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Cluster formation in a stepping stone model 
with continuous, hierarchically structured sites 

Steven N. Evans(*) and Klaus Fleischmann 

University of California at Berkeley and Weierstra11 Institute .for Applied Analysis and Stochastic• 

Abstract 

A stepping stone model with site space a continuous, hierarchical group 
is constructed via duality with a system of (delayed) coalescing "stable" 
Levy processes. This model can be understood as a continuum limit of 
discrete state-space, two allele, genetics models with hierarchically struc-
tured resampling and migration. The existence of a process rescaling limit 
on suitable large space and time scales is established and interpreted in 
terms of the dynamics of cluster formation~ This paper was inspired by 
recent work of Klenke. 
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1 Introduction and results 

1.1 Background 
In several physical and biological systems, the phenomenon of cluster formation 
can be observed. One has systems in which spatially dispersed units can be one 
of two or more possible types. There is a mechanism that attempts to impose 
local agreement among units, possibly in the face of "noise" that can destroy 
the agreement but may also spread it. One of the fundamental questions about 
such systems is the manner in which clusters (that is, large regions of agreement) 
grow and interact with each other. 

A rather detailed picture on the growth of clusters in the simple voter model 
on the one-dimensional lattice Z was developed by Arratia [Arr82]. 

An analogous picture emerged for a certain class of stepping stone models 
in the work of Klenke [Kle95, Theorem 2]. He considered a system of interact-
ing diffusions of the Fisher-Wright type with state-space [O, 1] indexed by the 
countable hierarchical group 

3 := { e = (ei)ie:l_ E (ZN ){ ... ,-2,-l} : ei = 0 for all i sufficiently small} (1) 

where ZN is the cyclic Abelian group {O, .. .", N - 1} of order N ~ 2 with the 
operation of addition modulo N and addition in 3 is performed coordinatewise. 
The reason for the nomenclature is that the sets 

,..., {(ti) 0 c-k-1 c-k-2 } 
=-1c == <:. ie:'l _ : . = <:. = <:. = · · · ' 

are finite subgroups of 3 with {O} = Bo C 31 C ... Thus, each point of 3 
belongs to a unique coset of 3 1 along with N -1 other points, each coset of 31 
is contained in a unique coset of 3 2 along with N - 1 other cosets of 31, and 
so on. 

These models arise as the M ---7 oo diffusion limits of a class of discrete 
state-space models in population genetics in which the sites represent demes or 
colonies of M individuals each possessing one of two possible genotypes. Here 
the value of the process at a site is the proportion of the colony with a given 
genotype. These proportions evolve by independent resampling within colonies 
and migration of individuals between colonies. In this interpretation we can 
think of the hierarchical structure of 3 as capturing the idea that colonies are 
grouped into clans, clans are grouped into villages, villages are grouped into 
counties, et cetera. Consonant with this interpretation, the strength of the 
migratory flux between two sites is taken to be a function of how far apart the 
sites are in this hierarchy. We refer the reader to Sawyer and Felsenstein [SF83] 
for more discussion of the biology behind the original discrete models (see also 
Sawyer [Saw76]). We will give a more precise description of the diffusion limits 
in§ 4. 
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Klenke [Kle95] showed that if the migration rates coincide with the jump 
rates of a "strongly recurrent" random walk on S, then as time evolves the sites 
will tend to segregate into increasingly large clusters where the value of the 
diffusion at the sites in the cluster is close to either 0 or 1; and, moreover, there 
is a characteristic rate at which such clusters grow. Although we won't give the 
precise definition of "strong recurrence" here, it might help the readers intuition 
if we remark that the simple random walk on :Z is strongly recurrent, whereas 
on :Z2 it is not. 

Regimes in which the migration rates in interacting diffusions are the jump 
rates of a recurrent, but not strongly recurrent random walk, were studied by 
Fleischmann and Greven [FG94a, FG94b] and Cox et al. [CFG95]. The clus-
tering behavior for these latter models is different and rather more subtle. (See 
also Cox and Griffeath [CG86] and Bramson et al. [BCG86] for similar results 
concerning the related voter model.) 

In [Kle95] and [FG94a] two quantitative phenomena are considered as proxies 
for the somewhat imprecise notion of cluster formation. The first is the presence 
of blocks of sites in whi.ch the average value over the block is close to 0 or 1, 
and the second is the presence of significant "correlations" between sites that 
are far apart. The latter phenomenon is expressed in terms of the behavior of 
a sequence of models that is obtained by "thinning out" sites so that a large 
number of neighboring sites is replaced by a single representative. 

1.2 Purpose of the paper 

In this paper we consider a class of processes X that also arise as limits of the 
kind of the simple discrete models desc~ibed above. The difference here is that, 
loosely put, we pass to a continuum limit with the space of sites, so that the 
smallest geographic units become microscopic entities, rather than remaining 
as mesoscopic entities as they do in [Kle95] and [FG94a]. Our processes X can 
be thought of as infinitesimal cousins of those in [Kle95]. Instead of [0, 1]3 , the 
state-space of our processes is the set of Borel functions in [O, l]G, where G is 
the hierarchical group of all semi-infinite sequences, 

(again with coordinatewise addition), a group that can be topologized as a 
non-discrete, locally compact, totally disconnected group. Our processes are 
natural stochastic partial differential equation analogues (see (8) below) of the 
infinite system of stochastic differential equations considered in [Kle95] and arise 
as limits of the latter processes (cf. the proof of Theorem 3 in § 4 below). In 
particular, the "drift part" of the SPDE is determined by the jump rates of a 
"stable" Levy process on G. 

We also remark that our processes are essentially particular examples of the 
continuum stepping stone models considered in Shiga [Shi88]. 
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As well as being of interest in their own right, a significant advantage of 
our models is that they exhibit the same sort of cluster formation dynamics as 
the models in [Kle95], but these phenomena can be more easily described and 
understood in our setting. More precisely, our models can be rescaled at suitable 
large time and space scales to obtain limiting processes that also have the Borel 
functions from G to [O, 1] as their state-space. Results about the formation of 
clusters in our original models can then be rephrased as easily proven facts about 
the microscopic and macroscopic spatial structure at fixed times of these scaling 
limits. In particular, there is no need to resort to "artifices" such as thinning or 
block-averaging. These latter transformations can be seen as partial substitutes 
for spatial rescalings that are unavailable in models with a discrete collection of 
sites. ·Moreover, our point of view enables us to study the evolution of all the 
clusters and not just the cluster containing the origin. 

A model analogous to ours was considered in Mueller and Tribe [MT95] with 
G replaced by JR. and the Levy process that describes the migration replaced by 
Brownian motion. This analogue arises as a suitable scaling limit of a long 
range voter process on Z. It appears that it is possible to construct a sequence 
of long range voter process-like particle SY.stems on S that can be rescaled in 
the manner of [MT95] to converge to our process, but we do not pursue this 
matter in the present paper. 

1.3 The site set G 
Before we can describe more precisely the process we wish to consider, we need 
to make a few simple remarks about the structure of the group G of (2). Via 

IBI := N-\ where g E G and k := inf {i E z: gi :j:. o}, (3) 

we introduce a translation invariant ultrametric on G, that is a translation 
invariant metric satisfying 

19 - g'I :5 IBI v 19'1, g,g' E G. 

With this metric, G is a non-discrete, locally compact, totally disconnected 
Abelian group with countable base. Note that the balls 

k EZ, (4) 

are compact-open subgroups of G satisfying G1c :::> G1c+1 , and that 

(5) 

Denote by l(dg) = dg the Haar measure on G, normalized so that l(Go) = 1. 
That is, 

l assigns the mass N-lc to G1c, k E Z, (6) 
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and, conditioned on Gk , it has i.i.d. coordinates g' for i > k, "uniformly" 
distributed on 'll.N. In particular, 

k E 'll.. (7) 

1.4 Description of the model: Existence of X 
Symbolically, the process we wish to consider is the process X which has as its 
state-space the space of Borel maps from G into [O, 1] and solves the stochastic 
partial differential equation 

dX,(g)0dg = Jaf(X,(g)) w(dt®dg)+{L v(dg') [x,(g+g')-X,(g)l} dt®dg, 

(8) 
t > 0, g E G. Here w( dt ® dg) is time-space white noise with directing mea-
sure the product of Lebesgue measure dt on lR+ and Haar measure dg on G. 
Moreover, f is the standard Fisher- Wright diffusion coefficient 

f(r) := r(l - r), 0 ~ r ~ 1, (9) 

v is the Levy measure 
v(dg) := b 191-a-l dg . (10) 

where 1 < a < oo and a, b > 0 are fixed constants, called the Levy inde:z:, 
diffusion constant and Levy cons.tant, respectively. 

