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Abstract

We study the total mass of a d-dimensional super-Brownian motion as it first exits an in-
creasing sequence of balls. The total mass process is a time-inhomogeneous continuous-state
branching process, where the increasing radii of the balls are taken as the time-parameter. We
characterise its time-dependent branching mechanism and show that it converges, as time goes to
infinity, towards the branching mechanism of the total mass of a one-dimensional super-Brownian
motion as it first crosses above an increasing sequence of levels.
Our results identify the compact support criterion in Sheu (1994) as Grey’s condition (1974) for
the aforementioned limiting branching mechanism.

1 Introduction and main results

Suppose that X = (Xt, t ≥ 0) is a super-Brownian motion in Rd, d ≥ 1, with general branching
mechanism ψ of the form

ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(e−λx − 1 + λx)Π(dx), λ ≥ 0, (1)

where α = −ψ′(0+) ∈ (−∞,∞), β ≥ 0 and Π is a measure concentrated on (0,∞) which
satisfies

∫
(0,∞)

(x ∧ x2)Π(dx) < ∞. Assume ψ(∞) = ∞. Denote by Pµ the law of X with initial

configuration according to µ ∈ MF (Rd), the space of finite measures on Rd with compact support.
We writeMF (D) for the space of finite measures supported on D ⊂ Rd.
A construction of superprocesses with a general branching mechanism ψ as in (1) can be found in
Fitzsimmons [Fit88], see also Section 2.3 in Li [Li11] which provides a comprehensive account on the
theory of superprocesses.
We call X (sub)critical if ψ′(0+) ≥ 0 and supercritical if ψ′(0+) < 0. Denote the root of ψ by
λ∗ := inf{λ ≥ 0 : ψ(λ) > 0}. In the (sub)critical case, we have λ∗ = 0. In the supercritical case,
convexity of ψ and the condition ψ(∞) =∞ ensure that there is a unique and finite λ∗ > 0. In both
cases,

Pµ( lim
t→∞
||Xt|| = 0) = e−λ

∗||µ||,

where ||µ|| denotes the total mass of the measure µ ∈MF (Rd).

We want to study the total mass of the super-Brownian motion X upon its first exit from an increasing
sequence of balls. Fix an initial radius r > 0 and let Ds := {x ∈ Rd : ||x|| < s} be the open
ball of radius s ≥ r around the origin. According to Dynkin’s theory of exit measures [Dyn01], we can
describe the mass of X as it first exits the growing sequence of balls (Ds, s ≥ r) as a sequence
of random measures on Rd, known as branching Markov exit measures. We denote this sequence
of branching Markov exit measures by {XDs , s ≥ r}. Informally, the measure XDs is supported on
the boundary ∂Ds and it is obtained by ‘freezing’ mass of the super-Brownian motion when it first hits
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∂Ds.
Formally, {XDs , s ≥ r} is characterised by the following branching Markov property, see for instance
Section 1.1 in Dynkin and Kuznetsov [DK04]. Let µ ∈ MF (Dr) and, for z ≥ r, define FDz :=
σ(XDz′

, r ≤ z′ ≤ z). For any positive, bounded, continuous function f on ∂Ds,

Eµ[e−〈f,XDs 〉|FDz ] = e−〈vf (·,s),XDz 〉, 0 < r ≤ z ≤ s, (2)

where the Laplace functional vf is the unique non-negative solution to

vf (x, s) = Ex[f(ξTs)]− Ex

[ ∫ Ts

0

ψ(vf (ξz, s)) dz
]
, (3)

and ((ξz, z ≥ 0),Px) is an Rd-Brownian motion with ξ0 = x and with Ts := inf{z > 0 : ξz /∈
Ds} denoting its first exit time from Ds. In (2), we have used the inner product notation 〈f, µ〉 =∫

Rd f(x)µ(dx).

For s ≥ r, let Zs := ||XDs|| denote the total mass that is ‘frozen’ when it first hits the boundary of
the ball Ds. We can then define the total mass process (Zs, s ≥ r) which uses the radius s as its
time-parameter. Let us write Pr, for the law of the process (Zs, s ≥ r) starting at time r > 0 with unit
initial mass. In case we start with non-unit initial mass a > 0 we shall use the notation Pa,r for its law.
It is not difficult to see that Z is a time-inhomogeneous continuous-state branching process and we
can characterise it as follows.

Theorem 1. (i) Let r > 0. The process Z = (Zs, s ≥ r) is a time-inhomogeneous continuous-
state branching process. This is to say it is a [0,∞]-valued strong Markov process with càdlàg paths
satisfying the branching property

E(a+a′),r[e
−θZs ] = Ea,r[e

−θZs ]Ea′,r[e
−θZs ],

for all a, a′ > 0, θ ≥ 0 and s ≥ r.
(ii) Let r > 0 and µ ∈MF (∂Dr) with ||µ|| = a. Then, for s ≥ r, we have

Ea,r[e
−θZs ] = e−u(r,s,θ)a, θ ≥ 0, (4)

where the Laplace functional u(r, s, θ) satisfies

u(r, s, θ) = θ −
∫ s

r

Ψ(z, u(z, s, θ)) dz, (5)

for a family of branching mechanisms (Ψ(r, ·), r > 0) of the form

Ψ(r, θ) = −qr + arθ + brθ
2 +

∫
(0,∞)

(e−θx − 1 + θx1(x<1))Λr(dx), (6)

for θ ≥ 0, and for each r > 0 we have qr ≥ 0, ar ∈ R, br ≥ 0 and Λr is a measure concentrated
on (0,∞) satisfying

∫
(0,∞)

(1 ∧ x2)Λr(dx) <∞.
(iii) The branching mechanism Ψ satisfies the PDE

∂

∂r
Ψ(r, θ) +

1

2

∂

∂θ
Ψ2(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞)

Ψ(r, λ∗) = 0, r > 0. (7)
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Ψ(·, θ)

λ∗

Figure 1: Shape of the branching mechanism Ψ(r, ·) as r →∞ in the supercritical case

The authors are not aware of a result in the literature which states that the definition of the time-
dependent CSBP in (i) implies the characterisation in (ii). It is therefore outlined in the proof of Theorem
1 (ii) in Section 2.1 how this implication can be derived as a generalisation of the equivalent result for
standard CSBPs in Silverstein [Sil68].
As part of Theorem 1, we later prove that the root λ∗ of ψ is also the root for each Ψ(r, ·), r > 0, cf.
Lemma 6. This will be a key property for the forthcoming analysis of the family of branching mechanism
(Ψ(r, ·), r > 0).

Let us now describe how Ψ changes as r increases. We observe the following change in the shape
of the branching mechanism, see Figure 1.

Proposition 2. (i) For (sub)critical ψ, we have, for 0 < r ≤ s,

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ 0.

(ii) For supercritical ψ, we have, for 0 < r ≤ s,

Ψ(r, θ) ≥ Ψ(s, θ) for all θ ≤ λ∗

Ψ(r, θ) ≤ Ψ(s, θ) for all θ ≥ λ∗.

This result suggests that there is a limiting branching mechanism Ψ∞(·) := limr→∞Ψ(r, ·). Intu-
itively speaking, in the case where the initial mass is supported on a large ball, the local behaviour of
the super-Brownian motion when exiting increasingly larger balls should look like a one-dimensional
super-Brownian upon crossing levels. This idea is supported by the following result.

