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ABSTRACT. Considering differential equations of second order which contain a term in the 
form (au:z:):z: + bu, where a= a(~, u) and b = b(~, u), conditions for the identifiability of the 
coefficients a and b are given. 

1. INTRODUCTION 

Modelling of one-dimensional diffusive-like systems leads to a parabolic differential equation, 
which for a linear isotropic medium (for example a confined aquifer), can be written in the 
form 

(a(x,u)ux(x,t))x + f(x,t) = Ut(x,t). 

The coefficient depends upon the space variable x and on the potential u(x, t). Our aim is to 
determine the physical parameter a from measurements of u (potential) and f (source term). 
In a lot of practical problems, the knowledge of such a parameter is of interest. Examples 
include the heat conduction in solids, fluid flow through porous media, groundwater or 
oil reservoir problems and pollutant diffusion in absence of convection [2],[1]. From such 
considerations arises the well known inverse problem of parameter identification. Such a 
problem is ill-posed, since a solution, if it exists, need not be unique and in general does 
not depend continuously on the data. Identifiability is equivalent to the uniqueness of the 
solution of the inverse problem in its direct formulation. 

From the mathematical point of view we can investigate inverse problems for a wider class 
of equations as above by a unified approach. Let us formulate this class of problems. We 
consider the quasilinear boundary value problem (steady- state lD case) 

(a(x,u(x))ux(x))x + b(x,u(x))u(x) + J(x) = 0 

the quasilinear parabolic initial boundary value problem 

(a(x,u(x, t))ux(x, t))x + b(x,u(x, t))u(x, t) + f(x, t) = Ut(x, t) 
(x, t) EDT= (d1, d2) x (0, T) 

u(d1, t) = 91(t) u(d2, t) = 92(t) t E [O, T] 

u(x,O) = cp1(x) 

and the quasilinear hyperbolic initial boundary value problem 

(a(x,u(x, t))ux(x, t))x + b(x,u(x, t))u(x,t) + J(x, t) = Utt(x, t) (x, t) EDT 
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with boundary conditions (1.4) and the initial conditions 

u(x, 0) = cp1(x) (1. 7) 

The following assumptions and assertions we formulate for all three problems in common, 
where, in the steady-state lD case, the variable t does not appear. 
For the direct problem we consider: given a, b, f, 9i, 92 , cp1, cp2, find u. We define the real 
numbers 

and suppose that: 

(i) V1 < V2 

v1 = mi:g_u(x, t), 
(x,t)EDT 

(ii) a(x,u) > 0 V(x,u) E [di,d2 ] x [v1,v2] 
(iii) 91(0) = cp1(d1), 92(0) = Cf'1(d2) 

v2= ma~u(x,t), 
(x,t)EDT 

(iv) a, b, f,g1 ,92 , cp1, cp2 are sufficiently smooth functions of their arguments, respectively 
such that each of the direct problems (1.1), (1.2), (1.3), (1.4), (1.5) or (1.6), (1.4), (1.7) 
has a unique classical solution u. 

From the continuity of u, it follows that ran9e{u} = [v1,v2]. The assumption (iii) does not 
appear for the problem (1.1), (1.2). 
Now we formulate two inverse problems: 

(I) Given b, f, 91, 9?, cp1, cp2, u, find a. 
(II) Given a, f, gi, 92, cp1, cp2, u, find b. 

There exist simple examples that, even if u is completely known it does not follow the 
uniqueness of one of the coefficients a or b. For that reason, we introduce the concept of 
identifiability [9]. 

Definition 1. Let u;(x, t) be the solution of the direct problem which corresponds to a; = 
a;(x, u) (j = 1, 2). We call the coefficient a identifiable if from u 1(x, t) = u2(x, t) for every 
(x, t) E DT it follows that a1(x, u) = a2(x, u) for all (x, u) E [d1, d2] x [vi, v2]. 

Analogously, the identifiability of the coefficient b can be defined. We have two important 
special cases, namely 

1. 
2. 

a= a(x) 
a= a(u) 

b = b( x ), which corresponds to a linear physical system, and 
b = b(u). 

