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Abstract

We derive confidence regions for the realized family-wise error rate (FWER) of certain
multiple tests which are empirically calibrated at a given (global) level of significance. To
this end, we regard the FWER as a derived parameter of a multivariate parametric copula
model. It turns out that the resulting confidence regions are typically very much concen-
trated around the target FWER level, while generic multiple tests with fixed thresholds are
in general not FWER-exhausting. Since FWER level exhaustion and optimization of power
are equivalent for the classes of multiple test problems studied in this paper, the afore-
mentioned findings militate strongly in favour of estimating the dependency structure (i. e.,
copula) and incorporating it in a multivariate multiple test procedure. We illustrate our the-
oretical results by considering two particular classes of multiple test problems of practical
relevance in detail, namely, multiple tests for components of a mean vector and multiple
support tests.

1 Introduction

Multiple testing is a hot topic in modern mathematical and applied statistics with a variety of
applications in the life sciences like, for instance, in genetic association analyses, gene expres-
sion studies, functional magnetic resonance imaging, or brain-computer interfacing (see, e. g.,
Dickhaus (2013b) and references therein), as well as in economics and finance where testing
the structure of an optimal portfolio plays a crucial role for the investment strategy (cf. Bodnar
and Schmid (2008)). A multiple test problem is characterized by a family of m > 1 null hy-
potheses which have to be tested simultaneously based on the same data. To this end, typically
(marginal) test statistics are constructed for each hypothesis.

The classical type I error criterion for multiple tests is the family-wise error rate (FWER) which
is defined as the probability of at least one false rejection (type I error). Given an FWER level α,
the decision rule of a multiple test is often described by local significance levels αj , 1 ≤ j ≤ m,
for each marginal test. These αj ’s have to be chosen such that the FWER is upper bounded by
α. Two classical procedures are the Bonferroni correction (cf. Bonferroni (1935, 1936)) and the
Šidák correction (Šidák (1967)), corresponding to

αj =
α

m
and αj = 1− (1− α)1/m,

respectively. It is well-known that both the Bonferroni and the Šidák corrections lead to FWER
control for broad classes of dependent test statistics. More precisely, the Bonferroni correction is
a generic procedure which can be applied under any arbitrary dependence structure, whereas
the Šidák correction controls the FWER under certain forms of positive dependence among test
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statistics like positive lower orthant dependence or multivariate total positivity of order 2, includ-
ing jointly stochastically independent test statistics; see, for instance, Block et al. (1992). On the
other hand, this generic validity of the Bonferroni correction as well as the Šidák correction can
lead to suboptimal power characteristics of the multiple tests if a concrete dependency struc-
ture can be assumed, meaning that their power can uniformly be improved if the dependence
structure of the joint distribution of test statistics is explicitly taken into account.

The usage of copulae is highly recommendable for this purpose. The main reason is that it
allows for separating the marginal distributions of test statistics from the dependence structure
which is fully captured by the copula function. The application of copulae is currently becoming
very popular in the theory of multiple tests (cf. Sarkar (2008); Ghosh (2011); Dickhaus and Gierl
(2013); Bodnar and Dickhaus (2013)). In particular, Dickhaus and Gierl (2013) demonstrated
that, under certain structural assumptions on the statistical model and the multiple test, the
local significance levels αj , 1 ≤ j ≤ m, can precisely be calibrated via level sets of the copula
of test statistics under the global hypothesis, i. e., when all null hypotheses are true.

However, in many practically relevant cases the copula is itself an unknown parameter which
has to be estimated before multiple testing is performed. In this case, the question arises how
to quantify the influence of the copula estimation on the performance of the multiple test. In
particular, it is important to analyze if the empirically calibrated multiple test employing the es-
timated copula parameter still keeps the FWER level and outperforms a generic one which is
based, for example, on the Bonferroni correction, at least with high probability. We deal with
both of these problems in the present paper. First, two families of copulae, namely the family
of elliptical copulae and the family of Archimedean copulae, are applied for modeling the joint
distribution of test statistics. These choices are motivated by different types of limit theorems for
sequences of independent and identically distributed (i.i.d.) random vectors (observables). Sec-
ond, we deal with the estimation of copula parameters in detail and analyze the influence of the
estimation variance (i. e., the covariance matrix of the estimator) on the performance of multiple
tests. Third, we are considered with consistent bootstrap-based estimation of copula parame-
ters when the dependence structure of test statistics can not straightforwardly be deduced from
that of the original data.

The rest of the paper is structured as follows. In Section 2, we recall some theoretical back-
ground of multiple testing and copula modeling, and we formalize the connection between cop-
ulae and local significance levels. Estimation methods for copula parameters are discussed in
Section 3.1, whereas their impact on the performance of multiple tests is analyzed in Section
3.2. In Section 4, we apply our theoretical findings to two important practical problems. In the first
one (Section 4.1) the aim is to test hypotheses about the elements of a mean vector, while the
second one deals with multiple testing of upper bounds of the supports of marginal distributions
(Section 4.2). We conclude with a discussion in Section 5.
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2 Notation and preliminaries

2.1 Multiple testing

Throughout the work the triple (X ,F ,P) denotes a statistical model, where P is a family of
probability distributions on the sample space (X ,F). The family P = (Pϑ,η : ϑ ∈ Θ, η ∈ Ξ)
is indexed by two types of parameters, ϑ ∈ Θ and η ∈ Ξ. We refer to the parameter ϑ ∈ Θ
as the parameter of interest, whereas η ∈ Ξ stands for a nuisance parameter representing the
dependency structure among the data. Let H = (Hj)

m
j=1 denote a family of null hypotheses

with ∅ 6= Hj ⊂ Θ for 1 ≤ j ≤ m. For a parameter ϑ ∈ Θ, we call the null hypothesis Hj true
if ϑ ∈ Hj and false otherwise. A multiple test forH is a measurable mapping

ϕ = (ϕ1, . . . , ϕm)> : (X ,F)→ ({0, 1}m,P({0, 1}m)),

where ϕj : X → {0, 1} is a (non-randomized) test for Hj versus Kj = Θ \Hj , 1 ≤ j ≤ m.
We consider multiple tests of the form ϕ = ϕ(T, c), where each local test is given by ϕj =
1(Tj > cj) for a vector of real-valued test statistics T = (T1, . . . , Tm)>, which tend to larger
values under the respective alternative, and critical values c = (c1, . . . , cm)> ∈ Rm.

For the calibration of ϕ, we aim at controlling the probability of at least one false rejection,
commonly known as the FWER. For given ϑ ∈ Θ and η ∈ Ξ, it is defined by

FWERϑ,η(ϕ) = Pϑ,η

 ⋃
i∈I0(ϑ)

{ϕi = 1}

 , (1)

where I0(ϑ) = {1 ≤ j ≤ m : ϑ ∈ Hj} denotes the index set of true hypotheses under ϑ.
Notice that, although I0 only depends on ϑ, the FWER of ϕ depends both on ϑ and η, because
the distribution of ϕ (regarded as a statistic with values in {0, 1}m) typically crucially depends
on the dependency structure in the data. For a predetermined value α ∈ (0, 1), the multiple
test ϕ controls the FWER at the (global) significance level α, if

sup
ϑ∈Θ,η∈Ξ

FWERϑ,η(ϕ) ≤ α.

