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Center Manifolds for Homoclinic Solutions 

Bjorn Sandstede t 
Weierstra:B-Institut fiir Angewandte Analysis und Stochastik 

Mohrenstra:Be 39 
10117 Berlin, Germany 

Abstract 

In this article, center-manifold theory for homoclinic solutions of ordinary dif-
ferential equations or semilinear parabolic equations is developed. Here, a center 
manifold. along a homoclinic orbit q(t) is a locally invariant manifold containing all 
solutions which stay· close to q( t) in phase space for all times. Therefore, as usual, the 
low-dimensional center manifold contains the interesting recurrent dynamics nearby 
the homoclinic orbit and a considerable reduction of dimension is achieved. The 
manifold is of class C 1 •/3 for some f3 > 0. 
As one application, results of Shilnikov about the occurrence of complicated dynam-
ics nearby homoclinic solutions approaching saddle-foci equilibria are generalized to 
semilinear parabolic equations. 

tcurrent address: Division of Applied Mathematics, Brown University, 182 George Street, Providence, 
RI 02912, USA 





1 Introduction 

In order to investigate bifurcations near equilibria or periodic solutions, center-manifold 
theory provides a powerful tool. The main property of a center manifold can be stated 
as follows. It is a locally invariant manifold which contains all solutions staying near the 
equilibrium or the periodic orbit for all times. Hence, the relevant dynamics is preserved 
if one restricts the semi:flow to this manifold, and an enormous reduction of the dimension 
of the problem is achieved. 
The purpose of the present paper is to develop an analogous geometric approach to the 
bifurcation theory of homoclinic orbits as suggested in [CDF90]. Here, by definition, a 
homoclinic orbit is a solution converging to the same equilibrium for time tending to ±oo. 
Again, a center manifold for a homoclinic solution is a locally invariant manifold containing 
all solutions which stay nearby the homoclinic orbit for all times. In general, this center 
manifold will only be of class C1·P. But, as it turns out, this smoothness is sufficient to 
prove the manifold to be useful. In fact, we will show a generalization of the so-called 
Shilnikov chaos to semilinear parabolic equations as a simple application. 
Finally, let us point out that the results presented here are new even for finite dimensional 
systems. Indeed, there are two related but independent results obtained by Brunovsky 
[Bru91] and Homburg [Hom93]. Both of them are restricted to the special case of a two-
dimensional center manifold for homoclinic orbits converg~ng to .a hyperbolic equilibrium. 
Moreover, they are only valid in finite dimensions. Homburg [Hom93] requires the addi-
tional hyp~thesis that the leading eigenvalues have to be of different modulus. 
The article is organized as follows. In section 2, the assumptions and the main result are 
stated, the proof of which is contained in section 3. Some applications of the main results 
are collected in section 4. 

Acknowledgement. This work was part of the author's doctoral thesis [San93]. I am 
deeply indebted to my advisor Bernold Fiedler for his advice and encouragement. Further-
more, I would like to thank Jasmin Cantner, Ale Jan Homburg, Christian Leis and Arnd 
Scheel for helpful discussions. This work was supported by the DFG via the Graduiertenkol-
leg "Modellierung und Diskretisierungsmethoden fur Kontinua und Stromungen" at the 
University of Stuttgart. 
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2 Main results 

Consider the semilinear parabolic equations 

(2.1) x +Ax= J(x) + µg(x, µ) ( x, µ) E Xa x ~.P 

and 
(2.2) x + Ax = f ( x) + µ g( t, x, µ) 

Here, A denotes a sectorial operator with associated fractional power spaces xa, see 
[Hen81]. The nonlinearities satisfy f : xa -1' x and g : xa x ]RP -1' x or g : S1 x xa x ]RP -1' 

X, respectively, for some a E [O, 1). We assume that /, g E cr,p with r, p > 0 such that 
f(O) = Df(O) = 0. Let q(t) denote a homoclinic solution of (2.1) (or (2.2)) forµ= 0 
satisfying 

lim q(t) = 0. 
t-±oo 

We denote the semigroup of the variational equation along q(t) 

(2.3) v +Av= Dxf(q(t)) V 

by T ( t, s). Next we state the hypotheses needed. 

(Hl) The spectrum of -A decomposes into three pairwise disjoint spectral sets a( -A) = 
O's U O'c U O'u such that 

holds for suitable positive constants ai and i = ss, s, u, uu. Now write Pt, Pi 
and P0, respectively, for the corresponding spectral projections and E~ := RPJ for 
i = s, c, u for their ranges. We assume that dimEg + dimE~ < oo. 

The next hypothesis is related to the existence of linear invariant foliations of the variational 
equation along q(t), that is the existence of exponential dichotomies. 

(H2) Assume that there exist complementary projections ps(t), pc(t) and pu(t) de-
pending continuously on t E Rand commuting with the semiflow T(t, s), that is 
T ( t, s) pi ( s) = pi ( t) T ( t, s) for i = s, c, u and t ~ s. Moreover, the projections 
satisfy 

IT(t, S )Ps( S )la < J{ e-ass(t-s) 

(2.4) IT( t, S )Pc( S )la < J{ e-au(t-s) 

IT(s, t)Pc(t)la < J{ e-a5 (s-t) 

jT(s, t)Pu(t) la < J{ eauu(t-s) 
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for all t ~ s. In particular, the inverses of the semigroups T(t, s )IRPc(s) and 
T(t, s)IRPu(s) exist and are denoted by T(s, t). 

Assumption (H2) guarantees the existence of three continuous vector bundles given by 
RPs(t), RPc(t) and RPu(t) along the orbit of q(t), which extend continuously to the 
closure of the orbit by the spectral projections Pd for i = s, c, u. In the appendix, an 
hypothesis in terms on dichotomies on R+ and IR- is given, which is equivalent to (H2). 
The next assumption is concerned with the exponential behavior of q(t) at infinity. The 
range of the center projection pc(t) will be the tangent space of the center manifold at 
q(t). Thus, q(t) should be contained in that space. 

(H3) The homoclinic solution q(t) satisfies q(t) E RPc(t) for all t E R. 

The last assumption is of technical nature. 

. (H4) If q(t) ¢:. Wl~c(O, 0) for t-+ oo or q(t) ¢:. Wi~c(O, 0) fort -+ -oo, then 0 is a simple 
eigenvalue of -A and O"(-A) n iR = {0}. 

We remark here, that we do not assume that the homoclinic orbit converges along principal 
eigendirections. Zero is not assumed to be a hyperbolic equilibrium. Furthermore, q(t) is 
allowed·to oscillate at t = ±oo, i.e., it may converge along eigendirections co.rresponding 
to complex eigenvalues. Moreover;these eigenvalue.s are not assumed to be simple. Now 
we have the following theorems. 

Theorem 1 Consider equation {2.1) and assume that {H1)-(H4) are satisfied. Choose 
f3 E (0, 1] and k E N such that min( ass/ as, auu /au, r + p) > k + f3. Then there exists a 
manifold whom for allµ with lµI < µo with the following properties: 

(i) Whom E Ck,f3 and it depends in a Ck,f3 _way on µ 

{ii) dim Whom = dim E8 
{iii) whom is normally hyperbolic 
(iv) Whom contains all solutions which stay inside a small tubular neighborhood of q(t) 

for all times 
(v) whom is locally invariant under the semifiow of (2.1). 

Theorem 2 Consider equation (2.2) and assume that {H1}-(H4) are satisfied. Choose 
f3 E (0, 1] and k E N such that min( ass /as, auu /au, r + p) > k + (3. Then there exists a 
manifold whom for any lµI < µo with the following properties: 

{i} Whom E Ck,f3 and it depends in a Ck,f3 _way on µ 
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{ii) dim Whom = dim Eg 
{iii) whom is normally hyperbolic 
(iv) Whom contains all orbits under the period map of (2.2) which stay inside a small 

tubular neighborhood of q(t) for all forward and backward iterates. 
(v) whom is locally invariant under the period map of (2.2). 

Both theorems can be extended to center manifolds for heteroclinic cyles in an obvious 
way. 

3 The proof 

Before constructing the center manifold Whom, we prove the existence of a center-unstable 
manifold Wh~m· Then we will restrict the semiflow to this finite-dimensional manifold and 
reverse time inside ·Wh~m· We are able to apply the same-procedure as before for the flow 
on Wh~m. This enables us to prove the existence of a center manifold Whom. Before already 
starting with the proof, let us briefly sketch the main ideas in the following subsection. 

3.1 Sketch of the proof 

We shall use the graph transform for proving the existence of the invariant manifold. Let 
M be an approximation of the desired surface Wh~~ ~ontaining the homoclinic solution q( t) 
and possessing tangent spaces Tq(t)M close to the subspaces RPc(t) ffi RPu(t) == RPcu(t) 
for all t. Then we can define the stable bundle E over M consisting of the union of the 
subspaces RP8 (t) attached to the base space M. We shall find the manifold Wh~m as a 
Lipschitz continuous section of the bundle E. In other words, Wt~m should be the graph 
of a Lipschitz continuous function O' defined for x E M with values in the stable fiber Ex 
attached to x. The graph transform maps such a section O' to a new one called <I>~(O') which 
is obtained in the following way. First, apply the time T-map <I>r of the semiflow to the 
surface graph( O'). The surface obtained will again be represented as a section <I>~ ( O') of E 
such that graph( <I>~ ( O')) == <I>r(graph( O')). Of course, at the present stage, it is not obvious 
at all whether this is always possible. Actually, the hardest part of the proof is concerned 
with the question whether <I>~ is well defined. As it turns out the map <I>~ is a contraction 
on the space of Lipschitz continuous sections with Lipschitz constant bounded by one due 
to the strong contraction of the linearized semiflow along the stable fibers. 
In order to show that <I>~ is well defined, one has to prove that each point in the domain M 
has a preimage and, moreover, that this preimage is unique. We say that <I>r is overflowing 
if for any graph the first property is satisfied. Unfortunately, in our situation, <I>r is 
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graph, transported 
under the semiflow 

Figure 1: Local invariant manifolds near an equilibrium. 

Figure 2: Domain of definition of the graphs. 
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Figure 3: The modified equation. 
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orbit q(t) 

not overflowing. Indeed, nearby the equilibrium, there are contracting directions present 
which prevent the overflowing property to hold. IJ?. fact, in this region the domain of a 
transported graph will shrink, see Figure 1. Usually, the use of smooth cutoff functions 
for the nonlinearity allows to work in the whole space X and thus avoids the difficulties 
mentioned above. However, here we are interested in the global system possessing a large 
homoclinic orbit. 
Instead, we use the following device. First, we divide the approximation M into four 
submanifolds, which may overlap each other. We will denote these submanifolds by M 1, 

M± and Mi, i.e. M = M 1 UM+ UM- U Mi, chosen roughly as in Figure 2. M 1 is a 
neighborhood of the equilibrium of size c, where c is a small scaling parameter. The sets M+ 
and M- are the tails of the homoclinic orbits of fixed size together with a neighborhood in 
the transverse center-unstable direction of size€. Mi consists of the remaining part of M. 
The overflowing property on Mi is obtained by choosing this submanifold carefully. ~he 
diameter of Mi in the directions transverse to the homoclinic solution has to shrink faster 
then the semiflow contracts these directions. This guarantees the overflowing. However, 
this procedure is only possible for bounded time intervals, whence we have to do something 
differently near the equilibrium on the manifolds Af±. There, we impose an additional 
expansion which is effective only in the transverse direction in M±, see Figure 3. It 
turns out that this modification preserves the contraction in the stable fibers and hence 
the normal hyperbolicity of M, but guarantees the overflowing in this regime. Hence 
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we are left with the submanifold Ml. Here we will smoothly cutoff the whole center-
unstable component of the original equation in a self-similar manner, which will not affect 
a neighborhood of the homoclinic orbit of size€. 
From this point on, the graph transform runs as a machinery. Due to the use of the cutoff 
functions and the quite complicated definition of the submanifolds, the proof will still be 
quite technical. In order to prove the regularity of the manifolds, we use the following 
approach. We observe that the ball BR (in the C0-norm) of the space of C1-functions pos-
sessing Holder-continuous derivatives is closed in the set of Lipschitz continuous functions 
endowed with the C0-norm, see [Hen81]. Then we prove that this ball will be mapped into 
itself by the graph transform for a suitable chosen R. Thus, by closeness, the unique fixed 
point is contained in BR and therefore is at least Cl,{3 for some /3 > 0. 

3.2 The trial manifold and the stable bundle 

First, choose two cutoff functions x( T) and x( T) for T E JR such that 

(3.1) l-0 

x(r) ~~0,1) 

for T<l -3 

for T E (!, ~) 
for T>£ -3 l = 0 for T ::; 2 

x(r) E(O,l) for TE(2,3) 
= 1 for T ~ 3. 

Let sup(IDxl + IDxl) =: Kx and Xe(T) := X(T/c) as well as Xe(T) := X(T/c). 
We write -AIEgu on the finite-dimensional space Egu. as a matrix -AIEgu = .6. + J. Here, 
.6. denotes the diagonal part and J the Jordan block part of -AIEgu. Choosing suitable 
coordinates on Egu., we may assume that the inequalities 

hold. We choose a scalar product (·, ·) for the space E8u such that the coordinates chosen 
above are orthogonal with respect to (·, ·). In particular, the generalized eigenspaces are 
perpendicular to ea.ch other. By performing this transformation, we may change the con-
stant of the exponential dichotomies, but do not change the assumptions (Hl) up to (H4). 
Moreover, there exist constants ai, a2 > 0 satisfying ai lxla ::; !xi ::; a2 lxla for x E E~. 

