yl ∈ B. For y0 ∈ Bc, let Py0
the law of the random walk Y when starting

from y0. Denote by ΓB a random trajectory obtained from Y under Py0
as follows. Stop the walk Y

when it enters the set B for the first time and erase all its loops. After this procedure, we are left with
a self-avoiding trajectory of variable length. In the next proposition we compute the probability that ΓB

equals a given trajectory γ(B, l) of length l. To simplify the proof, we use the discrete skeleton of the
Markov process Y on Bc. This justify the following definitions.

Set
ᾱ := max

y∈Bc
α(y) <∞, (2.4)

and let P̂ ∈ Mm×m, with m = |Y |, be the transition matrix identified by the entries

p̂(y, z) :=















δy,z if y ∈ B
α(y, z)/ᾱ if z 6= y and y ∈ Bc,

1 −
∑

x∈Y\{y}

p̂(y, x) if y = z ∈ Bc.
(2.5)

Such a matrix P̂ is a Markovian transition matrix for a discrete-time random walk Ŷ on Y . In particular,
for an arbitrary function f , by construction we have that

(Lf)(y) = (ᾱ(P̂ − 1)f)(y), for all y ∈ Bc. (2.6)
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We are in shape to prove the claimed proposition, by using a nice independence argument we learned
from Laurent Tournier [17].

Proposition 2.1. (Marchal [12]) Consider the random walk Y on Y with generator L as in (2.1). Fix

y0 ∈ Bc. Then, under Py0
,

Py0
(ΓB = γ(B, l)) =

l−1
∏

i=0

α(yi, yi+1)
detBc\{y0,...,yl−1}(−L)

detBc(−L)
, (2.7)

with the matrix notation according to Section 1.3.3 and γ(B, l) = (y0, . . . , yl) a self-avoiding path of

length l such that yi ∈ Bc for i = 0, . . . , l − 1 and yl ∈ B.

Proof. For the discrete chain Ŷ , let T̂+
y0

and T̂B be the first return time to y0 and the hitting time of B,

respectively. More precisely, T̂+
y0

:= inf{k ≥ 1 : Ŷk = y0} and T̂B := inf{k ≥ 0 : Ŷk ∈ B}. Note
that by definition of ΓB , we have that

Py0

(

ΓB = γ(B, l)|T̂+
y0
< T̂B

)

= Py0
(ΓB = γ(B, l)) .

As a consequence, we can write:

Py0
(ΓB = γ(B, l)) = Py0

(

ΓB = γ(B, l)|T̂+
y0
< T̂B

)

Py0

(

T̂+
y0
< T̂B

)

+ Py0

(

ΓB = γ(B, l), T̂+
y0
> T̂B

)

= Py0
(ΓB = γ(B, l))Py0

(

T̂+
y0
< T̂B

)

+ Py0

(

ΓB = γ(B, l), T̂+
y0
> T̂B

)

.

(2.8)

It follows from (2.8) that

Py0
(ΓB = γ(B, l)) =

Py0

(

ΓB = γ(B, l), T̂+
y0
> T̂B

)

Py0

(

T̂+
y0
> T̂B

) . (2.9)

Denote by ly0
(T̂B) the local time Ŷ spends at y0 before entering B, and by [P̂ ]Bc the matrix P̂

restricted to Bc, then

1

Py0

(

T̂+
y0
> T̂B

) = Ey0
[ly0

(T̂B)] =
∑

k≥0

[P̂ ]kBc(y0, y0)

= ([1− P̂ ]Bc)−1(y0, y0) =
detBc\{y0}(1− P̂ )

detBc(1− P̂ )
,

(2.10)

where the last equality follows by Cramer’s formula for an inverse matrix.

On the other hand, for the numerator in the r.h.s. of equation (2.9), we can write

Py0

(

ΓB = (y0, . . . , yl), T̂
+
y0
> T̂B

)

= p̂(y0, y1)Py1

(

ΓB∪{y0} = (y1, . . . , yl)
)

. (2.11)
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By plugging (2.10) and (2.11) into (2.9), and iterating, we have that

Py0
(ΓB = γ(B, l)) =p̂(y0, y1)Py1

(

ΓB∪{y0} = (y1, . . . , yl)
) detBc\{y0}(1− P̂ )

detBc(1− P̂ )

= · · · =
l−1
∏

i=0

p̂(yi, yi+1)
detBc\{y0,...,yl−1}(1− P̂ )

detBc(1− P̂ )

=ᾱ−l
l−1
∏

i=0

α(yi, yi+1)
detBc\{y0,...,yl−1}(−L/ᾱ)

detBc(−L/ᾱ)

=
l−1
∏

i=0

α(yi, yi+1)
detBc\{y0,...,yl−1}(−L)

detBc(−L)
.

2.2 Wilson’s algorithm

We introduce here the algorithm due to Wilson and Propp [15] which allow us to sample the measure
(1.10). First, we extend the Markov process X defined through (1.1) on X to a Markov process X̄ on
the space X̄ = X ∪ {∆} by interpreting ∆ as an absorbing state and by adding some killing rates.
Consider the space X , with |X | = n. Assume a collection of killing rates {q(x) ∈ [0,∞] : x ∈ X}
is given, and let Q be the diagonal matrix in Mn×n defined by (Q)i,i := q(xi) with xi ∈ X for
i = 1, . . . , n. Consider the Markov process X̄ on the finite state space X̄ with generator given by

(Lf)(x) =

{

(Lf)(x) + q(x)[f(∆) − f(x)], if x ∈ X ,
0, if x = ∆.

(2.12)

with f : X̄ → R arbitrary, and L defined in (1.1). In particular, the matrix −L associated with the
generator in (2.12) satisfies

[−L]X = Q− L. (2.13)

Next, we describe the algorithm. For any A ⊂ X̄ , note that, due to irreducibility, TA := inf{t ≥ 0 :
X̄t ∈ A} is a.s. finite.

Definition 2.2. (Wilson’s algorithm)

1 Start the process X̄ from any point x1 ∈ X until it reaches the absorbing state ∆.

2 Erase all the loops of the trajectory described by X̄ up to time T∆. Call γ1(∆) this self-avoiding

trajectory. (γ1(∆) is such that ∆ ∈ γ1(∆).)

3 If γ1(∆) covers the whole X̄ stop, else pick any point x2 ∈ X \ {γ1(∆)}, with {γ1(∆)}
denoting the set of points covered by γ1(∆). Start the process X̄ from x2 until it hits the set

{γ1(∆)}.

4 Erase all the loops of the trajectory described by X̄ starting from x2 up to time T{γ1(∆)}. Call

γ2(∆) this self-avoiding trajectory.

5 If ∪i=1,2{γi(∆)} = X̄ stop, else pick any point x3 ∈ X \ ∪i=1,2{γi(∆)}. Start the process

X̄ from x2 until it hits the set ∪i=1,2{γi(∆)}.

6 Iterate until X̄ is covered.
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Denote by TX̄ the set of spanning oriented trees on X̄ rooted at ∆. This algorithm produces in finite
time an element τ of TX̄ . As a corollary of Proposition 2.1, we can easily compute the probability that
the algorithm produces a given τ ∈ TX̄ .

Corollary 2.3. Fix a tree τ ∈ TX̄ . Let ∂ρ(τ) := {e ∈ τ : e ∈ {∆} ∪ S} be the set of edges in τ
connected to the root ∆ (possibly via the edges with infinite rate from S to ∆). Denote by P(Wil = τ)
the probability that Wilson’s algorithm produces the tree τ . Then

P(Wil = τ) =





∏

e∈∂ρ(τ)

q(e)









∏

e∈τ\∂ρ(τ)

w(e)





detX\S(−L)
. (2.14)

Proof. Recall the notation in Proposition 2.1. Set Y = X̄ = X ∪ {∆} and Y = X̄ . Start with
B = {∆} ∪S. By the definition of the algorithm, the proof follows by iterating the formula in equation
(2.7) where at each iteration we set the right B according to the given tree τ . Whatever the choice of
starting points in Wilson algorithm we get the same result.

We conclude this section by observing that there exists a natural bijection between F and TX̄ . Indeed,
given φ ∈ F , let τ(φ) be the unique element in TX̄ obtained from φ by adding all the edges connecting
the roots in φ to ∆, i.e. add all edges e such that e ∈ ρ(φ) and e = ∆. Vice versa, given τ ∈ TX̄ ,
by removing all edges e ∈ ∂ρ(τ) we can identify a unique element φ ∈ F . This simple observation
together with Corollary 2.3 allow us to sample the measure in (1.10) using Wilson’s algorithm.

3 Results

This section is the bulk of the paper containing our main theorems. Each subsection is devoted to
some new results relating the Markov chain X to the law of the forest at the core of our investigation.