Theorem 3. For each θ ≥ 0, the limit limr↑∞Ψ(r, θ) = Ψ∞(θ) is finite and the convergence holds
uniformly in θ on any bounded, closed subset of R+.
(i) For any θ ≥ 0, we have

Ψ∞(θ) = 2 sgn(ψ(θ))

√∫ θ

λ∗
ψ(λ) dλ, (8)
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with λ∗ = 0 in the (sub)critical case.
(ii) Denote by ((Z∞s , s ≥ 0), P∞) the standard CSBP associated with the limiting branching mecha-
nism Ψ∞, with unit initial mass at time 0.
Then, (Z∞s , s ≥ 0) is the total mass of the process of branching Markov exit measures of a one-
dimensional super-Brownian motion with unit initial mass at time zero as it first exits the family of
intervals ((−∞, s), s ≥ 0).
Further, for any s > 0, θ ≥ 0,

lim
r→∞

Er[e
−θZr+s ] = E∞[e−θZ

∞
s ]. (9)

Let us remark that, in the supercritical case, the limiting branching mechanism Ψ∞ is critical and
possesses an explosion coefficient, that is Ψ′∞(0+) = 0 and Ψ∞(0) < 0. Thanks to the uniform
continuity in θ, this implies that Ψ(t, 0) < 0 for all sufficiently large t.
The limiting process Z∞ in Theorem 3 has already been studied in Theorem 3.1 in Kyprianou et al.
[KLMSR12]. Note that therein the underlying Brownian motion has a positive drift which is chosen such
that the resulting branching mechanism is conservative. The characterisation can easily be adapted
to the driftless case as in Theorem 3 (ii). Kaj and Salminen [KS93a, KS93b] studied the analogous
process in the setting of branching particle diffusions, that is the process of the number of particles of
a one-dimensional branching Brownian motion stopped upon exiting the interval ((−∞, s), s ≥ 0).
They discover in the supercritical case [KS93a] that the resulting offspring distribution is degenerate,
meaning that ∑

i≥0

pi < 1, (10)

where pi is the probability of having i offspring, i ≥ 0. In particular, the probability of a birth event with
an infinite number of offspring is strictly positive. In this view, (10) is the analogue of Ψ∞(0) < 0.

In Sheu [She94, She97], asymptotics of the process Z are studied in order to obtain a compact
support criterion for the super-Brownian motion X . It is found that the event of extinction of Z , i.e.
{∃s > 0 : Zs = 0}, and the event {X has compact support} agree Pµ-a.s., c.f. [She97], Theorem
4.1.
The following result on the asymptotic behaviour of Z is given by Sheu [She94].

Theorem (Sheu [She94] Theorem 1.1, Theorem 1.2, Cor. 1.1). Let µ ∈ MF (Rd). The event {∃s >
0 : Zs = 0} agrees Pµ-a.s. with the event {lims→∞ Zs = 0} if ψ satisfies∫ ∞ 1√∫ λ

λ∗
ψ(θ) dθ

dλ <∞. (11)

Otherwise, {∃s > 0 : Zs = 0} has probability 0.

In short, the event of extinction of Z agrees with the event of extinguishing of Z , denoted by E(Z) :=
{lims→∞ Zs = 0}, if and only if (11) holds, and it has zero probability otherwise. We have stated the
theorem slightly differently from its original version in which, in the supercritical case, condition (11)
reads

∫∞
s

1√R λ
0 φ(θ) dθ

dλ < ∞, for φ(s) := ψ(s) − αs. The equivalence of these two conditions

was already pointed out in [KLMSR12].
The unusual condition (11) corresponds to Grey’s condition in [Gre74] for extinction vs. extinguishing
in the following sense. Recall that Grey’s condition says that, for a standard CSBP with branching
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mechanism F , the event of extinction agrees with the event of becoming extinguished if and only if∫∞
F (θ)−1 dθ < ∞, and has probability zero otherwise. The following interpretation of (11) is an

immediate consequence of Theorem 3 (i).

Corollary 4. Sheu’s compact support condition (11) is Grey’s condition for the limiting standard CSBP
Z∞ with branching mechanism Ψ∞ in (8).

Sheu’s compact support condition (11) plays an important role when studying the radial speed of the
support of supercritical Super-Brownian motion. In the one-dimensional case, assuming (11), Kypri-
anou et. al [KLMSR12], Corollary 3.2, show that

lim
t→∞

Rt

t
=
√
−2ψ′(0+), Pµ − a.s, µ ∈MF (R), (12)

where Rt := sup{r > 0 : Xt(r,∞) > 0} is the right-most point of the support of Xt. A key step
in the proof is to study the total mass of the process of branching exit measures of a one-dimensional
super-Brownian motion with drift c := −

√
−2ψ′(0+) upon exiting the increasing sequence of in-

tervals ((−∞, s), s ≥ 0), which we denote here by Zc = (Zc
s , s ≥ 0). It is proved in Theorem

3.1 in [KLMSR12] that Zc is a subcritical standard CSBP. Now condition (11) comes in. Corollary 4
interprets (11) as Grey’s condition for the standard CSBP Z∞. The CSBPs Z∞ and Zc only differ
in that the underlying Brownian motion of the latter has drift c and it is not difficult to convince our-
selves that the drift term is irrelevant when studying the extinction vs. extinguishing problem, see (29)
in [KLMSR12] for a rigorous argument. Therefore condition (11) is also equivalent to Grey’s condition
for the subcritical CSBP Zc and hence ensures that Zc becomes extinct Pµ-a.s. This now implies
that the right-most point of the support cannot travel at a speed faster than

√
−2ψ′(0+). In order to

make this last conclusion, extinguishing of Zc is clearly not sufficient and it remains an open questions
whether a strong law for (Rt, t ≥ 0) can exist when (11) fails.
In the d-dimensional case, d ≥ 1, and with a quadratic branching mechanism of the form ψ(λ) =
−αλ + βλ2, for α, β ≥ 0, Kyprianou [Kyp05] shows that (12) holds, where Rt is now replaced by
R̃t := sup{r > 0 : Xt(Rd\Dr) > 0}, the radius of the support of Xt. It can be checked that
condition (11) is satisfied for this choice of ψ. It is possible to adapt the higher-dimensional result in
[Kyp05] to hold for general branching mechanisms provided (11) holds.

The remainder of the paper is organised as follows. In Section 2 we prove Theorem 1 which is followed
by the proof Proposition 2 and Theorem 3 in Section 3.

2 Characterising the process Z - Proof of Theorem 1

2.1 Proof of Theorem 1 (i) and (ii)

Proof of Theorem 1 (i). Take a look at equation (2) which characterises the sequence of branching
exit measures (XDs , s ≥ r). For any measure µ ∈MF (∂Dr) and ||µ|| = a, we can write

Ea,r[e
−θZs ] = Eµ[e−θ||XDs ||] = e−〈vθ(·,s),µ〉 = e−vθ(x,s)a,
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for any x ∈ ∂Dr, by radial symmetry. The branching property of Z now follows easily from the
branching property of (XDs , s > r) in (2) since, for a, a′ > 0, 0 < r ≤ s,

E(a+a′),r[e
−θZs ] = Eµ+µ′ [e

−θ||XDs ||]

= e−vθ(x,s)(a+a
′)

= Eµ[e−θ||XDs ||]Eµ′ [e
−θ||XDs ||] = Ea,r[e

−θZs ]Ea′,r[e
−θZs ],

for measures µ, µ′ ∈ MF (∂Dr) with ||µ|| = a, ||µ′|| = a′. The Markov property is also an
immediate consequence of (2).