First results about identifiability have been obtained by Kitamura and N akagiri [8] for space 
dependent coefficients in an one-dimensional parabolic equation. A generalization of this 
results in connection with applications is given by Guidici [6]. For a more dimensional elliptic 
equation, such results can be found by Chicane and Gerlach [3], [4]. The identifiability of 
the coefficient a = a( u) in a one-dimensional parabolic equation was considered also (see 
[5]). Identifiability results for coefficients a= a(x),b = b(x) or a= a(u),b = b(u) in the 
formulated above class of problems by a unified approach has been received by Handrock-
Meyer [7]. 
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The present paper generalizes these results on coefficients of the form 

a= a(x,u) b = b(x,u). 
In section 2, some lemmas are proven which are needed in later sections. In section 3, several 
results about the identifiability of the coefficient a or b are presented. The simultaneous 
identifiability of a and bis not investigated in this paper. 

2. SOME LEMMAS 

For equations with the left hand side having the form (1.1), (1.3) or (1.6), the following 
lemma is true. 

Lemma 1. u1(x, t) = u2(x, t) for all (x, t) EDT holds if and only if 

(a12(x,u1(x,t))(u1(x,t))a:}z:+b12(x,u1(x,t))u1(x,t) = 0 V(x,t) EDT, (2.1) 

Proof. 

1. Let u1(x, t) = u2(x, t) for all (x, t) EDT. From (1.i)(l.3) and (1.6) it follows that 

(ai(x,ui)(ui)a:)a: + bi(x,ui)ui + f = { ~u;), 
( Ui)tt 

(i = 1, 2) and by subtraction 

(a1(x,u1)(u1):i:):i: - (a2(x,u2)(u2)a:)a: + b1(x,u1)u1 - b2(x,u2)u2 = { ~u1)1 - (u2)t (2.2) 
( u1)tt - ( u2)tt 

Setting u 1 = u 2 -in (2.2), we obtain (2.1). 
2. Let (2.1) hold. We prove the assertion for the parabolic case (1.3)-(1.5). For the problems 
(1.1), (1.2) and (1.6), (1.4), (1.7), the statement can be shown in the same way. The function 
u 2 (x, t) is a solution of the initial boundary value problem 

(a2(x,u2)(u2)a:)a: + b2(x,u2)u2 + f = (u2)t (x, t) EDT 

U2 ( 0' t) = 91 ( t) U2 ( 1, t) = 92 ( t) t E [ 0' T] 

The function u1(x, t) satisfies the same initial and boundary conditions. From (2.1) we 
obtain 

Hence u1(x, t) is a solution of the above initial boundary value problem and u1(x, t) = u2(x, t) 
for all (x, t) E DT. 

For b(x, u(x, t)) = 0 we formulate Lemma 1 in a more convenient form 
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Lemma 2. u1(x, t) = u2(x, t) for all (x, t) EDT holds if and only if 

for all x, xo E [d1, d2] and every fixed t E (0, T). 

Proof. 
1. Integration of (2.1) yields 

ai2(x, u1(x, t))(u1(x, t))x = C(t). 
Setting x = x0 for every fixed t, we obtain (2.3). 

2. Differentiation with respect to x leads to ( 2.1). 

For the investigation of the problem (I) it is useful to introduce the following sets 

P(t) = {x E [d1, d2] I ux(x, t) = O} 

Q(t) = [d1, d2] - P(t) 

V(x) = {t E [O, T]lux(x, t) = O} 
W(x) = [O, T] - V(x) 

Nu:;:: {s E [v1, v2] I 3(x, t) EDT : s = u(x, t) /\ ux(x, t) =f. 0}. 

(2.3) 

(2.4) 

Lemma 3. If there exists a point t1 > 0 such that Q(t1) = [di, d2] and for every x E [d1, d2] 
it holds that W(x) = [O, T], then Nu= [v1,v2]. 

Proof. Let there be given any€> 0 and any z0 E [v1,v2]. Because the range{u} = [v1,v2] 
there exists (xo, t0 ) E DT such that z0 = u(x0 , t0 ). From the assumption Q(t1) = [d1, d2] 
we obtain: For every 5 > 0 and every x E [d1 , d2 ], especially for x 0 E [d1 , d2], there exists a 
point y E Q(t1) such that I xo - y I< 5, where ux(Y, t1) =f. 0. Furthermore, the assumption 
W(x) = [O, T] for every x E [di, d2 ] gives W(y) = (0, T], i.e. for every 5 > 0 and every 
t E [O, T], especially for t0 E [O.T], there exists a point r E W(y) such that I to - r I< 5, 
where ux(y,-r) =f. 0. Setting s = u(y, r) we obtain s E Nu. Moreover, putting Po = 
(xo, to), P = (y, r) we have 

I Po - PI= J(xo -y)2 +(to - r) 2 < V25 
and from the continuity of the function u it follows that 

This proves the lemma. 