LetH0 :=
⋂m
j=1Hj denote the intersection (or global) hypothesis ofH. We make the following

general assumptions concerning the structure of the multiple test problem (X ,F ,P ,H) and
the multiple test ϕ.

Assumption 2.1.

(i) The nuisance parameter η ∈ Ξ does not depend on the parameter ϑ ∈ Θ and the
marginal distribution of each Tj , 1 ≤ j ≤ m, is determined by ϑ solely.

(ii) There exists a parameter ϑ∗ ∈ H0 such that

∀ϑ ∈ Θ : ∀η ∈ Ξ : FWERϑ,η(ϕ) ≤ FWERϑ∗,η(ϕ). (2)

In order to simplify notation, we put P∗η = Pϑ∗,η and FWER∗η(ϕ) = FWERϑ∗,η(ϕ).
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A parameter ϑ∗ ∈ Θ that satisfies (2) is called a least favorable configuration (LFC) for the
FWER of ϕ (for fixed η). Sufficient conditions for LFCs being located in H0 have been provided
by Gabriel (1969) and Dickhaus and Stange (2013), among others. Let us also point out the
strong similarity of Assumption 2.1.(ii) and the concept of subset pivotality (cf. Westfall and
Young (1993), pp.42-43) which is often used in resampling-based multiple testing.

Let
αj = sup

ϑ∈Hj
Pϑ,η(ϕj = 1) = sup

ϑ∈Hj
Pϑ,η(Tj > cj) (3)

denote local (marginal) significance levels, when c = c(α) is chosen such that ϕ controls the
FWER at level α. In practice, the multiple test ϕ is often carried out by means of the αj and
marginal p-values pj , 1 ≤ j ≤ m, which are defined by

pj = inf
α̃∈(0,1):Tj(x)>cj(α̃)

sup
ϑ∈Hj

Pϑ(Tj > cj(α̃)),

where x ∈ X denotes the actually observed data. The multiple test ϕ(T, c) is then equivalently
given by ϕj = 1(pj ≤ αj), 1 ≤ j ≤ m. In the case of simple hypotheses H1, . . . , Hm and
continuous marginal cumulative distribution functions (cdfs) Fj of test statistics Tj under Hj ,
1 ≤ j ≤ m, the p-values are simply given by pj = 1 − Fj(Tj). Moreover, in the latter case
pj is exactly uniformly distributed on [0, 1] under Hj . In the case of composite hypotheses,
p-values are not necessarily uniformly distributed, but stochastically not larger than UNI[0, 1],
cf. Dickhaus (2013a). The ßtandardization"provided by transforming test statistics into p-values
is useful for the interpretation of ϕ, especially if the test statistics have unbalanced scales.
For the remainder of this work, this standardization is also used to separate the dependency
structure among the test statistics (induced by η) from the marginal models, giving rise to the
consideration of copula models.

2.2 Copulae

We start with a formal definition of the term copula.

Definition 2.1 (Copula). An m-dimensional copula is a multivariate distribution function on
[0, 1]m with all marginal distributions equal to UNI[0, 1].

An equivalent but rather technical, geometric definition of copulae, involving quasi-monotonicity,
can be found in the textbook by Nelsen (2006). The connection between marginal cdfs, joint
cdfs, and copulae is given by Sklar’s Theorem.

Theorem 2.1 (Sklar (1959, 1996)). Let F : Rm → [0, 1] be an m-dimensional distribution
function, with univariate marginsF1, . . . , Fm : R→ [0, 1]. Then there exists anm-dimensional
Copula C : [0, 1]m → [0, 1], such that

∀(x1, . . . , xm)> ∈ Rm : F (x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)).

Moreover, if the marginal distribution functions are continuous, then the copula C is uniquely
determined.
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Example 2.1.

a) Gaussian copula

The function CΣ : [0, 1]m → [0, 1], with

CΣ : (u1, . . . , um)> 7→ Φm(Φ−1(u1), . . . ,Φ−1(um); Σ)

is an m-dimensional Gaussian copula, where Φm(·; Σ) denotes the distribution function
of the m-variate normal distribution Nm(0,Σ) with covariance and correlation matrix
equal to Σ, and Φ−1 is the quantile function of the univariate standard normal distribution.

According to our general setup developed in Section 2.1 we interpret the correlation ma-
trix as the nuisance parameter η, i. e., we consider in the most general case the space
Ξ = {Σ ∈ [−1, 1]m×m : Σ symmetric and positive definite correlation matrix}. Note
that this parameter space has dimension dim(Ξ) = O(m2) which usually leads to the
curse of dimensionality. Many relevant applications have to deal with this problem, namely
that the sample size n is smaller than the dimensionality of the parameter space. This
requires regularizing assumptions regarding the structure of Σ ∈ Ξ, for example AR(p)
structure, Toeplitz structure, or factor structure. In Section 4, we will assume an AR(1)
structure.

b) General elliptical copulae

The function CΣ,h : [0, 1]m → [0, 1], with

CΣ,h : (u1, . . . , um)> 7→ Em(E−1(u1), . . . , E−1(um))

is an m-dimensional elliptical copula, where Em is the distribution function of an elliptical
distribution with correlation matrix Σ and density function em(x) ∝ h(xTΣx), x ∈
Rm. The function h : [0,∞) → [0,∞) is called the density generator and should
satisfy

∫∞
0
rm/2−1h(r)dr < ∞. The symbol E−1 denotes the quantile function of the

respective marginal distribution. Members of the family of elliptical distributions besides
the multivariate Gaussian distribution are, among others, the multivariate Student’s t-
distribution and the multivariate Laplace (double exponential) distribution.

c) Archimedean copulae

Let ψ : [0,∞) → [0, 1] be a nonincreasing, continuous m-altering function, mean-
ing that (−1)kψ(k)(x) ≥ 0 for all x ∈ [0,∞) and k = 0, . . . ,m, with ψ(0) = 1,
limx→∞ ψ(x) = 0, and assume that ψ is strictly decreasing on [0, ψ−1(0)). Then
Cψ : [0, 1]m → [0, 1] with

Cψ(u) = ψ

(
m∑
j=1

ψ−1(uj)

)
, u = (u1, . . . , um)> ∈ [0, 1]m,

is called an Archimedean copula with generator ψ; cf. McNeil and Nešlehová (2009).

Due to the analytic properties of ψ, its inverse exists on [0, ψ−1(0)) and it is defined by

ψ−1(u) := inf{x ∈ [0,∞) : ψ(x) ≤ u}.
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Ifψ ism-altering for allm ∈ N, thenψ is called completely monotone. In that caseψ may
be considered as the Laplace-Stieltjes transform of a positive random variable according
to Bernstein’s Theorem, cf. Bernstein (1929), which is useful for a stochastic representa-
tion of a multivariate random vector following the Archimedean copula with generator ψ.
For more details, in particular about the generation of (pseudo-) random samples from
Archimedean copulae we refer to Hofert (2012). Finally, the class of Archimedean copu-
lae possesses the exchangeability property, that is, if U ∼ Cψ, then each subvector of
U follows the same type of copula.

Within our statistical setup the most general space is

Ξ = {ψ : [0,∞)→ [0, 1] : ψ is m-monotone},

where we regard the function ψ ∈ Ξ as an infinite-dimensional nuisance parameter.
For regularization purposes, it is useful to restrict attention to parametric sub-families of
generator functions and the corresponding parametric families of Archimedean copulae.
A comprehensive list of such parametric Archimedean copula families is provided by
Nelsen (2006), pp.116-119.