Here we denote the norm induced by the scalar product on Egu by I · I· Thus we can replace 

the original norm I· la by the product norm I· I on Egu and I· la on Eg. 

Definition Suppose that L : xa -+ xa is a linear, bounded operator. The minimum 
norm of L is defined by 

. (L) ·= . f ILxla m . m 11 . x;CO X a 
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Lemma 3.1 There exists a constant K such that the inequalities 

IT(t, s)la < K ear(t-s) 

IT( t, S )Ps( S) la < K e-as"(t-s) 

IT( s, i)Pcu( t) la < K ea"(t-s) 

m(T( t, s) IRpcu(s)) > K-1 e-a"(t-s) 

hold fort ~ s. 

Proof. The first inequality follows from [Hen81, sect. 7.1], see also [San93, Lemma 1.1]. 

The next two inequalities hold by assumption, while the last estimate follows immediately 
from the third one. Indeed, T(t, s )IRpcu{s) is invertible with inverse given by T(s, t)IRpcu(t)· 

For invertible operators m(L)-1 = llL-1
11 holds. D 

Now, choose v > 0 small and T > 0 large enough such that as + v < ass and 

(3.2) 

Here, K denotes the same constant as in Lemma 3.1. By hypothesis (Hl), such a choice is 
possible. Throughout, we will use the following notation. 

Definition 3.1 

(i) C0 will denote a constant which depends only on the choices made above but is 
independent of T. In contrast, C(T) may depend in addition on the choice of T. 

(ii) 8 denotes a small positive constant to be chosen later on. 8 will only depend on the 
size of a ~onstant C ( T). 

(iii) Furthermore, c > 0 is a small parameter which plays the role of a scaling factor in 
the cutoff procedure. 

(iv) We denote functions converging to zero for y--+ 0 by the Landau symbol oy. 

Next, we have to investigate the homoclinic orbit near the equilibrium in order to get an 
asymptotic expression for it. Assume that the following hypothesis is fulfilled. 

(A) Let B be a sectorial operator and g E C1·.6(X'\ X) for some /3 > 0 such that g(O) = 
Dg(O) = 0. Moreover, the spectrum of -B is given by cr(-B) = cr8 U cr88 with 
Re crss < -Ass < Re cr8 and Re crs = -A8 < 0. We denote the corresponding spectral 
projections by Q0 and Q08, compare [Hen81, ch. 1.5]. Moreover, assume dimRQ0 < 
00. 

We define Bs := BQ0 and Bss := BQ0s and consider the equation 

(3.3) x + Bx = g( x), x E Xa. 
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Lemma 3.2 Assume that (A) is satisfied and choose I such that 0 <I < ,\5
• Then there 

exists an 'T/ > 0 such that the following holds. Take any x0 E U77 (0) C xcx and denote the 
solution of (3.3) satisfying x(O) = Xo by x(t). Then the limit v := lim eBst x(t) E RQg 

t-+oo 
exists and we have the estimate 

The last inequality is fulfilled for the time derivatives, too. 

Proof. Choose 'T/ > 0 sufficiently small such that any solution x(t) with lx(O)lcx < 'T/ ~xists 
for all t > 0 and converges to zero like e-(,\s-ry)t fort--'"* oo. We have jg(x)I :S: K lxl~+.B for 
any x E U77 (0). Rewriting (3.3) as an integral equation and projecting it in the weak and 
strong stable subspaces, we get 

(3.4) 
Qg x(t) 

Q(t x(t) 

cBs(t-s) Qg x( s) + J; e-Bs(t-r)Qg g( x( T)) dT 
- e-B.s.s(t-s) Q(/ x( s) + J: e~B~s(t-r)Qgs g( x( T)) dT. 

Using the inequality for g we obtain fort~ s 

(3.5) 

I J; eBs,,. Qg g( x( T)) dT lex < I fst C e(,\s-ry)r K e-(I+,6)(,\s-ry)r dT I 
< KC e-l'(,\s-ry)s (1 - e-.6(,\s-ry)(t-s)) 

I 1: e-Bss(t-r)Qgs g(x(T)) dTlcx < I: C(t-T)-cxe-,\SS(t-r)Ke-(I+,6)(,\s-'Y)T dT 
:::; . c e-min(,\ ss,(I+,6)(,\ s-ry))t 

uniformly ins. Here, we may have to make ,\59 a little bit smaller. The first inequality in 
(3.5) implies that eBst x(t) is a Cauchy sequence in xcx fort--'"* oo. We denote the limit by 

v := lim eBst x(t) = lim eBst Qs x(t). 
t-+oo t-+oo 0 

Then, v E RQg and 

QQ x(t) = e-B'tv + E e-B'(t-T)QQ g( x( T)) dr 

by taking the limits --'"* oo in (3.4). Now, we will compare the limit solution e-Bstv and 

x(t). We obtain 

(3.6) lx(t) - e-Bst via 

< EC e-<A'--y)(t-T) Ix( T) 1;+/J dr + l C( t - r )-" e-A"(t-T) Ix( r) 1;w dr 

< c e-min(,\ss,(I+,6)(,\S-"())t • 

The same procedure works for the time derivatives of x(t) using [Hen81, Lemma 3.5.1] and 
the estimates following (3.4). We will not work out this in detail. D 
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We will use the above lemma in order to parametrize a neighborhood of the .homoclinic 
solution near the equilibrium. The next lemma as well as the definitions following it will 
be stated for positive t only in order to avoid unnecessary extended notation. However, we 
will use them for ·negative t, too. 

Lemma 3.3 Define 
Ve Ue(O) c RclimEgu-l 

We Ue(O) c Eg 
to be neighborhoods of zero of size €. Then there e~ist numbers Eo, b0 > 0 and a map 

G(r, v, w) : ( €, Eo) x "Vboe x wboe --+ xa 
(r, v, w) i-+ r G1 (r) + G2(r) v + w + r G3(r) 

for 0 < E < Eo with the following properties. 

{i) The function 

parametrizes the homoclinic orbit q(t) on a time interval (t( Eo), t( c)) and t( E) --+ oo as 

E--+ 0. Moreover) G is a diffeomorphism onto a neighborhood in xa of the homoclinic 

orbit restricted to. this time interval. 

{ii) We have G1(r) E Egu and G2(r)": "Vboe--+ E0u. Both functions satisfy D(r Gi(r))J 
D(r Gi(r))-1 ~ C for i = 1, 2 as well as IG1(r)I, IG2(r)I ~ C > 0. The image G2(r) v 
is always perpendicular to G1 ( r). 

(iii) The image G3 (r) E E0 is contained in the stable eigenspace E0. Furthermore) 

IG3(r)l1 --+ 0 tends to zero as r--+ 0 as a function into xa. 
The constant C is independent of E. 

Let us explain the statement of this lemma. We can parametrize the homoclinic orbit 
essentially as a graph over the eigenspace E0u. Moreover, we can parametrize a neighbor-
hood of the homoclinic orbit by taking the homoclinic solution q(t) and adding vectors in 
the directions transverse to the time derivative q( t) as well as adding vectors which are 
contained in E0. 

Proof. We have to distinguish two cases. First suppose that the homoclinic orbit is 
contained in the local center manifold Wz~c(O) of the equilibrium. Then, by assumption 
(H4), we have dim Wz~c(O) = 1 and the statement of the lemma follows from center-manifold 
theory. Hence, we assume from now on that the homoclinic solution is contained in the 
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local stable manifold. In particular, there exists ,\ + -::/= 0 such that 

0 < lime,\+ ltl lq(t)la < oo 
t-+oo 

and we denote the generalized eigenspace corresponding to all eigenvalues with real part 
equal to -,\+ by E+. ·(Similarly,_\- and E- are defined fort-+ -oo). By assumption, 
both subspaces are finite-dimensional due to E± C Egu. Restrict the semiflow to the strong 
stable manifold tangent to the generalized eigenspace associated with eigenvalues whose 
real part is less or equal to -,\+. Applying Lemma 3.2 to the semiflow on that manifold, 
we see that 
(3.7) 

holds for t > 0 and some I > 0 with As equal to AIE+· The estimate holds for the 
derivatives, too. We decompose the solution e-As t v0 = v1(t) + v2(t) corresponding to 
lv1 (t)1 ~ tk e-,\+t and lv2(t)l = o(tk e-,\+t) for some k depending on the size of the Jordan 
block of As. Next subsume·v2(t1 into the remainder term G3 (t) which together with its 
time derivative still satisfies G3 ( t) = o( v1 ( t)). Then define r( t) = tk e-,\ +t and parametrize 
v1 ( t) as a function of r, whence 

V1 (t( r)) = reiwt(r)' 

where w denotes the vector of imaginary parts of the eigenvalues in the Jordan block. 
This proves the claim concerning G1 and G3 .. In order to conclude the statements. about 
G2 choose suitable vectors which are perpendicular to v1 (r ). The claims concerning the 
existence of the inverse as well as the boundedness of the norms follows easily by using the 
bounds for. v and w, see [San93] for the details. D 

Let 
G(r, v, w) := r G1(r) + G2(r) v + w + Xc::(r) r G3(r), 

where x has been defined in (3.1). The map G will again be a diffeomorphism, but G(r, 0, 0) 
will parametrize the homoclinic orbit only for r ~ 3€. Moreover, G(r, v, 0) E E0 for all 
€ < r ~ 2€. Observe that the norms of DG(r, v, w) and DG-1 (r, v, w) are still bounded 
uniformly in € due to G3 (r) = Oe for r E ( c, 3c). Now we define the following nonlinear 
mappings which will act afterwards as bundle projections onto the trial manifold and the 
stable bundle for points near the equilibrium. 

Definition Let G(r, v, w) = x. Then we define 

11"7 ( x) .- G(r, o, o) 
(3.8) 1l"E(x) .- W 

71"7 1. ( x) .- G2( r) v, 
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Es 
0 

x=q+v+w •• _,- : 

Figure 4: The projections 7r-y, 'lr-yl. and 7rE· 

or, in other words, we have 7r-y(x) = G(P1 c-1(x)), 7rE(x) = G(P3 c-1(x)) and 'lr-yl.(x) = 
G(P2 G-1 (x)). Here, Pi projects on the ith component of (r,v,w) for i = 1,2,3. Let 
7rM(x) = 7r-y(x) + 'lr-yl.(x) for x such that G(r,v,w) =xis defined. Then we can extend 
7rE(x) and 7rM(x) by Piu x and 7rE(x) = P~ x, respectively, for all x with lxla S 3€. 

In order to define the graph transform, we need to define global stable and unstable bundles 
in a continuous way. Thus we have to extend the projections defined above in a global way 
along the homoclinic solution. First, note that the proje~tions Pi(t) defined in hypothesis 
(H2) converge to the spectral projections P~ for t --+ ±oo and i = s, c, u by [San93, Lemma 
1.1] and the appendix. We choose a continuous scalar product (·, ·)t on the bundle given 
by RPcu(t) over q(t) which coincides with the scalar product defined on E0u for all large 
jtj, that is 

. (·, ·)t = (P3u., p3u.) 

for ltl sufficiently large. This is always possible, because the bundle RPcu(t) is continuous 
and possesses finite-dimensional fibers, see [BJ73, ch. 4.11]. 

Definition We define 

to be the continuous projection onto the orthogonal complement- with respect to the scalar 
product chosen above - of span q(t) in RPcu(t). 

The projections P8 (t) and S(t) are in general only continuous in t in the operator norm, 
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see [San93, Lemma l.2(v)]. However, we can approximate them arbitrarily close by C00 -

projections. For any given 8, there exist r0 and To such that 

(3.9) supl4'.t<ro IDJ(x)I < 8 
supltl2:To IPs(t) - Pola < ~8 

SUPrE(O,ro] IG3(r)li < 8 
SUP1tl2:To lpcu( t) - p3u la < ~8. 

Hence, 8 controls the convergence of the dichotomies towards the spectral projections as 
well as the bound of the nonlinearity fas mentioned in definition 3.1 above. Then we have 
the following lemma. 

Lemma 3.4 For any given 8 > 0 there exist functions Q5 (t) and S(t) in C00 (R, L(Xa)) 
such that Q5 (t), S(t) are projections and IQ 5 (t)-P5 (t)la, IS(t) - S(t)la < 8 for all t ER. 
Furthermore, Qs( t) = P0 and 

Range S(t) =Image G2 (r) 
K~rnel.S(t) =Image Dr (r G1(r)) ffi E0 

fort?. T0 and t :::=; -T0 , respectively. Here G(r, 0, 0) = q(t). 

Proof. Owing to (3.9), we have 

for 
ltl ~To 
t?. To 
t::;-To. 

As a matter of fact, it is possible to connect any two .projections Q0 and Q1 satisfying 
IQo - Qila < 1 by a C00-path Q(r) of projections for TE [O, l]. Indeed, define Q(r) = Qo 
and Q ( r) = Q 1 for r ::; ~ and r ?. ~, respectively. Then we interpolate these projections as 
in [Kat66, exc. I.4.6 ( 4.13)] by using a cutoff function. Afterwards we divide the interval 
[-To, To] in a suitable way. 0 

Next we parametrize the homoclinic orbit q(t) using the arclength. Define q(t(r)) =: q(r) 
for T E R and q(.) E cr,p such that IDrq( T) la :::; 2. This is possible by approximating the 
arclength by a C00-function l(r) satisfying ll(r) - t(r)I :::; 14(l(r))la· Therefore, we can 
locally parametrize a tubular neighborhood of the homoclinic solution at q = q(t( r 0 )) by 
the map 

hq: (ro -Ti, To+ r1) x RS(t(ro)) x RQ5(t(ro))----+ xa 
(r,v,w) ~ q(t(r)) + S(t(r))v + Q5 (t(r))w. 