Analogously we can show 

I zo - s l=I u(xo, to) - u(y, r) I<€. 

Lemma 4. If there exists a point x1 > 0 such that W(x1) = [O, T] and for every t E [O, T] 
it holds that Q(t)° == [di,d2 ], then Nu== [v1,v2]. 

Lemma 5. If P(t) == <P for all t E [O, T], then UQ(t) == [d1, d2] and Nu== [v1, v2]. 
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Proof. From P(t) = efJ for all t E [O, T] it follows that 

nP(t) = n([d1, d2] - Q(t)) = [d1, d2] - uQ(t) = efJ. 

Moreover, from P(t) = efJ for all t E [O, t], we have ux(x, t) f:. 0 for all (x, t) E DT and 
Nu= [v1, v2]. 

Remark 1. If P(t) -/:- efJ for all t E [O, T] then in the dependence of the structure of the set 
nP(t) the density of Nu in [v1, v2] follows or not. We consider two cases: 

case 1: Let P(t) = {x1} for all t E [O, T], then UP(t) = {x1} and ux(x, t) = 0 only on the 
set {x1} x [O, T]. Now we can choose for any E > 0 and any z0 E [v1,v2] with z0 == u(x0 , t 0 ), 

a points = u( x, t) with s E Nu such that 4 

I zo - s I<€. 
Hence Nu = [v1, v2]. 

case 2: Let nP(t) = [a,,B]. Then we have [a,,B] = [d1, d2] - UQ(t) and UQ(t) is not dense 
in [d1 , d2 ]. We show that Nu is not dense in [vi, v2] too. For x0 E [a, /3] we choose € > 0 
in such a way that ( Xo - E, xo + E) C [a, /3]. By (2.4) we can verify that, for every ( x, t) E 
(xo - E, Xo + c) X (0, T), ux(x, t) = 0 holds and, if we sets== u(x, t), then s E [v1 , v2] - Nu 
for all (x, t) E (xo - E, Xo + c) x (0, T) Thus for the chosen E and s, the inequality Is - z 12:'. € 

is valid for any z E Nu. 

3. IDENTIFIABILITY RESULTS 

3.1 Identifiability of a(x,u) 

Throughout this subsection, let 

u1(x, t) == u2(x, t) = u(x, t) V(x, t) EDT 
with b(x,u) is known or b(x,u) == 0 for all (x,u) E [d1 ,d2] x [v1,v2]. Then from lemma 1 it 
follows that 

(a12(x,u(x, t))ux(x, t))x = 0 V(x, t) EDT. (3.1) 

If we can deduce from (3.1) that a12(x, u) == 0 for all (x, u) E [d1 , d2] x [vi, v2], then a(x, u) is 
identifiable. The identifiability of a( x, u) depends essentially on the structure of the zeros of 
the derivative ux(x, t) and of the density of the sets UQ(t) in [d1, d2] as well as Nu in [v1, v2], 
respectively. 

Theorem 1. We suppose 

Then a( x, u) is identifiable. 

P(t) -/:- c/; Vt E [O, T] 
UQ(t) = [d1, d2] 

Nu = [vi, v2]. 

(3.2) 
(3.3) 
(3.4) 

Proof. From (3.1) it follows that for every t E [O, T] there exists a point Xt E [d1, d2] such 
that ux(xt, t) = 0. We set Xo == Xt in (2.3) and obtain 

a12(x, u(x, t))ux(x, t) == 0 V(x, t) E DT. 
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Set K = UQ(t). For any x EK there exists some t(x) > 0 such that x E Q(t), i.e. ux(x, t) # 
0 and u = u(x,t) E Nu for all such (x,t). Thus, ai2(x,u) = 0 for all (x,u) EK x Nu. Now 
from the assumptions (3.3), (3.4) and from the continuity of a(x, u) as a function of two 
variables, it follows that 

The assumption (3.2) can be replaced by an additional information on the coefficient a(x, u). 
Unfortunately, in practice, knowledge about the physical parameters is generally not avail-
able. For the completeness of the mathematical results, we provide such a theorem. 

Theorem 2. Suppose that for every t E [O, T] there exists a point Xt E [d1 , d2] such that 

a1(xt, u(xt, t)) = a2(xt, u(xt, t)). (3.5) 

Moreover, let one of the following conditions be satisfied: 

(i) The assumptions of the lemma 3. 
(ii) The assumptions of the lemma 4. 

(iii) P(t) = </> Vt E [O, T]. 