The reader familiar with the Fleming-Viot process may notice some sim-
ilarity .between that process and ours. The difference is that in our process 
resampling only occurs within the individuals at each site, rather than across 
the whole population. 

An existence and uniqueness theorem for this type of SPDE is stated w:ith 
a briefly sketched proof as Theorem 5.1 (ii) in [Shi88]. As we wish to consider 
rescaling limits of X that don't appear to be solµtions to SDPEs, it will be more 
convenient for us to define the process X by describing it as a Feller process 
with an explicitly given semigroup. 

The key to such a description is the observation in [Shi88] that a solution to 
the equation (8) is dual, via moment functions, to a (delayed) coalescing Levy 
process. That is, the dual can be thought of as a finite system of unlabeled 
particles that move independently in G as "stable" Levy processes with Levy 
measure v of (10), but additionally, each pair of colliding particles coalesces to 
a single particle at rate a times their collision local time (that is, the local time 
at 0 of the difference of their positions.) 

This description of the dual is not quite what we will use. Instead, we will 
consider a slightly enhanced model in which we have a finite system of particles 
labeled by {1, ... , n }, n E N, that move independently in G as Levy processes 
with Levy measure v, but additionally, each particle can be killed and sent to 
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an adjoined cemetery state t at rate a times the total of the collision local 
times between the particle and the other living particles with smaller labels. 
We will denote this latter process by (19, pg) = (19, P~ b) when the initial state 
is g = (g1 , .. . ,gn) E Gt := (GU{t})n. We call it the {delayed) coalescing Levy 
process. A fuller description is given in §§ 3.1. 

As a final preliminary, we need to say something about the state-space B that 
we will use for our process X. Let B denote the set of equivalence classes of Borel ~ 

functions from G into [O, 1], where we declare that two functions are equivalent if 
they are equal l-a.e. (recall that l is the Haar measure on G). We can associate 
x E B with the Radon measure x(g)dg on G. Via this identification, we can 
think of Bas a closed subset of the space of all Radon measures on G endowed 
with the vague topology. (In this sense, the process X to be construct~d can be 
understood as a measure-valued diffusion.) 

Alternatively, we can regard B as a closed subset of L00 = L 00 (G, l), fur-
nished with its weak* topology as the dual of £ 1 = £ 1 ( G, l). 

These two relative topologies on B coincide. As both are metrizable, to see 
this it suffices to show that for xo ,·x1, ... E B 

f dg Xj(g) cp(g) ~ f dg x0 (g) cp(g) le :i-+-co le 
holds for all cp in the set Cc( G) of all continuous function <p on G with compact 
support, if and only if it holds for all cp E L1• But this is immediately clear since 
Cc( G) is derise in L1 and the Xj are uniformly bounded. 

By Corollary V.4.3 of Dunford and Schwartz [DS58], this B is a compact 
metrizable space. 

Definition 1 (product brackets) If x is a function defined on G, and n E W, 
we set 

[x, g] := rt l{gi =P t} x(gi), g = (g1, ... ,gn) E Gf. <> 

Lemma 2 (weight functions) For n E W and cp E L1 (Gn,F), the function 
l'f:. : B -+ 1R defined by 

is continuous. 

I'f:. ( ~) := f dg cp(g) [z, g], Jc.,. x E B, (11) 

Proof For cp of the form cp(g) = 'P1(g1) · · · 'Pn(Yn) with 'Pi E Cc(G), the 
claim is immediate. The general statement follows once we note that linear 
combinations of such functions are dense in L1 (an, F), and if { 'Pj} fa:1 is a 
sequence in L1(Gn,F) that converges to cp, then {J'f:.i}~ 1 converges uniformly 
to 1::,. • 
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Our first result is the following existence theorem, the proof of which is 
postponed to § 4. 

Theorem 3 (existence of the stepping stone process X) For a, b > O 
there exists a unique strongly continuous semigroup S = Sa.,b = {Sa.,b(t): t ~ o} 
of Markov linear operators Sa.,b(t) : C(B) ~ C(B) {that is a Feller semigroup) 
such that 

(12) 

t~O, n~l, <pEL1(Gn,l'1'), zEB. Moreover, there is a Hunt process (X,~,b) 
on B with continuous sample paths and semigroup Sa.,b . 

This (X, ~,b) is our stepping stone process with diffusion constant a and 
Levy constant b. 

1.5 The limiting cluster process Y 
In order to describe the large scale space-time properties of X, we need to 
introduce another B-valued process. By analogy with the definition of the 
coalescing Levy process fJ, we can consider an instantaneously coalescing Levy 
process. This is a finite system of labeled particles that move independently in 
Gas Levy processes with Levy measure v, but additionally, when two particles 
collide the one with the higher label is sent to the cemetery t instantaneously. 
The state-space of this process is the set Gt consisting of n-tuples (91, ... , 9n) E 
Gt for which 9i =:= 9j f:. t does not hold for 1 ~ i f:. j ~ n. We will denote 
this instantaneously .coalescing Levy process by ( TJ, Q~) when the initial state is 
g = (gi, ... , Yn) E Gt. A fuller description is given in §§ 3.2. 

Next we state the existence of the limiting cluster process Y which is proved 
in§ 4. 

Theorem 4 (existence of the cluster process Y) For b > 0 there exists 
a unique strongly continuous semigroup T = Tb = {Tb(t) : t ~ O} of Markov 
linear operators Tb(t): C(B) ~ C(B) {that is a Feller semigroup) such that 

T b(t)I~ (z) = f. dg <p(g)Q~(z, TJt], (13) 
la~ 

t~O, n~ 1, <pEL1(Gn,l'1'), zEB. For each FE C(B), 

lim Sa. b(t)F = Tb(t)F. a.-+oo ' 
Moreover, there is a Hunt process (Y, ~) on B with continuous sample paths 
and semigroup Tb . 

We call (Y, Q~) the cluster process of X with Levy constant b. Intuitively, 
the a ~ oo transition speeds up unboundedly the diffusion part in X which 
should imply that each component X(g) of X will be trapped at the boundary 
{O, 1} of the interval [O, 1]. (See Theorem 6 (iv) below.) 
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1.6 Scaling properties of X and Y 
Let O': G-+ G denote the shrinking automorphism which moves all the coordi-
nates of a point g E G by one step to the right, so that IO'gl = N- 1 lgl. Using 
this with a slight abuse of notation, define O': B -+ B by O'Z = z o 0' 7 z E B, 
to get an associated bijection on B. With another slight abuse of notation, we 
will also let O' denote the map from the space of probability measures µon B 
into itself by that is given by J(O'µ)(dx) F(z) = J µ(dz) F(O'z) for Fa bounded 
Borel function on B. 

Finally, we introduce a group of space-time scaling transformations e = 
{ 8m,a : m, s E Z} on D(lR+, B) (the Skorohod space of cadlag paths from lR+ 
to B) by 

z E D(lR+, B), t ~ 0. (14) 
(Recall that a is the index of our "stable" Levy process.) 

It turns out that E>m,aX (resp. E>m,s Y) is the same sort of process as X 
(resp. Y). 

Proposition 5 (scaling properties) Consider m, s E /E and a lawµ on B. 
The distribution of E>m,aX under IP'~,b ( resp. 8m,a Y under Q:) is that of X 

mP"-=µ u-=µ 
under lr'Na•-=a,Na(•-=>b (resp. Y under QNa(•-=)b). 

1. 7 Main result: Cluster formation of X 
Let B{o,l} denote the Borel subset of B c.onsisting of equivalence classes with 
a representative that takes values in the set {O, 1}. Now we have together all 
ingredients to formulate our main result. 