Proof of Theorem 1 (ii). First note that, by radial symmetry as seen in the proof of Theorem 1 (i), (4)
holds with u(r, s, θ) = vθ(x, s) for x ∈ ∂Dr where r = ||x||. It remains to show that (5) and (6) are
satisfied.
For any 0 < r ≤ z ≤ s, θ ≥ 0,

Er[e
−θZs ] = Er[EZz ,z[e

−θZs ]] = Er[e
−u(z,s,θ)Zz ] = e−u(r,z,u(z,s,θ)),

which shows that the Laplace functional satisfies the composition property

u(r, s, θ) = u(r, z, u(z, s, θ)) for 0 < r ≤ z ≤ s, θ ≥ 0. (13)

The branching property of Z implies that, for any fixed 0 < r ≤ s, the law of (Zs, Pr) is an in-
finitely divisible distribution on [0,∞]. It follows from the Lévy-Khintchin formula that, for fixed r and
s, u(r, s, θ) is a non-negative, completely concave function as considered in Section 4 in Silverstein
[Sil68]. The process Z thus has the properties of the time-dependent version of the CSBP considered
in Definition 4 in [Sil68]. We can then adapt the proof of Theorem 4 in [Sil68] to show that there exists
a branching mechanism Ψ of the form (6) such that

∂

∂r
u(r, s, θ)

∣∣
r=s

= Ψ(s, θ), for s > 0, θ ≥ 0.

With the composition property (13), we then get

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)), for 0 < r ≤ s, θ ≥ 0.

Indeed it was already discussed at the end of Section 4 in [Sil68] that it is possible to allow time-
dependence in Theorem 4 in [Sil68].
Together with the initial condition u(r, r, θ) = θ, we obtain equation (5).

From (5), we get an alternative characterisation of the relation between the Laplace functional u and
the branching mechanism Ψ as

∂

∂s
u(r, s, θ) = −Ψ(s, θ)

∂

∂θ
u(r, s, θ) (14)

∂

∂r
u(r, s, θ) = Ψ(r, u(r, s, θ)) (15)

u(r, r, θ) = θ,

for any s > r > 0 and θ ≥ 0. To see where equation (14) comes from, compare the derivatives of (5)
in s and θ, that is

∂

∂s
u(r, s, θ) = −Ψ(s, θ)−

∫ s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂s
u(z, s, θ) dz

∂

∂θ
u(r, s, θ) = 1−

∫ s

r

∂

∂u
Ψ(z, u(z, s, θ))

∂

∂θ
u(z, s, θ) dz,
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where ∂Ψ(·, ·)/∂u denotes the derivative in the second component of Ψ. We see that ∂
∂s
u(r, s, θ)

and −Ψ(s, θ) ∂
∂θ
u(r, s, θ) are solutions to the same integral equation. With an application of Gron-

wall’s inequality it can be shown that this integral equation has a unique solution.

2.2 Proof of Theorem 1 (iii)

We have already seen in the previous section that, for any measure µ ∈ MF (∂Dr) with ||µ|| = a,
we can write

Ea,r[e
−θZs ] = Eµ[e−θ||XDs ||] = e−〈vθ(·,s),µ〉 = e−vθ(x,s)a,

for any x ∈ ∂Dr, by radial symmetry. In particular, we saw that u(r, s, θ) = vθ(x, s) for any x ∈ ∂Dr.
From the semi-group equation for v in (3), we thus get a semi-group representation of u, alternative to
the representation in (5), as the unique non-negative solution to

u(r, s, θ) = θ − ER
r

[ ∫ τs

0

ψ(u(Rz, s, θ)) dz
]
, (16)

where (R,PR
r ) is a d-dimensional Bessel process and τs := inf{z > 0 : Rz > s} its first passage

time above level s.
Equation (16) tells us that the process Z can be viewed as the total mass process of the branching
exit measures of a d-dimensional super-Bessel process with branching mechanism ψ as it first exits
the intervals (0, s), s ≥ r.
Equivalently to the characterisation of u(r, s, θ) as the unique non-negative solution to the integral
equation (16), we can characterise it as the unique non-negative solution to the differential equation

1

2

∂2

∂r2
u(r, s, θ) +

d− 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)), 0 < r < s, θ ≥ 0,

u(r, r, θ) = θ. (17)

We will show this equivalence in A. In the following section, we will use the differential equation (17) to
prove the PDE characterisation of the branching mechanism Ψ in Theorem 1 (iii).
We prove Theorem 1 (iii) in two parts. In Lemma 5 we show that Ψ satisfies the PDE in (7) before we
prove that Ψ(r, λ∗) = 0, for all r > 0, in Lemma 6 below.

Lemma 5. The branching mechanism Ψ satisfies the PDE (7), i.e.

∂

∂r
Ψ(r, θ) +

1

2

∂

∂θ
Ψ2(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ) r > 0, θ ∈ (0,∞).

Proof of Lemma 5. Using (15), the left-hand side of (17) becomes

∂2

∂r2
u(r, s, θ) +

d− 1

r

∂

∂r
u(r, s, θ)

=
∂

∂r
Ψ(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))|y=r

+
∂

∂u
Ψ(r, u(r, s, θ)) Ψ(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ))

=
∂

∂y
Ψ(y, u(r, s, θ))|y=r +

1

2

∂

∂u
Ψ2(r, u(r, s, θ)) +

d− 1

r
Ψ(r, u(r, s, θ)),
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where ∂Ψ(·, ·)/∂u denotes the derivative with respect to the second argument. Note that this equation
holds for all s > r and θ ≥ 0. Since u(r, s, θ) → θ as s ↓ r, we see that, for fixed r, the range of
u(r, s, θ) is (0,∞) as we vary s ∈ (r,∞) and θ ∈ [0,∞). Hence, we can replace u(r, s, θ) above
by an arbitrary θ ∈ (0,∞) and conclude that the PDE (7) holds true.

Recall that λ∗ = inf{λ ≥ 0 : ψ(λ) > 0} denotes the root of ψ and define λ∗(r) := inf{λ ≥ 0 :
Ψ(r, λ) > 0}, for r > 0.

Lemma 6. (i) In the (sub)critical case, for all r > 0, we have λ∗(r) = 0. In particular, Ψ(r, θ) ≥ 0 for
all θ ≥ 0.
(ii) In the supercritical case, for all r > 0, we have λ∗(r) = λ∗. In particular, Ψ(r, θ) ≤ 0 for θ ≤ λ∗,
while Ψ(r, θ) ≥ 0 for θ ≥ λ∗.

