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Abstract

We consider a basket or spread option on based on a multi-dimensional local volatility
model. Bayer and Laurence [Comm. Pure. Appl. Math., to appear] derived highly accurate
analytic formulas for prices and implied volatilities of such options when the options are
not at the money. We now extend these results to the ATM case. Moreover, we also derive
similar formulas for the local volatility of the basket.

1 Introduction

For a local volatility type model for a basket of stocks, whose forward prices are given by

dFi(t) = σi(Fi(t))dWi(t), i = 1, . . . , n, (1.1)

d
〈
Wi , W j

〉
(t) = ρi jdt, i, j = 1, . . . , n, (1.2)

with a given correlation matrix ρ, we consider basket options with a payoff

P(F) =

 n∑
i=1

wiFi − K

+

,

where we generally denote in bold face a vector of the corresponding italic components, as in
F = (F1, . . . , Fn). Since we only assume that at least one of the weights w1, . . . ,wn is positive,
we will refer to options of that type as generalized spread options.

The purpose of this paper is to provide an explicit short time expansion of the price CB(F0,K,T )
of the above option using the heat kernel expansion technique (see, for instance, [10], [9], [17])
when the option is at the money. Moreover, from the asymptotic formula for the option price
we also obtain an asymptotic formula for the implied and for the local volatility.1 Thereby we
complement the results obtained in [3], where a first order accurate asymptotic formula was
given when the option is not at the money. Such asymptotic formulas are highly relevant, in
particular when the dimension of the model is high (say n > 3), since then traditional (sim-
ulation or PDE) techniques to compute CB fail or are at least very time consuming. In fact,
for a wide range of different parameters, [3] show numerically that their asymptotic formula is
remarkably close to the true price as given by the model, even for not so small maturities T
(like 5 or even 10 years), for dimensions of up to n = 100 (or even more).

We now sketch the procedure for deriving the asymptotic formulas, highlighting the differences
to the non-ATM case.

� In the first step, we derive a Carr-Jarrow formula for the basket option price, separating
the price into the intrinsic value of the option (which vanishes in the ATM case) and

1Since we consider spread options here (for which
∑

i wiF0,i may be negative), we derive implied volatilities both
in the Black-Scholes and in the Bachelier sense.

1



an integral over the arrival manifold {
∑

i wiFi = K} with respect to the transition density
p(F0,F,T ). This is done in Section 2.

� The first terms in the heat kernel expansion of p(F0,F,T ) are computed. In the non-ATM
case, we a zero-order heat kernel expansion was sufficient to get first order accurate
formulas for the implied volatilities. At the money, we actually need to add one addi-
tional term in the heat kernel expansion. The heat kernel coefficients are computed in
Lemma 3.4.

� The afore-mentioned integral on the arrival manifold is essentially an integral with re-
spect to the rapidly decaying kernel exp

(
−d(F0,F)2/(2T )

)
, where d denotes the Rie-

mannian (geodesic) distance induced by the stock price process. Hence, the integral
can be approximated using Laplace’s expansion for T → 0, which involves the mini-
mizer F∗ of F 7→ d(F0,F)2 subject to

∑
i wiFi = K. In the general case, this minimizer

has to be computed numerically, while it is obviously given by F∗ = F0 when the option
is at the money. On the other hand, the formulas are much longer and more complex
due to the higher order heat kernel expansion used, see Proposition 3.3 together with
Lemma 3.2 and 3.5.

� In Section 4, we use the same Laplace’s expansion technique to derive the local volatility
of the basket.

� Finally, in Section 5, an asymptotic expansion for the implied volatilities is computed by
a comparison of coefficients between the asymptotic expansion of the basket price de-
rived in Proposition 4.1 and asymptotic expansions of the Black-Scholes and Bachelier
formulas, respectively.