Theorem 6 (cluster formation) Suppose that µ is a shift-invariant and er-
godic probability measure on B with intensity_(} E ( 0, 1) : 

j µ(dx) j dg f(g) x(g) = (} j dg f(g), f EB. (15) 

Then the fallowing statements hold. 

(i) The law of 8m,mX under IP'~,b converges to the law of Y under Qg1 as 
m-+oo. 

(ii) The law of the D(lR+, B)IE-valued random variable (E>m-j,mX)je/E under 
IP':,b converges to the law of (E>-j,oY)je/E under Qg1 as m-+ oo. 

(iii) For t > O, the law of (8-j,oY)t under Qg1 converges to the two-point 
mizture 

801 + (1 - 9)oo as j -+ oo, 

and to the point mass 
001 as j -+ -oo. 
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(iv) Fort> 0 fixed, yt belongs to B{o,l}, Q~1 -a.s. 

Thus, if we observe X on a suitable collection of large space-time scales, 
then we see the cluster process Yin the limit. Varying the relationship between 
the growth of the time and space scales when taking the limit is equivalent to 
observing Y on different space scales. If we observe yt on a microscopic scale, 
then we find ourselves in the middle of a cluster of O's or 1 's. On the other hand, 
if we observe yt macroscopically, the clusters of O's and l's will be averaged, 
leading to a constant density B. 

The sequence of block-averaging limits studied in [Kle95] correspond in our 
setting to the sequence of random variables 

It is immediate from the spatial stationarity of yt that this sequence is a mar-
tingale, a phenomenon noted in [Kle95]. 

As an aside, we note that the cluster state yt is certainly random because of 
the randomness of the j -+ oo limit. Moreover, the distribution of yt can't be 
just such a two-point mixture because then the j-+ -oo limit would not hold. 

Finally, we remark that a fortiori we have fort> 0 and a sequence (cj)jEN 
of positive integers that as j -+ oo the distribution of XN .. ;t(u-c; ·) converges 
to the mixture 

801 + ( 1 - B)oo if =?--+ o, 
3 . 

and to the point mass 
oe1 if 'f-+ +oo. 

2 Stable Levy process of index a 
The purpose of this section is to introduce the underlying migration process, a 
particular Levy process Z on G, a little more formally and collect some of its 
properties. 

2.1 More about G 
Our standard reference for basic facts on group theory needed here is Vilenkin 
[Vil63]. 

For k E ~' consider the quotient group G / G 1c , and the related quotient map 
'lr/c : G-+ G/G1c. Since I· I defined in (3) is constant on the cosets of G1c other 
than G1c itself, in G/G1c we get a translation invariant ultrametric via 

_ ·- { lul if 7r1cg = g ¥:- o 
lul ·- o ·r - o- o ' l g = =: 

(16) 
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The balls 

j ~ o, (17) 

are finite subgroups of G/Gk. In particular, (G/Gk)o = {O}, and (G/Gic)i 
is isomorphic to the cyclic group '11..N. Note also that if 3 is the countable 
hierarchical group defined in (1), then 

for all k E '11.., the quotient group G/Gk is isomorphic to S. (18) 

Recall that Gt = GU { t }, where t is adjoined as an isolated cemetery point. 
Adjoin to G/Gk an isolated cemetery point that we will also denote by the 
symbol t . Extend the quotient maps 7rk to Gt by setting 'irk ( 't) := t . 

We also need the dual group G* of G. It can be defined as G in (2) except 
we reflect the index j E '11.. to -j. That is, the elements h of G* have the zeros 
at the right end. Set 

lhl := Nk, where h E G* and k :=sup {j E '11.. : hi -:/:- 0} + 1, 

as well as 

Then 
lhl = Nk if and only if h E GZ\GZ_ 1 • 

The pairing (g, h) between G and G* is just given by 

(g, h) :=exp [ 2·;/ Eie'll.. gi hi], g E G, h E G*, 

(19) 

(20) 

(21) 

where for the gi, hi E '11..N = {O, ... , N - 1} the product gi hi is defined by the 
usual multiplication in '11... Note that 

Gic = { h E G* : (g, h) = 1 \:/ g E Gk}, k E '11.., (22) 

that is GZ is the annihilator of Gk. Ifµ is a finite measure on G, we define the 
Fourier transform 'jJ, of µ by 

Ji(h) := L µ(dg) (g, h), hEG*. (23) 

Write also ip instead of 'jJ, if µ(dg) = cp(g)dg, that is if cp is the density function 
ofµ,. 

Example 7 (Fourier transforms of some indicators) The Fourier trans-
form of the indicator function la,. of the compact-open subgroup Gk is given 
by 

- -k la,. = N la·, ,. (24) 
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In fact, if h E Gic, then (g, h) = 1 (recall (22)), and (24) follows for such h from 
l(G1c) = N-k. On the other hand, if h (/; G';;, then there is a j ~ k such that 
the jth coordinate hi of h is different from 0. But gj is "uniform" on 'E,N , and 

~N_-1 exp [27l'i gi hi] = 0 
wg'=O N ' hi = 1, ... , N - 1, 

which implies that (24) is also true for those h. 0 

Lemma 8 (approximate identity) If <p E L1 (Gn,ei), n EN, then 

lim Nnk f dh cp(g + h) = cp(g) l!"-a.e. and in L1 (Gn, /!"). 
k~oo jGJ! , 

Proof It suffices to consider the case when <p is supported on a::r for some 
r EN. Then fork EN the function g 1-7 N-nr Nnk JG.,. dh cp(g + h) is just the ,. 
conditional expectation of <p under the probability measure N-nr l"' ( · nG::r) 
given the u-field generated by the cosets of GJ:, and the result follows from the 
martingale convergence theorem. • 

2.2 Stable Levy process Z on G 
Let Z := { Zt : t ~ 0} denote the "stable" Levy process on G with Levy measure 
v as defined in (10) with the index 1 < a < oo fixed, and b > 0. That is, Z is 
a cadlag jump process with stationary independent increments, where a jump 
with value g occurs in the interval dt with rate v(dg)dt. Consequently, by (5) 
and (7), 

Z makes a jump of size !YI = N-k at rate bNka(l - N-1 ), k E "£. (25) 

Note that vis indeed a Levy measure by the finiteness of 

oo ka 1- N-1 
v(G\G1c) = 'L: v(G1c-1-j\Gk-j) = bN Na_ 1 , 

j=O 

k E "£. (26) 

For more about processes such as Z we refer to Evans [Eva89, Se~tion 2]. Denote 
by pg = Pt the law of Z starting at Zo =g. In what follows, we simply call 
(Z, Pt) the Levy process (with Levy constant b). 

Next we want to calculate the characteristic function of Zt (recall (21)). 

Lemma 9 (characteristic function of Zt) For each t > O, the characteristic 
function of Zt under P~ is given by 

t ~ O, g* E G*, (27) 

. l-N-cr-1 with the constant c = CN,a := N"' _ 1 · 
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Proof Since Z is a Levy process with Levy measure 11, fort> 0 fixed we have 

g* E G*; 

see [Eva89, Proposition 1] (send there N-+ oo). It remains to show that 

g* f. 0. (28) 

Decompose the l.h.s. into a sum of the contributions from each "annulus" 
Gj \Gj+l and apply (5) to conclude that the l.h.s. is 

b Ljetl N(a.+l)j r dg ( 1 - (g, g*)). 
la;\G;+1 

Using (7) and (24), we may continue with 

= b Ljetl Na.j [ la·\Gj - N-1 la•\Gj+J (g* ). 

Assume now tliat lg* I = Nk, k E LZ. Then the latter expression coincides with 

b L Na.j - bN- 1 L Na.j = bNa.(k-l) + b(l - N- 1) L Na.j. 
j<k j<k-1 j<k-1 

But this equals the r.h.s. of (28), finishing the proof. • 
Recall that u denotes the shrinking automorphism defined in the beginning 

of § § 1. 6. Someth~es we write Z ( t) instead of Zt . 

Corollary 10 (scaling for Z) For m E LZ, s E JR, and g E G, the distribution 
of the process umz(Na.6

·) under Pt is that of the process Z under P';:c~-=lb. 