In particular, hq E cr,p and 

Dhq(ro, 0, O)(f, ii, W) = d~ q( ro) f + S(t( ro)) ii+ Q'(t( ro)) W. 
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Thus we obtain 1Dhq(r0 ,0,0)la, 1Dhq(ro,O,Ot1 la::; C and C depends only on the norms 
of the projections S and Q5

• These, however, can be estimated by the norms of S and ps 
for 8 small. Therefore, we conclude that hq is invertible for all r E [r1(-T1), r 1(T1)] and 
!via, lwla ::; T/O· Here T/o depends on the choice of T1. We fix T1 by choosing T1 :=To+ 5T. 

Now we are in a position to extend the nonlinear projections 1c-y, 7r"Yl.' 7rE and 7rM to a full 
neighborhood of the homoclinic orbit. We define locally 

7r"Y(x) .- hqo (r,v,w)!-7(r,O,O)loh;1 

'!r"Yl.(x) .- hqo (r,v,w)!-7(0,v,0) oh;1 

(3.10) 
1l"E(x) .- hqo (r,v,w)>->(0,0,w))oh;1 

7rM(x) .- 7r"Y(x) + Jr"Yl.(x). 

It is easy to see, that these mappings are well-defined using the following facts: 7r"Y(x) = 

q(t) E 1(q(O)), 7r"Yl.(x) E RS(t) and 7rE(x) E RQ 5 (t). 

In words, 7r"Y(x) projects x to the nearest point q(t) on the homoclinic orbit. 7r"YJ.(x) de-
notes the center-unstable part of x relative to the point 7r"Y(x) on the homoclinic orbit and 
7rE(x) equals the stable component again relative to 1(q(O)). Here, the center-unstable 
component is contained in RPcu(t), the stable component in. RQ5 (t). 

In order to define a modified vector field later on, we need some further definitions. First of 
all, we can estimate the contraction rate of T(-T1 , T1 ) restricted to the range RPcu(-T1) 

of the center-unstable projection from below by 

(3.11) 

using Lemma 3.1. Note that Ko depends only on the choices of T and T1 , that is on 8. 
Next, consider Figure 5. Take the ball U~~(O) with radius 2E at zero in Egu. Then choose 
two subsets A and B which are contained in the spherical annulus u~:,2 (c-.-.4 ) (0), that is 
the set of x E U2~(0) satisfying 2( € - K4 ) ~ lxla ~ 2E, and fulfill A C B. In addition, 
B coincides with the spherical annulus except for a K 3-neighborhood of the images of the 
maps r G'i=(r) parametrizing the homoclinic orbit up to the error term r G3 (r). We choose 
K2 < ~Ko as the minimal distance of A to the image of r Gr(r), see Figure 5. Then we 
define cutoff functions {}cu ( x) and {} 5 

( x) by 

(3.12) l {}cu(x), {} 5 (x) E [0,1] 
{}cu lcu

77
(A) 1 {}cu IA 0 

{}s IB 1 {}s lcu71 (B) - 0 
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Images of r Gi(r) and r G'i(r) 

11 Po -:.;,;;.;,;,·· --------- -----l i<:3 

~~ 
B . A 

K,4 

Figure 5: Cutoff regions of -a~u and -as. 

1 

€ q(To + 3T) Image of G+(r, 0, 0) 

q(To + 4T) 

Figure 6: The cutoff function xt. Similarly, x; is defined for t ---+· -oo. 

15 



for x E E8u. Here, we choose rJ > 0 su~ciently small such that "'3 2:: rJ and therefore 
U77 (A) CB holds. Then, U77 (B) does not intersect the image of r Gt(r). In particular, we 
obtain {x I 19cu(x) < 1} C {x I 19 8 (x) = 1}. Define max(ID19cul, ID19sl) =: K13. Observe that 
these norms depend only on the choice of T and r0 via Ko defined in (3.11). The cutoff 
functions can be defined in such a way that they are invariant under rotations of each 
coordinate separately outside neighborhoods of the incoming and outcoming eigenspaces 
E± defined in the proof of Lemma 3.3. Then we can define 19:(x) and 19:(x) by replacing 
x by x / € and furthermore rotating each coordinate of x / € individually by eiwt(e), see the 
proof of Lemma 3.3. Here, the angle depends on E only. This guarantees that the orbit 
1( v1 ) of the linear part is mapped onto itself by the scaling. Thus, the scaled cutoff does 
not affect the homoclinic orbit 1( q(O) ). 
Furthermore, choose two cutoff functions x~ defined on the image of G±(r, 0, 0) by us-
ing the fixed function x defined in (3.1) and the diffeomorphism G±(r, 0, 0). See Figure 
6 for the cutoff properties qf X~· Note that G±(r, 0, 0) has bounds on the derivatives 
and their inverses independent on E by Lemma 3.3. Hence, the cutoff functions satisfy 

IDx~( G±(r, 0, 0)) I ::; Kx for r 2:: E. 

Now, we shall define our trial manifold Me: 

Me:= 
{ X E E8u I Ix la < 2€} U 

{x = G+(r,v,0) Ir E (c,r+), lvla <Koc} U 
{x=G_(r,v,O)lrE(c,r-), lvla<c}U 
{x = 7r(x) +7r7 .L(x) lq(t) = 7r(x) fort E (-T1,T1), j7r7 .L(x)la < (Ke(as+v)T)_t+f1 

€ }. 

Here (r±,0,0) = G±1 (q(±T1)). Moreover, we define a decomposition of Me into not 
necessarily disjoint sets M1, M± and M f, see Figure 7: 

M: .- {x E E0 I lxla < 2€} U {x = G+(r,v,O) Ir E (c,3€easr), lvla < "'oc} U 
{ - rT } x = G_(r, v, 0) Ir E (c, 3cea ), lvla < € 

Mt .- { x = G+(r, v, 0) Ir E (3€, rt), lvla < "'oc} 
Me- {x = Q_(r,v,0) Ir E (3c,rl), lvla < c} 
Mf .- { x E Me I q(t) = 7r(x) fort E (-To -2T,To + 2T)} 

with (rf, 0, 0) = a-1 (q(± To)). Furthermore, we define the stable bundle .with base space 

Me in the following way. Choose T2 such that IDG3la, IDxfl ::; Ki 8 holds for lxla ::; 
( s )T T3-Tz jq(±T2)la and let T3 be a number satisfying T2 < T3 and (Ke a +v )- T "'o = "'1· The 
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Figure 7: The submanifolds M;, M! and Mf. 

number Ki is a constant independent of € which will be fixed later on. The let 

€ for t E [-Ti - T, Ti] 
€ (K e(as+v)T)- t+:1 for t E [-Ti, Ti] 

(3.13) R(q(t)) := Ko€ for t E [Ti, T2] 
Ko€ ( K e(as+v)Tt t-TT2 for · t E [T2, T3] 

Ki€ otherwise 

and define the fiber E: ( x) for x E Mf. by 

E:(x) ·:= { {w E RQ9 (7rry(x)) I lwla < R(?rry(x))} for x EM€ lxla > 2c 
{ w E E0 I lwla <Ki c} otherwise. 

This very technical definition is forced by the requirement that M€ must be overflowing. 
Hence, the norm of vectors in the bundle has to be restricted. 

Lemma 3.5 The set 

is a cr,p bundle in xa with base space M€. Furthermore, the homoclinic orbit 1(q0 ) c E€ 
is contained in the bundle for all sufficiently small €. 

Proof. This follows from the definition of the mappings 1rM, ?rE and the construction of 
the bundle. The homoclinic orbit is surely contained in the bundle except possibly in the 
domain with x€ < 1. But in this region we have IG3(r)la = Ot;. Thus the error in the 
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norm of 7rE(x) caused by the cutoff of r G3 (r) is small compared with Kie. Indeed, Ki is 
independent of E. D 

Lemma 3.6 {i} Let 7r-y(x) = q(t). Then we have the following estimates for D7rM(x) and 
D7rE(x) uniformly in x E Me. 

and the o-term depends only on the norms of ps and pcu. We define D7rM(q(t)) =: 

Qcu(t) 

{ii) It is possible to parametrize Mf locally near each q = q( t( r 0 )) by 

(id+ h':): (ro - ri,ro + ri) x IRS(t(ro)) ~ xa 
(r,v) ~ q(t(ro)) + Drq(ro) (r - ro) + v + h':(r,v), 

where h': is given by 

h:'( T, v) = q(t( T )) - q(t(To)) - DTq( To)( T - To)+ ( S(t( T)) - S(t(ro))) v. 

Moreover, IDh~la < Co f. in Mf. 

Proof. The first claim (i) follows from the definitions, Lemma 3.4 and Ix - 7r-y(x)la < E. 

For the second claim we use the definition of h': and compactness of the time interval 
[-Ti, T1] uncle~ consideration. D 

3.3 The graph transform 

We will first set µ = 0, whence (2.1) and (2.2) coincide. The case µ # 0 is investigated in 
section 3.6. Define a new system of equations for x E Ee in the following way: 

(3.14) 

X - F 5 (x)+Fcu(x) 
- -AP0 x + P0 f(x) - f31 iJ:(Piu x) P0 x+ 

( -AP0u x +POU f(x) + B:(x) + B;(x)) iJ~(P0u x) 
-AP0 x + P0 f(x) - f3i iJ:(P0u x) P0 x+ 

( -AP.f' x + P.f' f(x) + .Bo(x.0 ,(\11'-y.t(x)I) xt(11'-y(x))+ 

x,( \11' 'Y.L ( x) \) x; ( 11''Y( x))) 11''Y.L ( x)) !?~( P.f' x ). 
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The maps B+ and B- are defined by 

Bt(x) .- f3oXKoe(l7r-r.L(x)I) xt(7r-r(x)) 7r-r.L(x) 
B; ( x) . - f3o Xe ( I 7r -r .L ( x) I ) X; ( 7r -r ( x)) 7r -r .L ( x). 

Here, (31 is chosen such that 
(3.15) 

where /l is constant depending on C(T, "'o) K-e, but is independent on E. We will specify 
/l in equation (3.34). Moreover, we fix /30 such that /30 > as. 

We should explain the meaning of the terms in (3.14). The first part 

F 8 (x) =-AP~ x + P~ f(x) - f31 'IJ!(P~u x) P~ x 

consists of the stable part of the differential equation (2.1) and the additional contraction 
-(31 iJ:(Pgu x) P0 x, which is effective only near the equilibrium. The second term pcu(x) is 
the unstable component of the vector field. We explain the different terms in this expres-
sions separately. First of all, we cutoff the whole vector field (and not just the nonlinearity) 
in the unstable direction for x E A. This is realized by the expression ( ... ) {)~u(p0u x ). The 
term in parentheses is the original unstable component of (2.1) together with 

(3.16) 

Th~ norm used in the argument for XKoe is induced by the scalar ·product on the finite-
dimensional space E8u. Hence, it is differentiable. Observe, that the terms B± are zero for 

lxla < c. Indeed, for lxla :s; c, we have 

by definition. The new nonlinearities B;-(x) introduce an additional expansion for x E Af+, 
which make the manifold Me overflowing due to (30 >as, see Figure 3. Equation (3.14) is 
well defined and we denote the corresponding nonlinear semiflow by ([> ( t). Next we estimate 
the norm of the linearization of (3.14). 

Lemma 3. 7 The linearization of {3.14) along a solution x(t) staying in Ee fort E [O, T] 

is given by 

(3.17) 

DF(x) y - (-AP0 + P0 Df(x))y - f31 ~(D13s(P0u x) pgu y) P0 x+ 
-(31 '13!(P0u x) P0 y+ 
(- APgu + P0u Df(x) + DBt(x) + DB;(x)) 13~u(P0u x) y+ 
(-APgu x + P0u f(x) + Bt(x) + B;(x))~n13cu(Pgu x) P0uy 

-. -AP0 y + V(t) y. 
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The linear operatorV(t) is bounded in L(Xa,X) with norm IV(t)I:::; C(8,K0 ,f31 ) indepen-
dent of E. 

Proof. First, the operator AP0u is defined on the finite-dimensional eigenspace E0u. The 
derivatives of the cutoff functions are bounded, because we have already extracted the 
factor ~ in the equation above. If D{}s ( x) and D{}cu ( x) are nonzero, we have Ix I a ::::; E. 

Thus the terms involving these derivatives are bounded uniformly in E. Furthermore, we 
have 

DB±(x) y == 

Dx~(7r,(x)) D7r,(x) y XKoe: f3o 7r,.L(x) + x~ XKoe: f3o D7r,.L(x) y + 
x~ Dx(-

1 
l7r1 .L(x)1)-

1
-f3o · \17r1 .L(x)l-1 ·7r1 .L(x),D7r1 .L(x)y) · 7r1 .L(x). 

KoE Ko E 

By using l7r1 .L(x)la::::; E this derivative is easily seen to be bounded uniformly in E. D 

In order to define the graph transform, we introduce the set of Lipschitz continuous sections 
of the bundle Ee: 

wh~re we have used the local and global" Lipschitz constants 

lim 
y-tx,yEMe 

lo-(y) - o-(x)la 
IY - xla 

L(o-) .- sup Lx(o-). 
xEMe 

:Ee: is a complete metric space if endowed with the C0-norm llo-11 == SUPxeMe lo-(x)la· The 
graph transform is defined for graphs o- contained in :Ee:. Denote by g(}' a right inverse of 
7rM o ([>To (id+ o-) defined on Me:, that is 

7rM(([>T(y+o-(y)))I == x 
y=gu(x) 

Here, ([>T denotes the time T-map of the semifl.ow of (3.14). The graph transform is the 
map 

([>~(o-) :== 7rE 0 ([>T 0 (id+ <7) 0 90'· 

In words, the graph of the image ([>~(o-) describes the surface ([>T (id+ o-)(Me:)· At this 
point it is not clear whether the map ([>~ is defined at all. We have to verify the following 
points: 

• ([>~ is well defined, i.e. the right inverse of g(}' is defined for each o- E :Ee:, 
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• <P~ is a contraction. 