In Section 4 we will be considered with Gaussian and Archimedean copulae. While Gaussian
copulae naturally arise in connection with multivariate central limit theorems, certain Archimedean
copulae play an important role in connection with other types of limit laws. In this sense, our
present work generalizes the results by Hothorn et al. (2008) which are only applicable under
(asymptotic) normality. For an illustration, let us consider the Gumbel-Hougaard family which is
defined by the generator ψη : x ∈ [0,∞) 7→ exp

(
−x1/η

)
, η ≥ 1. The Gumbel-Hougaard

copula for a parameter η ≥ 1 is consequently given by

Gη : u = (u1, . . . , um)> ∈ [0, 1]m 7→ exp

−[ m∑
j=1

(− log(uj))
η

] 1
η

 . (4)

The Gumbel-Hougaard family is also characterized (Genest and Rivest (1989)) by the fact that
it is the only family of Archimedean copulae which are max-stable, that is

∀k ∈ N : Gη(u1, . . . , um)k = Gη(u
k
1, . . . , u

k
m), (u1, . . . , um)> ∈ [0, 1]m. (5)

It is well known that the class of max-stable distributions coincides with the class of extreme
value distributions. Thus, any Gumbel-Hougaard copula Gη can arise as the weak limit of mul-
tivariate distribution functions in the sense that, for some copula C0,

lim
n→∞

(
C0(u

1/n
1 , . . . , u1/n

m )
)n

= Gη(u1, . . . , um), (u1, . . . , um)> ∈ [0, 1]m. (6)

Such copulae C0 are said to be in the domain of attraction of Gη; cf. Gudendorf and Segers
(2010). A sufficient condition for Archimedean copulaeCψ which are generated byψ : [0,∞)→
[0, 1] to be in the max domain of attraction of a Gumbel-Hougaard copula is given in the follow-
ing lemma.
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Lemma 2.1 (Gudendorf and Segers (2010)). Denote by φ = ψ−1 the inverse function of the
copula generator of the Archimedean copula Cψ. If

− lim
t→0

tφ′(1− t)
φ(1− t)

= η ∈ [1,∞), (7)

then Cψ is in the max domain of attraction of the Gumbel-Hougaard copula Gη.

2.3 Multiple testing in terms of copulae

Under our general Assumption 2.1 and following Dickhaus and Gierl (2013), we can upper-
bound the FWER of the multiple test ϕ = ϕ(T, c) by

FWERϑ,η(ϕ) ≤ FWER∗η(ϕ) = P∗η

(
m⋃
j=1

{Tj > cj}

)
= 1− P∗η(T1 ≤ c1, . . . , Tm ≤ cm),

= 1− Cη(F1(c1), . . . , Fm(cm)),

where Fj is the marginal cdf of Tj under ϑ∗, 1 ≤ j ≤ m, and Cη : [0, 1]m → [0, 1] is some
m-dimensional copula indexed by the nuisance parameter η ∈ Ξ. Recall that Assumption
2.1.(i) implies that the dependency structure among the test statistics is entirely captured by the
parameter η ∈ Ξ, regardless of ϑ ∈ Θ. The calculation above shows that the calibration of the
vector c of critical values for FWER control of ϕ can be performed by means of level sets of Cη.
If we denote by uj(η) = Fj(cj(η)) = 1− αj ∈ [0, 1], where αj is the local significance level
from (3), then each choice from the set C−1

η (1−α) = {u ∈ [0, 1]m : Cη(u) = 1−α} yields
valid critical values c. Since C−1

η (1 − α) is an (m − 1)-dimensional submanifold in [0, 1]m,
one can choose a valid set of critical values by weighting hypotheses for importance, see, e. g.,
Roeder and Wasserman (2009). If all m hypotheses are equally important, one should simply
choose u1 = . . . = um, yielding a unique solution for c. In practice, as mentioned before, a
null hypothesis Hj is rejected if pj ≤ αj = 1 − uj(η), for 1 ≤ j ≤ m. Figure 1 illustrates
the interrelation of global significance level, local significance level, and the copula parameter η
graphically. If Hj is a composite null hypothesis, we refer to the more general definition of αj as
given in (3).

3 Empirical calibration of multiple tests

With slight abuse of notation and for ease of presentation, we let η ∈ Ξ in this section denote the
copula parameter of the vector T of test statistics rather than that of the original data, although
these two quantities do not necessarily coincide.

3.1 Estimation of copula parameters

Assumption 2.1.(ii) ensures that the marginals which have to be used for FWER calibration
of ϕ are known (because this calibration is performed under the intersection hypothesis) and,
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Figure 1: The upper FWER bound for m = 12 marginal tests as a function of its local signif-
icance levels, i. e., FWER∗η(u) = 1 − Cη(1 − u, . . . , 1 − u), u ∈ [0, 1], in the case that
the dependence among test statistics is modeled by a Gumbel-Hougaard copula with varying
parameter η. For a given global significance level α one can determine the corresponding equi-
coordinate local significance level on the abscissa. The dotted line represents independence,
corresponding to a Šidák (1967) correction. For η → ∞ the curve approaches the identity,
meaning that no correction for multiplicity is necessary, since “effectively“ only one single test is
performed.
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consequently, only the dependence structure has to be inferred. This dependency structure is
in turn fully defined by the copula parameter η. Several methods exist in the literature which can
be used for estimating η. The most widely applied ones are maximum likelihood and the method
of moments.

3.1.1 Maximum likelihood estimation

Maximum likelihood estimation is a well-established estimation technique in parametric models.
In case of elliptical copulae the procedure is discussed in detail by Gupta et al. (2013). For
Archimedean copulae the density can be calculated only if the generating function ψ is differen-
tiable up to order m − 1 and ψ(m−1) is absolutely continuous (McNeil and Nešlehová (2009)).
In that case the density of Cη is given by

cη(u) =
∂m

∂u1 . . . ∂um
Cη(u) =

ψ(m)
(∑m

j=1 ψ
−1(uj)

)
∏m

j=1 ψ
′(ψ−1(uj))

, u ∈ [0, 1]m.

Given a sample of i.i.d. random vectors U1, . . . ,Un ∼ Cη, the estimator of η is found by
maximizing the log-likelihood function

`(η,U1, . . . ,Un) =
n∑
i=1

`(η,Ui) =
n∑
i=1

log(cη(Ui)) (8)

with respect to η ∈ Ξ, i. e.,

η̂n,ML = argsup
η∈Ξ

`(η,U1, . . . ,Un).

The derivation of analytical expressions for (8) in case of five well known families of Archimedean
copulae is given by Hofert et al. (2012). Moreover, the authors mention that under usual regular-
ity assumptions (such as finiteness of the Fisher information) the maximum likelihood estimator
is asymptotically efficient. Finally, it is consistent and asymptotically normally distributed. More
specifically, it holds that, with p = dim(η) ∈ N,

√
n(η̂n,ML − η)

d→ Np(0, I(η)−1) with I(η) = Eη

[
∇`(η,U)∇`(η,U)T

]
.

3.1.2 Method of moments

A further, and in most cases simpler, method to estimate the parameters of an Archimedean
copula follows from the generalized method of moments; see, e. g., Hansen (1982). Since max-
imum likelihood estimation is typically done by numerical optimization (for instance, employing
the Newton-Raphson-algorithm), the method of moment estimates often serve as initial values.

