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Abstract

We present a control scheme that is able to find and stabilize a chaotic saddle in a sys-

tem with a large number of interacting particles. This allows us to track a high dimensional

chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical

delayed feedback control, the scheme is non-invasive, however, only in an appropriately

relaxed sense considering the chaotic regime as a statistical equilibrium displaying ran-

dom fluctuations as a finite size effect. We demonstrate the control scheme for so called

chimera states, which are coherence-incoherence patterns in coupled oscillator systems.

The control makes chimera states observable close to coherence, for small numbers of

oscillators, and for random initial conditions.

Introduction. The classical goal of control is to force a given system to show robustly a behav-

ior a-priori chosen by the engineer (say, track a desired trajectory). However, feedback control

can also be an analysis tool in nonlinear dynamics: whenever the feedback input u(t) is zero,

i.e the control is non-invasive, one can observe natural but dynamically unstable regimes of

the uncontrolled nonlinear system such as equilibria or periodic orbits [1]. A famous example is

the method of time-delayed feedback control [2], which provides a non-invasive stabilization of

unstable periodic orbits and equilibria [3]. In general, a control scheme can be useful for non-

linear analysis if the controlled system converges to an invariant set of the uncontrolled system

without requiring particular a-priori knowledge about the location of the invariant set. In this con-

text the term “chaos control” is used to describe the stabilization of an unstable periodic orbit

that is embedded into a chaotic attractor. Thus, classical chaos control refers to suppressing

chaos [4, 1].

In this paper, we present a control scheme that is able to stabilize a high-dimensional chaotic

regime in a system with a large number of interacting particles. Our example is a so called

chimera state, which is a coherence-incoherence pattern in a system of coupled oscillators. We

demonstrate that at its point of disappearance this chaotic attractor turns into a chaotic saddle,

which in our numerical simulation we are able to track as a stable object by applying the control

scheme. The control scheme is a classical proportional control that acts globally on a spatially

extended system, and has been widely used e.g. for the control of reaction-diffusion patterns [5].

For a chaotic regime, it is non-invasive on average in the following sense: (i) 〈u〉 → 0 for

t → ∞: the time average of the control input tends to zero over time intervals of increasing

length. (ii) u → 0 for N → ∞: the control becomes small for an increasing number of particles.

The limit N → ∞ has been studied in detail for chimera states. Chimera states are stationary

solutions of a well-understood continuum limit system [6, 7, 8]. This enables us to compare

the chaotic saddle in the finite oscillator system with the corresponding saddle equilibrium in

the continuum limit system. However, our control method does not depend on the knowledge of

such a limit and it may be useful in general to numerically detect a tipping point of a macroscopic
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Figure 1: Chimera states far away from complete coherence (a) and close to coherence (b),

obtained by numerical simulation of (1), (2) with A = 0.9. Upper panels: Snapshot of phases

(black) and time-averaged phase velocities (gray). Lower panels: Space-time plots of angular

velocities. We require feedback control (6) to observe pattern (b).

state with an irregular motion on a microscopic level. On the other hand, we will show that the

proposed control scheme also works for small system size, where the continuum limit provides

only a rough qualitative description.

Applying the control scheme permits us to study the macroscopic state in regions of the phase

and parameter space that are inaccessible in conventional simulations or experiments. In the

coupled oscillator system this reveals several interesting properties of the stabilized chimera

states. In the controlled system, we observe a stable branch of chimera states bifurcating

from the completely coherent (synchronized) solution. This represents a new mechanism for

the emergence of a self-organized pattern from a spatially homogeneous state. We will show

that the dynamical regime of a chimera state close to complete coherence can be described

as a state of self-modulated excitability. Moreover, it turns out that also the chimera states on

the primarily stable branch change their stability properties under the influence of the control.

It is known that in the uncontrolled system the chimera states have a dormant instability that

will lead eventually to a sudden collapse of the pattern [9]. We will show that this collapse can

be successfully suppressed by the control. Since the chimera’s life-span as a chaotic super-

transient [10] increases exponentially with the system size, this collapse suppression provides

stable chimera states also for very small system size. In addition to the collapse suppression,

the control enlarges the basin of attraction such that random initial conditions converge almost

surely to the chimera state, which is both of particular importance for experimental realiza-

tions [11, 12, 13, 14, 15].
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Chimera states in coupled oscillator systems. A chimera state is a regime of spatially ex-

tended chaos [16] that can be observed in large systems of oscillators [17, 18] with non-local

coupling. It has the peculiarity that the chaotic motion of incoherently rotating oscillators is con-

fined to a certain region by a self-organized process of pattern formation whereas other oscil-

lators oscillate in a phase-locked coherent manner (see Fig. 1(a)). The prototypical model of

coupled phase oscillators has the form

dθk

dt
= ω −

2π

N

N
∑

j=1

Gkj sin(θk − θj + α), k = 1 . . . N (1)

where the coupling matrix G determines the spatial arrangement of the oscillators. Well-studied

cases are rings [17, 18, 19, 7, 16, 9, 20], two-tori [21, 22] and the plane [23, 24]. We choose

here a ring of oscillators and

Gkj = G(xk − xj) =
1

2π
[1 + A cos(xk − xj)], (2)

where xk = 2kπ/N −π is the location of oscillator k on the ring and θk ∈ [0, 2π) is its phase.