3.1 The forest and its roots

We start here to analyze the measure introduced in (1.10) on the space F of spanning rooted oriented
forests on X . We compute the partition function, we identify the distribution of the number of roots in
the standard case and we prove that the roots process is a determinantal one.

Theorem 3.1. (Partition function and spectrum) Assume a collection of killing rates {q(x) ∈
[0,∞] : x ∈ X} is given, and let Q be the diagonal matrix in Mn×n defined by (Q)i,i := q(xi) with

xi ∈ X for i = 1, . . . , n. Let νQ the probability measure on F in (1.10). Then

ZQ = detX\S(Q− L), (3.1)

and, recalling the notation from Section 2.2,

νQ(φ) = P(Wil = τ(φ)). (3.2)

In the case q(x) ≡ q > 0, we recover the standard probability measure in (1.7), and the standard

partition function in (1.6) satisfies

Z(q) = χL(q), (3.3)
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Figure 1: Samples from νq for q = .001 on the two-dimensional 512 × 512 torus with uniform rates
equal to 1 between nearest neighbours for the first picture and, for the second picture, with an ad-
ditional northward drift, such that w(x, y) = 1.2 if y is the northern nearest neighbour of x and
w(x, y) = 1 otherwise. The third picture is a sample from νq for the same q = .001 on the 987×610
rectangular grid and for Metropolis random walk in a Browian sheet potential V , i.e., nearest neighbour
rates are given by w(x, y) = exp{−β[V (y)− V (x)]+} with β = .04 and V is the restriction to the
grid of a Brownian sheet with 0 value on the west and north sides of the box. In each picture different
blue levels are assigned to points in different trees, cyan lines separate neighbouring trees, and the
forest roots are at the centers of red diamonds.
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where χL is the characteristic polynomial of L, i.e.

Z(q) =

n−1
∏

i=0

(q + λi) = q

n−1
∏

i=1

(q + λi), (3.4)

where the λi’s are the eigenvalues of −L ordered by non-decreasing real part. When R 6= ∅ and

q ≥ 0, we have that

ZR(q) = χ[L]Rc (q) (3.5)

with χ[L]Rc being the characteristic polynomial of the sub-Markovian generator of the process killed in

R.

Remark: This kind of results goes back to Kirchhoff [9]. Here we include the non-reversible case and
stress the dependence in q.

Proof. As observed in the previous section, for each forest φ ∈ F there is a unique τ(φ) ∈ TX̄ . By
Corollary 2.3 we then have that

P(Wil = τ(φ)) =





∏

e∈∂ρ(τ)

q(e)









∏

e∈τ\∂ρ(τ)

w(e)





detX\S(−L)
=

wQ(φ)

detX\S(Q− L)
.

By summing over all φ ∈ F we immediately get (3.1). In fact,

ZQ :=
∑

φ∈F

wQ(φ) = detX\S(Q− L)
∑

φ∈F

P(Wil = τ(φ)) = detX\S(Q− L).

Moreover, if q(x) ≡ q > 0, then Q = q1 and Z(q) = det[q1− L] = χL(q).

In the standard case, an immediate consequence of Theorem 3.1 is a characterization of the law of
the cardinality of the set of roots.

Corollary 3.2. (Root number distribution) Assume the standard case q(x) ≡ q > 0 and that L
has real spectrum. Let N be a sum of n independent Bernoulli random variables with parameters

q/(q + λi). Under the probability measure Pq, the random variable |ρ(Φ)| counting the number of

roots (or equivalently, of trees) in Φ has the same law as N .

Proof. Observe that the coefficient of degree k in

Z(q) =
∑

φ

q|ρ(φ)|w(φ)

is the total weight of the set of forest with exactly k roots. Since Z(q) =
∏

i(q + λi) we get,

Pq (|ρ(Φ)| = k) =
1

Z(q)

∑

φ∈F :|ρ(φ)|=k

wq(φ) =

(

n−1
∏

i=0

(q + λi)

)−1

qk
∑

I∈P[n−k]

∏

i∈I

λi

=
∑

I∈P[n−k]

[

∏

i∈I

(

λi

q + λi

)

]





∏

j /∈I

(

q

q + λj

)





=
∑

J∈P[k]

[

∏

j∈J

(

q

q + λj

)

][

∏

i/∈J

(

1 − q

q + λi

)

]

,

where P[k] stands for the set of all possible k elements of the set {0, 1, . . . , n− 1}.
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Remark: When the spectrum of L does contain a non-real part, one can still compute the law of
|ρ(Φ)| and get the same algebraic expressions in terms of the eigenvalues. One can also compute
momenta by differentiating with respect to q the logarithm of the partition function. In particular, the
mean value and the variance are given by

Eq[|ρ(Φ)|] =

n−1
∑

i=0

q

q + λi
, (3.6)

Varq(|ρ(Φ)|) =

n−1
∑

i=0

q

q + λi
−
(

q

q + λi

)2

. (3.7)

We note however that the contribution of the imaginary part of the eigenvalues can make uneasy the
comparison between variance and mean value, at least for small values of q. This is the reason why,
when dealing with the question of getting samples with a number of roots that approximates a given
m ≤ n, we will restrict ourselves to the real spectrum case.

Next, we prove that under PQ the set of roots ρ(Φ) \ S is a determinantal process as suggested after
[4] by the previous result. This is the content of Theorem 3.4 for which we will present an algebraic
and a probabilistic proof.

Let us first show a simple lemma. Consider the Markov process X̄ on X̄ = X ∪ {∆} defined via its
generator in (2.12). Let T∆ be the hitting time of {∆}. Denote by X̄(T∆,−) the last point visited by
the process X̄ before time T∆.

Let K be the transition matrix defined by

K(x, y) := Px(X̄(T∆,−) = y), for x, y ∈ X \ S. (3.8)

This transition kernel can also be expressed in terms of Green’s functions:

Lemma 3.3. For x, y ∈ X \ S, let

G∆(x, y) := Ex[ly(T∆)] = (Q− L)−1(x, y) (3.9)

be the Green’s function of the process X̄ on the subspace X \ S. Then

K(x, y) = G∆(x, y)q(y). (3.10)

Proof. We use the notation of Section 2.1 to work in time. Set Y = X̄ , Y = X̄ , B = {∆} and write

K(x, y) = Px(X̄(T∆,−) = y) =
∑

k≥1

Px(Ŷ (k − 1) = y, T̂∆ = k)

=
∑

k≥1

Px(Ŷ (k − 1) = y, T̂∆ ≤ k − 1)p̂(y,∆) = Ex[ly(T̂∆)]
q(y)

ᾱ
= G∆(x, y)q(y).

Note that, in the standard case q(x) ≡ q > 0, we can write

K(x, y) = Px(X(Tq) = y), for x, y ∈ X , (3.11)

with Tq being an independent exponential random variable of parameter q. In particular, ifGq(x, y) :=
Ex[ly(Tq)] is the Green’s function up to time Tq, then

K(x, y) = qGq(x, y) = q(q1− L)−1(x, y). (3.12)

12



Theorem 3.4. (Determinantal roots) Under νQ with finite killing rates (i.e. S = ∅), the set of roots in

φ is a determinantal process with kernel K defined in (3.8). Equivalently, for any A ⊂ X :

PQ (A ⊂ ρ (Φ)) = detA(K).

More generally, if S 6= ∅, ρ(Φ) \ S is still a determinantal process on X \ S with kernel K, that is:

PQ (A ⊂ ρ (Φ) \ S) = detA(K), for any A ⊆ X \ S. (3.13)

Proof. (Algebraic proof of Thm 3.4) Assume first S = ∅. Consider a setA ⊂ X with |A| = r of the
form A = {x1, x2, . . . , xr}. By choosing the different points in A as starting point at each iteration in
Wilson’s algorithm, by (2.7), we get

PQ ({x1, x2, · · · , xr} ⊂ ρ (Φ)) = q(x1)
det{x1}c(Q− L)

detX (Q− L)
q(x2)

det{x1,x2}c(Q− L)

det{x1}c(Q− L)
× · · ·

· · · × q(xr)
detAc(Q− L)

det{x1,...,xr−1}c(Q− L)
=

[

r
∏

i=1

q(xi)

]

detAc(Q− L)

detX (Q− L)

=
detAc(Q− L)

detX (Q− L)
detA(Q).

(3.14)
In case A = X , the claim is straightforward since equation (3.14) reads

PQ (ρ (Φ) = X ) =
det(Q)

det(Q− L)
= det

(

(Q− L)−1
)

det(Q) = det
(

(Q− L)−1Q
)

,

and the r.h.s. equals det(K) due to Lemma 3.3.

In case A ( X , we can use the Schur complement (see (A.15) in Appendix A.2) to show that

detAc(Q− L)

detX (Q− L)
= detA

(

(Q− L)−1
)

.