Proof Using the Levy property, without loss of generality we may set g = 0. 
It suffices by the Markov property and a simple induction argument to show 
that for all t ~ 0 the distribution of the random variable um Z(Na. 6 t) under P~ 
is that of the random variable Z(t) under Pt .. c•-=>b. 

Let u* : G* -+ G* denote the "adjoint" shrinking automorphism that moves 
every coordinate of g* to the left, so that ju*g*j = N- 1 lg*I and (g,u*g*) = 
(ug, g*) for g* E G* and g E G. Then the characteristic function of um Z(Na. 6 t) 
under P~ is given by 

P~( Z(Na. 6 t), (u*)mg•) = exp [ - c bNa(a-m)tlg* la.], 

where we used Lemma 9. Applying that lemma again, the claim follows. • 

Corollary 11 (transition density of Z) The Levy process Z has a jointly 
continuous transition density p = {Pt(g) : t > O, g E G} that is strictly 
positive and uniformly bounded on each set of the form [e, oo) x G, where e > 0. 
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Proof It follows from Lemma 9, the characterization (20), and Example 7 
that 

P~(Zt, g*) = l:ke~ ck (t)lG; (g*) = l:ke~ ck (t) N~,. (g*) 
g* E G*, where we set 

ck(t) :=exp [ - cbtNka] - exp [ - cbtN(k+l)a]. 

Thus, P~{Zt E dg} = Pt(g)l.(dg) where Pt(g) ::=: l:ke~ c1c(t)NklG,.· It is 
immediate that the transition density p has the desired properties. II 

Corollary 12 (equivalence of r.estricted laws) Fore> 0 andg,h E G, the 
restrictions of Pt and pbh to the sub-u-field u{ Zt : t ~ e} are equivalent. 

Proof This is immediate from Corollary 11 and the Markov property. • 

2.3 Local time A for Z 
Later on we will make use of the following fact. 

Proposition 13 {local time of Z) For each g E G we have Pt-a.s. that there 
is a jointly continuous local time (t, h) 1-7 A(t, h), (t, f1,) E lR+ x G, such that 

l dsf(X,) = L dhA(t,h)f(h) 

for all b~unded Borel functions f and all t ~ 0. In particular, Pt-a.s. 

A(t, h) = lim N1c t ds 1{1z$ - hi:::; N-k} 
k-1-00 Jo (29) 

uniformly for (t, h) in compact subsets of lR+ x G. Moreover, for fized h E G, 

inf {t > 0 : Zt = h} = inf {t > 0 : A(t,h) > O} < oo Pt-a.s. (30) 

Proof 1° ( emstence) For .A > O, write 

u~(g) := 1°" dt .-~'Pt(g), g EG, 

for the .A-potential density of Z. By (27), its Fourier transform ~ is 

g* E G*, where we set 

1 
(k ) ~ o, .A+ cbN +la 

k E~. 
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Note that 
d1r. is of order N-lkla as !kl-+ oo, (31) 

in particular, d1e is summable in k E ~. Now by (24), la: is the Fourier 
transform of Nie la,. , for each k E ~. Hence, 

g EG. (32) 

Therefore, u.>- is a bounded continuous function on G, and from 

and (31) we conclude 

for some constant kb,N,a.,>. E (0, oo ). As in the proof of Lemma 7.2 of [Eva88], 
we can check Dudley's metric entropy condition to conclude that there is a 
version of th~ centered, stationary Gaussian process on G with covariance kernel 
(g, g') t-t u.1(g' - g) that has continuous sample paths. The ezistence of a 
continuous local time A then follows from Theorem 1 of Marcus and Rosen 
[MR92]. The limit relation (29) follows from general theory. 

2° (stopping time identity) Fix g, h E G. Write Vh and Wh, respectively, for 
the stopping times on the l.h.s. and on r.h.~~ of (30). Observe that the right 
continuity of Z implies that Zvh = h on the event {Vh < oo }, Pt-a.s. Similarly, 
Zwh = h on the event {Wh < oo}, and Vh ~ Wh, Pt-a.s. 

Let us first show that 

P:' {Wh' < oo} > 0 for all g', h' E G. (33) 

By Fubini's theorem, f deP~A(t,e):::;:: P~ f deA(t,e) = t for all t ~ O, and so 
P~{We < oo} > 0 for some e E G. By Corollary 12 we get Pt {We < oo} > 0 
for all f E G, and combining this with the Levy property establishes (33). 

Let us now show that Vh = Wh, Pt-a.s. It suffices by applying the strong 
Markov property at time Vh on the event {Vh < oo} to show that 

(34) 

but this follows by applying the strong Markov property at time Wh on the 
positive probability event {Wh < oo} (recall (33)). 

We are thus left with showing that Pf {Vh < oo} = 1. By (34) we know 
that the random set {t > 0 : Zt = h} is non-empty pbh-a.s. We have from 
Corollary 10 that under Pb0 , the distribution of Z is the same as that of the 
process ale Z(Na.1e.), for all k E ~. Consequently, by the Levy property, under 
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pbh, the distribution of the random set {t : Z(t) = h} is the same as that of 
{ t : Z(Na.kt) = h} = N-a.k{t : Z(t) = h}. Sending k -t -oo, we see that 
the random set {t : Z(t) = h} is unbounded pbh-a.s. Thus, by Corollary 12, 
the random set {t : Z(t) = h} is unbounded Pt-a.s., hence Pt{Vh < oo} = 1 
~~. . 
Corollary 14 (collision local time) Let (Zt, .P!) be a copy of (Zt, Pt). Then 
for g, g E G we have Pt x .Pf-a.s. that the limit 

exists ur_:iformly on compact subsets of IR+, and this collision local time L(t) of 
Z and Z is continuous in t. Moreover, 

inf{t > 0 : Zt = Zt} = inf {t > 0 : L(t) > o} < 00 Ptx.Pf-a.s. (35) 

Proof This is immediate from Proposition 13 and the observation that the 
law of Z - Z under Pt x Pf is the same as the law of Z under Pfb-fJ· • 

We extend the Markov process ( Z, Pt) to the state-space Gt = G U { t} by 
declaring that t is an absorbing point. 

3 Coalescing processes 
The purpose of this section is to introduce the coalescing Levy process fJ, a 
non-locally coalescing Levy process ktJ , the coalescing random walk k"J, the 
instantaneously coalescing Levy process T], and to relate these processes. 

3.1 .Coalescing Levy processes {} ~nd Tr.o 
We will give a sample path construction of fJ. In fact, we will couple the con-
struction of {} with that of a sequence of non-locally coalescing Levy processes 
ktJ, in which particles die at a rate proportional to the weighted amount of time 
they have spent within distance N-k of other living particles. 

Fix n E N and g = (g1 , ... , 9n) E Gf. On some probability space with 
probability measure denoted by pg = P: let Z = (Z1, ... , Zn) be a vector of 
independent Levy processes (with Levy constant b) starting at g. For k E ~' 
1 ~ i < j ~ n with both 9i and g; different from t, and t ~ O, we introduce the 
following approximate collision local time of Zi and Z; : 

(36) 
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Note that the limit 

00Li,j(t) := ,_lim kLi,j(t) uniformly on compacts, P:-a.s., (37) 
1<-+00 

is the collision local time of the ith and jth particle (Corollary 14). For the 
other pairs 1::; i < j::; n such that Yi= tor Yi= t set kLi,j = 0. 

On the same probability space as Z is defined, suppose that we also have 4 

defined a family Ti, j, 1 ::; i < j ::; n, of random variables that are e;r;ponentially 
distributed with mean 1, independent and jointly independent of Z. 

Recall that a > 0 is a given (diffusion) constant. For k E Z := ~ U { oo} and 
1 ::; i < j ::; n, set 

(38) 

We will say that the jth particle coalesces into the ith one at time 1cui,j, pro-
vided that at time /c Ui,j- both had still be alive. That is, a Jc Li,j serves as 
a clock under which the ith particle tries to kill the jth one, as long as both 
are not yet killed. To be more predse, recall that Z(O) = g E Gf and define a 
{O, l}n-valued cadlag process 1c1 := {( kJj(t)) 15j 5n: t ~ 0} starting at 

k E Z, 1 ::; i ::; n, 

by setting 

As the 1cui,j are pg_a.s. distinct, there is no problem with this definition. The 
interpretation is that kJi(t) is the indicator of the event that at time t the ith 
particle is dead. Here we are allowing some particles to be already dead at time 
0. 