In Section 6 we present numerical examples for one particular choice of a local volatility model,
namely the CEV model, corresponding to σi(Fi) = ξiF

βi
i , 0 ≤ βi ≤ 1, 1 ≤ i ≤ n. The numerical

observations supports the claimed accuracy of the asymptotic price formulas. In fact, compar-
isons with highly accurate reference solutions show that the asymptotic formulas indeed have
the suggested rates of convergence as T → 0. Even more, they indicate that the formulas, in
particular the first order formula, are highly accurate even for large maturities such as T = 10
years, thereby confirming the observations in[3]. Note, however, that our derivation is not fully
rigorous, as the following two assumptions are used throughout:

� The initial price F0 is far enough from the boundary of Rn
+ such that boundary effects

(caused by singularities of σi at Fi = 0) are not felt;

� The minimum in the Laplace’s expansion is non-degenerate.

As verified by the numerical experiments, both assumptions seem justified (at least in an
equity setting). We refer to the discussion in [3, Section 4] on how to verify these assumptions.
See also [2] and [5], [6] for related problems.

2 Basket Carr-Jarrow formula

Consider a basket B =
∑

wiFi with weights wi ∈ R. Following [4] and [3], we are now going to
derive a Carr-Jarrow formula for the price of a generalized spread option on the basket, i.e., a
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decomposition of the price of the option into the intrinsic value and an integral over the arrival
manifold {B = K}. Take the Itô derivative of the basket’s price:

d
n∑

i=1

wiFi(t) =

n∑
i=1

wiσi(Fi(t))dWi(t)

=

√√√√√√√√√√√ n∑
i, j=1

wiw jσi(Fi(t)σ j(F j(t))ρi j︸                                ︷︷                                ︸
σ2
N ,B

dW̄(t),

for a new Brownian motion W̄. Here we have used the notation σN,B to indicate the “normal
volatility” of the basket which must not be confused with the lognormal (Black) volatility σB =
σN,B

n∑
i=1

wiFi

used in reference [1]. Therefore, by the Itô-Tanaka formula we have

d

 n∑
i=1

wiFi(t) − K

+

=

n∑
i=1

wi1∑
wiFi(t)>K dFi(t) +

1
2
δ{F:

∑
wiFi(t)=K} σ

2
N,B(F(t))dt.

Integrating we obtain n∑
i=1

wiFi(T ) − K

+

=

 n∑
i=1

wiFi(0) − K

+

+

+

n∑
i=1

wi

∫ T

0
1∑

wiFi(u)>K dFi(u) +
1
2

∫ T

0
δ{F(u):

∑
wiFi(u)=K} σ

2
N ,B(F(u))du.

Letting EK = {F ∈ Rn
+ :

∑
wiFi = K} and taking conditional expectations with respect to the

filtration F0 at time 0, we obtain, assuming Fi(t) is a martingale for each i2:

CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+
1
2

∫ T

0
E

[
σ2
N ,B δEK (Bt)

]
dt.

Letting |w| =
√

n∑
i=1

w2
i , and denoting by Hn−1 the Hausdorff measure, which on the hyperplane

EK coincides with Lebesgue measure, a simple use of the co-area formula (see [7]), and

using that |∇(
n∑

i=1
wiFi)| = |w|, we see that the expectation, when expressed in terms of the joint

transition density, is given by:

CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+
1
2

∫ T

0

1
|w|

∫
EK

σ2
N ,B(F)p(F0,F, u)Hn−1(dF)du.

Therefore, we arrive at the proposition:

2 In many cases of interest, Fi(t) is only a local martingale and not a martingale. But the discrepancy is not
“felt” for short times, since the set of paths that can reach the boundary have small probability, in this limit. This is
known as the principle of “not feeling the boundary” for small times and is born out by our numerical results. More
surprisingly the boundary is not felt, even for quite large times.

3



Proposition 2.1. The value of a call option on a basket B is given by

CB(F0,K,T ) =

 n∑
i=1

wiFi(0) − K

+

+

+
1
2

∫ T

0

1
|w|

∫
EK

n∑
i, j=1

wiw jσi(Fi)σ j(F j)ρi j p(F0,F, u)Hn−1(dF)du. (2.1)

Using the formula for the basket’s local volatility, [1] or [9], expressed in the notation introduced
above, after canceling common factors we also have the

Proposition 2.2. The local volatility of the basket option is given by:

σ2
loc(K,T )K2 =

∫
E(K)

n∑
i, j=1

wiw jσi(Fi)σ j(F j)ρi j p(F0,F,T )Hn−1(dF)∫
E(K)

p(F0,F,T )Hn−1(dF)
.