Therefore, from equation (3.14), we have that

PQ ({x1, x2, · · · , xr} ⊂ ρ (Φ)) = detA((Q−L)−1)detA(Q) = detA((Q−L)−1Q) = detA(K),

where the second to the last equality is justified because Q is a diagonal matrix and the last equality
follows from (3.10).

When S 6= ∅, the proof is the same. We just have to subtract from the various considered sets.

Proof. (Probabilistic proof of Thm 3.4) To avoid a heavy notation, we consider only the case S = ∅.
Starting from the Markov process X and the killing rates q(x), we construct two different absorbing
states ∆A and ∆Ac accessible from the set A and Ac, respectively. Set Y = X ∪ {∆A,∆Ac}. Let
Y be the Markov process with generator

(Lf)(x) = (Lf)(x) + q(x)1{x∈A}[f(∆A) − f(x)]

+ q(x)1{x∈Ac}[f(∆Ac) − f(x)], if x ∈ X , (3.15)

and (Lf)(x) = 0 if x ∈ {∆A,∆Ac} with f : Y → R and L as in (1.1).

Next, consider the subspace ¯̄A := A ∪ {∆A,∆Ac} ⊂ Y . Let Y
¯̄A be the Markov process with

state space ¯̄A obtained as the trace of the process Y on ¯̄A. Let us remark two features of Wilson’s
algorithm. First, Wilson’s algorithm can be extended to the case of a state space with more than one
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absorbing state. In this case it produces a rooted spanning forest instead of a tree. Second, Wilson’s
algorithm is uniquely determined once we fix a state space with some absorbing set and a Markov
generator. These observations justify the following definitions. Let D be the set of ending points of
the edges starting from A after running Wilson algorithm on X̄ with absorbing state ∆ and generator
L. Similarly let D′ associated in the same way with A, when Wilson’s algorithm is run on ¯̄A with
absorbing set {∆A,∆Ac} and generator L ¯̄A. Observe at this point that

P(A ⊂ ρ(Φ)) = P(D = {∆}) = P(D′ = {∆A}),

and, by using Proposition 2.1, compute

P (A ⊂ ρ (Φ)) = P(D′ = {∆A}) =

∏

a∈A q(a)

det ¯̄A\{∆A,∆Ac}(−L ¯̄A)

=
detA(Q)

detA(−L ¯̄A)
= det

(

([

−L ¯̄A
]

A

)−1
)

detA(Q)

= detA

(

G
¯̄A
{∆A,∆Ac}

)

detA(Q),

(3.16)

where G
¯̄A
{∆A,∆Ac}(x, y) denotes the Green’s function of the process Y

¯̄A stopped when entering the

absorbing states {∆A,∆Ac}. Note now that for x, y ∈ A,

G
¯̄A
{∆A,∆Ac}(x, y) = GY

{∆A,∆Ac}(x, y) = GX̄
{∆}(x, y) (3.17)

with X̄ = X ∪ {∆} and GX̄
{∆} being the Green’s function of the process X̄ in (2.12). Finally, since

GX̄
{∆}(x, y) = (Q − L)−1(x, y) for x, y ∈ X , the claim follows by combining equations (3.16) and

(3.17).

Figure 2: On the one-dimensional torus our determinantal process is distributed like a simple gas
of particles with a repulsive “nearest-neighbour two-body interaction” that is quite easily detected by
comparison with a Bernoulli product measure. Here are samples of our roots set (first line of each
picture) and of the product measure (second line) with exactly 6, 12, 18, 24, 30, 36, 42, 48, 54 and 60
roots or points, respectively.
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Figure 3: On the two dimensional torus, the difference between the law of our roots set and that of
a Bernoulli product measure is far too subtle to be detected on a single sample. Walking away from
translation invariant models, we can find much more correlations. Here are pictures of a sample on
the two-dimensional torus with uniform rates equal to 1 and q = .002 (on the left), and of a sample
associated with the Metropolis random walk on the square grid in a Brownian sheet potential with
inverse temperature β = .16 and extinction rate q = 10−4 (on the right).

3.2 Hitting times of the set of roots

In this section we answer the question raised in the introductory Section 1.1. To this end, we focus on
hitting times of a given subset R ⊂ X , i.e., TR := inf{t ≥ 0 : Xt ∈ R}. In Appendix A.2, Lemma
A.3, we derive, in terms of our measures, a result originally due to Freidlin and Wentzell, see Lemma
3.3 in [6], which allows to give a formula for Ex[TR]. In this section, with the help of Lemma A.3, we
compute the expectation Ex[TR] when R is the set of roots sampled from νq , or Pq(·||ρ(Φ)| = m)
for any given m.

Theorem 3.5. (Hitting-time formulas) Let νQ be the forest probability measure defined in (1.10).
Then, for any x ∈ X ,

EQ

[

Ex

[

Tρ(Φ)

]]

=
∑

y∈X

1

q(y)
[PQ (ρ (τΦ(x)) = {y}) − PQ(ρ(Φ) = {y})] , (3.18)

with τΦ(x) being the unique tree in Φ containing x. In the standard case, q(x) ≡ q > 0, equation

(3.18) reduces to

Eq

[

Ex

[

Tρ(Φ)

]]

=
1

q
[1 − Pq (|ρ(Φ)| = 1)] =

1

q

(

1 −
n−1
∏

i=1

λi

q + λi

)

. (3.19)

Moreover, for m < n and any x ∈ X ,

Eq

[

Ex

[

Tρ(Φ)

]

| |ρ(Φ)| = m
]

=
Pq(|ρ(Φ)| = m+ 1)

qPq(|ρ(Φ)| = m)
. (3.20)
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Remark: Notice, that the r.h.s. in (3.20) can simply be expressed as the ratio between two successive
coefficients of the characteristic polynomial of the generator L.

Proof. Observe first that under νQ, the probability of sampling a given set R ⊂ X as set of roots can
be written as

PQ(ρ(Φ) = R) =

∑

φ:ρ(φ)=R wQ(φ)

ZQ

=
ZR(0)

ZQ

detR\S(Q), (3.21)

with ZR(0) as in (1.12). By using equation (3.21) together with (A.17), we have that

EQ[Ex[Tρ(Φ)]] =
∑

R6=∅

PQ(ρ(Φ) = R)Ex[TR]

=
∑

R6=∅: R⊃S

detR\S(Q)

ZQ

∑

y/∈R

∑

φ:ρ(τφ(x))={y},
ρ(φ)=R∪{y}

w(φ)

=
1

ZQ

∑

y/∈S

∑

R6=∅: R⊃S
R63y

∑

φ:ρ(τφ(x))={y},
ρ(φ)=R∪{y}

wQ(φ)

q(y)

=
1

ZQ

∑

y/∈S





∑

φ:ρ(τφ(x))={y}

wQ(φ)

q(y)
−

∑

φ:ρ(φ)={y}

wQ(φ)

q(y)





=
∑

y/∈S

1

q(y)
[PQ(ρ(τφ(x)) = {y}) − PQ(ρ(Φ) = {y})] .

(3.22)

The restriction of summing over y /∈ S can be removed, since 1/q(y) = 0 for y ∈ S. Hence (3.18)
holds and (3.19) readily follows when q(x) ≡ q > 0. The proof of (3.20) follows by an analogous
computation.

Note that the r.h.s. of (3.19) and (3.20) is uniform in the starting point x. This latter observation allows
to answer the questions in the introduction. In fact, no matter of the geometry of the graph and the
weights we are considering, we can take random subsets R = ρ(Φ) with law Pq(·||ρ(Φ)| = m) and
the formula in equation (3.20) says that the hitting times do not dependent on the starting point x.

To practically obtain a sample from νq with approximately m ≤ n roots when L has only real eigen-
values, one can use Wilson’s algorithm and play with the parameter q as follows (see Figure 4). If q is
such that

n−1
∑

i=0

q

q + λi
= m, (3.23)

one has an expected number of m roots with fluctuations of order
√
m or smaller (see Corollary 3.2).

In principle one should compute the eigenvalues of L, which is in general difficult for large n, and then
solve equation (3.23) in q. To overcome this obstacle, a possible alternative procedure is the following:

1 Start with any positive q and run Wilson’s algorithm with this parameter to get a sample from νq

with a certain number r of roots.

2 Replace q by q ∗m/r and run again Wilson’s algorithm with this new parameter to get a new
sample with another number of roots, say r again.

3 Iterate the previous step until a sample with r roots satisfying m− 2
√
m ≤ r ≤ m+ 2

√
m is

obtained.
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As a matter of fact, q 7→ qm/
∑

i q/(q + λi) rapidly converges to the solution of (3.23), hence the
algorithm rapidly reaches an end. Since we believe this procedure to be quite far from an optimal one,
we are only sketchy on this point.