Define a Gt-valued process ktJ := {( ktJi(t)) 15i 5n: t ~ 0} starting at g by 

(39) 

That is, killed particles are sent to t where they stay forever. Let Jc P~ b denote 
the law of ktJ starting at g E Gf . For k E ~' we call ktJ a non-locally c~alescing 
Levy process, and drop the word "non-locally" in the case of 00 fJ. We also write 
simply (fJ, P~,b) instead of (00fJ, 00 P~,b). The following result is immediate from 
the properties of Z and Ti,j • 

Lemma 15 ((non-locally) coalescing Levy process) ( ktJ, kp!,b) is a time-
homogeneous strong Markov process, for each k E Z. 
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Remark -16 (Feller property) Because we can write Z;. starting at g;, E Gas 
9i + zi with Zi(O) = o, and 

is continuous in ( t, Yi, 9j) E IR.+ x G2 , by Proposition 13 it is not hard to demon-
strate that k{) is actually Feller for each k E ~- 0 

3.2 Instantaneously coalescing Levy processes T/ 

Fix n E N and g = (g1, ... , 9n) E GT (here 9i = 9j f:. t does not hold by 
definition, see the beginning of§§ 1.5). Let pg and Z be as in §§ 3.1. 

For 1 ~ i < j ~ n with both g;, and 9j djfferent from t, set 

Vi,j = inf { t ~ 0 : Z;.(t) = Zj (t)} 

for the hitting time of Zi and Zj. Recall that Vi,j < oo with pg_probability one 
(Corollary 14). If i' fj. {i,j}, then Zi'(Vi,j) f:. Z;.(Vi,j) = Zj(Vi,j), pg_a.s., by the 
independence of the coordinates of Zand the fact that the distribution of Z;,1 (t) 
is absolutely continuous for all t > 0 when 9i' f:. t. In particular, Vi,j f:. Vi',j', 
pg_a.s., when ( i, j) f:. ( i', j'). For 1 ~ i < j ~ n such that 9i = t or 9j = t, put 
Vi,j := 00. 

Define a {O, l}n-valued cadla.g process J := {(Jj(t))i~j~n: t ~ o} starting 
at 

{ 
0 if . g j f:. t, 

Jj(O):= . l~j~n, 
1 if 9j = t, 

by setting 

As the V'i,j are pg_a.s. distinct, there is again no problem with this definition, 
and the interpretation is that J;, ( t) is the indicator of the event that at time t 
the ith particle is dead. Here we are allowing some particles to be already dead 
at time 0. 

Define a Gf-valued process TJ := {( TJi(t)) l<i<n : t ~ 0} starting at g E Gt 
by --

. t ·- { Zi(t) if Ji(t) = O, 
TJ,( ) .- t if J;,(t) = 1, (40) 

and denote its law by Qg = Q~. We call ( T}, Q~) an instantaneously coalescing 
Levy process. The following result is immediate by construction. 

Lemma 17 (instantaneously coalescing Levy process) ( T}, Qf) is a time-
homogeneous strong Markov process. 
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3.3 An absolute continuity property of 1J and T/ 

Consider the coalescing Levy process fJ with fJ(O) :f. t (that is at least one of 
the fJi(O) is different from t). Let Rt C N denote the set ofall labels of particles 
alive at time t, that is Rt := { i: fJi(t) :f. t }, and write IRtl for its cardinality. 
Define St analogously for the instantaneously coalescing Levy process T/· 

Lemma 18 (absolute continuity) Let n E N and g E Gt with g :f. t . Take 
0 :f. R ~ {1, ... , n} and t > 0. Then the (subprobability) measure 

P~,b(Rt = R, (fJ,:(t)),;eR E dh) 

on GIRi is absolutely continuous with respect to the Haar measure .elRI on GIRi 
and, in fact, has a (subprobability) density function Pt (g, R; ·) that satisfies 

Pt (g, R; h) ~ IleR Pt(h;, - g,;), hEGIRI, 

(with p the transition density of the underlying Levy process). An analogous re-
sult holds for St with the resulting density function being denoted by qt (g, S ; ·). 

Proof For a Borel subset B of GIRi, 

This implies the claim. II 

3.4 Coalescing random walk k"J 
For each k E Z, the quotient map 7r1c from G to G / G1c transforms the Levy 
process Z on G to a random walk kz := 7r1cZ on G/G1c. In order to calculate 
the jump rates of 1cz, recall that the Haar measure l assigns mass N-k to G1c 
and each of its cosets (see (6)), and if g belongs to a coset of G1c other than 
G1c itself then lgl ~ 191, where g = 7r1cg E G/G1c (recall (16)). Hence, by the 
definition (10) of v, the jump g :f. 0 occurs in the walk 1cz with rate 

Tc ·- bN-1cl-1-a-1 qy ·- g ' (41) 

Note that the total jump rate is finite: Eg~o kqy = v(G\G1c) < oo (recall (26)). 
If in the construction of§§ 3.1 we put kZ := ( 7r1cZ1 , .•• 7r1cZ,.), then for pairs 

(i,j), i < j, such that both g,; :f. t and g; :f. t, by (36) we have 

(42) 

That is, kL,;,; from (36) is now the "weighted" collision local time of 1czi and 
1cz-. 

j • 
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Recall (18) saying that G/Gk is isomorphic to the countable hierarchical 
group 3. Delayed coalescing random walks on 3 are described in (Kle95] and 
(FG94a] as systems of unlabeled particles. As we remarked in§§ 1.4 for the case 
of the usual description of (delayed) coalescing Levy processes, it is possible 
to enhance such a model by assigning labels to the particles and, rather than 
thinking of two particles merging into one, think instead of one of the particles 
being sent to the cemetery t at the time of "coalescence". It is this latter process 
that we will refer to as a (delayed) coalescing random walk le 19 on G / G 1e U { t}. 

Combining the above observations and taking into account in particular the 
identity ( 42) leads immediately to the following result. 

Lemma 19 (coalescing random walk) Let n EN, g E Gt and k E ~. Un-
der lep! b, the process k"'J := (7r1e k191, ... , 7r1e k19n) is a coalescing random walk , 
on G/G1eU{t} with jump rates leq of (41), coalescing rate aNk, and initial state 
g = (91, ••. ,gn) = (7rle91' ... , 1t"1e9n)· 

3.5 Convergence of coalescing processes 
In this section we will make precise one sense in which the coalescing random 
walks le"J converge to the coalescing Levy process 19 as k -+ oo, resp. the coa-
lescing Levy process 19 tends to the instantaneously coalescing Levy process TJ 
as a-+ oo. 

Recall the definition of the state-space B given in §§ 1.4. For k E ~' define 
the averaging transformation Mk : B -+ B by 

g·E G. (43) 

That is, M1ez (g) is the average of z over the coset g+G1e. Note that M1e is well-
defined as a map from B into itself because the r.h.s. of ( 43) does not depend 
on which particular representative for z we use to compute the integral. Since 
M1ez is constant on the co~ets of G1e, we can think of M1ez(·) as a function on 
the quotient group G/G1e and write Mkz instead of M1ez in this case. 

By analogy with the product brackets pairing of Definition 1, we can intro-
duce a pairing between (0, l]G/G,. and (G/G1e U {t}r, n EN, that we will also 
denote by [·, · ]. 

Recalling the identification Lemma 19, the convergence of the coalescing 
random walk k"'J to that of the coalescing Levy process 19 and the convergence 
of 19 to the instantaneously coalescing Levy process TJ can now be expressed as 
follows. 

Proposition 20 (convergence) Suppose n EN, cp E L1 (Gn,l'1), and t 2'.: 0. 

Then 1 1 dg cp(g) k P~,b [ M1e z, 1e19t] ---+ dg cp(g) P~,b [ z, fit] ( 44) 
G"' le-+-oo G"' 
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and L .. dg cp(g) P~,b[x, 19t] ~ L .. dg cp(g) Q:[x, 1Jt], ( 45) 

uniformly in z E B. 