Proof of Lemma 6 (i). As we are in the (sub)critical case we have ψ(θ) ≥ 0 for all θ ≥ 0. For
r < z < s, (16) yields

u(r, s, θ) = θ − ER
r

∫ τs

0

ψ(u(Rv, s, θ)) dv

= θ − ER
r

∫ τz

0

ψ(u(Rv, s, θ)) dv − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

≤ θ − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

= u(z, s, θ).

Hence, u(r, s, θ) is non-decreasing in r. With (15) we thus see that, for all 0 < r < s, θ ≥ 0,

Ψ(r, u(r, s, θ)) =
∂

∂r
u(r, s, θ) ≥ 0. (18)

As we take s ↓ r, we get u(r, s, θ)→ θ and hence Ψ(r, θ) ≥ 0 for all θ > 0, r > 0. Continuity of Ψ
ensures Ψ(r, 0) = 0 and, in particular, λ∗(r) = 0 for all r > 0.

The key to the proof of part (ii) of Lemma 6 is the following lemma.

Lemma 7. Fix r > 0.
(i) For any λ > 0, the process

Mλ
s = e−λZs −

∫ s

r

Ψ(v, λ)Zve
−λZv1{Zv<∞}dv, s ≥ r, (19)

is a Pr-martingale.
(ii) The process (e−λ

∗Zs , s ≥ r) is a Pr-martingale.
Here we use the convention e−λZs1{Zs=∞} = 0, for any λ > 0.

Proof of part (i). Taking expectations in (19) and interchanging expectation and integral gives

Er[M
λ
s ] = e−u(r,s,λ) −

∫ s

r

Ψ(v, λ)
∂

∂λ
u(r, v, λ) e−u(r,v,λ)dv.

Differentiating in s, together with (14), gives

∂

∂s
Er[M

λ
s ] =

(
− ∂

∂s
u(r, s, λ)−Ψ(s, λ)

∂

∂λ
u(r, s, λ)

)
e−u(r,s,λ) = 0.
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Hence, Er[Mλ
s ] is constant for all s ≥ r and in particular, taking s = r, equal to e−λ. Note that the

same computation gives that Ea,v[Mλ
s ] = e−λa, for a > 0 and 0 < r ≤ v ≤ s. An application of the

Markov property then shows that (Mλ
s , s ≥ r) is a martingale for any λ > 0.

The proof of Lemma 7 (ii) relies on the following idea. Since (||Xt||, t ≥ 0) is a CSBP with branching
mechanism ψ it is well-known that the process (e−λ

∗||Xt||, t ≥ 0) is a martingale with respect to the
filtration (Ft, t ≥ 0) where Ft = σ(||Xu||, u ≤ t). The martingale property follows on account of
the fact that

Eµ[1{||Xu||→0}|Ft] = e−λ
∗||Xt||, t ≥ 0,

by a simple application of the tower property. Now, fix r > 0, and consider the filtration (Gs, s ≥ r)
where Gs = σ(||XDv ||, r ≤ v ≤ s) = σ(Zv, r ≤ v ≤ s) instead. If we can show that, for
µ ∈MF (∂Dr),

Eµ[1{||Xu||→0}|Gs] = e−λ
∗||XDs || = e−λ

∗Zs ,

holds, then we can deduce in the same way that the process (e−λ
∗||XDs ||, s ≥ r) is a martingale with

respect to the filtration (Gs, s ≥ r). The proof is slightly cumbersome and therefore postponed to the
end of this section.

The proof of Lemma 6 (ii) is now a simple consequence of Lemma 7.

Proof of Lemma 6 (ii). By Lemma 7, the process

e−λ
∗Zs −Mλ∗

s =

∫ s

r

Ψ(v, λ∗)Zve
−λ∗Zv1{Zv<∞} dv, s ≥ r,

must be a Pr-martingale. However this is only possible if the expectation of the Lebesgue-integral
above is constant in s which requires Ψ(s, λ∗) = 0 on {0 < Zs < ∞} for all s ≥ r. Since the
event {0 < Zs < ∞} has positive probability under Pr, we reason that Ψ(s, λ∗) = 0 for all s ≥ r.
Choosing r > 0 arbitrarily small yields Ψ(s, λ∗) = 0 for all s > 0. Convexity of Ψ(s, θ) immediately
implies that Ψ(s, θ) ≥ 0 for θ ≥ λ∗ and, further noting that Ψ(s, 0) ≤ 0, that Ψ(s, θ) ≤ 0 for
θ ≤ λ∗.

Proof of Theorem 1 (iii). Combine Lemma 5 and 6.

Let us now come to the proof of Lemma 7 (ii). For r > 0, t ≥ 0, define the space-time domain Dt
r as

Dt
r = {(x, u) : ||x|| < r, u < t} ⊂ Rd × [0,∞).

Let (XDtr , t ≥ 0, r > 0) be the system of branching Markov exit measures describing the mass of X
as it first exits the space-time domains Dt

r, see again Dynkin [Dyn01].
For the proof of Lemma 7 (ii), we will need the following result which seems rather obvious but never-
theless needs a careful proof.

Lemma 8. Let r > 0. For any µ ∈MF (Dr), we have Pµ-a.s.,

lim
t→∞
||XDtr || = ||XDr || = Zr.

9



Proof. For r > 0, t ≥ 0, denote by ∂Dt
r the boundary of the set Dt

r, i.e.

∂Dt
r = ( {x : ||x|| = r} × [0, t) ) ∪ ( {x : ||x|| < r} × {t} )

=: ∂Dt−
r ∪ ∂Dt

r−.

By monotonicity, we have limt→∞
∣∣∣∣XDtr

∣∣
∂Dt−r

∣∣∣∣ =
∣∣∣∣XDr

∣∣∣∣ = Zr, Pµ-a.s. Next, define the event
that X becomes extinguished within Dr, i.e.

E(X,Dr) := { lim
t→∞

∣∣∣∣XDtr

∣∣
∂Dtr−

∣∣∣∣ = 0}.

On the complement of E(X,Dr), we have

lim
t→∞

∣∣∣∣XDtr

∣∣
∂Dtr−

∣∣∣∣ =∞, Pµ − a.s.

This is to say that, on E(X,Dr)
c, the total mass within the open ball Dr at time t tends to infinity as t

tends to infinity. This follows from Proposition 7 in [EK04] which says that lim supt→∞ ||XDtr

∣∣
B×{t}|| ∈

{0,∞}, Pµ-a.s. for any nonempty open setB ⊂ Dr (noting that Proposition 7 in [EK04] indeed holds
for the general branching mechanism we are considering here). Hence, we have shown so far that

lim
t→∞
||XDtr || = Zr +∞1E(X,Dr)c .

Thus it remains to prove that, on E(X,Dr)
c, Zr is also infinite. Fix a K > 0. Thanks to Proposition 7

of [EK04], on E(X,Dr)
c, we can define an infinite sequence of stopping times

T0 = inf{t > 0 :
∣∣∣∣XDtr

∣∣
∂Dtr−

∣∣∣∣ ≥ K}
Ti+1 = inf{t > Ti + 1 :

∣∣∣∣XDtr

∣∣
∂Dtr−

∣∣∣∣ ≥ K}, i = 1, 2, ...