Figure 4: We sampled approximatively 100000, 10000, 1000 and 100 roots on the 512 × 512 grid
for the random walk in a Brownian sheet potential with inverse temperature β = .04 by following the
procedure described in Section 3.2. We obtained 100443, 10032, 1042 and 111 roots in 8, 6, 6 and 8
iterations, respectively.

We conclude this section with an estimate on the mean hitting times above when taking the maximum
over the starting points x.

Proposition 3.6. (Max hitting-time estimates) Under the standard measure νq, the following bound

holds

Eq

[

max
x∈X

Ex

[

Tρ(Φ)

]

]

≤ 1

q
[Eq [|ρ(Φ)|] − Pq(|ρ(Φ)| = 1)] =

1

q

(

n−1
∑

i=0

q

q + λi

−
n−1
∏

i=1

λi

q + λi

)

.

(3.24)
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Furthermore, for any k ≤ n, we have the estimate

Eq

[

max
x∈X

Ex

[

Tρ(Φ)

]

| |ρ(Φ)| = m

]

≤ (m+ 1)Pq (|ρ(φ)| = m+ 1)

qPq (|ρ(φ)| = m)
. (3.25)

Proof. As we remarked before, Wilson’s algorithm works also when considering more than one ab-
sorbing state. Denote by TWil

R the running time of Wilson’s algorithm (i.e. the total running time of the
loop erased random walks needed to cover the whole graph) when the absorbing states form a non-
empty subsetR of X (this amounts to sample ν0,R). It can be shown (see e.g. [12], Proposition 1) that

the mean running time can be expressed in spectral terms as
∑|R|−1

i=0
1

λi,R
, with λi,R being the eigen-

values of the operator [L]Rc , the sub-Markovian generator associated with the process absorbed in
R1. Note at this point that we can overestimate the l.h.s. of (3.24) by the expectation of TWil

ρ(Φ). Hence,

using (3.5) and looking at the coefficient of degree 1 in ZR(q),

Eq

[

max
x∈X

Ex

[

Tρ(Φ)

]

]

≤ Eq

[

TWil
ρ(Φ)

]

= Eq





|ρ(Φ)|−1
∑

i=0

1

λi,ρ(Φ)



 =
∑

R6=∅

ZR(0)

Z(q)
q|R|

|R|−1
∑

i=0

1

λi,R

=
1

Z(q)

∑

R6=∅

q|R|
∑

φ:ρ(φ)⊃R,|ρ(Φ)|=|R|+1

wq,R(φ)

q

=
1

qZ(q)

n
∑

k=1

∑

R:|R|=k

∑

φ:ρ(φ)⊃R,|ρ(φ)|=k+1

q|R|wq,R(φ)

=
1

qZ(q)

n
∑

k=1

∑

φ:|ρ(φ)|=k+1

wq(φ)(k + 1)

=
1

q

∑

φ:|ρ(φ)|≥2

wq(φ)|ρ(φ)|
Z(q)

,

(3.26)

and the latter equals the r.h.s. of (3.24). The bounds in (3.25) follows by a similar argument.

Remark: We expect these estimates to be good either when q is very small or very large, or when m
is close to 1 or n. Improving them in the intermediate regime seems a challenging problem we were
not able to solve.

3.3 Re-reading Micchelli-Willoughby proof

Throughout this section we work with the Markov process X on X in (1.1), under the assumption that

X is reversible with respect to some probability measure µ on X , i.e., L is a self-adjoint operator in
l2(µ) endowed with the inner product

〈f, g〉µ :=
∑

x∈X

µ(x)f(x)g(x). (3.27)

For R ( X , possibly R = ∅, we turn the points of R into “absorbing points” by adding infinite
weight edges towards a cemetery ∆ and we assume the resulting Markov process with sub-Markovian

1This running time is actually independent of the obtained sample and its law is the same as that of a sum of independent
exponential variables with parameters λi,R when these eigenvalues are real. The same holds in the case of complex
eigenvalues by defining “the sum of exponential variables” through its Laplace transform and the same algebraic formula
as in the real case.
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generator [L]Rc to be irreducible. We denote by λ0,R < λ1,R ≤ · · · ≤ λl−1,R, with l = n − |R|,
the eigenvalues of [−L]Rc , and following [3, 5, 14], we define, for each x in Rc, a sequence of local

equilibria by setting

νx
l−1 = δx, (3.28)

νx
k−1 = νx

k

[L]Rc + λk,R

λk,R
, 1 ≤ k ≤ l − 1. (3.29)

Theorem 3.2 in [13] is a statement on symmetric matrices that in our setting can be stated as follows.

Theorem 3.7. (Micchelli and Willoughby [13]) Fix an arbitrary x ∈ X , for all k < l, νx
k in equation

(3.28) is a non-negative measure.

In this section we give a proof of this theorem following the key steps of Micchelli and Willoughby’s
algebraic proof, however, unlike the original proof, we develop probabilistic or combinatorial arguments.

Before starting the proof we note, following [14], that equation (3.29) can be rewritten as

νx
k [L]Rc = λk,R(νk−1 − νk), (3.30)

which gives the following interpretation. The process leaves the measure, or “state”, νx
k at rate λk,R to

be absorbed inR or to decay into νx
k−1. Provided that νx

k and νx
k−1 are indeed non-negative measures,

this can be turned into a rigorous mathematical statement [12]. Then, by looking at the different decay
times up to an exponential time Tq that is independent from the process, and by observing that, by
Hamilton-Cayley theorem, the process leaves the state νx

0 at rate λ0,R only to be absorbed in R, we
get, for all x and y in Rc,

Px(X(Tq ∧ TR) = y) =
q

q + λl−1,R
νx

l−1(y) +
λl−1,R

q + λl−1,R

q

q + λl−2,R
νx

l−2(y)

+ · · ·+ λl−1,R

q + λl−1,R
· · · λ2,R

q + λ2,R

q

q + λ1,R
νx

1 (y)

+
λl−1,R

q + λl−1,R
· · · λ1,R

q + λ1,R

q

q + λ0,R
νx

0 (y).

(3.31)

The left hand side in (3.31) is the probability to have ρ(τφ(x)) = {y} when φ is sampled from νq,R.
Then, multiplying by ZR(q) =

∏

i(q + λi,R) (recall (3.5)), dividing by q, and denoting the result by
WR(q)(x, y), we can rewrite (3.31) as

WR(q)(x, y) := ZR(q)[q1− L]−1
Rc (x, y) (3.32)

=
1

q

∑

φ: ρ(τφ(x))={y}
ρ(φ)⊇R

q|ρ(φ)|−|R|w(φ) (3.33)

= (q + λ0,R) · · · (q + λl−2,R)νx
l−1(y)

+(q + λ0,R) · · · (q + λl−3,R)λl−1,Rν
x
l−2(y)

+ · · ·+ (q + λ0,R)λl−1,Rλl−2,R · · ·λ2,Rν
x
1 (y)

+λn−1,R · · ·λ1,Rν
x
0 (y). (3.34)

Next, by density and continuity, we can restrict ourselves to the case of distinct eigenvalues, and
equation (3.34) suggests, for k < l, the following relation for the divided differences (see Definition
A.23 in Appendix A.3) of WR:

WR[−λ0,R, . . . ,−λk,R](x, ·) = λl−1,R · · ·λk+1,Rν
x
k = δx

l−1
∏

i=k+1

([L]Rc + λi,R), (3.35)
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that is

WR[−λ0,R, . . . ,−λk,R] =
l−1
∏

i=k+1

([L]Rc + λi,R). (3.36)

We can now start to follow the main steps of Micchelli and Willoughby’s proof.

Step 1: Checking equation (3.36).

We simply use Definition A.22 and spectral decomposition. With µi being the right eigenvector associ-
ated with λi,R, and, for any measure ν, 〈µi, ν〉 =

∑

x 6∈R µi(x)ν(x)/µ(x), we have, recalling (3.32),
for any q,

νWR(q) =
n−1
∑

i=1

〈µi, ν〉
∏

i6=j

(q + λi,R)µj. (3.37)

This gives

νWR[−λ0,R . . . ,−λk,R] =

k
∑

r=0

νWR(−λr,R)
∏

m6=r(λm,R − λr,R)
=

k
∑

r=0

l−1
∑

j=1

〈µj, ν〉
∏

i6=j(λi,R − λr,R)µj
∏

m6=r(λm,R − λr,R)

=

k
∑

r=0

〈µr, ν〉
∏

i6=j(λi,R − λr,R)µr
∏

m6=r(λm,R − λr,R)
=

k
∑

r=0

〈µr, ν〉
l−1
∏

i=k+1

(λi,R − λr,R)µr

=

l−1
∑

r=0

〈µr, ν〉
l−1
∏

i=k+1

(λi,R − λr,R)µr = ν

l−1
∏

i=k+1

([L]Rc + λi,R)

(3.38)
and equation (3.36) readily follows.