The unique fixed point O'* of <P~(O') guaranteed by Banach's fixed point theorem will then 
be identified with the invariant manifold Wh~m. Before we start proving these claims we 
state some basic well-known lemmata needed in the following. 

Lemma 3.8 Consider the equations 

(3.18) 

(3.19) 

x +Ax f(x) 

x + Ax - f ( x) + g ( x, t) 

with f, g E C1,P(Xa, X) and 191 1 < 'T]. Then the estimates 

lx1(T, ·) - x2(T, ·)la } ::; C(T) C(A, f) oTJ. 
IDx(x1(T, ·) - X2(T, ·))la 

hold for the differences X1 (T, xo) - x2(T, xo) of two solutions x1 and x2 for (3.18) and 
{3.19) to the same initial point x0 , respectively. 

Proof. See [Hen81, Thm. 3.4.1, 3.4.4 and Lem. 7.1.1]. D 

Lemma 3. 9 For a differentiable function g we have 

g(x + y) - g(x + y) = Dg(x) (y - y) + liJ- yl olYl+IYI-

Proof. Indeed 

g ( x + y) - g ( x + y) - J~ D g( x + y + s (y - y)) ds (y - y) 
Dg(x) (y - y) + J~ [Dg(x + y + s(y - y) - Dg(x)] ds (y - y) 

and Dg(x + y + s(y - y)) - Dg(x) is of the order olYl+liil· D 

The function JrMo<PTo(id+O') will now be investigated separately on each M; for i = f, ±, l. 
The strategy is to divide the map <PT into a "nice" and a "small" part. 

3.3.1 The global part of M: 7rM(x) E Mf 

In this region, the original and the modified equations (2.1) and (3.14) coincide. Thus 
D<PT(q(t)) = T(t + T, t) and we can apply Lemma 3.1 in the following. The first lemma 
will guarantee that the manifold Mf overflows. Remember the definition (3.13) 

R(t) = c(K e(as+v)Tt t+J1 
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Lemma 3.10 There exists numbers 80 > 0 and Eo >OJ such that for all 8 < 80 } E < Eo and 
t E [-Ti, T1] 

uR(t+T)(q(t + T)) n M/ c 1rM o ~To (id+ o-) (uR(t)(q(t)) n M/) 
1rE o ~To (id+ o-) (uR(t)(q(t)) n M!) c uR(t+T)(q(t + T)) n Ef.. 

flrforeover} 80 > 0 depends only on C (T). 

Proof. Throughout, the index i equals i = cu, s. We decompose 

7rM o ~T(q(t) + v) - 7rM(q(t + T)) + D7rM(q(t + T)) D~T(q(t)) v + N(t, v) 
- 7rM(q(t + T)) + Qcu(t + T) A(t) v + N(t, v), 

7rE o ~T(q(t) + v) - 7rE(q(t + T)) + D7rE(q(t + T)) D~T(q(t)) v + N(t, v) 
- 7rE(q(t + T)) + Qs(t + T) A(t) v + N(t,v), 

see Lemma 3.6 for the definition of Qcu. Here, the Lipschitz constant L(N) ::; Co of. of the 
nonlinearity N is small by Lemma3.9. Moreover, by definition IQi(t)-Pi(t)la::; 8. We will 
prove the lemma using the mappings Qcu(t+T) A(t) +N(t, x) and Q8 (t+T) A(t) +N(t, v), 
respectively, with 

{ v 11 Qcu ( t) v I a ::; R( t)} 
{VI IQs(t) via ::; R(t)}. 

This is sufficient, because M/ n Uf. ( q) and t.he tangent space TqM/ of M/ at q are e-close 
in the C1-norm and the estimates proved below are independent of E. 

We have IPi(t) via 2:: (1 - 8) lvla for any v, such that Qi(t) v = v. Indeed, 

We observe that R(t + T) = R(t) K-1 e-(as+v)T. Furthermore 

Qi(t + T) (A(t) + N(t, ·)) = A(t) pi(t) Qi(t) + ( Qi(t + T) - pi(t + T)) A(t)+ 
Qi(t + T) N(t, ·) + A(t) ( Qi(t) - pi(t)). 

Thus we obtain 

IQcu(t + T) (A(t) V + N(t, v))la > K-1 e-asT IQcu(t) via 
-2R(t) 8 (2 IA(t)la + K-le-asT + IQcu(t)la) 

IQS(t + T)(A(t) v + N(t, v ))la < K e-as"T IQS(t) via 
+2R(t) 8 (2 IA(t)la + Kca""T + IQs(t)la)· 

We define 

C = 2 sup ( max(K-1e-asT + IQcu(t)la,Ke-a""T + IQs(t)la) + 2 IA(t)la) 
tE[-T1,T1] 
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and observe that C depends only on the constants mentioned in the statement of the 
lemma. Therefore 

IQcu(t + T) (A(t) V + N(t, v))la 2:: K-le-asT IQcu(t) via - C R(t) 8 
IQ 5 (t + T)(A(t) v + N(t, v))la ~ Ke-as"T IQ 5 (t) via+ C R(t) 8. 

Now the first inclusion of the claim is equivalent to 

IQcu(t) via= R(t) =? IQcu(t + T) (A(t) V + N(t, v))la > R(t + T). 

Substituting the above proved estimate and using the definition of R(t) we obtain 

f{- 1e-asT R(t)(l - c 8) > R(t + T) {=?-

K-le-asT (1 - C 8) > K-le-(as+v)T {=?-

e11T (1 - C 8) > 1 

and the last inequality is satisfied for 8 < 80 := c-1 (1 - e-vT). Here 80 > 0 is positive due 
to the assumptions on v, .a~, and,..T. Likewise. the second inequality is equivalent to 

and thus to 

IQ 5 (t) via< R(t) =? IQ 5 (t + T) (A(t) v + N(t, v))la < R(t + T) · 

]{ e-assT R(t) (1+C8) < R(t + T) {===?-

]{ e-a""T (1 + C 8) < f{-le-(a"+v)T {=?-

f{2e(as+v-ass)T (1 + C 8) < 1. 

Again the last inequality is fulfilled for all 8 < 80, where 80 = c-1(K-2e(aS-'-aS-v)T -1) > 0. 

Positiveness of 80 follows as above. D 

Lemma 3.11 The mapping 7ruo<I>To(id+O') possesses a Lipschitz continuous right inverse 
ga defined on U2e(q(t)) n Mf for each q(t) E Mf uniformly in O' E :Ee. Moreover, 

for each y = 7ru o <I>T o (id+ O')(x) such that x, y EM/. 

Proof. By using Lemma 3.9 we obtain 

11ru(<I>T(q+u+O'(q+u)))-1ru(<I>T(q+u+O'(q+u)))L 

> ID1ru(<I>T(q)) D<I>T(q)( u + O'(q + u) - u - O'(q + u)) L - Oe lu - ula 

> IPCU(t + T) D<I>T(q(t)) (u + O'(q + u) - u - O'(q + u)) la - (oe + C(T) 8) lu - ula 

> jD<I>T(q(t)) pcu(t) ( u + O'(q + u) - u - O'(q + u)) la - (oe + C(T) 8) lu - ~la 

> jD<I>T(q(t)) pcu(t) (u - u)ja - ID<I>T(q(t)) pcu(t) (O'(q + u) - O'(q + u))ja -

(oe + C(T) 8) ju - ula· 
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Now we estimate the term involving the graph O' using the facts Qcu(7r'i'(q+u)) u(q+u) == 0 
and ju(q + u)la < t together with Lemma 3.6(i). 

ID<PT(q(t)) pcu(t) (u(q + u) - u(q + u))la 

< C(T) (I (pcu(q) - Qcu(7r')'(q + u))) (u(q + u) - u(q + u))L + 
I ( Qcu(7r')'(q + u)) - Qcu(7r')'(q + u))) u(q + u)IJ 

< (oe + C(T) 8) lu - ula· 

Moreover, we have 

using Lemma 3.1 and 3.6(ii). Therefore we conclude 

17rM( <PT(q + u + u(q + u))) - 'lrM(<PT(q + u + u(q + u))) L 
~ K-1e-asT ju - ula +(oe + C(T) 8) lu - ula· 

·The use of the constant C(T) is justified. Indeed, the estimates for these terms depend 
only on the norms of D<PT and the projections. The lemma follows now from the Lipschitz 
inverse function theorem [Shu80, ch.5 Thm. I.l]. D 

Next we compute the Lipschitz constant of 7rE o <PT o (id+ u) on Mf. 

Lemma 3.12 For any x E Mf and t :::; to such that to > 0 is small the following estimate 
hold 

Proof. Using Lemma 3.6 we obtain near q == q( t( r 0 )) E Mf 
l'lrE(<PT(q + u + u(q + u))) - 'lrE(<PT(q + u + u(q + u))) L 

< ID1rE(<PT(q)) D<PT(q) (u + u(q + u) - u - u(q + u))la + Oe lu - ula 

< IF'(t + T) D<PT(q) (u + u(q + u) - u - u(q + u))L + (oe + C(T) 8) lu - ula 

< jn<PT(q) P 8 (t) (u + u(q + u) - u - u(q + u))L + (oe + C(T) 8) lu - ula 

< ID<PT(q) P 8 (t) (u(q + u) - u(q + ii))la + (oe + C(T) 8) lu - ula 
< Ke-assy lu - ula + (oe + C(T) 8) lu - ula· 

The estimate for D<PT(q(t)) P 8 (t) follows from Lemma 3.1. D 

Now, we consider the composition 7rE o <.l>T o (id+ u) o 9u locally near each q(t) E Mf. Here, 
we choose any right inverse 9u guaranteed by Lemma 3.11, which might be not unique at 
this moment. 
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Lemma 3.13 Choose 8 < C(Tt1 and E:::; Eo. Then, we have for each y EM/ 

Moreover, the mapping 7rE o <I>T o (id+ o-) o ga is a local section of E 8 IM1. 
€ e 

Proof. We obtain the estimate for the Lipschitz constant by using (3.2) and the Lemmata 
3.11 and 3.12. Indeed, 

Ly(<I>~(o-)) < Lga-(Y)('lrE 0 <I>T 0 (id+ a-)) Ly(ga) 
< (K e-Ctssy + Oc:; + C(T) 8) (K eetST + Oc:; + C(T) 8) 
< ]{2 e-(etss_ets)T + Oc:; + C(T) 8 

< 1. 

The mapping 7rEo<I>To( id+o-)oga is a section, because ga is a right inverse of 7rMo<I>To( id+o-). 
By Lemma 3.10 we know' that the image of 7rE o <I>T o (id+ a-) o 9a is contained in E:IM1 . 

. e 

This proves the lemma. D 

3~3.2 The tail parts of M: 7rM(x) E M'j= 

We will restrict ourselves on the case 7rM(x) E Mt. The same result with analogous pr~ofs 
is valid for 7rM( x) E Mc::-. The differential equation (3.14) on Mt is given by 

(3.20) 
x -Ax+f(x)+B:(x) 

- -Ax+ f(x) + xt(7r'Y(x)) XKoc::(l7r'Y.L(x)I) /30 'lr'Y.L(x), 

for 7rM(x) E Mt. In the subset M:, the mapping 7rM(x) satisfies jD7rM(x) - Paula :::; 8 
by definition. Thus, the tangent spaces of M: and the eigenspace E~u are 8-close to each 
other. The linearization along a solution x(t) E Ee:: of (3.20) fort E [O, T] is given by 

(3.21) iJ = (-A+ DB:(x(t)) + Df(x(t)))y. 

We will first consider the equation 

(3.22) iJ = -Ay + DB:(x) y 

- -Ay + Dxt ( 'lf ,y( x)) D7r'Y( x) y Xr.oc::f3o 7r'Y.L ( x) + xt XKo<:: /30 D7r'Y.L (a) y + 
xt Dx (-

1 
l'lr-y.L ( x) 1) -1

- /30 · ( j'lr-yl. ( x) 1-1 
· 'lr-y.L ( x ), D1r-y.L ( x) y) · 'lr-y.L ( x ), 

Koc Ko E 

where the term coming from the nonlinearity is removed. We denote the linear semiflow 
of (3.22) by T(t, xa). 
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Lemma 3.14 The derivative DB±(x)y = DB±(x) P0u y+osy depends only on P0uy up to 
an error of the size 8. Moreover, IDf(x)I. < 8 as an element of L(Xa,X). Thus, we sub-
sume the term osy into the nonlinearity Df(x) and continue by considering DB±(x) P0u y. 
Remember, that IDx~(x)I does not depend on Eforx EM(-. Moreover, DB±(x) is bounded 
uniformly in E, i.e. IDBt(x)la:::; C(Ko). Indeed, 17r,,.L(x)I:::; Ko E for x E U2e(O). Therefore 
the semifiow T(t, xo) is bounded by IT(t, xo)la:::; C(T, Ko) fort E [O, T]. 

Now we have to estimate equation (3.22). Observe, that the stable and unstable parts of 
(3.22) decouple due to Lemma 3.14. The stable part is given by 

(3.23) !P~y + AP;y = 0. 