At times Ti, i ≥ 0, the total mass within the open ballDr is greater than or equal toK . Fix anM > 0
and define the event

Ai = {
∣∣∣∣X

D
Ti
r

∣∣
[Ti−1,Ti)×∂Dr

∣∣∣∣ > M}, i = 1, 2, ...

which is the event that the mass that exits Dr during the time interval [Ti−1, Ti) exceeds M . Note
that there exists a strictly positive constant ε(M,K), such that

PX
D
Ti
r

(Ai+1) ≥ PKδ0(A1)

≥ PKδ0(
∣∣∣∣XD1

r

∣∣
[0,1)×∂Dr

∣∣∣∣ > M) > ε(M,K). (20)

Thus, we can partition time into infinitely many intervals [Ti, Ti+1), i ≥ 0, of length at least 1. Dur-
ing each time interval the mass that exits Dr, and thus contributes to Zr, exceeds M with positive
probability. These probabilities are uniformly bounded from below by ε(M,K) > 0 in (20). Therefore
||XDr || = Zr =∞, Pµ-a.s on the event E(X,Dr)

c. This completes the proof.

Proof of Lemma 7 (ii). For s > 0, t ≥ 0, define FDts = σ(XDt
′
s′
, s′ ≤ s, t′ ≤ t). Fix r > 0. The

characterising branching Markov property for exit measures, see for instance Section 1.1 in [DK04],
yields that, for µ ∈MF (Dr), s ≥ r and u ≥ t ≥ 0, we have

Eµ[e−θ||Xu|||FDts ] = exp{−〈wθ(u− ·), XDts〉}. (21)

10



where wθ is the Laplace functional of the standard CSBP (||Xu||, u ≥ 0) with branching mechanism
ψ. Taking θ = λ∗, it is well known that wλ∗(t) = λ∗ for all t ≥ 0. Therefore (21), with θ replaced by
λ∗, turns into

Eµ[e−λ
∗||Xu|||FDts ] = exp{−

∫
wλ∗(u− t′) dXDts(x, t

′)} = e−λ
∗||X

Dts
||.

Taking u→∞, we conclude

Eµ[1{||Xu||→0}|FDts ] = lim
u→∞

Eµ[e−λ
∗||Xu|||FDts ] = e−λ

∗||X
Dts
||. (22)

Now, we want to take the limit in t. By Lemma 8, we have ||XDts|| → Zs as t → ∞ and thus the
right-hand side of (22) tends to exp{−λ∗Zs}, Pµ-a.s. For the left-hand side, by the strong Markov
property, we can replace FDts by σ(XDts). Further, note that Pµ(||Xu|| → 0) = e−λ

∗||µ|| for any
µ ∈ MF (Ds), with Pµ(||Xu|| → 0) = 0 if µ has infinite mass. Thus, the event {||Xu|| → 0} only
depends on the total mass of µ. Therefore we can replace σ(XDts) by σ(||XDts||) on the left-hand
side in (22). To sum up, we get

Eµ[1{||Xu||→0}|FDts ] = Eµ[1{||Xu||→0}|σ(XDts)] = Eµ[1{||Xu||→0}|σ(||XDts||)].

By Lemma 8, we have limt→∞ ||XDts|| = Zs, with the possibility of the limit being infinite. Hence,

lim
t→∞

Eµ[1{||Xu||→0}|σ(||XDts||)] = Eµ[1{||Xu||→0}|σ(Zs)].

Putting the pieces together, we get

Eµ[1{||Xu||→0}|σ(Zs)] = lim
t→∞

Eµ[1{||Xu||→0}|FDts ] = lim
t→∞

e−λ
∗||X

Dts
|| = e−λ

∗Zs .

Finally take µ ∈ MF (∂Dr) and let r ≤ s′ ≤ s. Then conditioning on σ(Zs) and using the tower
property, gives

e−λ
∗Zs′ = Eµ[1{||Xu||→0}|σ(Zs′)]

= Eµ[E[1{||Xu||→0}|σ(Zs)]|σ(Zs′)] = Er[e
−λ∗Zs|σ(Zs′)],

from which we conclude that (e−λ
∗Zs , s ≥ r) is a Pr-martingale.

3 The limiting branching mechanism - Proof of Proposition 2 and
Theorem 3

3.1 Changing shape - Proof of Proposition 2

Proof of Proposition 2. (i) Fix 0 < r ≤ r′, h > 0 and θ ≥ 0. The first step is to show that u(r, r +
h, θ) ≥ u(r′, r′ + h, θ). Said another way, we want to show that

Er′ [e
−θZr′+h ] ≥ Er[e

−θZr+h ]. (23)

Recall that (Zr+h, Pr) is the total mass of X as it first exists the ball Dr+h, when X is initiated from
one unit of mass distributed on ∂Dr. By radial symmetry of X , we may assume that the initial mass
is concentrated in a point xr ∈ ∂Dr, i.e. Er[e−θZr+h ] = Eδxr [e

−θ||XDr+h ||].

11
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r

r′

h

xrxr′
Dr

Dr+h

Dr′

Dr′+h

xr′−r

D(xr′−r,r+h)

Figure 2: Shifting the balls Dr and Dr+h by a distance r′ − r

Now we shift the point xr to the point xr′ ∈ ∂Dr′ where ||xr′ − xr|| = r′ − r. We also shift the ball
Dr+h in the same direction and by the same distance r′ − r and denote its new centre by xr′−r, see
Figure 2. By translation invariance of X we then have

Er[e
−θZr+h ] = Eδxr

[
e−θ||XDr+h ||

]
= Eδxr′

[
e
−θ||XD(xr′−r,r+h)||

]
,

where D(xr′−r, r + h) is the open ball centred at xr′−r with radius r + h. We can then write (23) as

Eδxr′

[
e
−θ||XDr′+h ||

]
≥ Eδxr′

[
e
−θ||XD(xr′−r,r+h)||

]
. (24)

Recall that equation (2) shows that the process of branching exit measure XDs indexed by the in-
creasing sequence of balls (Ds, s ≥ r) has the strong Markov property. By Dynkin [Dyn01], the
strong Markov property holds more generally for any increasing sequence of open Borel subsets of
Rd. In particular,

Eδxr′

[
e
−θ||XDr′+h ||

∣∣∣FD(xr′−r,r+h)

]
= EXD(xr′−r,r+h)

[
e
−θ||XDr′+h ||

]
, (25)

where FD(xr′−r,r+h)
= σ(XD(xr′−r,s)

, s ≤ r + h). Hence, assuming that

EXD(xr′−r,r+h)

[
e
−θ||XDr′+h ||

]
≥ e

−θ||XD(xr′−r,r+h)|| (26)

holds true, we get, together with (25), that

Eδxr′

[
e
−θ||XDr′+h ||

]
= Eδxr′

[
Eδxr′

[
e
−θ||XDr′+h ||

∣∣σ(XD(xr′−r,r+h)
)
]]

= Eδxr′

[
EXD(xr′−r,r+h)

[
e
−θ||XDr′+h ||

]]
≥ Eδxr′

[
e
−θ||XD(xr′−r,r+h)||

]
,

which is the desired inequality (24). Thanks to the branching Markov property for exit measures, for
(26) to hold it suffices to show that

Eδx

[
e
−θ||XDr′+h ||

]
≥ e−θ, for any x ∈ ∂D(xr′−r, r + h). (27)

12



For fixed x ∈ ∂D(xr′−r, r + h), set s = ||x|| and note that s ≤ r′ + h. By (18), u(s, r′ + h, θ) is
increasing in s and bounded from above by u(r′ + h, r′ + h, θ) = θ. Hence we obtain

Eδx [e
−θ||XDr′+h ||] = Es[e

−θZr′+h ] = e−u(s,r
′+h,θ) ≥ e−θ,

which is (27). This means we have proved (23) and thus u(r, r + h, θ) ≥ u(r′, r′ + h, θ). The latter
yields that, for all θ ≥ 0,

∂

∂s
u(r, s, θ)|s=r = lim

h↓0

u(r, r + h, θ)− u(r, r, θ)

h

≥ lim
h↓0

u(r′, r′ + h, θ)− u(r′, r′, θ)

h
=

∂

∂s
u(r′, s, θ)|s=r′ .