Proof Fix n, <p and t as in the proposition. First consider ( 44). Note that 
the r.h.s. of ( 44) is well-defined (that is, does not depend on which particular 
representative we choose for x) by the absolute continuity Lemma 18. Using the 
definition (43) of the average Mkz, the construction of ktJt provided in §§ 3.1, 
and interchanging the order of expectation and integration, the l.h.s. of ( 44) can 
be written as 

Since for h. E GJ: the law of (Z - h, kl) under P: is the same as the law of 
(Z, kl) under Pf-h, the latter expectation equals 

Interchanging the order of integration (twice) and using the shift invariance of 
the Haar measure dg, the l.h.s. of (44) can be rewritten as 

The difference between the Lh.s. a:rid. the r .h.s. of ( 44) can be written as a 
sum of two terms by subtracting and adding the quantity 

(46) 

The absolute value of the first term in this sum can be estimated from above by 

1 dg 1Nnk1 dh cp(g + h)-cp(g)I ~ O, 
G" a;: k~oo 

where the convergence follows from Lemma 8. It therefore remains to check 
that ( 46) converges uniformly in z E B to 

as k -7 oo. Note that our fixed t ~ 0 is P:-a.s. different from 00 Ui,i (recall 
(38)) for any 1 ~ i < j ~ n, and these random variables are P:-a.s. distinct. 
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Moreover, kLi,;(t) converges uniformly on compacts to 00Li,;(t) ask-->- oo, P~­
a.s. (recall (37)). Thus, the 1r.ui,j converge P:-a.s. to the 00Ui,j as k-->- oo, and 
we have P~-a.s. for 1 ~ i ~ n that kJi(t) = 00Ii(t) for all k E Z sufficiently 
large. 

The proof of ( 45) is similar and easier. Write~ Ui,j and ~Ii in place of 00 Ui,j 
and 00 Ii for the moment, to emphasis the dependence on a in the definition. 
We need to check that 

L. dg cp(g) p~ ll, :i: 1- ":I;(t) ( Z; ( t)) 

converges uniformly to 

as a-->- oo. It follows from Corollary 14 that P:-a.s. the random variable ~Ui,j 
converges to the hitting time Vi,j as a -->- oo. An argument similar to the one 
above establishes we have P:-a.s. for 1 ~ i ~ n that ~Ii(t) = Ji(t) for all a 
sufficiently large, implying the claim. II 

3.6 Scaling of coalescing processes 
The shrinking automorphism a defined in the beginning of §§ 1.6 can be ex-
tended to Gt by setting at := t, and to Gf by a(g1 , ... , 9n) := ( ag1 , ... , agn), 
for each n EN. 

Lemma 21 ·(scaling for{} and TJ) Form E z,· s.E IR, and g E Gf, n EN, the 
distribution of the process iJ(Naa.) under P~.~-g ( resp. TJ(Naa ·) under Q~-.,.,.g) 
is the same as the distribution of the process a-m{} . under P~.,.._.,.,.a Noc(•-m.) b 

( resp. a-mTJ under Q~oc(•-->&). , 

Proof We will consider the claim for iJ. The proof for 1J is similar and is 
omitted. In the notation of §§ 3.1, we have from Corollary 10 that the distribu-
tion of Z(Naa.) under P;_.,.,.g is the same as the distribution of a-mz under 

P~oc(s--)b' Therefore the distribution of (z(Na8
·), ( 00Li,;(Na8 ·)) 1~i<j~n) un-

der P~-.,.,.g is the same as the distribution of (a-mz, (Naa-mooLi,;) 1~i<j~n) 
under P~ .. <·-.,.,.>, and the result is immediate from the construction of §§ 3.1. II 

4 Existence and uniqueness for X and Y 
This section is devoted to the proof of Theorems 3 and 4. We begin with the 
following simple observation. Recall the function J::_ of (11). 
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Lemma 22 (the algebra A) Let A C Cc(G) denote the set of functions of 
the form lH, where H is a coset of Gk for some k E Z, and write A for the 
linear span of the set 

{1~: n EN, cp = ®7=1 cp;., cp;. EA} U {constant functions on B}. 

Then A is a dense subspace of C(B). 

Proof The result will be immediate from the Stone-Weierstrass theorem (see, 
for example, Theorem 36A of Simmons (Sim63]), once we know that the algebra 
A separates points. But if for x1, x2 E B, 

L dg x1(g) cp(g) = L dg x2(g) cp(g), cp EA, 

• 
Proof of Theorem 3 

1° (reformulation of the r.h.s. of (12)) Fix t, n, cp, x as in the theorem. Recall 
the notation Rt (introduced in §§ 3.3) for the set of all labels of particles of 
{) alive at time t. Decompose the r.h.s. of (12) into a sum with 2n - 1 terms 
by introducing into the expectation expression under the integral the indicator 
functions l{Rt = R} ), for 0 ::j:. R ~ {1, ... , n}. By Lemma 18 we know that {)t 
restricted to {Rt = R} has an absolutely continuous subprobability distribution 
with density fun~tion Pt(g, R; ·).Hence, for a typical summand we get 

r dg cp(g) PKl{Rt = R}[x, {)t] = r dg cp(g) r dh Pt(g, R j h) [x, h]. Ja.,. Ja.,. Ja1R1 

Introduce the function 

cpf(h) := f dg cp(g) Pt(g, R; h), Ja.,. hEGIRI. (47) 

Note that it belongs to L1 ( GIRi, £IRI). In fact, since the Pt(g, R; ·) are subprob-
ability densities, 

r dh lcpf(h)I ~ r dh r dg jcp(g)I Pt(g, R; h) ~ r dg ,cp(g)I < oo. 
JalRI JalRI Ja.,. Ja.,. 

Using this function, the r.h.s. of (12) can thus be written as 

(48) 

In particular, we see that the r.h.s. of (12) is well-defined (that is, it does not 
depend on the choice of the representative of :z: ). 
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2° (uniqueness) By Lemma 22 we know that at most one semigroup exists 
with the required properties. 

3 ° (existence of transition kernels) Fix k E Z. Using the isomorphism G / G k ~ 
B (recall (18)), we may make use of the well-known model of interacting Fisher-
Wright diffusions labeled by the countable hierarchical group B (see, for exam-
ple, [Kle95] or [FG94a]). Define k X to be such a process with the resampling 
mechanism .given by Nkaf, where f is as given by (9), and with migration 
determined by the random walk kz in G/Gk introduced in the beginning of 
§§ 3.4. 

More precisely, given the starting point z E [O, l]G/G1a, we may construct 
k X as the unique strong solution of the following (0, l]G/G1a_valued system of 
stochastic differential equations, 

k Xo(!i) = z(g) 

dk Xt(9) = jNkaJ(.kXt(9)) w(dt,g) +.I: kq91 [k Xt(9+9') - k Xt(9)]dt, 
g';tO 

g E G/Gk, where w(·, g), g E G/G1c, are i.i.d. standard Brownian motions 
and the migration rates kq91 are given by (41). Write kJF!,b for the law of kX 
starting at z E [O, 1]G/G1a. 

Shiga's [Shi80] duality relation between interacting Fisher-Wright diffusions 
and coalescing random w~lks may be expressed in our notation as follows. For 
k E Z, n E N, t ~ O, f E [O, l]G/G1a and g E (G/G1c)n of the form g = 
(91, ···,!in) = ( 7rkgi, · · ·, 1rk9n) = 7rkg. for g = (g1, · · ·, g,,,) E G, 

k~ [ 1c- -J Je.n.g [- 1c-] If' a,b X t, g = ··.r a.,b Z, ilt . (49) 

Recall the convergence Proposition 20. Using the duality observation ( 49) we 
may rewrite the l.h.s. in the convergence statement ( 44) as 

(50) 

In order to express this in terms of the functions Ii: from (11), we introduce the 
liftings Lk : (0, l]G/G1a -+ B by 

f E (0, l]G/G1a, g E G. 