3 A general asymptotic expansion procedure

The starting point is the basket Carr-Jarrow formula derived above for the calculation of the
option prices as in Proposition 2.1 and the Proposition 2.2 for the calculation of the local
volatilities. The next step is to approximate the transition density there using the heat kernel.
For reasons that will become clear in the course of the asymptotics, it will be necessary to use
the so-called geometric expansion

p(F0,F, t) =
1

(2πT )
n
2

√
det g(F)e−

d2(F0 ,F)
2t (u0(F0,F) + tu1(F0,F)) + o(t). (3.1)

For a detailed exposition of the geometrical underpinning of (3.1) we refer to [9], [17], [10],
[14] and [3]. Here, we just give a very quick reminder. The state space Rn is equipped with a
Riemannian metric by defining the inverse g−1 of the metric tensor by

gi j(F) = σi(Fi)ρi jσ j(F j), 1 ≤ i, j ≤ n.

Hence, the metric tensor itself is given by

gi j(F) = σi(Fi)−1ρi jσ j(F j)−1, 1 ≤ i, j ≤ n,

with determinant

det g(F) = det
(
ρ−1

) n∏
k=1

σk(Fk)−2

(where ρi j denotes the (i, j)-component of the inverse matrix ρ−1 of the correlation matrix ρ).
The (geodesic) distance between two points F0 and F is denoted by d(F0,F).

The specific form of these quantities in the setting of local volatility models has no relevance in
our initial asymptotic derivations, which can be obtained for generic versions of these. So, to
lighten the notation and streamline the presentation, we first derive the asymptotic expansions
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without any specific reference to these and then plug in the specific form only at the end of the
process in order to produce the required concrete asymptotic expansions.

Plugging the heat kernel expansion (3.1) into the expressions in Propositions 2.1 and 2.2,
respectively, we see that we have to compute expressions of the form

1
(2πt)n/2

∫
EK

Ψ(F) exp
(
−

d(F0,F)2

2t

)
Hn−1(dF), (3.2)

where
Ψ(F) = ūi(F0,F) B

√
det g(F)σ2

N ,B(F)ui(F0,F), i = 0, 1, (3.3)

for the option price and for the numerator in Proposition 2.2 and

Ψ(F) = ûi(F0,F) B
√

det g(F)ui(F0,F), i = 0, 1 (3.4)

for the denominator in Proposition 2.2.

The integral on the n − 1 dimensional subspace EK of Rn can be transformed into an integral
over Rn−1, by eliminating one of the variables. We choose to eliminate the n-th one, using the
payoff

Fn(F1, . . . , Fn−1,K) =
1

wn

K −
n−1∑
i=1

wiFi

 , (3.5)

Denoting

G = (F1, . . . , Fn−1) ∈ Rn−1
+ ,

GK =

G ∈ Rn−1 :
n−1∑
i=1

wiFi < K

 ,
so that for our hyperplane’s intersection

EK ∩ R
n
+ =

F ∈ Rn
+ : F =

G, 1
wn

K −
n−1∑
i=1

wiFi


 ,G ∈ GK

 .
Note that the set GK is introduced in order to ensure that Fn in (3.5) is non-negative, as it
needs to be. The set EK is an n − 1 dimensional hyperplane in Rn

+.

Note that, when we parametrize the hyperplane Ek using (F1, . . . , Fn−1), as in (3.5)

FK(F1, . . . , Fn−1) = (F1, . . . , Fn−1, Fn(F1, . . . , Fn−1,K)),

we will always assume that the weight multiplying Fn is positive. This can always be achieved
by choosing as the n-th asset one of the assets with a positive weight. Then for the surface
measure, we have

dHn−1 =
√

1 + |∇Fn|
2dF1 . . . dFn−1 =

|w|
|wn|

dF1 . . . dFn.