(28)

Now we apply (14) to get

∂

∂s
u(r, s, θ)|s=r =

(
−Ψ(s, θ)

∂

∂θ
u(r, s, θ)

)
|s=r = −Ψ(r, θ) · 1, (29)

where we used that lims↓r
∂
∂θ
u(r, s, θ) = 1 which can be seen as follows. By dominated convergence,

we have

lim
s↓r

∂

∂θ
e−u(r,s,θ) = lim

s↓r

∂

∂θ
Er[e

−θZs1{Zs<∞}] = lim
s↓r

Er[−Zse−θZs1{Zs<∞}] = −e−θ.

On the other hand,

lim
s↓r

∂

∂θ
e−u(r,s,θ) = − lim

s↓r

∂

∂θ
u(r, s, θ) e−u(r,s,θ) = − lim

s↓r

∂

∂θ
u(r, s, θ) e−θ

and we may conclude that lims↓r
∂
∂θ
u(r, s, θ) = 1 as claimed.

Combining (28) with (29) gives Ψ(r, θ) ≤ Ψ(r′, θ) for θ ≥ 0 and r ≤ r′, which completes the proof.

(ii) Define Ψ∗(r, θ) := Ψ(r, λ∗ + θ) for θ ≥ 0. Then (Ψ∗(r, ·), r > 0) is a family of subcritical
branching mechanisms which, by part (i), has the property that Ψ∗(r, θ) ≤ Ψ∗(r′, θ) for r ≤ r′ and
all θ ≥ 0. Clearly this gives Ψ(r, θ) ≤ Ψ(r′, θ) for r ≤ r′ and θ ≥ λ∗.
Let θ ≤ λ∗. First, note that u(r, s, λ∗) = − logEr[e

−λ∗Zs ] = λ∗, which is a consequence of
Lemma 7 (ii). Thus, u(r, s, θ) ≤ u(r, s, λ∗) = λ∗ for all θ ≤ λ∗, 0 < r ≤ s, and in particular
ψ(u(r, s, θ)) ≤ 0. We therefore get

u(r, s, θ) = θ − ER
r

∫ τz

0

ψ(u(Rv, s, θ)) dv − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

≥ θ − ER
z

∫ τs

0

ψ(u(Rv, s, θ)) dv

= u(z, s, θ)

for any 0 < r ≤ z ≤ s, θ ≤ λ∗. We can then use ∂
∂r
u(r, s, θ) ≤ 0 in place of the inequality (18) in

the proof of part (i). Thus, following the same arguments as in the proof of part (i) with all inequalities
reversed, we see that Ψ(r, θ) ≥ Ψ(r′, θ) for r ≤ r′ and all θ ≤ λ∗.
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3.2 Limiting branching mechanism - Proof of Theorem 3

To begin with, we show the existence and finiteness of the limiting branching mechanism Ψ∞ and
derive a PDE characterisation.

Proposition 9. For each θ ≥ 0, the limit limr↑∞Ψ(r, θ) = Ψ∞(θ) is finite and the convergence
holds uniformly in θ on any bounded, closed subset of R+.
(i) In the (sub)critical case, Ψ∞ satisfies the equation

1

2

∂

∂θ
Ψ2
∞(θ) = 2ψ(θ), θ ≥ 0, (30)

Ψ∞(0) = 0.

(ii) In the supercritical case, Ψ∞ satisfies (30) with the initial condition at 0 replaced by

Ψ∞(0) = −2

√∫ λ∗

0

|ψ(θ)| dθ

and Ψ∞(λ∗) = 0.

Proof. From the monotonicity in Proposition 2, we conclude that the pointwise limit Ψ∞(θ) :=
limr↑∞Ψ(r, θ) exists. We will have to show that |Ψ∞(θ)| is finite for each θ ≥ 0. Uniform con-
vergence on any bounded, closed subset of R will then follow by convexity, see for example Theorem
10.8 in [Roc70]. We consider the (sub)critical case and the supercritical case separately.

(i) Suppose we are in the (sub)critical case. We have Ψ(r, 0) = 0 for all r > 0 and hence Ψ∞(0) = 0.
For θ > 0, recall the PDE (7), which can be written slightly differently as

∂

∂r
Ψ(r, θ) + Ψ(r, θ)

∂

∂θ
Ψ(r, θ) +

d− 1

r
Ψ(r, θ) = 2ψ(θ), r > 0, θ > 0.

(31)

By Proposition 2 (i), ∂
∂r

Ψ(r, θ) ≥ 0 and, by Lemma 6(i), Ψ(r, θ) ≥ 0. Thus,

Ψ(r, θ)
∂

∂θ
Ψ(r, θ) ≤ 2ψ(θ), for all r > 0 and θ ≥ 0. (32)

Fix a θ0 > 0. Suppose for contradiction that Ψ(r, θ0) ↑ ∞ as r → ∞. For any K > 0, we can find
an r0 large enough such that

Ψ(r0, θ0) > 2Kψ(θ0). (33)

By (32), this implies that ∂
∂θ

Ψ(r0, θ0) <
1
K

. As Ψ is convex in θ with Ψ(r0, 0) = 0, we get that

Ψ(r0, θ0) ≤
θ0

K
.

Now we can choose K large enough such that θ0/K < 2Kψ(θ0), which then contradicts (33).
Hence, limr→∞Ψ(r, θ) = Ψ∞(θ) <∞ for all θ ≥ 0.
Note that lim supr→∞

∂
∂θ

Ψ(r, θ) is also finite for each θ ≥ 0. Indeed, if we supposed the contrary for
some θ > 0, that is, lim supr→∞

∂
∂θ

Ψ(r, θ) =∞, then (32) would imply that lim infr→∞Ψ(r, θ) =
0, which contradicts Lemma 6 (i). By convexity, we can pick any θ > 0 to get lim supr→∞

∂
∂θ

Ψ(r, 0+)
≤ lim supr→∞

∂
∂θ

Ψ(r, θ) <∞.
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Next, we want to take r →∞ in (31) and we know that the limit of the left-hand side exists since the
right-hand side does not depend on r. We keep θ0 > 0 fixed and consider each term on the left-hand
side of (31) separately.
We have just seen that limr→∞Ψ(r, θ0) <∞ which implies that the third term on the left-hand side
of (31), namely d−1

r
Ψ(r, θ0), vanishes as r →∞.