Observe that the composition Mk oLk is the identity map on [O, l]G/G1a, whereas 
Lk o Mk = Mk on G. Now (50) and hence the l.h.s. in (44) equals 

k~t:z;I:(LkkXt) =: jkvt(z,dy)I:(y), 
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where kvt(z, ·) denotes the distribution of Lk k X t under kJPl:,-b':i:. From the 
convergence statement ( 44), linearity, and the Lemma 22, we conclude that 
there exist probability laws Vt(z, ·) on B, such that 

(51) 

4° (Feller property) It is immediate from ( 48) and (51) that fort ~ O, n E N 
and cp E L1(Gn, tn) the map B 3 z 1-7 J Vt(z, dy) I~(y) is continuous. There-
fore, by linearity and Lemma 22, there is an operator Sa.,b(t) : C(B) -+ C(B) 
such that 

B 3 :c i-+ jvt(:c, dy) F(y) = Sa.,b(t)F (z) 

for FE C(B), and Sa.,b(t) satisfies (12). 

(52) 

5° (semigroup property) Now we want to check the Chapman-Kolmogorov 
property of the kernels Vt(:c,dy) from (51). It suffices to show that 

(53) 

According to ( 51) and ( 48), the interior integral can be rewritten· to get for the 
l.h.s. of (53) 

Again by (51) we may continue with 

Inserting ( 4 7) and interchanging the order of integration leads to 

f dgcp(g)ER f dhp.,(g,R;h)P~,b[z,t9t]· Ja.,. la1R1 

Applying the Markov property of 19 and (51) once more, we arrive at the r.h.s. 
of (53). 

6° (strong continuity) We have established the existence of a Markov semi-
group of operators Sa.,b(t) : C(B) -+ C(B). In order to show that this semi-
group Sa.,b is strongly continuous, it suffices by the Remark after Theorem I.9.4 
in Blumenthal and Getoor [BG68], to show that 

F E C(B), :c E B. (54) 
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By linearity and Lemma 22, it in turn suffices to check (54) for F = I:/:. for 
all cp E C(Gn), n E N. Write a typical term from the l.h.s. of (54) as in (12). 
Recalling the construction of-{} in §§ 3.1, we will use 

1 l.dg <p(g) P~ •• [", D,] - l.dg <p(g) Pg[,,, Z(t)J I (55) 

~ const l.dg <p(g) pg{ a coalescence has occured by time t }· 

Since this tends to 0 as t .i O, it suffices to replace -{} by Z, that is to consider 
the second term in (55). Reversing time, it equals 

f dh [z, h] phcp(Z(t)) --+ f dh [z, h] cp(h) = 1:(z), }G.,. t.1.0 }G.,. 

as required. 

7° (Hunt process) From general Markov theory (see, for example, Theorem 
I.9.4 of Blumenthal and Getoor (BG68]), we can conclude from parts 1° - 6° 
that there is a Hunt process (X, ~,b) with semigroup Sa,b. 

8 ° (continuous sample paths) The general theory only yields that the Hunt 
process X has cadlag paths. In order to show that X has continuous paths, it 
will suffice to show that the distribution of the continuous process L1e k X under 
k~b,.:i: converges to the distribution of X under IP! bin the sense of convergence 

a, ' 
of distributions on the Skorohod space D(lR+, B) (cf. 'l'heorem 3.10.2 of' Ethier 
and Kurtz [EK86]). . 

As arguments similar to those in parts 1° - 6° establish that ( k X, k!ID!,b) has 
a Feller semigroup. The latter convergence statement will follow from Theorem 
4.2.11 of [EK86] if we can show that 

SUP:i:e[o 11a1a.,. I kJP! b 1: (L1c k X t) - JP!'t,:i: 1: (Xt) I --+ 0. (56) 
I I • I /c-+oo 

The supremum can also be written as 

sup:i:es l1c~b':i:I:(L1e1cXt)-~b':i:l:(xt)j. 

It follows from Proposition 20 that 

sup:i:eB I k~b':i: 1: (L1c 1c Xt) - IP! bI:(Xt)I--+ 0. 
I 

1 /c-+00 

Using Lemma 18 we have 

~,b I:(Xt) = L: f dg cp(g) f dh Pt(g, R; h)[z, h] 
R Ja.,. }GIRi 
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and 

IP'!1"t:z: 1:(xt) = L r dg <p(g) r dh Pt(g, R; h)NIRlk r dh' [x, h + h']. 
' R Ja.,. JalRI JaLRI 

Thus we can bound l~t:z: I;{'(Xt) - ~,bl:f(Xt)I above by 

:E r dg l<p(g)I r dh IPt(g, R; h)- N'R'k r dh' ftt(g, R; h- h')I· 
R Ja.,. JalRI JaLRI 

By Lemma 8, the internal integral converges to 0 as k -+ oo, for .en-almost all 
g E Gn. Therefore, by dominated convergence, 

SUP:z:EB l~t:z: 1:(Xt) - ~ b1:(Xt)I--+ o, 
' ' k-+oo 

hence (56) holds. • 
Proof of Theorem 4 The proof is very similar to that of Theorem 3 and 
rather easier, so we will omit the details. Essentially, we just replace the occur-
rences of (44) and kX in the above proof by (45) and X, respectively. As X and 
Y have the same state-space, there is no need for an analogue of the liftings, 
L1e, and so in the counterpart of part 8° it is possible to replace the application 
of Theorem 4.2.11 of [EK86) by one of Theorem 4.2.5 of [EK86). • 

5 Scaling results 
The purpose of this section is to verify the cluster formation Theorem 6. This 
requires the following preparation. 

Proof of Proposition 5 Consider first the claim regarding X. Fix m, s E /Z. 
A simple induction argument shows that it suffices to establish for fixed t > 0 

Sa.,b(Naat)(F 0 O'-m) = ( S N<u-m.a., Na(•-m.)b(t)F) 0 O'-m, 

for all F E C(B). By Lemma 22 it in turn suffices to consider the special case 
F = 1:: for n EN and <p E L1(Gn,.en). 

Observe that by definition of the shrinking operation, 

x EB. 

Hence, by the definition ( 11) of I;{' we get 1:: o O'-m = Nmn 1::0 a.,,. ( x ). Thus, by 
(12), 

Nmn { dg <p(O'mg) P~,b[x, 19(Na"t)] Ja.,. 
f dg <p(g) P:~""'g [ x, 19(Na"t)]. Ja.,. I 
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By Lemma 21 we may continue with 

{ dg cp(g) P~,u-m.ll Na(•-m.)b[z, (J'-mi9(t)] la11. I 

(S Na•-m.a, Na(1-m.)bf:/:) 0 (J'-m. II 

Lemma 23 (ergodic theorem) Let µ be as in Theorem 6. Then the sequence 
of probability measures u-m µ converges weakly to the point mass 891 as m ~ oo. 

Proof Fork E /Z and m 2:'.: k, in L2 = L2 (B, µ)we have 

{ dg u-mx(g) = N-m { dg x(g) = N-k Nk-m { dg { dh x(g + h) la,. la,._.,,. la,._.,,., la0 

by the stationarity ofµ. Sinceµ is ergodic, from the L2-ergodic Theorem 6.4.1 
of Krengel [Kre85] it follows that the latter expression converges in L2 to 

N-kJµ(dx) [ dh x(h) = 9 [ dh lao la.,. 
as m ~ oo, where we used the assumption (15). Consequently, if His a coset 
of Gk we have that 

in L2 • Thus, in the notation of Lemma 22 we get 

for cp = @~1 cpi with cpi E A, 1 ::; i ::; n, n E N, and the result follows by 
Lemma 22. II 

Proof of Theorem 6 (i) This follows directly from Proposition 5, Lemma 
23, Theorem 4, and Theorem 4.2.5 of [EK86]. 
(ii) This is immediate from part (i) and the observation that e-j,O 0 0m,m = 
em-j,m· 
(iii) From Proposition 5 we see that the distribution of 0-1,oY under Q:1 is 
the same as the distribution of Y under Q~a;b. For cp E L1 (Gn, l.'1), n EN, by 
(13) we have 

Q~1.a;b J:f: (yt) = f_ dg cp(g) Q~a;b9lStl la ... 
(recall that St= {i: r]i(t) f. t}). 