The copula functions are naturally connected to measures of dependence, such as Pearson’s
product moment correlation or Spearman’s rank correlation. Especially, for Archimedean copu-
lae there are handy relations between the copula generating function ψ and the concordance
measures which are defined as follows.
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Definition 3.1. Let m ≥ 2 and X = (X1, . . . , Xm)> denote a random vector defined on a
probability space (Ω,F ,P) with values in Rm.

(i) Kendall’s τ (Kendall (1938)):

For each pair (Xj, Xk), 1 ≤ j < k ≤ m, denote by (X∗j , X
∗
k) an independent copy of

(Xj, Xk) and define

τ2,jk = P[(Xj −X∗j )(Xk −X∗k) > 0]− P[(Xj −X∗j )(Xk −X∗k) < 0]

= 4P(Xj ≤ X∗j , Xk ≤ X∗k)− 1.

(ii) Coefficient of agreement (Kendall and Babington Smith (1940)):

Tm :=

(
m

2

)−1 m−1∑
j=1

m∑
k=j+1

τ2,jk, m ≥ 2.

(iii) Multivariate Concordance (Joe (1990)):

τm :=
2mP(X ≤ X∗)− 1

2m−1 − 1
, m ≥ 2,

where X∗ is an independent copy of X.

In Definition 3.1.(i) Kendall’s τ is given in the bivariate case, whereas two extensions to the mul-
tivariate case are presented in parts (ii) and (iii). The relationship of Pearson’s product moment
correlation as well as of Kendall’s τ to the copula function is provided in the following lemma.

Lemma 3.1. Let X ∼ FX and Y ∼ FY be two random variables on a common probability
space (Ω,F ,P). Let the joint distribution of X and Y be associated with a copula C , i. e.,
P(X ≤ x, Y ≤ y) = C(FX(x), FY (y)).

(a) The covariance of X and Y is given by

σX,Y = E[(X − E[X])(Y − E[Y ])]

=

∫
R2

C(FX(x), FY (y))− FX(x)FY (y) dx dy.

(b) Let (X∗, Y ∗) be an independent copy of (X, Y ). Then

τ2 = 4P(X ≤ X∗, Y ≤ Y ∗)− 1 = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 .

Proof. The result of part a) goes back to the work of Höffding (1940), whereas the second
statement can be found, for example, as Theorem 5.1.1 of Nelsen (2006). �
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It is remarkable to note that Kendall’s τ is independent of the marginal distribution functions FX
and FY . This property makes this coefficient very useful in estimating the copula parameter,
especially in the one-dimensional case. In the case of an Archimedean copula, Kendall’s τ can
be expressed in terms of the copula generating function ψ, or its parameter η, respectively.
Namely, it holds that (see, e. g., Section 5.1 in Nelsen (2006))

τ2 = τ2(ψ) = T2 = 1− 4

∫ ψ−1(0)

0

t(ψ′(t))2 dt. (9)

In some special cases, the right-hand side of (9) can further be simplified and expressed in
terms of the copula parameter η. For instance, in case of the Gumbel-Hougaard family, we
get τ2 = τ2(η) = (η − 1)/η. Unfortunately, there are only rare cases where closed form
expressions for τm are available in terms of η form > 2. Some formulas are provided in Genest
et al. (2011). It is also worth noticing that, by the exchangeability property of Archimedean
copulae, Tm is equal to τ2,12 = . . . = τ2,(m−1)m.

Next, we specify the sample counterparts of the population concordance measures given in
Definition 3.1. Let X1, . . . ,Xn ∼ X be an i.i.d. sample of random vectors in Rm. Then, with
Xi = (Xi1, . . . , Xim)> for 1 ≤ i ≤ n, the sample estimators of Tm or τm, namely T̂m,n and
τ̂m,n, are given by

T̂m,n =

(
m

2

)−1 m−1∑
j=1

m∑
k=j+1

(
4

(
n

2

)−1 n−1∑
i=1

n∑
i′=i+1

1(Xij ≤ Xi′j, Xik ≤ Xi′k)− 1

)
, (10)

τ̂m,n =
1

2m−1 − 1

(
2m
(
n

2

)−1 n−1∑
i=1

n∑
i′=i+1

1(Xi ≤ Xi′)− 1

)
. (11)

Estimators of η are obtained by inverting Tm or τm, leading to

η̂τm,n = τ−1
m (τ̂m,n), η̂Tm,n = T −1

m (T̂m,n).

Genest et al. (2011) compared the estimators (10) and (11) with each other for several Archime-
dean families, where it becomes obvious that η̂τm,n and η̂Tm,n perform virtually equivalently, up

to a finite sample error. Moreover, both estimators are asymptotically normal, that is T̂m,n
as.∼

N (Tm, σ2
Tm/n) and τ̂m,n

as.∼ N (τm, σ
2
τm/n). The expression for the asymptotic variance

σ2
Tm = σ2

Tm,C is provided in Proposition 4 of Genest et al. (2011). For Archimedean copulae
this expression simplifies, due to exchangeability, to

σ2
Tm,Cη = 4Var(Cη(U, V ) + C̄η(U, V )). (12)

In (12), U and V are uniformly distributed random variables with joint distribution determined
by the copula Cη. The function C̄η denotes the survival function of (U, V ), that is C̄η(u, v) =
P(U > u, V > v) = 1− u− v + Cη(u, v). Hence, (12) can equivalently be written as

σ2
Tm,Cη = 4 {Var(U + V ) + 4Var(Cη(U, V ))− 8Cov(U,Cη(U, V ))} .
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Further, if ψ : [0,∞) → [0, 1] is the generator function of the Archimedean copula Cη, then
the distribution function of the bivariate probability integral transform (BIPIT) Cη(U, V ) is given
by

KCη(t) := P(Cη(U, V ) ≤ t) = 1− ψ−1(t)ψ′(ψ−1(t)), (13)

see Genest and Rivest (1993); Nelsen (2006). The functionKCη is known as Kendall’s (distribu-
tion) function associated with the copula Cη and can be used for the derivation of the probability
density function of Cη(U, V ) as well as in the computation of its mean and its variance. The
summand Var(U+V ) = Var(U)+Var(V )+2Cov(U, V ) is calculated by applying Hoeffding’s
Lemma 3.1.(a), leading to

Cov(U, V ) =

∫
[0,1]2

Cη(u, v) du dv − 1/4, and Var(U) = Var(V ) = 1/12.

Finally, in order to compute Cov(U,Cη(U, V )), we suggest (if feasible) to apply the analytic
representation in Corollary 4.3.5 of Nelsen (2006), or a numerical integration.

A slightly different procedure for the estimation of η was suggested by Fengler and Okhrin
(2012). Let

g(η) = (τ̂2,12 − τ2(η), . . . , τ̂2,(m−1)m − τ2(η)) ∈ Rm(m−1)/2,

and choose an appropriate weight matrix W ∈ R(m2 )×(m2 ). Then the proposed estimator of η is
given by

η̂W = arginf
η∈Ξ

g(η)TWg(η).

This approach leads to a weighted least squares variant of the method of moments which is
based on T̂m.