In this notation, with Λ = d2

2 , the integral (3.2) reads

1
(2πt)n/2

|w|
|wn|

∫
GK

e−
Λ(F0 ,FK (G))

t Ψ(FK(G))dF1 . . . dFn−1 =
1

(2πt)n/2

|w|
|wn|

∫
GK

e−
Φ(G)

t Ψ(G)dG, (3.6)
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using the notation Φ(G) B Λ(F0,FK(G)) and (by abuse of notation) Ψ(G) B Ψ(FK(G)). We
now use Laplace asymptotics for multiple integrals. The main contribution comes from a neigh-
borhood of the minimum point.

G∗ = arg min
G∈GK

d2(F0, (G, Fn(G,K)), (3.7)

= d2(F0,EK).

Set F∗K = (G∗, Fn(G∗,K)). (Of course, when the option is at the money, we have G∗ =

(F0,1, . . . , F0,n−1).)

Order zero

The zero-th order term in the Laplace expansion of∫
GK

e−
Φ(G)

t Ψ(G)dG

is identical to the one in [3] except that in the present setting we have d(F0,F∗K) = 0. We get,
as in [3]

t
n−1

2 Ψ(G∗) ×
∫
Rn−1

e−
zT Qz

2 dz2 . . . dzn = t
n−1

2 Ψ(G∗)
(2π)

n−1
2

(det Q)
1
2

,

where Q = D2Φ(G∗) is the Hessian of Φ at the minimum point. Thus, bringing back the missing
factor and taking into account that F∗K = F0 in the current (ATM) setting, we see that the lowest
order term in the Laplace expansion of (3.2) is

hΨ
0 B

|w|
|wn|

1
√

2πt det Q
Ψ(F0). (3.8)

Order one

For obtaining first order implied or local volatility terms in the ATM regime, we need to push
the Laplace expansion one step further, i.e., we need one additional term for∫

GK

e−
Φ(G)

t Ψ(G)dG

Hence, we apply the (multi-variate) Taylor expansion for Φ(G) B Λ(F0,FK(G)) up to order 4
around the maximizer G∗, which can be expressed in tensor notation as

Φ(G) = Φ(G∗) + DΦ(G∗)︸   ︷︷   ︸
=0

(
G −G∗

)
+

1
2

D2Φ(G∗)
(
G −G∗

)⊗2
+

+
1
6

D3Φ(G∗)
(
G −G∗

)⊗3
+

1
24

D4Φ(G∗)
(
G −G∗

)⊗4
+ · · · ,

with

DkΦ(x)y⊗k B
∑

i1,...,ik

∂k

∂xi1 · · · ∂xik
Φ(x)yi1 · · · yik .

3

3This notation makes sense as any multi-linear map on a vector space – such as DkΦ(x) – corresponds to a
linear map – here also denoted by DkΦ(x) – on the tensor product space.
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Of course, we are aware that when the option is at the money, the optimal configuration is the
same as the initial configuration F0. Nonetheless, we think that using a different symbol for
the optimal configuration at this stage leads to a clearer exposition of the underlying ideas.
Likewise, we apply Taylor expansion up to second order for the map Ψ(G) around G∗,

Ψ(G) = Ψ(G∗) + DΨ(G∗)
(
G −G∗

)
+

1
2

D2Ψ(G∗)
(
G −G∗

)⊗2
+ · · · .

In the end, we are interested in small-time asymptotics, so we change variables

z B
1
√

t

(
G −G∗

)
,

so that we can express the above Taylor expansions as expansions in t,

1
t
Φ(G) =

1
t
Φ(G∗) +

1
2

D2Φ(G∗)z⊗2 +
1
6

D3Φ(G∗)z⊗3 √t +
1
24

D4Φ(G∗)z⊗4t + o(t),

and
Ψ(G) = Ψ(G∗) + DΨ(G∗)z

√
t +

1
2

D2Ψ(G∗)z⊗2t + o(t).