Consider the term Ψ(r, θ0)
∂
∂θ

Ψ(r, θ0) next. Since Ψ(r, ·) is a sequence of continuous, convex func-
tions, the pointwise limit Ψ∞ is also continuous and convex in θ, cf. Theorem 10.8 in Rockafellar
[Roc70]. The convexity ensures that the set of points at which Ψ∞ is not differentiable is at most count-
able. If Ψ∞ is differentiable at θ0, then by Theorem 25.7 in [Roc70], it follows that limr→∞

∂
∂θ

Ψ(r, θ0) =
∂
∂θ

Ψ∞(θ0) and hence

lim
r→∞

Ψ(r, θ0)
∂

∂θ
Ψ(r, θ0) = Ψ∞(θ0)

∂

∂θ
Ψ∞(θ0). (34)

So far we have seen that, for all θ ≥ 0 at which Ψ∞ is differentiable, the second and third term on
the left-hand side of (31) converge to a finite limit as r → ∞ which implies that the limit of the first
term, that is limr→∞

∂
∂r

Ψ(r, θ), also exists and is finite. With limr→∞Ψ(r, θ) < ∞ it thus follows
that ∂

∂r
Ψ(r, θ) tends to 0 as r →∞, for all θ ≥ 0 at which Ψ∞ is differentiable.

In conclusion, for any θ at which Ψ∞ is differentiable, the first and third term on the left-hand side of
(31) vanish as r →∞ and with (34) we get

Ψ∞(θ)
∂

∂θ
Ψ∞(θ) = 2ψ(θ). (35)

For θ > 0, we have Ψ∞(θ) > 0 and we can write (35) as

∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
, (36)

which again holds for all θ > 0 at which Ψ∞ is differentiable. By convexity, Ψ∞ admits left and right
derivatives for every θ > 0. Since the right-hand side of (36) is continuous and (36) holds true for all
but countably many θ > 0, we conclude that the left and the right derivative of Ψ∞(θ) agree for every
θ > 0. Thus (36), and equivalently (30), holds in fact for every θ > 0. By convexity, for any θ > 0, we
get

∂

∂θ
Ψ∞(0+) ≤ ∂

∂θ
Ψ∞(θ) = 2

ψ(θ)

Ψ∞(θ)
<∞,

which shows that (30) holds true for θ = 0 with both sides being equal to 0.

(ii) We consider the supercritical case now. Again we first have to show that Ψ∞(θ) is finite for each
θ ≥ 0.
Let us begin with the case θ ∈ [λ∗,∞). We can consider the (sub)critical branching mechanisms
Ψ∗(r, λ) := Ψ(r, λ + λ∗) for λ ≥ 0. Then part (i) applies to the (sub)critical Ψ∗ and we conclude
that, for any θ ≥ λ∗,

Ψ∞(θ) = lim
r→∞

Ψ(r, θ) = lim
r→∞

Ψ∗(r, θ − λ∗) = Ψ∗∞(θ − λ∗) <∞.

In particular, the equation (30) holds for all θ ≥ λ∗ and Ψ∞(λ∗) = Ψ∗∞(0) = 0.
Further, it follows from the monotonicity in Proposition 2 that ∂

∂θ
Ψ∗(r, 0+) ≤ ∂

∂θ
Ψ∗∞(0+). The latter

derivative was shown to be finite in the proof of part (i). Thus, for any r > 0,

∂

∂θ
Ψ(r, θ)|θ=λ∗ =

∂

∂θ
Ψ∗(r, 0+) ≤ ∂

∂θ
Ψ∗∞(0+) <∞.
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Hence, we have a uniform upper bound for the θ-derivative of Ψ(r, ·) at λ∗. Recalling that Ψ(r, λ∗) =
0, convexity ensures that Ψ(r, ·) is uniformly bounded from below by the function ∂

∂θ
Ψ∗∞(0+)(·−λ∗).

This implies already that limr→∞ |Ψ(r, θ)| <∞ for all θ ∈ [0, λ∗].
To show that the equation (30) holds for all θ ≤ λ∗ we can now simply repeat the argument given
in the proof of part (i). Finally, with Ψ∞(λ∗) = 0, we can derive the initial condition for Ψ∞(0) by
integrating (30) from 0 to λ∗.

Proof of Theorem 3. Proposition 9 guarantees the existence and finiteness of Ψ∞. If we integrate
(30) from λ∗ to θ, and note that Ψ∞(θ) and ψ(θ) are negative if and only if θ ≤ λ∗, we obtain the
expression in (8). It thus remains to show (ii).

It follows from an obvious adaptation of the proof of Theorem 3.1 in Kyprianou et al. [KLMSR12] that
Z∞ is the process of the total mass of the branching Markov exit measures of a one-dimensional
super-Brownian as it first exits the family of intervals ((−∞, s), s ≥ 0) as claimed.
Concerning the convergence in (9), we will show that, for s ≥ 0 and θ ≥ 0, u∞(s, θ) := limr→∞
u(r, s+ r, θ) exists and solves

u∞(s, θ) = θ −
∫ s

0

Ψ∞(u∞(s− v, θ)) dv, (37)

which is the characterising equation for the Laplace functional of Z∞.
This is trivially satisfied for s = 0. Henceforth, let s > 0 and θ ≥ 0 be fixed. Recall that u(r, s+ r, θ)
solves equation (5), which can be written as

u(r, s+ r, θ) = θ −
∫ s

0

Ψ(v + r, u(v + r, s+ r, θ)) dv, r > 0.

Note that the convergence of the convex functions Ψ(r, ·) to Ψ∞(·) in Theorem 3 holds uniformly in
θ on each bounded closed subset of R+. Therefore, for fixed ε > 0, we can choose r large enough
such that |Ψ(s+ r, λ)−Ψ∞(λ)| < ε for all λ ∈ {u(v + r, s+ r, θ), 0 ≤ v ≤ s}. Thus, for large r,∣∣∣u(r, s+ r, θ)−

(
θ −

∫ s

0

Ψ∞(u(v + r, s+ r, θ)) dv
)∣∣∣

=
∣∣∣ ∫ s

0

Ψ(v + r, u(v + r, s+ r, θ)) dv −
∫ s

0

Ψ∞(u(v + r, s+ r, θ)) dv
∣∣∣

≤ ε s. (38)

Now assume for contradiction that lim supr→∞ u(r, s + r, θ) = +∞. Since Ψ∞ is convex and
Ψ′∞(0+) ≥ 0 (with Ψ′∞(0+) = 0 in the supercritical case), the integrand in the first line of (38) is
bounded from below by Ψ∞(0). Therefore, the expression in the first line of (38) tends to∞ along a
subsequence of r which is an obvious contradiction.
Hence, u(r, s+r, θ) is bounded as a sequence in r. It therefore contains a convergent subsequence,
say u(rn, s + rn, θ) where (rn, n ≥ 1) is a strictly monotone sequence which tends to ∞. Let
us show that every subsequence converges to the same limit. Let (r′n, n ≥ 1) be another strictly
monotone sequence which tends to∞. Set usup(v) := supn∈N{u(rn, v + rn, θ)} and u′sup(v) :=
supn∈N{u(r′n, v + r′n, θ)} and note that usup(v), u′sup(v) < ∞. By (38), for any ε > 0, we can find
an N ∈ N large enough such that for all n ≥ N

|u(rn, s+ rn, θ)− u(r′n, s+ r′n, θ)|

≤ 2ε+

∫ s

0

∣∣∣Ψ∞(u(rn, v + rn, θ))−Ψ∞(u(r′n, v + r′n, θ))
∣∣∣ dv

≤ 2ε+

∫ s

0

M(v)|u(rn, v + rn, θ)− u(r′n, v + r′n, θ)| dv, (39)
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where M(v) := sup{Ψ′∞(w) : w ∈ (0, usup(v) ∨ u′sup(v))} < ∞. We can bound the integral
further by setting M := sup0≤v≤sM(v) <∞. Set