3.1.3 Resampling under the intersection hypothesis

In some cases, the sample X1, . . . ,Xn can be employed in order to infer the distribution (un-
der H0) of the vector T of test statistics in a direct manner. This holds true in particular if
T = T(X1, . . . ,Xn) preserves the dependency structure of the original data. Typical exam-
ples are the empirical means in case of stable distributions and the (component-wise) maxima
for the Gumbel-Hougaard copula. However, there also exist cases in which the dependency
structure among the components of T(X1, . . . ,Xn) cannot straightforwardly be deduced from
that among the components of X. In the latter case we recommend the application of a boot-
strap procedure (Efron (1979)) to estimate the distribution of T and thus the corresponding
quantities of interest. Especially, under Assumption 2.1.(ii), resampling can be performed under
the intersection hypothesis, which is conceptually very simple; cf. Westfall and Young (1993). It
is important to note that there is no ’default-variant’ for all kinds of statistics to achieve consis-
tency of bootstrap estimators, as counterexamples by Bickel and Freedman (1981) show. We
will return to this point in Section 4.2.
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3.2 Asymptotic behaviour of empirically calibrated multiple tests

In this section we consider the asymptotic behavior of the empirically calibrated multiple tests in
the general case, meaning that no strong restrictions are imposed on the copula function which
determines the dependence structure among the test statistics. Let ΦT = {ϕ(T, c)|c ∈ Rm}
be a family of multiple testing procedures based on the vector of test statistics T : X → Rm.
We assume that the dependence structure of T is determined by the copula functionCη0 , where
η0 denotes the true copula parameter.

Utilization of an estimate η̂ for η0 leads to the empirically calibrated critical values ĉ = c(η̂),
from which we obtain the calibrated test ϕ̂ = ϕ(T, ĉ) ∈ ΦT. As explained in Section 2.3 we
define local significance levels 1 − uj(η) by uj(η) = Fj(cj(η)) for j = 1, . . . ,m. Since η0

is unknown, we approximate these local significance levels by taking an element u(η̂) from the
set C−1

η̂ (1− α) for a given global significance level α. We assume that the following regularity
conditions hold true.

Assumption 3.1. For each α ∈ (0, 1), gα : η ∈ Ξ 7→ C−1
η (1−α) ∈ [0, α]m is a well-defined

and continuously differentiable function. Furthermore, the composition Cη0 ◦ gα : η ∈ Ξ 7→
Cη0(u1(η), . . . , um(η)) is also continuously differentiable.

Under Assumption 3.1, we may regard FWER∗η0(ϕ̂) as a derived parameter of the dependency
structure of T. Our main theorem shows how the uncertainty about the value of η propagates
itself into uncertainty about the actual (realized) FWER of the calibrated test ϕ̂.

Theorem 3.1. Let (X ,F ,P) be a statistical model and letH = {H1, . . . , Hm} be a collection
of hypotheses with non-empty intersection hypothesis H0. Assume that the joint distribution of
T is given by the copula Cη0 ∈ {Cη|η ∈ Ξ ⊆ Rp}, p ∈ N, and that Assumption 2.1 is fulfilled.
Further, suppose that η̂n : X → Ξ is an asymptotically normally distributed estimator of η0, i.
e., that there exists a positive definite symmetric matrix Σ0 such that

√
n(η̂n − η0)

d→ Np(0,Σ0) as n→∞.

Let α ∈ (0, 1) be a fixed global significance level. Then, under Assumption 3.1, the following
assertions hold true.

a) Consistency

∀η0 ∈ Ξ : FWER∗η0(ϕ̂) = 1− Cη0(gα(η̂n))
P∗η0−→ 1− Cη0(gα(η0)) = α.

b) Asymptotic Normality

∀η0 ∈ Ξ :
√
n
(
FWER∗η0(ϕ̂)− α

) d→ N (0, σ2
η0

),

where σ2
η0

= ∇Cη0(gα(η0))TΣ0∇Cη0(gα(η0)).
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c) Asymptotic Confidence Region

∀δ ∈ (0, 1) : ∀η0 ∈ Ξ : lim
n→∞

P∗η0

(√
n

FWER∗η0(ϕ̂)− α
σ̂n

≤ z1−δ

)
= 1− δ ,

where σ̂2
n : X → (0,∞) is a consistent estimator of the asymptotic variance σ2

η0
. In this,

zβ = Φ−1(β) denotes the β-quantile of the standard normal distribution on R.

Proof. Part a) follows from the Continuous Mapping Theorem; see, e. g., Theorem 1.14 in Das-
Gupta (2008). Part b) is an application of the ∆-method; see, e. g., Theorem 3.7 in DasGupta
(2008). Part c) is a consequence of part b) with an additional application of Slutzky’s Lemma;
see, e. g., Theorem 1.5 in DasGupta (2008). �

4 Examples

4.1 Multiple two-sided Z-tests

As in Section 3, we let X1, . . . ,Xn denote a sample of i.i.d. random vectors with values in Rm,
where X1 is distributed as X = (X1, ..., Xm)>. Let component-wise expectations be given by
µj = E[Xj], j = 1, . . . ,m. We assume that the marginal variances σ2

j = Var(Xj) are known
and, w. l. o. g., equal to 1. For a fixed vector µ∗ = (µ∗1, . . . , µ

∗
m)>, we consider the family of

hypotheses
Hj = {µj = µ∗j} versus Kj = {µj 6= µ∗j}, 1 ≤ j ≤ m.

A suitable vector of test statistics Tn = (T1,n, . . . , Tm,n)> is given by

Tj,n = Tj,n(X1, . . . ,Xn) = |Zj,n|, Zj,n :=
√
n

(
1

n

n∑
i=1

Xji − µ∗j

)
.

We consider the following two models for the distribution of X.

Model 4.1.

(a) The random vector X follows an m-variate normal distribution, X ∼ Nm(µ,Σ), with
(m × m) covariance and correlation matrix Σ. This implies that, under the global hy-
pothesis H0 = ∩mj=1Hj , Zn ∼ Nm(0,Σ), where Zn = (Z1,n, . . . Zm,n)>. Let Σ̂
be a consistent estimator of Σ and define the empirically calibrated critical values ĉ =
(ĉ1, . . . , ĉm)> = (ĉ1(Σ̂), . . . , ĉm(Σ̂))> as solutions of the equation

P∗
Σ̂

(T1,n ≤ ĉ1, . . . , Tm,n ≤ ĉm) = 1− α, (14)

where P∗
Σ̂

refers to Nm(0, Σ̂). In practice the computation of the vector ĉ of two-sided
normal quantiles can conveniently be performed by using the R function qmvnorm from
the package mvtnorm, cf. Genz and Bretz (2009).
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(b) The random vector X is non-Gaussian with finite second moments. In this case, Zn con-
verges underH0 in distribution toNm(0,Σ) due to the multivariate central limit theorem.
With a consistent estimate Σ̂ of Σ, the critical values are again empirically calibrated from
the Gaussian copula CΣ̂ as described in (14).

It is noted that Assumption 2.1 is satisfied in both parts of Model 4.1 and that the calibration of
ĉ is as in Hothorn et al. (2008).