The unstable part is given by the expression 

(3.24) u =-Au+ DB:(x) u 
+( . + - -Au+ Dxe 7r,,( x)) D7r,,( x) u XKoe f3o 7rl'.L ( X) +Xe XKoe f3o D7r,,.L ( X) u + 

xt Dx(-
1
-17r,,.L(x)1) -

1
-f3o · (17r,,.L(x)l-1 

· 7r,,.L(x), D7r,,.L(x) u) · 7r,,.L(x) 
Koc Koc. . 

A(t)u, 

where we have defined P0u y =·: u. 

Lemma 3.15 The minimum norm of the fundamental ~atrix U(T) of u = A(t) u defined 
on Eau can be estimated by 

Proof. Observe that the equation (3.24) is defined on the finite-dimensional space Eau. 
Thus, we can take the scalar product (A(t) u, u) and obtain using the decomposition of 
-A P0u in the Jordan block and the diagonal part 

(A(t)u,u) = (~u,u) + (Ju,u) +Dxt(7r,,(x))D7r,,(x)uxKoef3o(7r-r.L(x),u)+ 

x~ Dx(17r,,.L(x)1)-1-f3o(7r,,.L(x),u) · (17r,,.L(x)l-1 ·7r,,.L(x),D7r-r.L(x)u) + 
Ko€ Ko€ 

xt XKoe f3o ( D7r,,.L ( x) u, u ). 

Now, (7r,,.L(x),D7r,,.L(x)u) = (7r,,.L(x),u) due to the definition of 7r,,.L. In fact, for x EE!, 
the projection D7r,,.L(x) is given by p0u followed by a further projection in E8u plus a small 
map in E~. Moreover, 7r,,.L(x) E Ecu. This proves the claim about the scalar product. 
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-
Therefore, using Re (.6. u, u) - llJll ~ -as > -as, we obtain 

1
: 12 (A(t) u, u} ~-a• - C0 t (1 + C(T) Kx ,80 )+ 

xd Dx ,Bo (Ko t)-1 \?r'Yl. ( x) 1-1 ( ?r'Yl. ( x ), u) 2
1
: 12 - C(T) Kx .Bo 8 +,Bo (1 - Co 8) 

> -as+ C(T) 8 + 0€ ~ -as 

if only 8 and E are sufficiently small, the former only compared with the constant C(T). 
For the last estimate we have used the orthogonality of the spectral projections. By 
[Har82, Lemma IV.4.2] the estimate 1~12 ( A(t) u, u) ~ -as implies the claimed estimate 
m(U(t)) ~ e-ast for the minimum norm of the fundamental matrix U(t) uniformly in 
t E [O, T]. D 

Now we have all the necessary informations to prove the existence of a local right inverse 

near x.E E:. 
Lemma 3.16 For all 8 < C(Tt1 and E S Eo suffic.iently small there exists a local right 
inverse g(j of 7rM o <I>T o (id+ er) uniformly in er E :E€. Moreover, 

Ly(g(j) S easT + C(T) 8 + "'o c 
Lx(1rE 0 <I>T 0 (id+ er)) s Ke-assT + C(T) 8 

holds for each y = JrM o <I>T o (id+ er)(x) such that x, y ENI: .. Furthermore, the composition 
is Lipschitz continuous, satisfies 

Lx(JrEo<I>To(id+er)og(j) S 1 

and JrE o <I>T o (id+ er) o g(j is a local section of the bundle E€. 

Proof. First, we show that the manifold M: is overflowing. Choose x E M: such that 
17rl'J.(x)la = "'o E. Then, we obtain 

\! ?r'Yl.(x ), ?r'Yl.(x)) = ( D9(x) ( - Ax +f(x) + Bt(x)), ?r'Yl.(x)) 

_ ( D1r ')'J. ( x) ( - A( 7r 'Y ( x) + 7r ')'J. ( x) + 7r E ( x)) + f ( x) + n: ( x)), 7r ')'J. ( x)) 

- (D7r')'J.(x)( -A1r'YJ.(x) + f(x) - f(7r')'(x)) + n:(x)) + 
D7r1 J.(x)(-A7r1 (x) + f(7r'Y(x))),7rl'J.(x)) 

- (D7r'YJ.(x)( -A1r'YJ.(x) + f(x) - f(7r')'(x)) + n:(x)),7r')'J.(x)) 

- (P3u Pd°(id + Dh(Qt x) Qt) ( -AP3u Pd° (x + h(Qt x)) + 
f(x)- f(7rl'(x)) + /3oP:- P; (x + h(Qt x))),7r7 J.(x)) 

- ( -A7r'YJ.(x) + /30 7r'YJ.(x) +D7r7 J.(x) (f(x) - f(7r'Y(x))),7rl'J.(x)) 

> (/30 - c/ - C(T) 8) ("'o c)2
• 
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Indeed, the term D7r1 .L(x)(-A7r,,(x) + f(7r1 (x))) vanishes, because -A7r,,(x) + f(7r1 (x)) 
is contained in the image of D7r,, ( x) and D7r ,,.L ( x) D7r,, ( x) = 0 is zero by definition. Fur-
thermore, IDJI :S 8 and thus lf(x) - f(7r,,(x))I :S 8 Ix - 7r1 (x)I :S 8 ~o E. Therefore, the 
norm of 7r,,.L(x) grows and thus x(t) have to leave the bundle Ee. This proves, that M: is 
overflowing. 
Next, we consider the linearization along a solution x(t) of (3.14), which stays in E+ for 
all t E [O, T]. Due to the fact ID fl :S 8 and Lemma 3.14, the difference of the semi:flows of 
the full linearized equation (3.21) and the pseudo equation (3.22) can be estimated by 

(3.25) IT(T, xo) - T(T, xo)la :S C(T) 8. 

Furthermore, the tangent space of M: and the space E8u are 8-close. This yields for 
u1, u2 E M: close to x 0 

(3.26). 17r M 0 <I>T 0 ( U1 + a( u1)) - 'lrM 0 <I>T 0 ( U2 + a( u2)) la 

> ID7r M( xo) T(T, xo) ( u1 + a( u1) - u2 ___,a( u2)) la - 8 C(T) lu1 - u2 la 

> IP3uT(T,xo) (u1 + a(u1) - U2 - a(u2))la - 8C(T) lu1 - u2la 

> IT(T, xo) p3u (u1 + a(u1) - U2 - a(u2))la - 8 C(T) lu1 - ·u2la 

> e-asT lu1 - u2la - 8 G(T) lu1 - u2la, 

Therefore, a local right inverse exists by [Shu80, ch.5 Thm. I.1]. Moreover, we have 

(3.27) 17r E 0 <I>T 0 ( U1 + a( u1)) - 'lrE 0 <I>T 0 ( U2 + a( u2)) la 

:S · 1n7rE(xo) T(T, xo) (u1 + a(u1) - u2 - a(u2))la + 8 C(T) lu1 - u2la 

< IP;T(T,xo) (u1 + a(u1) - u2 - a(u2))la + 8C(T) lu1 - u2la 

< IT(T, xo) P; ( U1 +a( u1) - U2 - a( u2)) la+ 8 C(T) lu1 - u2 la 

< e-assT lu1 - u2la + 8 C(T) lu1 - u2la· 

Indeed, IP0 (u1 - u2)la :::; 8 lu1 - u2la and the estimate for T(T, x0 ) P0 follows from the 
decoupled equation (3.23). Finally, we have to estimate the Lipschitz constant of <I>~ (a). 
This follows now easily using (3.26) and (3.27). By (3.23), the image of <I>~ (a) is again 
contained in Ee. D 

We have not proved that <I>~ (a) is well defined, because uniqueness of the right inverse is 
still not clear. 
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3.3.3 The local part of M: 7rM(x) E MI 
We repeat equation (3.14) on M:: 

(3.28) 

x = -AP0 x + P0 f(x) - /31 {):(P0u x) P0 x+ 
(-A P0u x + P0u f(x) + B:(x) + B;(x)) {)~u(p0u x) 

.- -AP0 x + P0 f(x) - /31 {):(P0u x) P0 x+ 
(-AP.Ju x +POU f(x) + .Bo(x~,,(l1r..,.c(x)I) xt(1r..,(x)) + 
x,(11r..,.c(x)I) x;-(1r..,(x))) 71"..,.c(x)) i?~(PO x). 

Assume that x(t) E MI is a solution of (3.28). Then we consider the variational equation 
(3.17) along x(t). First, we will again neglect the influence of the nonlinearity 

(
3
.
29

) (POD f(x) +PO Df(x) i?~(PO x) +PO f(x) E-1 D11cu(c1 PO x) PQu) y-
/31 c 1 (D{)s( c 1 P0u x) P0u y) P0 x 

in the variational equation along x(t). For this term, we have the following estimate. 

Lemma 3.17 The operators in (3.29) are bounded by 

and 

uniformly in €. 

Proof. First of all, we conclude 

jP; D f(x) + p3u D f(x) {)C:(P3u x) + p3u f(x) c-1 D{)cu( C 1 p3u x) P3ula ::; Co K{j cP = 0€. 

Indeed, for x E MI we have lf(x)I ::; Co lxl;+P, IDJ(x)I ::; Co lxl~ and lxla ::; 3€. This 
proves the first claim. The second claim follows from 

D 

The modified linearized equation without the operator in (3.29) is then given by 

(3.30) y = -AP; y - /31 {):(P0cu x) P; y + 
(-AP3u + DB:(x) + DB;(x)) {)C:(P3u x)y + 
( -AP3u x + B:(x) + B;(x)) €-1 fl{)cu(c-1 p3u x) P~ y. 
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For this equation, the minimum norm will depend on the initial point x(O), i.e. we have 
a relative and not an absolute normal hyperbolic equation in the terminology of [HPS77]. 
We define 

a( xo) := f r.p f(xo) ( t) dt. 
j[O,T] 

Here, r.p I(xo) denotes the characteristic function of the set I( x 0) given by 

I(xo) := { t E [O, T] I piu x(t) EC U77 (A) }. 

Hence, I(x0 ) is the set of those time points, for which the projection of the solution x(t) 
onto Eau is contained in the set C U77 (A), see (3.12). In other words, for these points 
r()~u(pou x(t)) = 1. 

Lemma 3.18 For the linear semiflow T(T, x0 ) of the modified equation {3.30), the follow-
ing estimates hold 

m(T(T, xo) Pou) > e-as(T-a(xo)) e--r1 a(xo) 

IT- (T x ) P.s I < 1Ye-CtSST e-f31 a(xo). ,o QCt .n. 

Here, /1 = CoKrJ C(Ko) {see {3.34)) and /31 has already been defined in {3.15). 

Proof. We rewrite equation (3.30) using the coordinates v = Piu y, w = P~ y 

(3.31) v r()~u(p3u x) (-A+ DB:(x) + DB;(x)) v + 
( -AP0cu x + B:(x) + B;(x)) c-1 DrJcu(c-1 p3u x) v 

and 
(3.32) 

Here, we have used Lemma 3.14. Hence, (3.30) decouples into (3.31) and (3.32). We will 
first compute the minimum norm of T(T, x 0 ) on Eau. To that end, we estimate (3.31) 
separately for t ¢:. I ( x0 ) and t E I ( x0 ). 

As long as t ¢:. I(x0 ), the equalities r()~u = 1 and Dr()~u = 0 hold. Thus, (3.31) transforms 
into 

v= (-A+DB:(x)+DB;)v. 

For 0 ~ t ~ t + T ~ T and [t, t + r] n I(x0 ) = 0, this yields the estimate 

(3.33) m(T( t + T, t, xo)) ~ e-as,,-
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for the minimum norm as in the paragraph 3.3.2. Now suppose t E I(x0 ). Then 

(3.34) jiJ~u(p~u x) (-A+ DB:(x) +DB;) v+ 

(- AP~u x + B:(x) + B;(x)) c-1 n19cu(c-1 P0cu x) vj 

< Co Kx K~ lvl =: /1 lvl 

due to IPgu xi ::::; 3c. Observe that the norm of DB"!= is bounded by a constant C(T) 
independently of c. Indeed, the support of the derivative of x;=, which depends on c, is 
contained in A, see Figure 6. But inside A, we have i9~u = 0 by definition. Thus, the term 
Dx; vanishes completely and the norm is indeed independent of c. Therefore, we obtain 
the crude estimate 
(3.35) 

for all values oft and r satisfying 0 ::::; t::::; t + r ~ T and [t, t + r] C I(x0 ). 

Hence, we conclude 

The crucial point in the above computations is that the constant K appearing in the ex-
. ponential trichotomies is absent here due to the deco!Ilposition -A Pgu = ~ + J and the 
choice of coordinates which guarantees that l]Jll is small. 

Next, we consider (3.32) on the stable subspace Eg 

which possesses the explicit solution 

Thus we obtain the estimate 

Indeed, J;{ iJ:(P0cu x(r)) dr 2:: a(xo) holds due to {i9cu > O} C {19 8 = 1} and 19 8 2:: 0. D 

We will now investigate the semiflow of the full variational equation (3.17). To achieve 
this, we have to incorporate the influence of the operators coming from the nonlinearities 
handled in Lemma 3.17. 
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Lemma 3.19 

m( pgu T(T, xo) IEgu) 
jPg T(T, xo)IEg la 
!Pi T(T, xo)IE0u la 
!Pou T(T, xo)IEg la 

> e-a"(T-a(xo)) e-"11 a(xo) + Oe 

< ]{ e-a""T e-/31 a(xo) +Ki C(Ko) C(T) Ka+ Oe 

< Oe 

< Oe. 