Fn(s′) = M

∫ s′

0

|u(rn, v + rn, θ)− u(r′n, v + r′n, θ)| dv, for 0 ≤ s′ ≤ s,

and note that ∂Fn(s′)/∂s′ = M |u(rn, s
′ + rn, θ)− u(r′n, s

′ + r′n, θ)|. By (39),

∂

∂s′
Fn(s′)− 2εM −MFn(s′) ≤ 0.

Multiplying by e−Ms′ , we derive ∂[(Fn(s′) + 2ε)e−Ms′ ]/∂s′ ≤ 0. Therefore,

(Fn(s′) + 2ε)e−Ms′ ≤ Fn(0) + 2ε = 2ε, for any 0 ≤ s′ ≤ s.

Hence, Fn(s′) ≤ 2ε(eMs − 1), for 0 ≤ s′ ≤ s. Since ε > 0 can be chosen arbitrarily small, we
conclude from the definition of Fn(s′) that u(r′n, s

′+ r′n, θ) converges to the same limit as u(rn, s
′+

rn, θ) as n → ∞. We have thus shown that, considered as a sequence in r, all subsequences of
u(r, s+r, θ) converge to the same limit. Therefore u∞(s, θ) = limr→∞ u(r, s+r, θ) exists and, with
(38), it satisfies (37). By uniqueness of solutions to (37), u∞(s, θ) agrees with the Laplace functional
associated with Z∞ which in turn implies the desired convergence.

A Derivation of the differential equation (17) corresponding to
the semi-group equation (16)

The reader familiar with the superprocess literature will readily believe that any solution to the differen-
tial equation (17) also solves the semi-group equation (16) and conversely that solutions to (16) also
solve (17). Results of this fashion can be found for instance in the work of Dynkin, see [Dyn91], Sec-
tion 3 in [Dyn93] or Section 5.2 in [Dyn02]. However, in these references only (sub)critical branching
mechanism are allowed and the authors are unaware of a rigorous proof in the literature for the case
of a supercritical branching mechanism. Although it seems possible to adapt Dynkin’s arguments to
the supercritical case, we will offer a self-contained proof here instead.

Recall that the Laplace functional u of Z , defined in (4), is the unique non-negative solution to the
equation

u(r, s, θ) = θ − ER
r

∫ τs

0

ψ(u(Rl, s, θ)) dl, 0 < r ≤ s, θ ≥ 0, (40)

where (R,PR) is a d-dimensional Bessel process and τs := inf{l > 0 : Rl > s} its first passage
time above level s, see (16).
Fix 0 < r ≤ s and θ ≥ 0 from now on. Let us apply a Lamperti transform to the d-Bessel process R

in the integral on the right-hand side of (40). Define ϕ(s) =
∫ r2s

0
R−2
l dl, s ≥ 0, then

Bs = log(r−1Rr2ϕ−1(s)), s ≥ 0,
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is a one-dimensional Brownian motion with drift d
2
− 1 starting from 0. Let us denote the law of B by

P0. Thus we get

ER
r

∫ τs

0

ψ(u(Rl, s, θ)) dl = ER
r

∫ ϕ(r−2τs)

0

ψ(u(Rr2ϕ−1(l), s, θ))R
2
r2ϕ−1(l) dl

= E0

∫ Tlog(s/r)

0

ψ(u(eBl+log r, s, θ))e2(Bl+log r) dl

= Elog r

∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl,

where Tlog s is the first time B crosses level log s. Equation (40) becomes

u(r, s, θ) = θ − Elog r

∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl. (41)

We split the integral on the right hand side into its excursions away from the maximum. This gives

Elog r

∫ Tlog s

0

ψ(u(eBl , s, θ))e2Bl dl

= Elog r

∑
log r≤u≤log s

∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl,

where eu is an excursion away from the maximum with lifetime ζ(u) and the sum is taken over all left
end-points u of the excursion intervals in (Tlog r, Tlog s). It follows from the Compensation formula for
excursions (Bertoin [Ber96], Cor. 11, p.110) that

Elog r

∑
log r≤u≤log s

∫ ζ(u)

0

ψ(u(eu−eu(l), s, θ))e2(u−eu(l)) dl

=

∫ log s

log r

η

(∫ ζ

0

ψ(u(eu−e(l), s, θ))e2(u−e(l)) dl

)
du,

where η denotes the excursion measure and e is a generic excursion with length ζ . Then we apply
Exercise 5, chapter VI, [Ber96], to get∫ log s

log r

η

(∫ ζ

0

ψ(u(eu−e(s), s, θ))e2(u−e(l)) dl

)
du

=

∫ log s

log r

∫ ∞
0

ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du,

where V̂ is the renewal function of the dual ladder height process (the dual process is here simply
Brownian motion with drift −(d

2
− 1)). We see from equation (4), p. 196 in [Ber96] that V̂ (dy) =

2e−2( d
2
−1)ydy and obtain

18



∫ log s

log r

∫ ∞
0

ψ(u(eu−y, s, θ))e2(u−y) V̂ (dy) du

= 2

∫ log s

log r

e2u
∫ ∞

0

ψ(u(eu−y, s, θ)) e−dy dy du

z=eu−y
= −2

∫ log s

log r

e2u
∫ 0

eu
ψ(u(z, s, θ))zde−du z−1 dz du

v=eu
= −2

∫ s

r

v2

∫ 0

v

ψ(u(z, s, θ)) zd−1v−d dz v−1 dv

= 2

∫ s

r

v1−d
∫ v

0

ψ(u(z, s, θ)) zd−1 dz dv.

Thus the characterising semi-group equation (40) resp. (41) becomes

u(r, s, θ) = θ − 2

∫ s

r

v1−d
∫ v

0

ψ(u(z, s, θ)) zd−1 dz dv.

Differentiation in r gives

∂

∂r
u(r, s, θ) = 2r1−d

∫ r

0

ψ(u(z, s, θ))zd−1 dz,

∂2

∂r2
u(r, s, θ) = 2(1− d)r−d

∫ r

0

ψ(u(z, s, θ))zd−1 dz + 2ψ(u(r, s, θ)).

Hence, we obtain the differential equation in (17), i.e. for θ ≥ 0,

1

2

∂2

∂r2
u(r, s, θ) +

d− 1

2r

∂

∂r
u(r, s, θ) = ψ(u(r, s, θ)) 0 < r ≤ s,

u(r, r, θ) = θ.
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