Step 2: A combinatorial identity.

The key point of the proof lies in the following lemma.

Lemma 3.8. For any x 6= y in X \R,

WR(q)(x, y) = w(x, y)ZR∪{x,y}(q) +
∑

z,z′∈X\(R∪{x,y})

w(x, z)WR∪{x,y}(q)(z, z
′)w(z′, y) (3.39)

In addition one has

WR(q)(x, x) = ZR∪{x}(q). (3.40)

Proof. Let us first consider the case x 6= y. Due to (3.33), we have that

WR(q)(x, y) =
∑

φ: ρ(τφ(x))={y}
ρ(φ)⊇R

q|ρ(φ)|−1−|R|w(φ) (3.41)

We also have
ZR∪{x,y}(q) =

∑

φ′:ρ(φ′)⊇R∪{x,y}

q|ρ(φ′)|−2−|R|w(φ′) (3.42)

and

WR∪{x,y}(q)(z, z
′) =

1

q

∑

φ′′: ρ(τφ′′ (z))={z′}

ρ(φ)⊇R∪{x,y}

q|ρ(φ)|−2−|R|w(φ) =
∑

φ′′: ρ(τφ′′ (z))={z′}

ρ(φ)⊇R∪{x,y}

q|ρ(φ)|−3−|R|w(φ).

(3.43)
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Next, define for each φ in (3.41), φ′ := φ \ {(x, y)} if (x, y) belongs to φ, and φ′′ := φ \
{(x, z); (z′, y)} if x is connected in φ to y through z and z′ (possibly with z = z′) in such a way
that (x, z) and (z′, y) belong to φ. Finally, by observing that |ρ(φ′)| = |ρ(φ)| + 1 and |ρ(φ′′)| =
|ρ(φ)|+ 2, (3.39) is obtained from (3.41), (3.42) and (3.43). Then, equation (3.40) follows from (3.41)
for y = x 6∈ R.

Step 3: Conclusion by induction with Cauchy interlacement theorem.

For l ≥ 0, let P[l] be the following statement:

For all R ⊂ X such that |Rc| = l, for all L ≥ l, for all ξ0 > ξ1 > · · · > ξL such that
ξi ≥ −λi,R for all i < l, for all k ≤ L, and for all x, y 6∈ R:

WR[ξ0, . . . , ξk](x, y) ≥ 0. (3.44)

We can proceed inductively to show that P[l] holds.

For l = 0, 1, the claim is obvious. Fix l ≥ 2. In the case x = y, the inductive hypothesis is unneces-
sary. Indeed, from (3.40), one has

WR[ξ0, . . . , ξk](x, x) = ZR∪{x}[ξ0, . . . , ξk]. (3.45)

Then note that, by Cauchy interlacement theorem, ξi ≥ −λi,R implies that ξi ≥ −λi,R∪{x} for
i < l − 1, and hence, by Lemma A.7, we get

WR[ξ0, . . . , ξk](x, x) ≥ 0. (3.46)

When x 6= y, P[l] follows in the same way by using (3.39) and the inductive hypothesis.

We can finally conclude the proof of Theorem 3.7. It suffices to apply the claim with ξi = −λi,R for all
i < l and recall (3.36) or (3.35).

3.4 Coalescence and fragmentation processes

In this section we present two coalescence and fragmentation processes closely related with our forest
measures.

3.4.1 Coupling the forest measures for different values of q.

To build the first process, we couple all the νq ’s together for different q’s. This coupling can be seen as
a coalescence and fragmentation process when q decreases to 0 and t = 1/q is thought as time.

We make use of Wilson’s original representation of his algorithm with “site-indexed random paths”.
Assume that, to each site of the graph, is attached an infinite list/collection of arrows pointing towards
one neighbour, and that these arrows are independently distributed according to the discrete skeleton
transition probabilities. In other words, an arrow, pointing towards the neighbour y of a site x, appears
at each level in the list associated with x with probabilityw(x, y)/w̄ (in this context, we set w(x, x) =
w̄ −∑y 6=xw(x, y), and consider x itself as one of its possible neighbours). Imagine that each list of
arrows attached to a site is piled down in such a way that it make sense to talk of an infinite stack with
an arrow on the top of this stack. By using this representation, one can generate the random walk on
the graph as follows. At each jump time, the random walk steps to the neighbour pointed by the arrow
on the top of the stack where the walker is sitting, and the top arrow is erased from the stack.

To describe Wilson’s algorithm one has to introduce a further ingredient: pointers to the absorbing
state ∆ in each stack. Such a pointer should appear with probability q/(w̄+q) at each level in the list.
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One way to introduce it is by generating independent uniform random variables U together with each
original arrow in the stack, and by replacing the latter by a pointer to the absorbing state whenever
U < q/(w̄ + q).

A possible description of Wilson’s algorithm is then the following.

i. Start with a particle on each site, particles and sites will be divided into active and frozen parti-
cles or sites and, at the beginning, all sites and particles are declared to be active.

ii. Choose a particle among all the active ones and look at the arrow at the top of the stack it is
seated on. Call x the site where the particle is seated.

• If the arrow is the pointer towards ∆, declare the particle to be frozen and site x as well.

• If the arrow points towards another site y 6= x, remove the particle and keep the arrow.

• If the arrow points to x itself, remove the arrow.

iii. Once again, choose a particle among all the active ones, look at the arrow on the top of the
stack it is seated on, and call x the site where the particle is seated.

• If the arrow points to ∆, the particle is declared to be frozen, and so are declared x and
all the sites eventually leading to x by following discovered top pile arrows paths.

• If the arrow points to a frozen particle or site, remove the particle, keep the arrow, and
freeze site x as well as any site eventually leading to x by following discovered top pile
arrows paths.

• If the arrow points to an active, then there are two possibilities. By following the arrows
at the top of the stacks, we either reach a different active particle, or runs in a loop back
to x. In the former case, remove the chosen particle from site x and keep the discovered
arrow. In the latter, erase all the arrows along the loop and set an active particle on each
site of the loop. Note that this last case includes the possibility for the discovered arrow of
pointing to x itself, in which case, we just have to remove the discovered arrow.

iv. Iterate the previous steps up to exhaustion of the active particles.

The crucial observation is that, no matter of the choice of the particles at the beginning of the steps,
when this algorithm stops, the same arrows are erased and the same spanning forest with a frozen
particle at each root is obtained. In particular, by choosing at each step the last encountered active
particle, or the same as in the previous step when we just erased a loop, we perform a simple loop-
erased random walk up to freezing.

Since νq is sampled in this way, and the same uniform variablesU can be used for each q, this provides
a coupling among all the νq ’s. By means of this coupling, one can actually sample νq′ starting from a
sample of νq for q′ < q. Let us now explain this fact. Note first that, running this algorithm for sampling
νq′ , one can reach at some point the final configuration obtained for νq with the only difference that
some frozen particles of the final configuration obtained with parameter q can still be active at this
intermediate step of the algorithm run with q′. It suffices, indeed, to choose the sequence of active
particles in the same way with both parameters. This is possible since each pointer to ∆ in the stacks
with parameter q′ is associated with a pointer to ∆ at the same level in the stacks with parameter q.
Thus we just have to replace some frozen particle of the configuration sampled with νq and continue
the algorithm with parameter q′ to sample νq′ . To do so, it suffices to declare active each frozen particle
at site x with probability

p = P

(

U >
q′

w̄ + q′

∣

∣

∣

∣

U <
q

w̄ + q

)

=
w̄(q − q′)

q(q′ + w̄)
,
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then, at the top of the stack set an arrow that points toward y with probability w(x, y)/w̄, and to keep
x frozen with probability 1 − p.

When q continuously decreases, we obtain a coalescence-fragmentation process ξ such that ξ(t) is
distributed according to ν1/t at all time t, and in which each tree can fragment and partially coalesce
with the other trees of the forest. When a root of a tree turns active, the tree is eventually fragmented
into a forest, some trees of which being possibly “graftedön the previous frozen trees. It is worth noting
that, by (3.6), the mean number of trees is decreasing along this coalescence process ξ.

The previous observations show that we can sample the “finite dimensional distributions” of the pro-
cess, i.e. the law of (ξ(t1), ξ(t2), . . . , ξ(tk)) for any choice of 0 < t1 < t2 < · · · < tk. We can
actually sample whole trajectories (ξ(t))0≤t≤T for any finite T . In fact, note first that at each time
t = 1/q, the next frozen particle (or root) becoming active is uniformly distributed among all the roots,
and the time σ when it “wakes upïs such that the variable

V :=
1/σ

w̄ + 1/σ
(3.47)

has the law of the maximum of m independent uniform variables on [0, q/(w̄+ q)), with m being the
number of roots at time t. Since, for all v < q/(w̄ + q),

P(V < v) =

(

v

q/(w̄ + q)

)m

=

(

v(w̄ + q)

q

)m

, (3.48)

V has the same law as qU1/m/(w̄ + q), with U uniform on [0, 1). Using (3.47) we can then sample
σ by setting

σ =
w̄ + q − qU1/m

qw̄U1/m
= t

w̄ + (1 − U1/m)/t

w̄U1/m
. (3.49)

Summing up, in order to sample the whole trajectory it suffices to proceed as follows once ξ is sampled
at a given jump time t:

• Choose uniformly a root x.