Proof. This follows immediately from Lemma 3.18 and Lemma 3.17. Indeed, we have 
IT(t, xo)L :::; e11 t by Lemma 3.7 and the definition of /l· Then the claim follows from the 
variation of constant formula. D 

Now, we can prove the existence of local right inverses on M:. 
Lemma 3.20 For x EE!, there exists a local right inverse gq of 7rMoiPTo(id+O') uniformly 
in O' E :Ee if E < Eo is sufficiently small. Moreover, 

Ly(gq) < ea"(T-a(x)) ell a(x) + Oe 

Lx(1rE o <PT o (id+ O')) < ]{ e-a"sT e-/3i a(x) +Ki C(Ko) C(T) Kil+ Oe. 

Jo~ each y = 7f'M o <PT o (id+ O')(x) such that x,y EM!. Furthermore, we have 

Lx0 (7rE O <PTO (id+ O') 0 gq) ::=; 1 

for Ki < ( C(Ko) C(T) ]{il )-
1 

and 7f'E o <PT o (id+ O') o gq is. a locai section of the bundle Ee. 

Proof. Choose any O' E :Ee. We will first show that M: is overflowing. The component of 
the right hand side of (3.14) in the unstable space E0u vanishes identically if P0u x E A. 
On the other hand, for x EM: and l7r1 .L(x)I =Ko E, the manifold is overflowing due to 

( 79C: ( Pgu x) ( ( ~ + J + /30 7r 'Y.L ( x) + f ( 7r -r.L ( x))), 7r -r.L ( x)) 
?:: (/30 - a 3 

- O(E)) 17r'Y.L(x)l2 • 

Next, we have to invert the mapping 7rMoiPTo(id+O') locally. This, as well as the remainder 
part of the claim, follows easily as in the previous lemmata using Lemma 3.19. D 

3.3.4 The global injectivity of the right inverse gq 

We will show here that the mapping 7rM o <PT o (id+ O') is globally invertible on Me, which 
is in fact an easy consequence of the following lemma. 
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Lemma 3.21 ([For77, Satz 4.22]) Let X and Y two locally compact spaces and p: Y-+ 
X a proper map with the following property: each point y E Y possesses a neighborhood 
V C Y such that Plv is injective. Then p is a covering map. 

Lemma 3.22 7rM o <I>T o (id+ o-) possesses a right inverse defined on Me. 

Proof. We apply Lemma 3.21 top= 7rMO <I>To (id+o-), X =Me and Y = p-1 (X). We can 
assume that Me is compact. Now, Y C X whence Y is compact, too, which implies that 
pis indeed proper. Therefore, the number of preimages of 7rM o <I>T o (id+ o-) is constant, 
because the map is a covering map of a connected space. But the points q(t) EM/ admit 
precisely one preimage for sufficiently small E, namely some point near q(t - T) due to 
compactness of 1(q(O)). D 

By the series of Lemmata 3.13, 3.16, 3.20 and 3.22, we conclude that the map <I>~ : :Ee -+ :Ee 
is well defined. 

3.3.5 The existence of a fixed point of <I>~ 

In this paragraph, we will show that the mapping <I>~ : :Ee -+ :Ee is a contraction. From 
that we conclude the existence of a unique fixed point. 

Definition We defi.ne 
( ) _ l'm lg(x) - g(y)la mx g - _I_ 

y-+x,yEDe Ix - Yla 
to be the minimum norm m(g) of a map g: Me-+ xa .. 
Lemma 3.23 For each 'f/o > 0 and L0 , m 0 >OJ there exists an Ea > OJ such that for any 
€ ::; Eo and x, y E Me satisfying Ix - Yla ::; Eo the following holds: 

(i} For each g : Me -+ xa with L(g) ::; Lo we have 

lg(x) - g(y)la::; Lo (1 + rJo) Ix - Yla· 

(ii} Each g : Me -+ xa with m(g) 2::: mo fulfills 

lg(x) - g(y)la 2::: mo (1 - rJo) Ix - Yla· 

The proof is straightforward, see [San93]. 

Lemma 3. 24 The mapping <I>~ : :Ee -+ :Ee is a contraction with Lipschitz constant 

Thus, it possesses a unique fixed point O"* E ~e. 
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Proof. We have to estimate the difference ll~~(o-) - ~~(0-)11 for a-, 0- E ~t:· Observe that 

(3.36) l~;(a-)(x) - ~;(a)(x)la 

- 17l"E 0 ~T ('(id+ a-) 0 g(j(x) - 1l"E 0 ~T 0 (id+ 0-) 0 9<7(x)la 

< 17l"E ~T (id+ a-) g(j(x) - 1l"E <I>T (id+ 0-) g(j(x)la + 
'1l"E <I>T (id+ 0-) g(j(x) - 1l"E <I>T (id+&) 90'(x)la 

(3.37) < ID( 1l"E ~T) (g(jx) ( o-(g(jx) - 0-(g(jx)) la+ ot: jo-(g(jx) - 0-(g(jx) la + 
17l"E <I>T (id+ 0-)g(j(x)- 1l"E ~T (id+ 0-)g<T(x)la· 

We consider the first term in (3.37). By the proofs of the Lemmata 3.12, 3.16 and 3.20 
applied to x EM/, M~ and M!, respectively, the following estimate holds 

Thus, we obtain 

(3.39) ID(7rE <I>T) (g(jx) (o-(g(jx) - 0-(g(jx))la 

~ (Ke-assT + Ot: + C(T) 8 + K1 C(T, Ko) Kt9) lo-(g(jx) - 0-(g(jx)I. 

It remains to estimate the second term in (3.37). Here, the difference jg(j(x) - 9<T(x)la is 

the term we have to deal with. By definition 

and thus 

7l" M {_{>T (id+ 0") gq ( X) - 7l" M ~T (id+ a) 9u ( X) 

- 7l" M {_{>T (id+ 0") gq ( X) - 7l" M {_{>T (id+ a) gq ( X) + 
1l"M <I>T (id+ &)gq(x) - 1l"M <I>T (id+ 0-)ga(x). 

From this identities, we conclude 

17l" M {_{>T (id+ u) gq ( X) - 7l" M {_{>T (id+ a) 90' ( X) la 
= 17l"M ~T (id+ a-) g(j(x) - 1l"M ~T (id+ 0-) g(j(x)la· 

Now lgq(x) - ga(x)la ~ €,because 17l"M <I>T (id+ a-) (x) - 1l"M <I>T (id+ 0-) (x)la = ot: due to 

Lemma 3.9. The claim follows now from Lipschitz continuity of the considered mappings. 

Therefore, again by the Lemmata 3.12, 3.16 and 3.20 and Lemma 3.23, 

17l"M <I>T (id+ 0-) gq(x) - 1l"M <I>T (id+&) gc:;:(x)la 

2:: (Lgux(1l"M<!>T) + ot:) lg(j(x) - gc:;:(x)la· 
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Thus, we obtain 

lgq(x) - 9<7(x)la ~ (Lgcrx(7rM <I>T) + Oe)-1· 
j7rM <I>T (id+ a) 9a(x) - 7rM <I>T (id+ 0-) 9a(x)L· 

It remains to consider the term 

17rM <I>T (id+ a)(xo) - 7rM <I>T (id+ 0-)(xo)la 

with y := gq(x). Now 

17rM <I>T (id+ a)(y) - 7rM <I>T (id+ 0-)(y)la 

- It D( 'Jl"M <I>T) (y +iT(y) + T ( o-(y) - 0-(y )) ) (o-(y) - 0-(y)) d{ 

< (ID(7rM <l?T)(y) D7rE(Y)la + oe) la(y) - 0-(y)la 

and an application of the Lernmata 3.12, 3.16 and 3.20 yields 

(3.40) 
(L9ax(1rM <I>T) + oe)-1 

jD(7rM <l?T)(gqx) D7rE(g(1x)L 
~ oe + C(T) 8 +Ki C(T, Ko) KrJ. 

Thus we obtain finally 

(3.41) l9a(x) - 9<7(x)la 

~ ( Oe + C (T) 8 + Ki C (T, Ko) K{)) la(gax) - 0-(gax) la· 

We substitute the resulting inequalities (3.39) and (3.41) into (3.36) and conclude 

l<I>~(a)(x) - <l?~(&)(x)la 

< ID( 7r E <PT) (gqX) ( a(gqX) - 0-(gax)) la + Oe la(gaX) - 0-(gqX) la + 
17rE <I>T (id+ 0-)gq(x)- JrE <I>T (id+ 0-)gu(x)la 

< ID( 7r E <PT) (gax) ( a(gax) - 0-(gax)) la + Oe la(gaX) - 0-(gqX) la + 
(lD(7rE <PT)(gax)la + oe) jgq(x) - 9<7(x)la 

< (( K e-a"T + oe+ C(T) 8 + Ki C(T, Ko) Kfi) + 

(ID( 'Jl"E <I>T )(gux )la+ o,) ( o, + C(T) H Ki C(T, Ko) K.i)) lo-(gux) - 0-(gux) la 
< (Ke-assy + Oe + C(T) 8 +Ki C(T, Ko) K{)) ja(gax) - 0-(gax)la· 

Here, we have estimated the expression 
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in the same manner as before. This finishes the proof of the lemma. D 

Thus, essentially the contraction of <I>T in the fibers gives the contraction property of the 
mapping <I>~. We denote the graph of the fixed point O' * by WK~m. Therefore, WK~m c 
<I>T wh~m holds. We will now characterize this surface by another property. 

Lemma 3.25 Take a sequence of points X-n E Ee for n E No such that <I>T(x-n) = x-(n-1). 

Then Xo E wh~m. 

Proof. The sequence X_n fulfills in particular dist(x-n, whom):::; 2€. Indeed, l?rE(x)la:::; € 
for all x E Ee. The contraction property of <I>~ yields 

for some K < 1 and all x E Ee such that <I>~(x) E Ee for 1 :::; j:::; n. Using <I>~(x-n) = xo 

we obtain for the sequence x-:-n 

'J1hus by taking the limit n --+ 00 We conclude dist( Xo, Wh~m) = 0. D 

Therefore, we have constructed a manifo.ld Wh~m which contains all points staying in a 
neighborhood of the homoclinic orbit for all backward iterates of the time T-map <I>T. 

Moreover, by construction, this manifold is locally invariant under <I>T. The next lemma 
shows that the manifold wh~m is actually locally invariant under the semiflow <I>t fort 2:: 0. 

Lemma 3.26 Whom is locally invariant under <I>t fort 2:: 0. 

Proof. Instead of carrying out the graph transform using <I>T, it is possible to use the map 
q>t provided IT -Tl:::; 1] for a sufficiently small 1] > 0. Then q>~(O'*) is contained in I.:e, 
too. Moreover, the semiflow property implies 

;r,,. ;r,,. - wcu - ;r,,. - ;r,,. wcu - ;r,,. - wcu 
'*'T'*'T hom - '*'T '*'T hom - '*'T hom· 

Thus, <I>;(O'*) = q>T whom is another fixed point of <I>~ and by uniqueness we conclude 
<I>~(O'*) = O'*. Substituting T = T + t for 0:::; t:::; 77 yields 

Iterating this argument proves the lemma. D 
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3.4 Regularity 

Up to now, we have constructed a Lipschitz continuous manifold Whom· In this section, 
we will show that wh~m actually possesses more regularity. In fact, wh~m will be at least 
C1·P. For simplicity, we will only prove this regularity. The case Ck,{3 for f3 > O is proved in 
a similar way. We remark that the proof of Ck-regularity instead of an additional Holder 
continuity of the kth-derivative is much more complicated, see e.g. [HPS77, Thm. 4.1]. 
Hence, let us prove that Wh~m is contained in ci,p. 

First, we show that we can assume that the manifold Me as well as the bundle Ee are C00 

smooth. By construction, they are only in C1·P a priori. 

Lemma 3. 27 There exists a C00 -bundle Ee possessing a C00 -manifold Me as base space, 
such that the following holds 

,.. ,.. 1 
(i) Me and Ee are C -close to .Me and Ee. 
(ii) The fixed point O"* is a section & of the bundle Ee with domain Me. 

Proof. Fix T/ > 0. Then we can approximate the homoclinic orbit q( ·) : JR. -+ xa with 
q(·) E C1 by a C 00-function q(·) such that 

jq(t) - q(t)la ::; T/ 

lft(q(t) - q(t))la::; T/ 

q(t) E E~u 

fort E JR 
fort E IR 
for ltl 2:: T/-1 

holds. This can be achieved by a convolution with a smooth mollifier as in the finite-
dimensional case. Moreover, we can define smooth projections -n-, -n-M and -n-E which are 
ry-close to the corresponding original projections in the C1-norm. Then the graph trans-
form is well defined for the new bundle provided we choose T/ sufficiently small. Indeed, the 
terms occuring in addition are of order T/ in C1 • The overflowing property is again fulfilled 
for small T/ by continuity. This proves the lemma. D 

In the following, we will denote the new C00-approximations again by Me and Ee· Next, 
we define Holder regularity for maps on submanifolds of Banach spaces. To this end, we 
parametrize the tangent spaces TzMe for all z E Me close to x E Me over the tangent space 
TxMe in x by the C00 -map 

which is linear in the second variable such that 
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defined for any z E Ue0 (x)nMe· The image of this map is R(id+Hx(z)) = RHx(z) = TzMe. 
Thus IHAz)la--+ 0 for z--+ x. 

Definition The derivative of a map g : Me --+ xa is called Holder continuous with 
Holderexponent /3 at x E Me iff the map Dg(z) o Hx(z) is Holder continuous in the usual 
sense as a map TxMe --+ xa, i.e. 

ll·m IDg(z) o Hx(z) - Dg(z) o Hx(z)la R ( ) R( ) 
~ f3 =: x g ::; sup g < oo. 

z,z-+x, z,zEMe . lz - zla xEM 

Here, the norm in the numerator is given by I· IL(Ta:Me,Xo) with the norm induced on TxMe 
by TxMe '--+ xa. 
In the present situation, the manifold Me is fiat near the origin. Therefore, the defini-
tions given above coincide with the usual definition of Holder continuity in Rn. Indeed, 
Hx(·) =id there. 