Considering x as a continuous spatial variable, one can derive the continuum limit equation

dz

dt
= iωz +

1

2
e−iαGz −

1

2
eiαz2Gz (3)

for the complex local order parameter z(x, t), see [6, 7, 8] for details. The non-local coupling is

here given by the integral convolution

(Gϕ)(x) :=

∫ π

−π

G(x − y)ϕ(y)dy.

In this limit a chimera state is represented by a uniformly rotating solution of the form

z(x, t) = a(x)eiΩt, (4)

where Ω is a constant frequency and a(x) is a constant non-uniform spatial profile including

coherent regions characterized by |a(x)| = 1 and incoherent regions where |a(x)| < 1, cf.

Fig. 1.

A chimera state with finite N shows temporal and spatial fluctuations around the corresponding

stationary limiting profile. The color/shade patterns in Fig. 2(a) show the stationary densities of

the global order parameter

r(t) =
1

N
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fluctuating around its mean value for a series of chimera trajectories with varying parameter

β = π/2−α. For the continuum limit (3) we obtain a continuous branch of chimera solutions (4)

shown as a blue curve in Fig. 2, using the continuum version

r(t) =
1

2π

∣

∣

∣

∣

∫ π

−π

z(x, t)dx

∣

∣

∣

∣

(5)

for the global order parameter. Fig. 2(a) shows, that increasing the parameter β beyond 0.22,

the chimera state disappears. In the context of the continuum limit N → ∞ this corresponds

to a classical fold of the solution branch, which continues as an unstable solution up to the

completely coherent state at (α = π/2, r = 1).
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Figure 2: Chimera states projected to the (β, r) plane (N = 400, A = 0.9). Panel (a): Uncon-

trolled chimeras; sequence of simulation runs with stepwise increasing parameter β. Panel (b):

Controlled chimeras; sequence of simulation runs with stepwise increasing control gain K. Blue

curve: numerically computed chimera solution of the continuum limit equation (3). Color/shade

patterns: observed density in each run (darker=higher density, see also histograms in Fig. 3).

Highlighted runs along dashed lines correspond to the parameter values used in Fig. 1 and

Fig. 3.

Control scheme. In order to study this unstable branch in more detail for moderately sized N
without relying on the continuum limit, we employ the proportional control scheme

α(t) = α0 + K(r(t) − r0), (6)

where (α0, r0) is a reference point in the (α, r)-plane shown in Fig. 2, and the control gain K
determines the slope of a straight line along which the controlled system evolves in time (see

dashed lines in Fig. 2); K = 0 corresponds to a vertical line, K → ∞ to a horizontal line.

Note that already in [25] chimera states in a system with a nonlinear state-dependent phase-

lag parameter have been investigated. However, depending on the local order parameter this

feedback cannot be interpreted as a global non-invasive control of the original system. As the

input enters the system parameter α, control (6) also respects all symmetries of the original

system. The controlled system (1), (6) has the same symmetries as the uncontrolled system (1):

rotational in phase θk 7→ θk +φ, rotational in space k 7→ k+`, reflection in space k 7→ N−k.

In Fig. 2(b) we show another sequence of stationary densities for chimera states in the plane β =
π/2 − α vs. global order parameter r, obtained from numerical simulations of (1), now with

control (6) and stepwise increasing control gain K. The reference point has been fixed to

(α0, r0) = (π/2 + 0.01, 1). In this way, we find stabilized chimera states along the whole
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branch of equilibria from the continuum limit. Fig. 3 shows in more detail the invasiveness of

the control for the runs highlighted in Figs. 2(a) and 2(b) by the dashed lines. Whereas for the

uncontrolled run the global order parameter r fluctuates around the corresponding equilibrium

value from the continuum limit (Fig. 3(a)), in the controlled run both r and β fluctuate around

their mean values (Figs. 3(c) and (d)). These fluctuations decrease for an increasing number

of oscillators (compare histograms for N = 100 and N = 400 in Fig. 3). Since for a finite N
system the invasiveness of the control is given by the fluctuations of these global quantities, it is

non-invasive on average satisfying conditions (i)–(ii) stated above. In the continuum limit (3), the

control (6), (5) acts on the solutions (4) in an exactly non-invasive manner and the stabilization

can be shown by a classical stability analysis.