Using the above Taylor expansions, the change of variables, and

ea
√

t+bt = 1 + a
√

t +

(
a2

2
+ b

)
t + o(t),

we obtain∫
GK

e−
Λ(F0 ,FK (G))

t Ψ(G)dG = t(n−1)/2e−Φ(G∗)/t
∫

(GK−G∗)/
√

t
e−

1
2 D2Φ(G∗)z⊗2

×

×

1 − 1
6

D3Φ(G∗)z⊗3 √t +

1
2

{
−

1
6

D3Φ(G∗)z⊗3
}2

−
1
24

D4Φ(G∗)z⊗4

 t + o(t)

×
×

[
Ψ(G∗) + DΨ(G∗)z

√
t +

1
2

D2Ψ(G∗)z⊗2t + o(t)
]

dz. (3.9)

In the next step, we approximate the integral by replacing the domain of integration (GK −

G∗)/
√

t by Rn−1. Then we can see that the integration kernel in (3.9) is Gaussian with vanishing
mean, so that the integral of any odd monomial with respect to the kernel vanishes. Thus, we
obtain the expansion

|w|
|wn|

1
(2πt)n/2

∫
GK

e−
Λ(F0 ,FK (G))

t Ψ(G)dG ≈
[
hΨ

0 + hΨ
1 t + o(t)

]
, (3.10)

with hΨ
0 defined in (3.8) and

hΨ
1 B

|w|
|wn|

1
(2πt)n/2

∫
Rn−1

e−
1
2 zT Qz

[
1
2

D2Ψ(G∗)z⊗2 −
1
6

D3Φ(G∗)z⊗3 × DΨ(G∗)z+

+
1
2

(
1
6

D3Φ(G∗)z⊗3
)2

Ψ(G∗) −
1

24
D4Φ(G∗)z⊗4Ψ(G∗)

]
dz. (3.11)

Using Isserlis’ Theorem (see [11]), the equation (3.11) for hΨ
1 can be computed explicitly.
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Lemma 3.1 (Isserlis’ theorem for fourth and sixth moments). For a covariance matrix Σ ∈ Rd×d

let T 2(Σ) ∈ (Rd)⊗4 and T 3(Σ) ∈ (Rd)⊗6 be the tensors defined by

T 2(Σ)i1,...,i4 = Σi1i2Σi3i4 + Σi1i3Σi2i4 + Σi1i4Σi2i3

and

T 3(Σ)i1,...,i6 = Σi1i2Σi3i4Σi5i6 + Σi1i2Σi3i5Σi4i6 + Σi1i2Σi3i6Σi4i5 + Σi1i3Σi2i4Σi5i6+

+ Σi1i3Σi2i5Σi4i6 + Σi1i3Σi2i6Σi4i5 + Σi1i4Σi2i3Σi5i6 + Σi1i4Σi2i5Σi3i6+

+ Σi1i4Σi2i6Σi3i5 + Σi1i5Σi2i3Σi4i6 + Σi1i5Σi2i4Σi3i6 + Σi1i5Σi2i6Σi3i5+

+ Σi1i6Σi2i3Σi4i5 + Σi1i6Σi2i4Σi3i5 + Σi1i6Σi2i5Σi3i4 ,

1 ≤ i1, . . . , i6 ≤ d. For Z ∼ N(0,Σ) we have

E
[
Z⊗4

]
= T 2(Σ), E

[
Z⊗6

]
= T 3(Σ).

Hence, we can get an explicit formula also for hΨ
1 in terms of derivatives of Ψ and Φ – which

are easy to compute, but lead to quite long formulas that are not included here.

Lemma 3.2. With the short-hand notation ∂i1,...,ik B
∂k

∂Fi1 ···∂Fik
, we have

hΨ
1 =

|w|
|wn|

1
√

2πt det Q

[
1
2

D2Ψ(G∗)Q−1 −
1
6

∑
i1,...,i4

(∂i1,i2,i3Φ)(G∗)(∂i4Ψ)(G∗)T 2(Q−1)i1,...,i4

+
1

72
Ψ(G∗)

∑
i1,...,i6

(
∂i1,i2,i3Φ

)
(G∗)

(
∂i4,i5,i6Φ

)
(G∗)T 3(Q−1)i1,...,i6

−
1
24

Ψ(G∗)
∑

i1,...,i4

(
∂i1,...,i4Φ

)
(G∗)T 2(Q−1)i1,...,i4

]
.