We denote by BR:= BR(C1 ,f3(Me)) the subset ~en {er E C1,f3(Me)/ R(cr)::; R}. Then, we 
have the following result. 

Lemma 3.28 BR( C 11 f3(Me)) is closed in L;e for /3 > 0. 

Proof. This follows by applying the result [Hen81, Lerriina 6.1.6] in our specific context. D 

Of course, the lemma is wrong for /3 = 0. The reason for the importance of the closeness 
of BR= BR(C1,f3(Me)) is stated below. 

Lemma 3.29 In order to prove er* E Cl,{3 it is enough to show that 

for a suitable chosen R > 0. Indeed, this implies that the fixed point er* has to be contained 
in BR(C1 ,f3(Me)) due to the closeness of this set. 

Lemma 3.30 Consider mappings f E C 1,f3(Me, xa) and g E C 1·f3(Me) such that g : Me --+ 

Me. Then we have 

I(} o g)(x) - (} o g)(z)la < l}(g(x)) - }(g(z))la (lg(x) - g(z)la)f3 
Ix - zl~ - l9(x) - g(z)I~ Ix - zla 

38 



and therefore, 
(3.42) R(f o g) ~ R(f) Lf3(g). 

Using this inequality, we obtain 

(3.43) ID(! o g)(x) - D(f o g)(z) Hx(z)la ~ 

< l(Df(g(x))-Df(g(z))H9 (x)(g(z))) Dg(x)L + 
IDJ(g(z)) (Hg(x)(g(z))Dg(x) - Dg(z)Hx(z))ja 

< IDJ(g(x)) - DJ(g(z)) Hg(x)(g(z))la jDg(x)la + 
IDJ(g(z))la · (IHg(x)(g(z)) - idrg(x)Mela IDg(x)la + 
IDg(x) - Dg(z) Hx(z)la)· 

Multiplying with Ix - zl;;-.6 and taking the limit z -r x yields 

which proves the lemma. D 

Lemma 3.31 There exists an Ro > 0 such that <P~(BRo) C BRo. In general, Ro will 
depend on c. 

Proof. Take any a E BR. Then 'P~(a) E C1(Me) and the derivative fulfills ID(<P~(a))la ~ 
1. Thus it remains to show that D( <P~ (a)) E BR. We have 

D(<P~(a)) = D'll"E o D<PT o (id+ Da) o Dgq 

and the time T-map <PT is contained in C1·f3(U, Xa) for some neighborhood U of Me. But 
in general the Holder constant R( D<PT) -r oo will tend to infinity as c -r 0 due to the use 
of cutoff functions. 
We will first show that the derivatives of the right inverses gq are Holder continuous and 
will compute their Holder constant. We remark that we can estimate the minimum norm 
of the derivative D(7rM o <PT o (id+ a)) due to the Lemmata 3.11, 3.16 and 3.19. Indeed, 
the following holds 

mo(x) .- m(D(7rM o <PT o (id+ a))(x)) 

(3.44) ! Ke_,n +o,+C(T)D for x E Mi 
€ 

> e-asr + C(T, ~o) c + C(T) 8 for x EM± 
€ 

e-a8 (T-a(x)) e-1'1 a(x) + Oe for x EM:. 
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Next, we will use an implicit characterization of the right inverses. By definitio:p., we have 

7rM 0 <l>T 0 (id+ a-) 0 gO' = idMe 

and thus 
D'lf'M 0 D<J!T 0 (id+ D(J") 0 DgO' = idT:cMe· 

As in equation (3.43), we conclude 

lidT:cMe - idTzMeHx(z)la = 
- jD(7rM o <PT o (id+ o-))(g()'x) Dg()'(x) -

D(7rM o <I>T o (id+ o-))(g()'z) Dg()'(z) Hx(z)L 

> -I (D(7rM o <PT o (id+ o-))(g()'x) - D(7rM o <PT o (id+ o-))(gqz) H9ax(g()'z)) · 

Dg()'(x)L + ID(7rM o <PT o (id+ (J"))(gqz) (H9ax(g()'z) Dg()'(x) - Dg()'(z) Hx(z)) L 
> mo(gqz) jH9ax(gqz) Dgq(x) - Dgq(z) Hx(z))la -

ID(7rM o <I>T o (id+ o-))(gqx) - D(7rM o <I>T o (id+ o-))(g()'z) Hgcrx(g()'z)L jDg()'(x)ja 

> mo(g()'z) jDgq(x) - Dgq(z) Hx(z))L - mo(gqz) IH9x(gz) - idT9:cMela IDgq(x)ja -

jD(7rM o <I>T o (id+ o-))(g()'x) - D(JrM o <I>T o (id+ o-))(g()'z) H9crx(g()'z)L jDg()'(x)la· 

Therefore, we· obtain 

jDg()'(x) - Dg()'(z) Hx(z)L 

< mo(g()'zt1 (lidT:cMe - Hx(z)ja + jD(7rM o <I>T o (id+ o-))(gqx) -

D(7rM o <I>T o (id+ o-))(gqz) H9crx(g()'z)L IDgq(x)jJ + 
jH9x(gz) - idTg:cMeL jDgq(x)la· 

The identity 7r E( x + a-( x)) = a-( x) yields 

IDo-(x) - D(J"(z) Hx(z)la 

< jDJrE(x+(J"(x)) (D(J"(x)-D(J"(z)Hx(z))L + 
j ( DJrE(x + o-(x)) - D7rE(z + (J"(z))) la jD(J"(z) Hx(z))L 

< jD7rE(x + o-(x))L jDo-(x + o-(x)) - D(J"(z + o-(z)) Hx(z)L + 
jD7rE(x + o-(x)) - D7rE(z + o-(z))L jD(J"(z) Hx(z))L. 

Thus, Dg()' is Holder continuous and we obtain the estimate 

Rx( Dgq) ~ Lx(9()' )l+{j R( H)+ 

m0 (g,,x)-1 ( R(H) + Lx(g,,)f3 ( R(D(7rM <h)) L(id + a-)1+!3 + 
L(D(7rM iPT)) (R(H) + R(D7rE)) + ID(7rM iPT )(y) D1rE(y )la Rg,,x(Da))) 
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for the Holder constant of Dg" using the definition y := g"(x) + a(g"(x)). As for equation 
(3.40), we obtain 

Thus, we end up with the inequality 

(3.45) Rx(Dg") ~ Lx(gCT )1+,6 R(H)+ 

mo(gux t 1 ( R(H) + Lx(gu )13 
( R(D( 1rM <PT)) L(id + a)l+fi + 

L(D(7rM <I>T)) (R(H) + R(D7rE)) + 
(o, + C(T) 8 +Ki C(T, Ko) K~) R9,x(Da))). 

Finally, we can estimate the Holder constant of <I># (a). To that end, we have to consider 
the difference 

The corresponding estimates follow the same lines as those for D(7rM o <I>T o (id+ a) o g" ), 
whence we will only give the result 

Rx ( D ( 7r E. o <I> T o (id + a) o g")) 

< R(D(7rE <I>T)D7rE)L(id + a)l+,6 L(go-) + 
ID( 7r E <I>T )(y) D7rE(Y) la Rgux( Da) Lx (g" )1+,6 + · 
Rx( Dg") ID( 7rE <I>T) la (Co L( O") + 1) + ID( 7rE <I>T) la L( 0") Lx(9o- )1+,6 R(H). 

Here, y = gu(x) + a(go-(x)) as above. We substitute equation (3.45) for R(gq) into this 
inequality. Because we are only interested in a bound for R(Da), we will denote the bounds 
for the Holder constants of D(7rM <I>T), D(7rE <I>T) and Has well as for all Lipschitz constants 
by Ce. However, Ce will not depend on R(Da). Note that Ce might tend to infinity as € 

tends to zero. Then, we obtain 

Rx( D<I>~ (a)) 

< Ce+ ID(7rE<I>T)(y)D7rE(Y)laRgux(Da)Lx(9o-)1+,6 + 
Rx(Dg<r) ID(7rE <I>T) la (Co L( a) + 1) 

< Ce+ Rgux(Da) ( ID(7rE <I>T)(y) D7rE(Y)la Lx(gq )1+,6 + 
( Oe + C(T) 8 + ~1 C(T, ~o) Ka) mo(g<rx t 1 Lx(9<r ),6). 

Observe that the estimates for L(g") and mo( x) are uniform in €. This yields 

(3.46) Rx(D<I>~ (a)) 
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< Ce+ Rgux(DO") ( Oe + C(T) 8 + K1 C(T, Ko) I<~+ 
ID( 7r E<I>T) (g(Tx + O"(g(Tx)) D7r E (g(Tx + O"(g(Tx)) la Lx(g(T )H~). 

By definition, we have 

Summarizing the Lemmata 3.12, 3.16 and 3.19 together with (3.44) we obtain 

< 

< 

( I<e-assr + Oe + C(T) 8) · ( I<easT + Oe + C(T) 8)1+~ 
( K e-assr + Oe + C(T) 8) · ( easT + C(T, Ko)€+ C(T) 8) H~ 
( K e-assr e-'l'i a(gux) + K1 c (Ko) c (T) ]{~ + Oe). 

( eet 8 (T-a(gux)) e1'1 a(gux) + Oe) H~ 

J{ e-(ass_(H/3) as)T + Oe + C(T) 8 for x E Mi e 
J{ e-(etss_(H~)o:S)T + Oe + C(T) 8 for x EM± e 
J{ e-(a 88 -(l+~) a 8 )T e-b1 +(H~) a"-(H~)'Y1) a(ga-x) + 

Ki C(Ko) C(T) I<~ e1'1 (H~)T + Oe· for x E M 1 e 

for x E Mi e 

for x EM± e 

for x E MI 

By assumption, we have ass > ( 1 + f3)a 8
• Tp.erefore, there exists T/ < 1 satisfying 

Finally we conclude by using (3.46) 

Now suppose R(DO") ::; Ro. Then, we have to show that R(D<I>~(a)) ::; Ro is satisfied 
either. Hence, it is sufficient to choose Ro 2:: (1 - T/ t 1Ce > 0. This proves the lemma. D 

3.5 The existence of Whom 

The series of lemmata above proves the existence of a locally invariant manifold Wh~m pos-
sessing all the properties stated in Theorem 1. There are mainly two different. strategies 
in order to show the existence of the proper center manifold whom. 

In finite-dimensional spaces, we can reverse time and repeat the procedure described above. 
Then, we obtain a center-stable manifold Wh~m containing all those solutions which stay 
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near the homoclinic orbit for all positive times. The intersection of whcu and Whcs yields om om 
the desired center manifold Whom· However, this strategy fails in infinite-dimensional spaces 
for the obvious reason that the semi:flow cannot be extended to backward time. Instead we 
restrict the semi:flow to the finite-dimensional manifold Wh~m the existence of which was 
obtained previously. Now we can try to reverse time on this invariant manifold and repeat 
the graph transform by replacing the space XCi by Wh~m. 

We will realize this second strategy as follows. First, parametrize the manifold Wh~m as 
a graph &* over the 0 00-manifold Me. in the bundle Ee. using Lemma 3.27. Then, we take 
the pullback of the semi:flow restricted to Whom onto Me.. To that end, we decompose any 
solution x( t) E Wh~m into the two components 

u( t) :== 7rM( x( t)) E Me. 
&*(u(t)) E E(u(t)). 

By the invariance of Wh~m' we conclude u(t) + &*(u(t)) == x(t). Below we will prove that 
the vector field 

(3.4 7) u == D7rM(u + &(u)) ( -A(u + &(u)) + f(u + &(u))). 

is well defined and Lipschitz continuous on Me., see Lemma 3.32. Assume for a moment 
that this claim is true. Then u(t) is a solution of the differential equation (3.47). At the 
converse assume that u(t) solves (3.47) on Me.· Then x(t) == u(t) + &(u(t)) is a solution of 
the original equation satisfying x(O) = u(O) + &( u(O)) E Whom· Indeed, denote the solution 
with initial point x(O) == x(O) contained in wh~m by x(t). Then 7rM(x(t)) is a solution of 
(3.47) with the same initial point as x(t). Due to the uniqueness of solutions of (3.47) 
proved in Lemma 3.32 below, these solution curves have to coincide. Thus, the differential 
equation (3.4 7) is equivalent to the flow on Whom. The regularity of the vector field is 
identical to the regularity of O"*. 
The point in the above argument is that we will not lose any regularity when restricting 
the vector field to a less smooth manifold. Originally, Wh~m is in C1·f3. Thus, the tangent 
bundle and hence the vector field restricted to Whom are a priori only Cf3. The procedure 
mentioned above will provide a vector field which is as smooth as the manifold, namely C1•f3. 

Now, we can reverse time in the manifold Me. and consider (3.47) in negative time direction. 
Next, we apply Theorem 1 to Whom· The assumptions (Hl) up to (H4) are easily seen to 
be satisfied. Of course, Theorem 1 is valid on finite dimensional manifolds as well. Thus, 
we obtain a locally invariant graph O"; of equation (3.47). Taking the composition with O";u 
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yields a graph ( idcu + ()~u) 0 ( idc +a~)' which represents the locally invariant surface whom 
in xa. 

It remains to prove the claim about the Lipschitz continuity of the vector field (3.4 7). 

Lemma 3.32 Assume that f E Ck,f3(X, xa) with k, f3 > 0. Then the vector field induced 
on Me is of class Ck,i3 for any~< /3. 