For illustration, we choose the correlation matrix Σ = (Σij) of AR(1)-structure, i. e., Σij =
ρ|i−j|, i, j = 1, . . . ,m for ρ ∈ (−1, 1). The parameter ρ corresponds to the nuisance pa-
rameter η in our general setup. We apply maximum likelihood estimation for ρ, where the log-
likelihood function is given by

`(ρ, µ; X1, . . . ,Xn) = −mn
2

log(2π)−n
2

log(det(Σ))−
n∑
i=1

(Xi−µ)>Σ−1(Xi−µ). (15)

The determinant in (15) equals det(Σ) = (1 − ρ2)m−1, whereas the precision matrix is given
by

Σ−1 =
1

1− ρ2



1 −ρ 0 0 · · · 0 0
−ρ 1 + ρ2 −ρ 0 · · · 0 0
0 −ρ 1 + ρ2 −ρ · · · 0 0
...

...
...

... · · · ...
...

0 0 0 0 · · · 1 + ρ2 −ρ
0 0 0 0 · · · −ρ 1


.

Hence,

`(ρ, µ; X1, . . . ,Xn) = −nm
2

log(2π)− n(m− 1)

2
log(1− ρ2)

−n(m− 1)

2

S1 − 2ρSp + ρ2S2

(1− ρ2)
,

where

Sp =
1

n(m− 1)

n∑
i=1

m−1∑
j=1

(Xj i − µj)(Xj+1 i − µj+1),

S1 =
1

n(m− 1)

n∑
i=1

m∑
j=1

(Xj i − µj)2, and S2 =
1

n(m− 1)

n∑
i=1

m−1∑
j=2

(Xj i − µj)2.

Solving the normal equations

∂

∂ρ
`(ρ, µ; X1, . . . ,Xn) = 0 and

∂

∂µ
`(ρ, µ; X1, . . . ,Xn) = 0

leads to µ̂ =
1

n

∑n
i=1 Xi as well as to the cubic root problem

ρ̂3 − Spρ̂2 − (1− S1 − S2)ρ̂− Sp = 0, (16)
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Figure 2: Empirical FWER and power as functions of ρ ∈ {−0.8,−0.6, ..., 0.6, 0.8} form = 8,
m0 = 3 (upper panel) and m0 = 6 (lower panel). The datasets of size n = 100 were gener-
ated from a multivariate normal distribution. The results are based on K = 2500 independent
repetitions.

where we substituted µ̂ for µ in S1, S2, and Sp. The solution of (16) can numerically be com-
puted by using the R function polyroot. Asymptotic normality of the estimator ρ̂ follows from
general parametric likelihood theory.

Figures 2 to 9 display the results of a simulation study under Model 4.1. The target FWER
level was set to α = 0.05 in all simulations. Pseudo samples for Figures 2 to 5 follow the
assumptions of part (a) of Model 4.1 (multivariate normal distributions), while data for Figures 6
to 9 were generated from a multivariate t-distribution with 9 degrees of freedom, constituting a
special case of Model 4.1.(b). Every figure represents a different configuration of the parameters
m,m0, and ρ and is based onK = 2500 independent pseudo samples of size n = 100 (Model
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Figure 3: Empirical FWER and power as functions of ρ ∈ {−0.8,−0.6, ..., 0.6, 0.8} for
m = 15, m0 = 4 (upper panel) and m0 = 13 (lower panel). The datasets of size n = 100
were generated from a multivariate normal distribution. The results are based on K = 2500
independent repetitions.
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Figure 4: Empirical FWER and power as functions of m0 ∈ {1, 2, ..., 9} for m = 9 and
ρ = 0.6. The datasets of size n = 100 were generated from a multivariate normal distribution.
The results are based on K = 2500 independent repetitions.

Figure 5: Histograms of the empirical FWER of empirically calibrated multiple tests for m =
m0 = 8, and ρ ∈ {0.2, 0.5, 0.8}. The datasets of size n = 100 were generated from a
multivariate normal distribution. The results are based on 200 simulation runs with K = 2500
independent repetitions each.
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Figure 6: Empirical FWER and power as functions of ρ ∈ {−0.8,−0.6, ..., 0.6, 0.8} form = 8,
m0 = 3 (upper panel) andm0 = 6 (lower panel). The datasets of size n = 200 were generated
from a multivariate t-distribution with 9 degrees of freedom. The results are based onK = 2500
independent repetitions.
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Figure 7: Empirical FWER and power as functions of ρ ∈ {−0.8,−0.6, ..., 0.6, 0.8} for m =
15, m0 = 4 (upper panel) and m0 = 13 (lower panel). The datasets of size n = 200 were
generated from a multivariate t-distribution with 9 degrees of freedom. The results are based
on K = 2500 independent repetitions.
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Figure 8: Empirical FWER and power as functions of m0 ∈ {1, 2, ..., 9} for m = 9 and
ρ = 0.6. The datasets of size n = 200 were generated from a multivariate t-distribution with 9
degrees of freedom. The results are based on K = 2500 independent repetitions.

Figure 9: Histograms of the empirical FWER of empirically calibrated multiple tests for m =
m0 = 8, and ρ ∈ {0.2, 0.5, 0.8}. The datasets of size n = 200 were generated from a
multivariate t-distribution with 9 degrees of freedom. The results are based on 200 simulation
runs with K = 2500 independent repetitions each.
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4.1.(a)) or n = 200 (Model 4.1.(b)) each. We put µ∗ = 0 ∈ Rm and

µ = (µ1, . . . , µm)> with µj =

{
0, for j ≤ m0,

0.25, otherwise,
(17)

where m = 8 and m0 ∈ {3, 6} for Figures 2 and 6 as well as m = 15 and m0 ∈ {4, 13} for
Figures 3 and 7. The correlation matrix Σ is assumed to follow an AR(1) structure as described
above with ρ ∈ {−0.8,−0.6, ..., 0.6, 0.8}. In Figures 4 and 8 we analyze the behaviour of
the multiple tests for different values of m0 ∈ {1, 2, ..., 9} when m = 9 and ρ = 0.6 are
kept fixed. Finally, Figures 5 and 9 show histograms of the estimated realized FWER of the
empirically calibrated multiple tests in case of m = m0 = 8, and ρ ∈ {0.2, 0.5, 0.8}.
Empirical values of the FWER were calculated as the relative frequency of the occurrence of at
least one type I error, i. e.,

F̂WER = K−1

K∑
k=1

1(∃j ≤ m0 : ϕ
(k)
j = 1) ,

where ϕ(k) = (ϕ
(k)
1 , . . . , ϕ

(k)
m )> stands for the empirically calibrated multiple test in the k-th

simulation run. Similarly, empirical power was computed as

p̂ower = K−1

K∑
k=1

(
m−1

1

m∑
j=m0+1

1(ϕ
(k)
j = 1)

)
, m1 = m−m0.

Summarizing the results of the simulation study, we observe a very good performance of the em-
pirically calibrated multiple tests. They exhaust the FWER level α better than the corresponding
Bonferroni and Šidák corrections. The differences become more pronounced when the corre-
lation coefficient ρ becomes larger. This result is expected since test statistics are positively
correlated. Consequently, the multiple tests which are based on the Bonferroni and the Šidák
corrections are unnecessarily conservative. In contrast, the empirically calibrated multiple tests
allow us to capture the effect of high positive correlation among test statistics. Due to the de-
cision structure of the considered multiple tests, better exhaustion of the FWER level directly
translates into higher power, as can be verified in the corresponding figures. Finally, it is noted
that these findings hold uniformly over all considered parameter settings and for both types of
data distributions.