Proportional control (6) is only one option to achieve non-invasive control for a chaotic saddle

in the relaxed sense of conditions (i)–(ii). Alternatives are any non-invasive methods for stabi-

lization of unknown equilibria. For example, a PI (proportional-integral) control was used in [26]

to explore the saddle-type branch of a partially synchronized regime in a small-world network

in the continuum limit. PI control adjusts the system parameter to achieve a prescribed output

(requiring to find two control gains). Thus, it is also non-invasive in a branch tracking context in

the relaxed sense. Time-delayed feedback or wash-out filters [27] are suitable near instabilities

other than folds of the continuum-limit equilibrium; for instance in [28], time-delayed feedback

has been used to suppress or enhance synchronization in a system of globally coupled oscilla-

tors.
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Figure 3: Time profiles and histograms of global order parameter r for chimera without con-

trol (a), and r and β for chimera with feedback control (b) and (c), for N = 100 and N = 400
oscillators (K = 4.8 for (b,c), A = 0.9).
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Figure 4: Influence of the control on a stable chimera state. Panel (a): Switching of the control

with K = 1 at t = 2000 permits the subsequently observed collapse for N = 20. Panel (b):

Controlling the same chimera state with increasing values of the control gain K. Panel (c): mean

life-time before collapse for N = 20 (dots); fraction of random initial conditions attracted by the

chimera state for N = 20 (circles) and N = 100 (crosses)

Suppression of collapse and enlarged basins. We study now the influence of the control

scheme on the lower branch of classical chimera states far from complete coherence, which

are already stable in the continuum limit without the control. As described in [9], the classical

chimera states from time to time show a sudden transition to the completely coherent state and

have to be considered as weakly chaotic type-II supertransients [10]. The life-time before col-

lapse increases exponentially with the system size which implies that chimera states disappear

quickly for N ≈ 20 (cf. Fig. 4(a)), whereas they typically appear as stable objects for any ob-

servable time-span if N > 100. The collapse process can be understood as follows. Driven

by finite size fluctuations, the trajectory can tunnel the barrier represented by the chimera on

the unstable branch and eventually reach the stable coherent state. Applying the control, this

scenario changes drastically: Increasing the control gain K, the mean life-time before collapse

increases by several orders of magnitude and, at the same time, the basin of attraction of the

chimera state grows correspondingly. Fig. 4(c) shows the average observed life-times for in-

creasing values of K. In our simulations over 107 time units, which we performed for each K,

the number of observed collapses decreased successively until for K > 0.5, we did not ob-

serve a single collapse event during this time span. Finally, for K ≥ Kc ≈ 0.67 the chaotic

saddle acting as a barrier disappears and the completely coherent state becomes unstable,

which ultimately prevents a collapse to this state. Accordingly, all random initial data converged

to the chimera state. Note that we have chosen the reference point on the chimera branch, see

Fig. 4(b), such that the given chimera state exists for all values of the control gain K. Hence, with
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feedback control stable chimera states can be observed for considerably smaller values of N ,

and arbitrary initial conditions, which is of particular importance for experimental realizations.

Self-modulated excitability close to coherence. Up to now, stable chimera states have

been observed only far from the completely coherent solution, except for the results in [29]

where the onset of incoherence has been triggered by an inhomogeneous stimulation profile. In

the controlled system (1), (6) there is a stable branch of chimera states bifurcating from complete

coherence in a homogeneous setting. This is another example of a pattern forming bifurcation

mechanism in a system with diffusive coupling. The chimera states close to complete coher-

ence display particular properties distinguishing them from classical chimera states. Fig. 1(b)

shows that the onset of incoherence manifests itself as the emergence of isolated excitation

bursts caused by phase slips of single or few oscillators, which appear irregular in space and

time but are confined by a process of self-localization to a certain region. Indeed, close to the

bifurcation point the dynamics of each single oscillator is close to a saddle-node-on-limit-cycle

bifurcation. Hence, the emergence of a chimera state can be understood as a transition from

quiescent to oscillatory behavior, which happens in a self-localized excitation region within a

discrete excitable medium. At the same time, the isolated phase slipping events are no more

well described by the average quantities from the continuum limit, which are continuous in space

and constant in time.

Conclusion. We demonstrate, that a feedback control that is non-invasive in our relaxed sense

is useful to explore complex dynamical regimes in large coupled systems. In particular, it can

be used to classify the disappearance of a chaotic attractor as a transition to a chaotic saddle,

which is the classical scenario for so-called tipping, without relying on a closed-form continuum

limit. Specific to partial coherence, feedback control is applicable to existing experimental setups

of coupled oscillators [12, 13, 15] as the coupling is often computer controlled. Feedback control

makes it possible to study the phenomenon of partial coherence for much smaller N , close to

complete coherence, and without specially prepared initial conditions.
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