Proof. We will restrict ourselves to the case k = 1. We have to show that the derivative 
of 

is Holder continuous. In fact, it is even not clear that this expression is well defined. 
However, note that the semiflow restricted to graph a* is invertible owing to the existence 
of the right inverse 9a-•. Thus, it is sufficient to show Holder continuity of the derivative of 

. . d 
Dx(D7rM(~(T,x)) dt~(t,x)lt=T) 

at x = u + &*( u ), because composition with 9a-. yields the vector field at x. First, we prove 
that 

(3.48) 

holds for any~ < /3. By [Hen81, Lemma 3.5.1], we obtain 

(3.49) ! <l'l,(x) = _:_A e-At + e-At f( <f?, x) +la' A e~A(t-s) (!( <f?, x) - f( <f1 5 x)) ds 

for any t > 0. We claim that 

D<i>t(x) = -Ae-At + e-At Df(~t x) D~t(x)+ 
J~ Ae-A(t-s) ( Df(~t x) D~t(x) - Df(~s x) D~s(x)) ds 

and D<i>T( ·) : xa --+ L(Xa, X) E cf3 holds. To prove the claim, consider the estimate 

IJ(~t(x + h)) - J(~t x) - Df(~t x) D~t(x) h+ 

DJ(~s x) D~s(x) h + f(~s x) - f(~s(x + h))' 

< t !Df(<l'lt(x + rh)) D<f?,(x + rh) - Df(<l'l.(x + rh)) D<l'l.(x + rh) + 
DJ(~s x) D~s(x)- DJ(~t x) D~t(x)I dr lhla 

< It - s 111 : lhl;+13 ";;
1

• 

Then, we obtain by denoting F(t, h) := Df(~t(x + rh)) D~t(x + rh) 

IF(t, h) - F(s, h) + F(s, 0) - F(t, O)I < C It - sl 11 

IF(t, h) - F(t, 0) + F(s, 0) - F(s, h)I < C lhl~, 
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because f E C1 ,f3, q>t E C11f3 and the solutions are of class C,,, for some 'r/ > 0, see [Hen81, 
Lemma 3.4.4]. Therefore, we can estimate the difference in the integral in (3.49) yielding 

lo' IA e-A(t-s) I If( <P,( x + h)) - f( il>,x) - D f( <P, x) Dil>t( x )h+ 

Dj(~s x) D~s(x) h + f(~s x) - J(~s(x + h))j ds 

< fo\t - s)-1 ea(t-s) t IDJ(il>,(x + rh)) Dil>,(x + rh) -

D J(q>s(x + rh)) Dq>s(x + rh) + D f(~s x) D~s(x) - D f(~t x) D~t(x)j dr lhla ds 

< la' c (t - s r~-1 ea(t-s) ds lhl~+fl";;' 

< C lhl~+f3n~l • 

This proves our claim ( 3 .48). 
Finally, we extend the mappings D7rM(x) : xa ---7 xa for fixed x to mappings from x to 
X. Indeed, we can extend ·the pl'ojections 'Of the· e:x:ponential dichotomies to these -spaces, 
see [Hen81] or [San93, Lemrria l.2(v)]. The same holds for the approximations of those 
mappings defined in Lemma 3.4 and hence in turn for 7rM( ·) by definition. Thus, the 
map D7rM(q>r(x)) D~T(x) : xa ---7 X is well defined ·and Holder continuous with expo-
nent ~ < (3. The image of this operator is contained in the tangent space T~T(x)M€ for 
any x E M€. Moreover, M€ C X endowed with the.induced topology is diffeomorphic to 
M€ c xa as the identity is an injective immersion and M€ is compact. This implies that 
D7rM(q>T(x)) D~T(x) composed with the inverse of the identity is Holder continuous on J\1€ 
as a subset of xa. The lemma is proved. D 

The lemma can be proved much easier if one requires more regularity for the nonlinearity 
f: xa-+ x. Indeed, it is easy to prove using [Hen81, Lemma 3.5.1] that D4>T(·) : xa -+ 

xa is contained in Cl,{3 provided f E C21f3. Then, of course, the restriction to M€ admits 
the same regularity. 

3.6 ·The parameter dependent version 

Now in fact we desire a center manifold for the equation 

(3.50) x +Ax= J(x) + µg(x, µ) 

or 
(3.51) x +Ax= J(x) + µg(t, x, µ) 

such that g is either independent of time or else periodic int with period P. So far, we 
have considered (3.50) or (3.51) with µ = 0. But actually all the results obtained up to 
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now are stable with respect to 0 1 perturbations. Indeed, if we replace f by f + µ g, we 
just have to add terms which are bounded by µ uniformly in €. Thus, we end up with the 
same result as before if only µ is sufficiently small. By the uniform contraction mapping 
theorem, see [CH82, Thm. 2.2.2], the fixed point Whom depends as smoothly on µ as the 
mapping <P~ does, that is Ok,f3. 

In case g is periodic in time, there are some other modifications in order. First of all, we 
have to choose T as a multiple nP of the period with n E N. Then, we need to prove 
Lemma 3.26 in this context. But we can carry out the graph transform in such a way that 
the whole analysis is valid for time steps T and T + P without any further modifications. 
Indeed, P is a constant and the interval [T, T + P] is compact. Then we can proceed as 
in Lemma 3.26 in order to prove that the center manifold is invariant under the Poincare 
map <Pp. 

This finishes the proof of the Theorems 1 and 2. 

4 Applications 

In this section, we will give one application of our main result. In fact, we_ will generalize the 
well-known Shilnikov chaos induced by a homoclinic orbit to a saddle-focus to semiliriear· 
parabolic equations. Usually, one needs a 0 1-linearization in order to prove this result. An 
application of a result of Belitskii provides us with the necessary lemma which can be used 
to linearize the vector field restricted to the center manifold. Consider 

(4.1) x +Ax= f(x), 

with A sectorial and f : xa ~ X in 0 1 ,{3 such that f(O) = D f(O) = 0 and a E [O, 1). 
Assume that q(t) is a homoclinic solution of (4.1) converging to zero. 

(H) Suppose that the spectrum of -A decomposes into u( -A) = 0"8 U uc U O"u such that 
Re 0"8 < -As < 0 < Au < Re uu. Moreover, uc is given by one of the following sets 

(i) O"c = {-A8 ± i/38, Au± i/3u} with {3 8
, 13u :f. 0 and A8 :f. Au, 

(ii) O"c = {-A8
, Au± i/3u} with 13u :f. 0 and A8 >Au, 

(iii) O"c = {-A 8 ± i/38
, Au} with {3 8 :f. 0 and Au> A8

• 

Here, all eigenvalues are counted with multiplicity, that is they are all simple. 

We denote the corresponding spectral projections by Pi, Pg and P?f. The first lemma is 
concerned with linearizing the vector field on the center manifold. 
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Lemma 4.1 Consider 
(4.2) x=Bx+J(x), 

with f E C1 ,f3 for /3 > 0 such that f(O) = DJ(O) = 0. We denote the flow by <I>(t,x). 
Assume that the spectrum of B is given by uc counted with multiplicity, see hypothesis 
(HJ. In particular, 2 :::; n :::; 4. Then, there exists a map h : U6(0) --+ Rn E C1 with 
h(O) = Dh(O) = 0 for 8 > 0 sufficiently small such that id+ h conjugates the nonlinear 
flow <I>(t, ·) and the linearized flow e-Bt in U6(0). 

Proof. Consider the local stable and unstable manifolds Wz~c(O) and Wz~c(O), which are 
of class C1,f3. Thus, there exists a C1,!3-map g : U6 --+ Rn satisfying g(O) = Dg(O) = 0, 
such that the stable and unstable eigenspaces are invariant under the transformed flow 
<f?t := (id+ g t 1 o <I>t o (id+ g ). In general, the transformed vector field would be of class Cf3 
only. However, <i?t is still of class C1 ,f3. Therefore, by the results of Belitskii, we obtain the 
existence of a conjugacy id+h conjugating e-B and <i?(l, ·),which fiilfills H(O) = Dh(O) = 0. 
Indeed, using the notation in [Bel73] we can apply ~Bel73, Thm. A, p. 276] by defining 
G = A = F'(O) := cB and ·F := <f?(l, ·). Moreover, observe that (still in the notation in 
[Bel73]) 

J(I',A; 1,/3) = [e(-,\s+f3,,\u),e(,\u-{3,\s)] 

holds using the definition r := {{1},{2},{1,2}}. Thus, -A8 ,Au tj. I(I',A;l,/3) and the 
assumptions of [Bel73, Thm. A, p. 276] are fulfilled. The result for flows follows now as 
in [Har82, IX.9]. Define 

id+ h := f
1 

eBs o (id+ h) o ~( s, ·) ds. lo · 
Then, we have h(O) = 0 and id+Dh(O) = f~eBs(id+Dh(O))D~(s,O)ds =id. Therefore, 
id+ his invertible on Us(O) for all sufficiently small 8 > 0. Moreover, (id+ h) is a conjugacy 
of e-Bt and ~(t, ·),see [Har82, IX.9]. Hence, the desired conjugacy of <I>t and e-Bt is given 
by (id + g) o h E C1 • D 

Using this result, we obtain the generalization of the Shilnikov-chaos to semilinear parabolic 
equation. Indeed, by the results of Deng [Den93, Rem.( c) following Thm. 2.1] or Tresser 
[Tre84] it is sufficient to have a C1-linearization result available in order to prove the 
existence of shift-dynamics near a homoclinic orbit to a saddle-focus. In fact, we have 
proved the following result. 

Theorem 3 Consider equation (4.1} and assume (HJ, {H2) and {H3) with as =As+/, 
ass = As + 2/, au = Au+/ and auu = Au+ 2/ for/ > 0 small. Then there exists a 
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center manifold Whom. Moreover, the results of Tresser [Tre84} and Deng [Den93} apply 
to the flow on the center manifold Whom. In particular, there exists horseshoes nearby the 

homoclinic orbit. 

It is easy to see that hypothesis (H2) is equivalent to the strong inclination property needed 
in [Den93] in the finite-dimensional setting. Hence, the assumptions needed here are not 
stronger than the ones used in [Den93]. Note that even in the finite-dimensional case, the 
center manifold provides some more insight in the dynamics as it shows that the horseshoe 
dynamics is confined to an invariant three- or four-dimensional manifold. 

We end by stating that there exists a three-dimensional center manifold in the inclination-
fiip and orbit-flip bifurcations investigated by [Yan87], [HKK94] and [San93]. The details 
will appear elsewhere. 

A Exponential dichotomies 

The variational equation admits exponential trichotomies fort :::; -t0 and t 2:: t0 for some 
large t0 , that is there exists complementary projections Pi(t) and fai(t) for t 2:: t0 and 
t :::; -t0 , respedively, and i = s, c, u with the properties 

IT(t, S )P8
( S )la < K e-ass(t-s) t 2:: s 2:: to 

(A.l) 
IT(t, S )Pc(s) la < K e-au(t-s) t 2:: s 2:: to 
IT(t, S )Pc( S) la < K e-as(s-t) s 2:: t 2:: to 
IT(t, S )Pu( S )la < K eauu(t-s) s 2:: t 2:: to 

and similar for negative times 

IT(t, s)fas(s)la < K e-ass(t-s) s:::; t:::; -to 

(A.2) 
IT(t, s)fac(s)la < K e-au(t-s). s :::; t :::; -to 
IT(t, s)fac(s)la < K e-a"(s-t) t:::; s:::; -to 
IT ( t, S) fau ( S) I a < K eauu(t-s) t:::; s :::; -to. 

Moreover, the projections commute with the semifiow T(t,s) in the usual way. The next 
hypothesis is concerned with the matching of these projections at t = 0. 

(H2) The projections Pi(t) and fai(t) can be continued as exponential trichotomies up to 

t = 0 for i = s, c, u and they satisfy 

Rfau(o) EB (RPs(o) EB RPc(o)) xa 
RPs(o) EB (Rfau(o) EB Rfac(o)) - xa. 
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The extension up to t = 0 is always possible for ordinary differential equations. For 
parabolic equations a sufficient condition is backward uniqueness, see [Lin86] or [San93]. 
Next, we modify the projections of the exponential dichotomies in order to obtain projec-
tions defined on the whole real line R. Note that these new projections will not give rise 
to dichotomies in the sense of [Pal84]. Indeed, we only have a pseudo-hyperbolic structure 
given by -ass < -as < 0, while in [Pal84] a separation in stable and unstable exponential 
rates is required. 

Lemma A.1 There exist projections fas(t), fau(t) and fac(t) fort E. R possessing the ~ame 
properties as the original projections Pi(t) and fai(t) fort 2:: 0 and t ~ 0, respectively. 
Moreover, the inequalities (A.1) and (A.2) still hold and the projections fai(t) converge to 
PJ for i = s,c,u and t ~ ±oo. 

Proof. The subspaces RP8 (0), Rfau(o) and R(fau(o) + fac(O)) n R(P8 (0) + pc(O)) define 
a decomposition of .xcx in complementary and closed subspaces.· Using this decomposition 
we can define complementary projections fas(O), fau(O) and fac(O). By [San93, Lemma 1.2] 

the claim follows. D 

Note that the.subspaces RP8 (0), Rfau(O) and R(Fu(o) + fac(O)) n R(Ps(o) + pc(O)) are 
unique under the exponential growth c~nditions stated in (A.l) and (A.2). Therefore, 
hypothesis (H3) can be replaced by 

(H3) There exists a constant C > 0 such that lq(t)la 2:: Ce-ast and lq(-t)la 2:: Ce-cxut for 
t ~ oo, that is q(t) converges with an exponential rate less than as or au to zero. 
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