• Sample the next jump time σ from a uniform random variable U on [0, 1), by using (3.49).

• Restart the algorithm with parameter 1/σ by declaring active the particle in x and putting an
arrow to y with probability w(x, y)/w̄.

We conclude by observing that ξ “crossesälmost surely all the manifolds Fm := {φ ∈ F : |ρ(φ)| =
m}. Indeed, by (3.6), it starts from Fn and reaches F1 almost surely, and, each time the number of
roots decreases, it does so by only 1 unit: when the “activated"tree fragments into trees that coalesce
only with the previously frozen ones. With Tm = min{t ≥ 0 : ξ(t) ∈ Fm}, it is also simple to
sample ξ(Tm). We note however that ξ(Tm) is not distributed according to P(Φ ∈ · | |ρ(Φ)| = m).

3.4.2 Forest measures as invariant measures for coalescence and fragmentation processes

The other dynamics we want to mention is a simple variant of the tree random walk introduced in [1] to
prove the so called Markov chain tree theorem. For fixed q, the dynamics we now present is another
coalescence and fragmentation process for which the standard measure νq is the stationary probability
measure.

Remind that for a given forest φ ∈ F and x ∈ X , we denote by τφ(x) the unique tree in φ containing
x, and note that if e ∈ ρ(φ) then e /∈ φ. Our dynamics can then be defined as follows. 1
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Figure 5: Snapshots of the coalescence and fragmentation process in Section 3.4.1 associated with a
simple random walk on the two-dimensional torus of size 512 × 512 at times t = 1/q equal to 0, .5,
2, 8, 32, 128, 512, . . . , 524288. Roots are red, non-root vertices at the border of trees are cyan, other
vertices are in blue.
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Figure 6: Snapshots at times t = 1/q equal to 0, .5, 2, 8, 32, 128, 512, . . . , 524288 of the coalescence
and fragmentation process on the square grid of size 512 × 512 for the random walk in a Brownian
sheet potential with inverse temperature β = .16.
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Figure 7: Numbers of trees as a function of time for the coalescence and fragmentation processes in
Figures 5 and 6 in loglog scale.
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Definition 3.9. (Forest Dynamics) Fix q ∈ [0,∞). Let ψ be the Markov process with state space F
characterized by the following generator acting on functions f : F → R:

(Gf)(φ) =
∑

e∈E

γ(φ, e)[f(φe) − f(φ)], (3.50)

where the transition rate γ(φ, e) and the new state φe are defined as follows:

1 If e ∈ ρ(φ) and e /∈ τφ(e), then γ(φ, e) = w(e, e) and φe = φ ∪ {e}.

2 If e ∈ ρ(φ) and e ∈ τφ(e), then γ(φ, e) = w(e, e) and φe = φ∪ {e} \ {e′}, with e′ being the

unique edge in φ such that e′ = e.

3 If e ∈ φ, then γ(φ, e) = q and φe = φ \ {e}.

4 γ(φ, b) = 0 else.

The rules corresponding to 1, 2 and 3 can be rephrased by saying that we add, swap and remove a
bond from the forest φ, respectively. Notice that such a dynamics induces a non-conservative dynam-
ics on the set of roots. In particular, when transition 1 occurs, |ρ(φe)| = |ρ(φ)| − 1 and two trees
merge into one. On the other hand, when transition 3 occurs, |ρ(φe)| = |ρ(φ)| + 1 and the tree
containing e is fragmented into two trees where the new appearing root is at e. Transitions of type 2
produce a rearranging in one of the tree. They leave invariant the cardinality of the set of roots but the
location of the root in the modified tree is relocated at the vertex e′ = e.

Proposition 3.10. (Invariance) For all q > 0 the measure wq in (1.8) is invariant for G in (3.50).

Proof. We need to show that for any φ′ ∈ F
∑

φ∈F

∑

e∈E:φe=φ′

wq(φ)γ(φ, e) =
∑

e∈E

wq(φ
′)γ(φ′, e). (3.51)
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Indeed, (3.51) amounts to say that for any f : F → R

∑

φ∈F

wq(φ)(Gf)(φ) =
∑

φ∈F

wq(φ)
∑

e∈E

γ(φ, e)[f(φe) − f(φ)]

=
∑

φ′∈F

∑

φ∈F

wq(φ)
∑

e∈E:φe=φ′

γ(φ, e)f(φe) −
∑

φ′∈F

wq(φ
′)
∑

e∈E

γ(φ′, e)f(φ′)

=
∑

φ′∈F

[

∑

φ∈F

∑

e∈E:φe=φ′

wq(φ)γ(φ, e) −
∑

e∈E

wq(φ
′)γ(φ′, e)

]

f(φ′) = 0.

For a given φ′ ∈ F , we start by splitting the l.h.s. of (3.51) in the three terms corresponding to the
different transitions allowed by the dynamics in Definition 3.9 whenever γ(φ, e) > 0.

∑

φ∈F

∑

e∈E:φe=φ′

wq(φ)γ(φ, e) =
∑

φ(φ′

∑

e∈E:φe=φ′

wq(φ)γ(φ, e) +
∑

φ)φ′

∑

e∈E:φe=φ′

wq(φ)γ(φ, e)

+
∑

φ:|ρ(φ)|=|ρ(φ′)|

∑

e∈E:φe=φ′

wq(φ)γ(φ, e) = I + II + III.

We can rewrite

I =
∑

e∈φ′

wq(φ
′ \ {e})γ(φ′ \ {e}, e) =

∑

e∈φ′

wq(φ
′)γ(φ′, e), (3.52)

II =
∑

e∈ρ(φ′),e/∈τφ′ (e)

wq(φ
′ ∪ {e})γ(φ′ ∪ {e}, e) =

∑

e∈ρ(φ′),e/∈τφ′ (e)

wq(φ
′)γ(φ′, e),

(3.53)

and, denoting, for each e′ such that e′ ∈ ρ(φ′) and e′ ∈ τφ′(e′), by e the unique bond in the only one
cycle of φ′ ∪ {e′} such that e ∈ ρ(φ′), with φ = φ′ \ {e} ∪ {e′},

III =
∑

e′∈ρ(φ′),e′∈τφ′(e′)

wq(φ)γ(φ, e) =
∑

e′∈ρ(φ′),e′∈τφ′ (e′)

wq(φ
′)γ(φ′, e′).

(3.54)

Summing I , II and III together we then get (3.51).

Remark: When q = 0 we recover the Anantharam and Tsoukas dynamics and the proof of the
Markov chain tree theorem. Indeed, the standard forest measure restricted to spanning trees is the
invariant measure of the dynamics. Starting with a single tree, its roots follows a Markovian evolution
with generator L, so that, at equilibrium, in the long time limit we have

µ(x) =

∑

φ:|ρ(φ)|=1w(φ)1{ρ(φ)={x}}
∑

φ:|ρ(φ)|=1w(φ)
, (3.55)

with µ being the stationary distribution associated to L.

3.5 Two last observations on the roots distribution

We conclude with two last results concerning static properties of the standard measure νq. The first
one concerns the “rooted partition” inherited from a forest sampled from νq. We show, as a con-
sequence of the Markov chain tree theorem, that the roots are distributed according to the restricted
measures associated with the sampled partition, these restricted measures being the equilibrium mea-
sures of the restricted dynamics inside each component of the partition. Our last result concerns the
determinantal process ρ(Φ): its cumulants are given by a nice formula it is worth to notice.
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3.5.1 On the rooted partition sampled from the standard measure

For φ in F with roots x1, . . . , xm, let us denote by P(φ) = {A1, . . . , Am} the partition of X where
each component Ai is the set of sites spanned by τφ(xi). Since each component of the partition
comes with a special point corresponding to a root, we call rooted partition the pair (P(φ), ρ(φ)) We
note that for each A in P(φ), the restricted dynamics with generator

(LAf)(x) =
∑

y∈A

w(x, y)[f(y)− f(x)], f : A→ R, x ∈ A, (3.56)

has only one irreducible component since each x in A is connected with the root. As a consequence
the restricted dynamics has a unique equilibrium measure which we call restricted measure µA. Note
that when L has a reversible equilibrium µ = µX , then µA is nothing but the equilibrium measure µ
conditioned on A, i.e. µA = µ(·|A).