(57) 
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If we take the j -+ oo limit in (57), then, by the construction of §§ 3.1 and 
Corollary 14, we get 

() r. dg cp(g) = e1~ (1). }e;TL 
On the other hand, if we take the j-+ -oo limit in (57), then we obtain 

en ( dg cp(g) = 1~(81). laTL 
Both claims then follow by Lemma 22. 
(iv) From Lemma 8 we know that Q~1-a.s. for l-a.e. g E G we have 

yt(g) = lim Nk { dh yt(g + h). 
k~oo }G,. 

As yt is (spatially) stationary under Q~1 , the kth term in the sequence on the 
r.h.s. has the same distribution as Ii((E>-k,oY)t), where cp = 1G0 • By part 
(iii), 

Q~1 Ii ((E>-k,oY)t) ( 1 - Ii ((E>-k,oY)t)) ~ 0, 

and so Q~1-a.s. for l-a.e. g E G we have Yt(g) E {O, 1}. • 



Continuum stepping stone model 29 

References 
( Arr82) R. Arratia. Coalescing Brownian motions and the voter model on Z. 

Unpublished manuscript, 1982. 

(BCG86) M. Bramson, J.T. Cox, and D. Griffeath. Consolidation rates for 
two interacting systems in the plane. Probab. Theory Relat. Fields, 
73:613-625, 1986. 

[BG68] R.M. Blumenthal and R.K. Getoor. Markov Processes and potential 
theory. Academic Press, New York, 1968. 

(CFG95) J.T. Cox, K. Fleischmann, and A. Greven. Comparison of interacting 
diffusions and application to their ergodic theory. Manuscript, WIAS 
Berlin, 1995. 

[CG86] J.T. Cox and D. Griffeath. Diffusive clustering in the two dimensional 
voter model. Ann. Probab., 14:347-370, 1986. 

(DS58] N. Dunford and J.T. Schwartz. Linear Operators, Part I: General 
Theory. Interscience Publishers, 1958. 

[EK86] S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and 
Convergence. Wiley, New York, 1986. 

(Eva88) S.N. Evans. Continuity properties of Gaussian stochastic processes 
indexed by a local field. Proc. London Math. Soc., 56:380-416, 1988. 

[Eva89) S.N. Evans. Local properties of Levy processes on a totally discon-
nected group. J. Theoretical Probab., 2(2):209-259, 1989. 

[FG94a] K. Fleischmann and A. Greven. Diffusive clustering in an infinite 
system of hierarchically interacting diffusions. Probab. Theory Relat. 
Fields, 98:517-566, 1994. 

[FG94b] K. Fleischmann and A. Greven. Time-space analysis of the cluster-
formation in interacting diffusions. Preprint WIAS Berlin, Nr. 122, 
1994. 

(Kle95) A. Klenke. Different clustering regimes in systems of hierarchically 
interacting diffusions. Ann. Probab., to appear 1995. 

[Kre85] U. Krengel. Ergodic Theorems. Walter de Gruyter, 1985. 



30 S.N. Evans & K. Fleischmann 

[MR92] M.B. Marcus and J. Rosen. Sample path properties of the local times 
of strongly symmetric Markov proceses via Gaussian processes. Ann. 
Probab., 20( 4):1603-1684, 1992. 

[MT95] C. Mueller and R. Tribe. Stochastic PDE's arising from the long range 
contact and long range voter processes. Preprint, 1995. 

[Saw76] S. Sawyer. Results for the stepping stone model for migration in 
population genetics. Ann. Probab., 4:699-728, 1976. 

[SF83] S. Sawyer and J. Felsenstein. Isolation by distance in a hierarchically 
clustered population. J. Appl. Probab., 20:1-10, 1983. 

[Shi80] T. Shiga. An interacting system in population genetics. J. Mat. Kyoto 
Univ., 20:213-242, 1980. 

[Shi88] T. Shiga. Stepping stone models in population genetics and popu-
lation dynamics. In S. Albeverio et al., editor, Stochastic Processes 
in Physics and Engineering, Mathematics and Its Applications, pages 
345-355. D. Reidel Publishing Company, 1988. 

[Sim63] G.F. Simmons. Introduction to Topology and Modern Analysis. 
McGraw-Hill, 1963. 

[Vil63] N.J. Vilenkin. On a class of complete othonormal systems. Amer. 
Math. Soc. Transl., 28:1-35, 1963. 

Department of Statistics # 3860 
367 Evans Hall 
University of California at Berkeley 
Berkeley, California 94 720-3860 
U.S.A. 
e-mail: evans@stat.berkeley.edu 

Weierstrass Institute for Applied 
Analysis and Stochastics (WIAS) 

Mohrenstr. 39 
D - 10117 Berlin, Germany 
e-mail: fieischmann@iaas-berlin.d400.de 

non. tex typeset by I¥fEX 



Recent publications of the 
Weierstrafi-Institut fiir Angewandte Analysis und Stochastik 

Preprints 1995 

158. Nikolai Nefedov, Klaus Schneider: Singularly perturbed systems: Case of ex-
change of stability. 

159. Rainer Dahlhaus, Michael H. Neumann, Rainer von Sachs: Nonlinear wavelet 
estimation of time-varying autoregressive processes. 

160. Henri Schurz: Numerical regularization for SDEs: Construction of nonnega-
tive solutions. 

161. Anton Bovier, Veronique Gayrard: The retrieval phase of the Hopfield model: 
A rigorous analysis of the overlap distribution. 

162. Boris N. Khoromskij, Gunther Schmidt: A fast interface solver for the bihar-
monic Dirichlet problem on polygonal domains. 

163. Michael H. Neumann: Optimal change-point estimation in inverse problems. 

164. Dmitry Ioffe: A note on the extremality of the disordered state for the Ising 
model on the Bethe lattice. 

165. Donald A. Dawson, Klaus Fleischmann: A continuous super-Brownian mo-
tion in a super-Brownian medium. 

166. Norbert Hofmann, Peter Mathe: On quasi-Monte Carlo simulation of stochas-
tic differential equations. 

167. Henri Schurz: Modelling, analysis and simulation of stochastic innovation 
diffusion. 

168. Annegret Glitzky, Rolf Hiinlich: Energetic estimates and asymptotics for 
electro-reaction-diffusion systems. 

169. Pierluigi Colli, Jiirgen Sprekels: Remarks on the existence for the one-dimen-
sional Fremond model of shape memory alloys. 

170. Klaus R. Schneider, Adelaida B. Vasil'eva: On the existence of transition 
layers of spike type in reaction-diffusion-convection equations. 

171. Nikolaus Bubner: Landau-Ginzburg model for a deformation-driven experi-
ment on shape memory alloys. 



172. Reiner Lauterbach: Symmetry breaking in dynamical systems. 

173. Reiner Lauterbach, Stanislaus Maier-Paape: Heteroclinic cycles for reaction 
diffusion systems by forced symmetry-breaking. 

174. Michael Nussbaum: Asymptotic equivalence of density estimation and Gaus-
sian white noise. 

175. Alexander A. Gushchin: On efficiency bounds for estimating the offspring 
mean in a branching process. 

176. Vladimir G. Spokoiny: Adaptive hypothesis testing using wavelets. 

177. Vladimir Maz'ya, Gunther Schmidt: "Approximate approximations" and the 
cubature of potentials. 

178. Sergey V. Nepomnyaschikh: Preconditioning operators on unstructured grids. 

179. Hans Babovsky: Discretization and numerical schemes for stationary kinetic 
model equations. · 

180. Gunther Schmidt: Boundary integral operators for plate bending in domains 
with corners. 

181. Karmeshu, Henri Schurz: Stochastic stability of structures under active con-
trol with distributed time delays. 

182. Martin Krupa, Bjorn Sandstede, Peter Szmolyan: Fast and slow waves in the 
FitzH ugh-N agumo equation. 

183. Alexander P. Korostelev, Vladimir Spokoiny: Exact asymptotics of minimax 
Bahadur risk in Lipschitz regression. 

184. Youngmok Jeon, Ian H. Sloan, Ernst P. Stephan, Johannes Elschner: Discrete 
qualocation methods for logarithmic-kernel integral equations on a piecewise 
smooth boundary. 

185. Michael S. Ermakov: Asymptotic minimaxity of chi-square tests. 

186. Bjorn Sandstede: Center manifolds for homoclinic solutions. 