Then 

Proof. From (3.5) we obtain, as in theorem 1, 

ai2(x, u(x, t))ux(x, t) = 0 V(x, t) E DT. 

For every u E Nu, there exists (x, t) E DT such that u = u(x, t) _with u~(x, t) # 0 and 

a12(x, u(x, t)) = 0 for all these (x, t). (3.6) 

Let (i) be satisfied. From (3.6) it follows especially that 

ai2(x, u(x, ti)) = 0 Vx E Q(t1). 

Now lemma 3 and the continuity of a(x,u) give 

ai2(x, u) = 0 V(x, u) E [di, d2] x [v1, v2] 

as in the proof of the theorem 1. 
If (ii) is satisfied, then from (3.6) we can deduce 

ai2(x1, u(x1, t)) = 0 Vt E W(x1) 

and the assertion from lemma 4 follows as above. 

Finally, let (iii) be satisfied. In this case, 

ai2(x, u(x, t)) = 0 V(x, t) E DT. 

holds. Hence we obtain the desired result from lemma 5 and from the continuity of a(x, u). 

Remark 2. The assumptions {3.3} and {3.4} in theorem 1 can be replaced by one of the 
conditions {i) or {ii} in theorem 2 and vice versa. 
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Now let us consider some cases of non-identifiability. If the condition (iii) in theorem 2 is 
fulfilled, then (3.5) must not be omitted. 

Theorem 3. Let the first derivative with respect to x of the function u 1 ( x, t) have a repre-
sentation of the form 

(u1(x, t))x = f(u)g(x)h(t), 

where f(u) > 0 for all u E [v1,v2], g(x) > 0 for all x E [d1,d2], f E 0 1([v1,v2]), g E 
0 1([d1,d2]). Then there exists an a2 such thatu1(x,t) = u2(x,t) for all (x,t) EDT and 
ai(x,u) # a2(x,u) for all (x,u) E [d1,d2] x [vi,v2]. 

Proof. We set 
1 

a2(x,u) = a1(x,u) + f(u)g(x)" 

Then a2(x,u) > 0 and ai(x,u) # a2(x,u) for all (x,u) E [d1 ,d2] x [v1,v2]. Furthermore, we 
obtain 

(a12(x, u1)(u1(x, t))x)x = 0 'v'(x, t) EDT. 

Then lemma 1 implies u1(x, t) = u2(x, t) for all (x, t) EDT. 

For the illustration of the theorems 2 and 3, we give an 

Example: We consider the parabolic problem (1.3)-(1.5), where b(x, u) = 0, d1 = 0, d2 = 
1, T = 1, f(x, t) - 0, 91(t) = (t + 1), 92(t) = 1/4(t + 1), cp(x) = (1 + x)-2 • Let 

t+l. 
u(x, t) = ( )2 . x + 1 

(3.7) 

be a solution of the equation (1.3) which fulfilles the boundary value conditions (1.4) and the 
initial condition (1.5), respectively. From the maximum principle for quasilinear parabolic 
equations [10], we obtain v1 = 1/4, v2 = 2. Furthermore, we have 

- 2( t + 1) - ' 3/2( ( )-1/2) \ ( ux(x,t)- -(x+l)3 -U -2 t+l # 0 'v'(x,t1 E 0,1) X (0,1) 

and the assumptions of theorem 3 are satisfied. We determine a(x, u) as a solution of the 
first order partial differential equation 

(a(x,u)ux):z: = Ut 

which can be written also in the form 

(3.8) 

with u( x, t) in the form (3. 7). Frorri the special form of the coefficients in equation (3.8), we 
can easily see that we obtain only one first integral 

a 

(x + 1)3 

1 
---=C. 
2u(x + 1)3 

For this reason it is sufficient to give an initial condition for equation (3.8) in the following 
form: We suppose that there exists a point x 0 such that for every t E [O, T] the value 
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a(x0 , u(x0 , t)) == a0 (t) is known (in this case the assumption ·(3.5) in theorem 2 is obviously 
fulfilled). In particular, choosing x 0 == 1, i.e., a(l, u(l, t)) == (t + lt1 , we obtain 

a(x,u) = 2~ (1- (x: 
1
\ 

Also, the assumption (3.4) in theorem 1 must not be omitted. 

Theorem 4. If Nu1 == {s E [vi,v2]l3(x, t) EDT: s == u1(x, t) /\ (u1(x, t))x -=f. O} is not dense 
in [v1,v2]. Then a(x,u) is not identifiable. 