Proposition 3.11. (Roots at restricted equilibrium) Fix m ∈ {1, . . . , n}, then

Pq

(

ρ(Φ) = {x1, · · · , xm}
∣

∣

∣
P(Φ) = {A1, . . . , Am}

)

=

m
∏

i=1

µAi
(xi), (3.57)

for any partition {A1, . . . , Am} of X and any xi ∈ Ai, for i = 1, . . . , m.

Proof. For each i in {1, . . . , m}, let us call Ti the set of spanning trees ofAi. For each τi in Ti, define

wi(τi) =
∏

e∈τi

w(e), (3.58)

and for yi in Ai, write ρ(τi) := {yi}, if yi is the root of the tree τi ∈ Ti. Compute

Pq

(

ρ(φ) = {x1, · · · , xm}
∣

∣

∣
P(φ) = {A1, . . . , Am}

)

=
Pq

(

ρ(φ) = {x1, · · · , xm},P(φ) = {A1, . . . , Am}
)

Pq

(

P(φ) = {A1, . . . , Am}
)

=
qm
∑

τ1∈T1
· · ·∑τm∈Tm

∏m
i=1wi(τi)1{ρ(τi)={xi}}

qm
∑

τ1∈T1
· · ·∑τm∈Tm

∏m
i=1wi(τi)

=

m
∏

i=1

∑

τi∈Ti
wi(τi)1{ρ(τi)={xi}}
∑

τi∈Ti
wi(τi)

=
m
∏

i=1

µAi
(xi),

where the last equality follows by (3.55) applied to the restricted dynamics.

Remark: When X is reversible with respect to a measure µ, this gives a way to build the associated
Gaussian free field with mass m =

√
q, that is the Gaussian process ξ = (ξx)x∈X with covariance

matrix

Γ =

(

Gq(x, y)

µ(y)

)

x,y∈X

=

(

K(x, y)

qµ(y)

)

x,y∈X

,
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Figure 8: A rooted partition with 50 roots (at the center of red diamonds) sampled for the Metropolis
random walk in a Brownian sheet potential on the 987 × 610 grid and with inverse temperature
β = .06. Blue levels depend on the potential: the lower the potential, the darker the blue. We see
that each root is distributed according to the restricted equilibrium of its own piece of the partition. See
also the first two pictures in Figure 1.

by successive sampling of the standard measure νq. Start from independent centered random vari-
ables ζx with variance µ(x), x ∈ X , sample φ according to νq, call A(x) the set of vertices of τφ(x)
and set

ξ̃x =
1

µ(A(x))

∑

y∈A(x)

ζy√
q
.

Then the random field ξ̃ has zero mean and covariance matrix Γ and the rescaled partial sum
∑n

i=1 ξ̃
i/
√
n, with ξ̃1, ξ̃2, . . . independent copies of ξ̃, converges in law to ξ as n goes to infinity.

Indeed, for each x and y in X , ξ̃x and ξ̃y are centered and one computes

E
[

ξ̃xξ̃y

]

=
∑

A⊂X

P (A(x) = A(y) = A)
1

µ(A)2

∑

z∈A

µ(z)

q
=
∑

A3x,y

P (A(x) = A(y) = A)
1

qµ(A)
.

(3.59)
On the other hand, following Wilson algorithm,

K(x, y) = P (y ∈ ρ(Φ), A(x) = A(y))

=
∑

A3x,y

P (A(x) = A(y) = A) P
(

y ∈ ρ(Φ)
∣

∣

∣
A(x) = A(y) = A

)

=
∑

A3x,y

P (A(x) = A(y) = A)
µ(y)

µ(A)
,

by combining it with (3.59), we conclude that

E
[

ξ̃xξ̃y

]

=
K(x, y)

qµ(y)
. (3.60)
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3.5.2 Cumulants

Let us associate with our random forests Φ with law νq, the random variables

ηx = 1{x∈ρ(Φ)}, x ∈ X , (3.61)

note that they completely describe the roots process. For A = {x1, . . . , xk} ⊂ X with distinct xi’s,
the cumulants of these random variables are defined by

κA(η) = κ(ηx1
, . . . , ηxk

) =
∂k

∂λ1 . . . ∂λk
ln E

[

exp

{

k
∑

i=1

λiηxi

}]
∣

∣

∣

∣

∣

λ=0

. (3.62)

These quantities are the so-called truncated correlation functions, that can also be recursively defined
by

E

[

∏

x∈A

ηx

]

=
∑

Π∈PA

∏

B∈Π

κB(η), (3.63)

where PA stands for the set of partitions of A.

The determinantal nature of the roots process makes its cumulants easy to compute. With A ⊂ X
and SA being the permutation group on A, one has

E

[

∏

x∈A

ηx

]

= P (A ⊂ ρ(Φ)) = detA(K) =
∑

σ∈SA

(−1)sgn(σ)
∏

x∈A

K(x, σ(x)). (3.64)

Making a cycle decomposition of each permutation in this sum and denoting by CB the set of long
cycles on B ⊂ A, i.e. the set of cycles of length |B| in B, after some simple algebra, we get

E

[

∏

x∈A

ηx

]

=
∑

Π∈PA

∏

B∈Π

∑

σ∈CB

(−1)|B|−1
∏

x∈B

K(x, σ(x)). (3.65)

This identifies our cumulants through (3.63) and gives the following lemma.

Lemma 3.12. For all A ⊂ X

κA(η) = (−1)|A|−1
∑

σ∈CA

∏

x∈A

Px(X(Tq) = σ(x)), (3.66)

where CA stands for the set of cycles of length |A| in A.

Remark: We cannot help making the following observation. In the case of uniformly equal weights
between nearest neighbours, for large q, (−1)|A|−1κA(η) behaves like the natural low temperature
partition function associated with an embedded travelling salesman problem. In this regime, on the
one hand, Wilson’s algorithm quickly provides perfect samples of the roots process and, on the other
hand, the cumulant is the expected value of some observable for the system made of n independent
copies of ρ(Φ) [16]. This suggests that one could find a practical way to estimate this low temperature
partition function and then solve the travelling salesman problem. Unfortunately, the corresponding
observable has an exponentially small probability to be different from 0 and consequently, it is in
reality impossible to estimate its mean in this way.
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A Appendix

A.1 Schur complement and trace process

Assume we have a Markov process Y on a finite state space Y , with generator L given by

(Lf)(y) =
∑

z∈Y

α(y, z)[f(z) − f(y)], y ∈ Y , (A.1)

with f : Y → R arbitrary and {α(y, z) ∈ [0,+∞) : (y, z) ∈ Y × Y} a given collection of non-
negative and finite transition rates. As in Section 2.1, let us denote by Ŷ the discrete skeleton of the
random walk Y with Markovian transition matrix P̂ .

Fix a subset A ⊂ Y with |A| = k and consider a new Markov chain Ŷ A with state space A obtained
as the trace of the process Ŷ on A. In other words, Ŷ A is the random walk with transition matrix
P̂A ∈ Mk×k, with entries

p̂A(x, y) = Px(Ŷ (T̂+
A ) = y), for x, y ∈ A, (A.2)

where T̂+
A denotes the first return time in A of the chain Ŷ .

Back to the continuous-time setting, denote by Y A be the continuous-time version of Ŷ A with jump
times given by exponential random variables of parameter

ᾱ := max
y∈Y

α(y) <∞, (A.3)

i.e. the process with generator
LA := α(P̂A − 1A). (A.4)

Equivalently, Y A is the trace of the Markov process Y onA, namely, the process obtained by following
the trajectory of Y at infinite velocity outside A and without speeding up inside A.

Proposition A.1. (Schur complement and trace process) Given the Markov process Y on Y with

generator L, fix a subset A ⊂ Y with |A| = k. Let LA be the generator of the Markov process Y A

obtained as the trace of the process Y on A. Then, LA is the Schur complement of [L]Ac in L, i.e.

LA = [L]A − [L]A,Ac [L]−1
Ac [L]Ac,A, (A.5)

with [L]A and [L]Ac being the sub-Markovian generator of the process killed outside A and Ac,

respectively. In other words, [L]A and [L]Ac represent the operators obtained from the matrix repre-

sentation of L, by deleting the row and the columns indexed by sites outside A and Ac, respectively.

Whereas [L]A,Ac and [L]Ac,A are the operators obtained from the matrix representation of L, by

keeping only those rates from A to Ac and Ac to A, respectively.

Proof. Denote by [P̂ ]A ∈ Mk×k, the sub-Markovian matrix P̂ restricted to A. Note that [P̂ ]A is
different from P̂A. Due to (A.2), for any x, y ∈ A, we can write

p̂A(x, y) = p̂(x, y) +
∑

z,z′∈Ac

p̂(x, z)

(

∑

k≥0

[P̂ ]kAc(z, z′)

)

p̂(z′, y)

= [P̂ ]A(x, y) +
∑

z,z′∈Ac

p̂(x, z)
(1Ac − [P̂ ]Ac

)−1

(z, z′)p̂(z′, y).