The histograms of the empirical FWER displayed in Figures 5 and 9 show that the distribution
of the empirical FWER can be well approximated by a normal distribution. This observation has
been confirmed by goodness-of-fit tests. Moreover, the empirical variances are very small and,
as a result, the empirical FWER is well concentrated around α.

4.2 Multiple support tests

Again, we let X1, . . . ,Xn be a sample of i.i.d. random vectors with values in [0,∞)m. We
assume that X1 is distributed as X = (X1, . . . , Xm)> with stochastic representations

Xj
d
= ϑjZj, ϑj > 0, j = 1, . . . ,m,
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where Zj is a random variable taking values in [0, 1] with cdf Fj : [0, 1] → [0, 1]. The param-
eter of interest in this problem is ϑ = (ϑ1, . . . , ϑm)> ∈ Θ = [0,∞)m. For each component
j = 1, . . . ,m, we test the hypothesis

Hj : {ϑj ≤ ϑ∗j} versus Kj : {ϑj > ϑ∗j},

for a given vector ϑ∗ = (ϑ1, . . . , ϑm)T ∈ [0,∞)m of hypothesized upper bounds for the
supports (or right end-points of the distributions) of the Xj ’s. Now, suitable test statistics are
given by the componentwise maxima of the observables, i.e.,

Tj = max
1≤i≤n

Xij/ϑ
∗
j , j = 1, . . . ,m.

It is easy to verify that Assumption 2.1.(ii) is fulfilled.

Lemma 4.1. Let C0 denote the copula of X (which is regarded as a nuisance parameter and
thus, by Assumption 2.1, does not depend on ϑ ∈ Θ). Then, it holds that

P∗C0

(
X1

ϑ∗1
≤ x1, . . . ,

Xm

ϑ∗m
≤ xm

)
= C0(F1(x1), . . . , Fm(xm)), x1, . . . , xm ≥ 0.

Because X1, . . . ,Xn are independent we get that Tj ∼ F n
j under ϑ∗ for j = 1, . . . ,m and

therefore Fj(Tj)n is uniform on [0, 1] under ϑ∗. Hence, by Theorem 2.1, there exists a copula
C such that

P∗C0
(T1 ≤ t1, . . . , Tm ≤ tm) = C(F1(t1)n, . . . , Fm(tm)n). (18)

On the other hand, the vectors X1, . . . ,Xn are i.i.d., which leads to

P∗C0
(T1 ≤ t1, . . . , Tm ≤ tm) = P∗C0

(
n⋂
i=1

{
Xi1

ϑ∗1
≤ t1, . . . ,

Xim

ϑ∗m
≤ tm

})
= C0(F1(t1), . . . , Fm(tm))n. (19)

Combining (18) and (19) we conclude that, for all t1, . . . , tm ≥ 0,

C(F1(t1), . . . , Fm(tm)) = C0(F1(t1)1/n, . . . , Fm(tm)1/n)n. (20)

Based on Lemma 4.1, the critical values cj, j = 1, . . . ,m, are chosen as

cj = F−1
j

(
(1− αj)1/n

)
with local significance levels αj which are obtained by an appropriate correction of the given
global significance level α, depending on the copula C of T1, . . . , Tm. Unfortunately, the re-
lationship between the copulae C and C0 is highly non-trivial in general, meaning that the
right-hand side of (20) has no analytically tractable form. However, it is tractable if C0 belongs
to the class of extreme value copulae. Hence, we consider two examples where we can exploit
the fact that Gumbel-Hougaard copulae are extreme value copulae, see Section 2. It is noted
that Assumption 2.1.(i) is satisfied by construction in both parts of Model 4.2.
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Model 4.2.

(a) Let C0 ∈ {Gη : η ≥ 1}, i. e., the copula C0 belongs to the family of Gumbel-Hougaard
copulae. Then, the copula of T = (T1, . . . , Tm)> coincides with the copula of X, be-
cause of the max-stable property. In this case, η can be estimated by an appropriate
method from Section 3.1. In our simulations described below, the coefficient of agree-
ment Tm defined in Definition 3.1.(ii) was used.

(b) Assume that C0 lies in the domain of attraction of a Gumbel-Hougaard copula Gη for
some η ≥ 1, where the nuisance parameter η is unknown.

In order to estimate the copula parameter η under part (b) of Model 4.2, we propose to apply
a bootstrap method with low resampling intensity. This is due to the well-known fact that the
ordinary bootstrap fails for extreme value statistics. The following algorithm was used in our
simulations.

Algorithm 4.1.

i) Let X̃1, . . . , X̃n be given by X̃ji = Xji/ max
1≤`≤n

Xj` for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

ii) Choose a numberB of Monte Carlo repetitions and set ν := d
√
ne (the smallest integer

larger than or equal to
√
n).

iii) For each b = 1, . . . , B, draw a sample X#b
1 , . . . ,X#b

ν of size ν with replacement out of
X̃1, . . . , X̃n and calculate

T#b = (T#b
1 , . . . , T#b

m )> = max
1≤`≤ν

X#b
` ,

where the maximum is taken component-wise.

iv) Using the vectors T#1, . . . ,T#B , determine(
m

2

)
T̃m,boot =

m−1∑
j=1

m∑
k=j+1

(
4

(
B

2

)−1 B−1∑
b=1

B∑
b′=b+1

1(T#b
j ≤ T#b′

j , T#b
k ≤ T#b′

k )− 1

)
.

v) Finally, compute the estimate

η̂boot = 1/(1− T̃m,boot).

Theorem 4.1. Algorithm 4.1 estimates the copula parameter η consistently as min{n,B(n)} →
∞.

Proof. We apply Theorem 2 of Bickel et al. (1997). To this end, let F0 denote the set of all
cdfs on Rm which are such that the copula of the component-wise maxima of i.i.d. observ-
ables is in the domain of attraction of some Gumbel-Hougaard copula. As before, we denote
by T = Tn such a vector of (properly scaled) component-wise maxima of the original data
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(Xi)1≤i≤n, where it is assumed that (Xi)1≤i≤n are i.i.d. with X1 ∼ F ∈ F0. The functional
θn(F ) considered by Bickel et al. (1997) is in our case given by the coefficient of agreement of
the components of Tn. Finally, letLn(F ) denote the distribution of Tn. By our general assump-
tions, we have weak convergence of Ln(F ) to a non-degenerate limit law. Also, we have that
θn(F ) converges to some real constant θ(F ), which is the deterministic transformation map-
ping the copula parameter η onto the coefficient of agreement. Now, it follows from Theorem
2 of Bickel et al. (1997) that the ideal ν ≡ ν(n) out of n bootstrap Bν,n(F̂n) (i. e., the func-
tional in question evaluated at the uniform distribution over all possible subsets of (Xi)1≤i≤n
of cardinality ν(n), with replacement) estimates θ(F ) consistently as n → ∞, provided that
ν(n)→∞ such that ν(n)/n→ 0, n→∞. The proof is completed by noticing that Algorithm
4.1 is a consistent approximation of Bν,n(F̂n). �

For an illustration, we choose C0 from the Archimedean copula family which is generated by

ψη : t 7→
(
t1/η + 1

)−1
, η ≥ 1. (21)

By (7) it holds that C0 lies in the domain of attraction of the Gumbel copula Gη. The generation
of random vectors following the chosen copulaC0 is performed by using the algorithm presented
in Section 5.2 of McNeil and Nešlehová (2009).