Proof. Since Nu1 is not dense in [v1, v2], we have an interval Y = (xo-€, xa+e) C [v1, v2]-Nu1 , 

i.e. for every v E Y there exists (x, t) EDT with the properties v = u1(x, t) and (u1 (x, t))x == 
0. We set v0 = u1(xo, t0 ). Because u1(x, t) is a continuous function from [d1, d2] x [vi, v2] into 
[v1, v2] the inverse image u11(Y) of Y under u1 is open in [d1, d2] x [v1, v2] [11]. Then there 
exists an open ball S8(r0) C u11 (Y), where r0 == (x0 , t0 ). We denote by X == (x0 - 8, x0 + 8). 
Let be p(x,u) E C1([d1,d2] x [vi,v2]), where supp{p} C X x Y, p(x0 ,v0 ) > 0 and 
p(x, u) ~ 0 V(x, u) E [di, d2] x [v1, v2]. We set 

a2 = ai + p. 

If (x, t) EDT such that x EX and u1(x, t) E Y, i.e. (x,u1) EX x Y, then (u1(x, t))x == 0. 
If (x, t) E DT such that x ~ X, then (x, u1) ~ X x Y and p(x, u1(x, t)) = 0. Now for all 
lX, t) E (d1, d2) X (0, T) 

ai2(x,u1(x,t))(u1(x,t))x == 0 

holds and from lemma 1 it follows u1(x, t) == u2(x, t) for all (x, t) E [d1 , d2] x [O, T], but, 
ai(x·,u) == a2(x,u) · V(x,u) E [d1,d2] x [v1,v2]. 

is not valid. 
3.2 Identifiability of b(x, u) 
We suppose again that 

u1(x, t) == u2(x, t) == u(x, t) V(x, t) E DT 

with a(x, u) is known or a(x, u) = 0 for all (x, u) E [d1 , d2] x [v1, v2]. From lemma 1 it follows 

b12(x, u)u(x, t) == 0 V(x, t) E DT. (3.9) 

Moreover, we introduce the set 

H(t) == {x E [d1, d2]1u(x, t) # O}. 

Remark 3. UH(t) == [d1, d2] holds if and only if [v1, v2] - {O} # 0. 

Indeed, if UH(t) == [d1 , d2], then there exists x0 E H(t) for some t0 with u(x1, t0 ) -=f. 0 
whence it follows [v1, v2] - {O} # cf>. 

Conversely, if we suppose [v1, v2] - {O} == c/>, then u(x, t) == 0 for every (x, t) E DT· and 
UH(t) == cf>. 

Theorem 5. b(u,u) is identifiable if and only if UH(t) == [d1,d2]. 
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Proof. 

1. We assume that H(t) is not dense in [di, d2 ]. Then there exists an interval X = (x 0 -8, xa+ 
8) C [d1, d2] - UQ(t) with u1(x, t) = 0 for all (x, t) EX x [O, T]. We set q(x, u) E C([d1, d2] x 
[v1, v2],where supp{q} C X x {O}, q(xo, 0) > 0 q(x, u) 2:: 0, (x, u) E [d1, d2] x [vi, v2]. 
We set 

b1 = b2 + q. 
If (x, t) E DT such that x E X, then u1(x, t) = 0. If (x, t) E DT such that x (j. X then 
(x,u1) f/. X x {O} and q(x,u1(x,t)) = 0. Now for all (x,t) E (d1,d2) x (O,T), 

b12(x, u1(x, t))u1(x, t) = 0 

and from lemma 1 it follows u1(x, t) = u2(x, t) for all (x, t) E [d1, d2] x [O, T], but 

is not valid. 

2. If UH(t) = [d1, d2 ], then for every x E H(t), u(x, t) -/:. 0 holds. Now it follows from (3.9) 
that 

b12(x,u) = 0 V(x,u) E UH(t) x [v1,v2] - {O}. 

From the density of UH(t) in [d1, d2] and the continuity of b(x, u) we obtain 

b12(x,u) = 0 V(x,u) E [d1,d2] x [v1,v2]. 

Remark 4. Analogously as in theorem 5 we can obtain identifiability results for the coef-
ficients a or b in the differential equations { 1.1), { 1. 3), { 1. 6), which depends on n space 
variables x = (x1 , ... xn) if the left hand side is given in the non-divergent form 

a( x, u( x, t) )!:l.u(x, t) + b( x, u( x·, t) )u( x, t) + f ( x, t). 
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