(A.6)

Subtracting 1A on both side of (A.6), we obtain that

P̂A − 1A = [P̂ − 1]A − [P̂ − 1]A,Ac

(

[P̂ ]Ac − 1Ac

)−1

[P̂ − 1]Ac,A. (A.7)

We then get our result by multiplying both sides by ᾱ.
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When Y contains an absorbing set B and A ⊂ Bc we can do the same computation with the sub-
Markovian generator [L]Bc in place of L. For any x and y in A the mean local time in y starting from
x and before hitting B is the same for Y and the trace process Y A, i.e.

GB(x, y) = GA
B(x, y), (A.8)

that is
[

[L]−1
Bc

]

A
=
(

[L]ABc

)−1
. (A.9)

More generally, one has the following definition and properties.

Definition A.2. (Schur complement) Let M be a 2 × 2 block matrix in Mn×n of the form

M =

[

A B
C D

]

, (A.10)

where A ∈ Mk×k and D ∈ M(n−k)×(n−k), for some k ≤ n. The Schur complement of D in M is

defined as the matrix

SM(D) := A−BD−1C. (A.11)

One can then check:
[

A B
C D

]

=

[

Ik BD−1

0 In−k

] [

SM(D) 0
0 D

] [

Ik 0
D−1C In−k

]

. (A.12)

It follows that
det(M) = det(D)det (SM(D)) (A.13)

and, as a generalization of (A.9),

M−1 =

[

SM(D)−1 −SM (D)BD−1

−D−1CSM(D) D−1 +D−1CSM(D)BD−1

]

. (A.14)

In particular, from (A.14) and (A.13),

detI

(

M−1
)

= det
(

SM(D)−1
)

= det(SM(D))−1 =
detIc(M)

det(M)
(A.15)

with I = {1; · · · ; k} and Ic = {k + 1; · · · ;n}. This relation is used in the algebraic proof of
Theorem 3.4.

A.2 Lemma on hitting distributions and times

In this section we use our forest measure analysis to prove two formulas on the hitting distribution and
the expectation of hitting times of a given subset of the given graph. This result is originally due to
Freidlin and Wentzell, see Lemmas 3.2 and 3.3 in [6].

Lemma A.3. (Freidlin and Wentzell [6]) Fix a non-empty subsetR of X . Recall the notation in (1.12).
Consider the Markov process X on X identified by (1.1), and let TR be the hitting time of the set R.

Then, for any x ∈ Rc and y ∈ R

Px(X(TR) = y) =
1

ZR(0)

∑

φ:ρ(φ)=R
ρ(τx)={y}

w(φ), (A.16)

and, for any x ∈ Rc,

Ex[TR] =
1

ZR(0)

∑

y 6∈R

∑

φ:ρ(φ)=R∪{y}
ρ(τx)={y}

w(φ). (A.17)
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Proof. Consider the extended space X̄ and the extended Markov process X̄ as in (2.12), with the
killing rates as in (1.11) for q = 0. Equation (A.16) is simply obtained by considering Wilson’s algorithm
started from x.

To prove (A.17) we will use the discrete skeleton of Section (2.1) with Y = X̄ and B = R. Let

GR(x, y) = Ex[ly(TR)] and ĜR(x, y) = Ex[ly(T̂R)], x, y ∈ Rc, (A.18)

be the continuous and the discrete-time Green’s functions before hitting the set R, respectively.

Since
Ex[TR] =

∑

y/∈R

GR(x, y),

it suffices to show that

GR(x, y) =
1

ZR(0)

∑

φ:ρ(φ)=R∪{y}
ρ(τx)={y}

w(φ). (A.19)

Since ĜR(x, y) = Px(T̂y < T̂R)GR(y, y) = Px(T̂y < T̂R)/Py(T̂
+
y > T̂R), with T̂+

y being the
return time to y,

GR(x, y) =
1

ᾱ
ĜR(x, y) =

Px(Ty < TR)

αPy(T̂+
y > T̂R)

=
Px(Ty < TR)

α
∑

z 6=y p̂(y, z)Pz(T̂y > T̂R)

=
Px(Ty < TR)

α
∑

z 6=y p̂(y, z)Pz(Ty > TR)
=

Px(Ty < TR)
∑

z 6=y α(y, z) [1 − Pz(Ty < TR)]
.

(A.20)

Observe that Px(Ty < TR) = Px(X(TR∪{y}) = y) for any x, y ∈ Rc, thus using (A.16):

GR(x, y) =
Px(X(TR∪{y}) = y)

∑

z 6=y α(y, z)
[

1 − Pz(X(TR∪{y}) = y)
]

=

1
ZR∪{y}(0)

∑

φ:ρ(φ)=R∪{y}
ρ(τx)={y}

w(φ)

1
ZR∪{y}(0)

∑

z 6=y α(y, z)
∑

φ:ρ(φ)=R∪{y}
ρ(τx)6={y}

w(φ)

=
1

ZR(0)

∑

φ:ρ(φ)=R∪{y}
ρ(τx)={y}

w(φ).

A.3 Divided differences

In this appendix, we recall three equivalent definitions of the notion of divided differences of a real
function. We further give a lemma due to Micchelli and Willoughby for which we provide an alternative
elementary proof which plays with these different definitions. This result is used in Section 3.3.

Definition A.4. (Divided differences 1) We call divided difference of a function f at the distinct points

x0, x1, . . . , xk , the quantity f [x0, · · · , xk] recursively defined via

f [x0, · · · , xk] =
f [x1, · · · , xk] − f [x0, · · · , xk−1]

xk − x0
, (A.21)

with

f [xi] = f(xi).
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From this definition, we see that the divided differences at k points of a function f can be seen as a
sort of k-th discrete derivative. One then show by induction

Definition A.5. (Divided differences 2) For any function f and distinct points x0, x1, . . . , xk−1, xk,

f [x0, · · · , xk] =

k
∑

i=0

f(xi)
∏

j 6=i(xi − xj)
. (A.22)

Note in this second definition, that f [x0, · · · , xk] is independent of the order of the xi’s. From (A.22)
one can then check

Definition A.6. (Divided differences 3) For any function f and distinct points x0, x1, . . . , xk−1, xk,

Q(x) =f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ . . .+ f [x0, · · · , xk](x− x0) . . . (x− xk−1)
(A.23)

is the unique polynomial of degree k with Q(xi) = f(xi), for i = 0, · · · , k.

Lemma A.7. (Micchelli and Willoughby [13]) Consider a polynomial of degree n of the form

f(x) =

n−1
∏

i=0

(x− αi),

with n distinct real zeros αi in decreasing order: α0 > α1 > · · · > αn−1. Let β0 > β1 > · · · > βN

with N ≥ n and such that

βi ≥ αi, for all i < n. (A.24)

Then, for any k ≤ N ,

f [β0, β1, . . . , βk] ≥ 0.

Proof. We prove the following statement by induction on r = n− k:

“For any β0 > β1 > · · · > βN satisfying (A.24), f [β0, . . . , βk] ≥ 0.” (A.25)

Since f is a polynomial of degree n, (A.25) follows from Definition A.23 as soon as r < 0. Also, since
the dominant coefficient of f is 1, the same argument shows f [β0, . . . , βn] = 1 and the claim holds
for r = 0. Fix now r > 0, i.e. k < n, and β0 > · · · > βN satisfying (A.24). If β0 6= α0 then

f [β0, α1, . . . , αk] − f [α0, α1, . . . , αk]

β0 − α0

=
f [β0, α1, . . . , αk] − f [α1, . . . , αk, α0]

β0 − α0

(A.26)

= f [β0, α1, . . . , αk, α0] (A.27)

= f [β0, α0, α1, . . . , αk]. (A.28)

By Definition A.22 we have f [α0, . . . , αk] = 0 and the numerator in the l.h.s. of (A.26) is merely
equal to f [β0, α1, . . . , αk]. The denominator is positive from (A.24) and so is the r.h.s. of (A.28) by
induction hypothesis. It follows that

f [β0, α1, . . . , αk] ≥ 0 (A.29)

and the same is true when β0 = α0. If β1 6= α1, we compute

f [β0, β1, α2, . . . , αk] − f [β0, α1, . . . , αk]

β1 − α1

= f [β0, β1, α1, . . . , αk], (A.30)
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get then in the same way
f [β0, β1, α2, . . . , αk] ≥ 0 (A.31)

and the same is true when β1 = α1. Proceeding similarly we eventually obtain that

f [β0, . . . , βk] ≥ 0. (A.32)
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