In Figures 10 to 17 we present the results of a simulation study under Model 4.2. Similarly as in
Section 4.1,K = 2500 independent samples of size n = 150 (Model 4.2.(a)) or size n = 1600
(Model 4.2.(b)) were generated from a Gumbel-Hougaard copula (Figures 10 to 13) and from
an Archimedean copula defined by (21) (Figures 14 to 17), respectively. In all simulations, we
chose Fj as the cdf of the Beta distribution with shape parameters 3 and 4, for all 1 ≤ j ≤ m.
We put ϑ∗ = (2, ..., 2)> and

ϑ = (ϑ1, . . . , ϑm)> with ϑj =

{
2, for j ≤ m0,

2.1, otherwise,
(22)

for varying values of m and m0. The copula parameter is chosen as η ∈ {1, 1.5, ..., 4.5, 5}
(Figures 10 and 11) and η ∈ {1, 1.25, ..., 2.75, 3} (Figures 14 and 15), respectively. In Figures
12 and 16 we analyze the behaviour of the multiple tests for different values ofm0, withm and η
kept fixed. Finally, Figures 13 and 17 show histograms of the estimated FWER under the global
hypothesis H0, for three different values of η each. Empirical FWER and empirical power are
calculated as described in Section 4.1, and the target FWER level was set to α = 0.05 in all
simulations.

The results presented in Figures 10 to 17 are even stronger than the ones observed in Figures
2 to 9. The performance of the calibrated multiple tests is much better than that of the corre-
sponding Bonferroni and Šidák tests. This result holds uniformly over all considered values of
η. For instance, if η = 4 under Model 4.2.(a), the power is about two times larger for the em-
pirically calibrated multiple test. Both the Bonferroni and the Šidák corrections lead to markedly
undersized multiple tests as soon as η deviates from 1 (η = 1 corresponds to the case of
independent test statistics). The obtained findings are almost identical for all considered values
of m and m0. Similarly to the results of Section 4.1, the histograms displayed in Figures 13
and 17 show that the distribution of the empirical FWER can be well approximated by a normal
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Figure 10: Empirical FWER and power as functions of η ∈ {1, 1.5, ..., 4.5, 5} for m = 8,
m0 = 3 (upper panel) andm0 = 6 (lower panel). The datasets of size n = 150 were generated
from a Gumbel-Hougaard copula. The results are based onK = 2500 independent repetitions.
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Figure 11: Empirical FWER and power as functions of η ∈ {1, 1.5, ..., 4.5, 5} for m = 15,
m0 = 4 (upper panel) and m0 = 13 (lower panel). The datasets of size n = 150 were
generated from a Gumbel-Hougaard copula. The results are based on K = 2500 independent
repetitions.
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Figure 12: Empirical FWER and power as functions of m0 ∈ {1, 2, ..., 9} for m = 9 and
η = 2.5. The datasets of size n = 150 were generated from a Gumbel-Hougaard copula. The
results are based on K = 2500 independent repetitions.

Figure 13: Histograms of the empirical FWER of empirically calibrated multiple tests for m =
m0 = 8 and η ∈ {1.5, 3.0, 5.0}. The datasets of size n = 150 were generated from a
Gumbel-Hougaard copula. The results are based on 200 simulation runs with K = 2500 inde-
pendent repetitions each.
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Figure 14: Empirical FWER and power as functions of η ∈ {1, 1.25, ..., 2.75, 3} form = 4 and
m0 = 2. The datsets of size n = 1600 were generated from an Archimedean copula defined
by (21). The results are based on K = 2500 independent repetitions with B = 400 bootstrap
replications in Algorithm 4.1 each.

distribution (again confirmed by goodness-of-fit tests). The empirical variances are again very
small, implying that the empirical FWER is well concentrated. Figure 17, however, reflects a
slightly liberal behavior of the empirically calibrated multiple tests under Model 4.2.(b), at least
in case of m = m0, if η is small (see in particular the left graph in Figure 17). Further simula-
tions (not shown here) confirm that this liberal behavior attenuates with growing values of η, as
reflected by the middle and the right graph in Figure 17. Since small values of η correspond to
a low degree of dependency among test statistics, one may in practice apply a Šidák correction
whenever the estimated value of η is below a certain threshold ηlower (say). Our simulations sug-
gest to choose ηlower in the range of [2, 3]. Another possibility consists in adjusting the nominal
value of α based on computer simulations under H0.

5 Discussion

First, let us mention that approximate confidence regions for the main parameter ϑ can straight-
forwardly be deduced from the empirically calibrated vector ĉ of critical values by virtue of the
extended correspondence theorem, see Section 4.1 of Finner (1994). If, in contrast, the main
focus is on power of the multiple test, then it is recommendable to consider step-down vari-
ants of the considered multiple tests as nicely described by Romano and Wolf (2005). Their
construction principle is particularly easy to apply if Assumption 2.1 holds true.

Second, one may ask why the empirical calibration of ĉ is in the present paper performed
via the pre-estimation of η and not directly via resampling of the original data and application
of the ’max T ’ or ’min P ’ algorithms suggested by Westfall and Young (1993). In the case of
marginal k-sample problems with k ≥ 2, the permutation methods of Westfall and Young (1993)
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Figure 15: Empirical FWER and power as functions of η ∈ {1, 1.25, ..., 2.75, 3} for m = 8,
m0 = 3 (upper panel) andm0 = 6 (lower panel). The datsets of size n = 1600 were generated
from an Archimedean copula defined by (21). The results are based onK = 2500 independent
repetitions with B = 400 bootstrap replications in Algorithm 4.1 each.
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Figure 16: Empirical FWER and power as functions of m0 ∈ {1, 2, ..., 8} for m = 8 and
η = 2. The datsets of size n = 1600 were generated from an Archimedean copula defined
by (21). The results are based on K = 2500 independent repetitions with B = 400 bootstrap
replications in Algorithm 4.1 each.

Figure 17: Histograms of the empirical FWER of empirically calibrated multiple tests for m =
m0 = 4 and η ∈ {1.5, 2.0, 2.5}. The datsets of size n = 1600 were generated from an
Archimedean copula defined by (21). The results are based on 200 simulation runs with K =
2500 independent repetitions each, where B = 400 bootstrap replications in Algorithm 4.1
were performed.
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are indeed an attractive alternative and even asymptotically optimal as shown by Meinshausen
et al. (2011). However, in the cases of the one-sample problems studied in Section 4, marginal
test statistics are invariant under data permutations such that this method is not applicable.
Bootstrapping quantiles of a high-dimensional random vector appears to be much less reliable
than bootstrapping a lower-dimensional copula parameter. Hence, if a parametric copula model
can be assumed or even deduced by limit theorems, the approach of the present paper seems to
be the better choice. Furthermore, the uncertainty of the estimation can precisely be quantified
by applying Theorem 3.1, implying confidence statements about the realized FWER.

Finally, from the practical point of view, it is interesting to explore which type of copula is ap-
propriate for which type of real-world application, especially if no theoretical results are at hand.
This topic, however, is beyond the scope of the present work and deferred to future research.
A promising nonparametric approach consists of modeling dependency structures by Bernstein
copulae, see Diers et al. (2012) and Cottin and Pfeifer (2013).
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