These results are summarized in

Proposition 3.3. We have the Laplace expansion

1
(2πt)n/2

∫
EK

Ψ(F) exp
(
−

d(F0,F)2

2t

)
Hn−1(dF) = hΨ

0 + thΨ
1 + o(t)

with hΨ
0 given in (3.8) and hΨ

1 given in Lemma 3.2.

The last ingredient needed for the asymptotic expansions of both implied and local volatilities
are the heat kernel coefficients u0 and u1. As we are assuming the options to be ATM, we only
need the heat kernel coefficients on the diagonal.

Lemma 3.4. For a local volatility model, we have the following formulas for the heat kernel
coefficients on the diagonal:

u0(F,F) = 1,

u1(F,F) =
1
4

n∑
i=1

σi(Fi)σ′′i (Fi) −
1
8

n∑
i, j=1

σ′i(Fi)ρi jσ′j(F j),

where, as usual, ρi j denotes the (i, j)-component of ρ−1.
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Proof. Note that the infinitesimal generator A of the process F(t) can be expressed (using the
summation convention) as

A =
1
2

∆ −
1
2

fi(F)
∂

∂Fi
,

where

∆ =
1√
det g

∂

∂Fi
gi j

√
det g

∂

∂F j

denotes the Laplace-Beltrami operator associated to g and the vector field f is given by

fi(F) = σi(F)σ′i(Fi), i = 1, . . . , n.

As indicated in (3.1), the transition density of the process F(t) satisfies (under certain assump-
tions)

p(F0,F,T ) =
1

(2πT )n/2

√
det g(F)e−

d(F0 ,F)2

2T (u0(F0,F) + Tu1(F0,F)) + o(T ),

where d(F0,F) is the geodesic distance between F0 and F and u0 and u1 are the heat kernel
coefficients.

The order zero heat kernel coefficient is given by u0(F0,F) =
√

∆(F0,F)e−
1
2

∫
γ〈 f , γ̇g〉, where∫

γ

〈
f , γ̇g

〉
is understood as integral along the geodesic γ joining F0 and F and ∆(F0,F) is the

Van Vleck - De Witt determinant,

∆(F0,F) =
1√

det g(F0) det g(F)
det

(
−

1
2
∂2d2(F0,F)
∂F0∂F

)
.

On the diagonal, we clearly have
∫
γ

〈
f , γ̇g

〉
= 0 and for any local volatility model we have

∆(F0,F) ≡ 1, as the geometry is isomorphic to the Euclidean geometry by the coordinate
transformation F 7→ Ly, where LρLT = Id and yi B

∫ Fi

0 σi(u)−1du. Hence, u(F,F) = 1.

For the first order heat kernel coefficient, we refer to [13, Eq. (4.1)], where it is shown that

u1(F,F) =
1
6
κ +

1
4

divg f (F) −
1
8
| f (F)|2g .

Here, κ denotes the scalar curvature, which vanishes for local volatility model due to the iso-
morphism with the Euclidean geometry already used above. (Note that [13] consider the heat
kernel corresponding to ∆+ f , whereas we consider the operator 1

2∆+ 1
2 f . Hence, we evaluate

the formula obtained in [13, Eq. (4.1)] at t/2 instead of t.) For the remaining terms we have

divg f (F) =
1√

det g(F)

∂

∂Fi

[
fi(F

√
det g(F)

]
= σi(Fi)σ′′i (Fi),

| f (F)|2g = gi j(F) fi(F) f j(F) = σ′i(Fi)ρi jσ′j(F j). �

Finally, we can explicitly compute the determinant of the Hessian Q of Φ at G∗ = (F0,1, . . . , F0,n−1)
in the ATM regime.

Lemma 3.5. The Hessian Q of Φ satisfies

det Q =

∑n
i, j=1 wiσi(F0,i)ρi jw jσ j(F0, j)

w2
n det ρ

∏n
i=1 σi(F0,i)2

= σ2
N ,B(F0) det g(F0)/w2

n.

The proof of Lemma 3.5 is referred to the Appendix.
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4 Basket local volatility

The numerator in the right hand side of the formula in Proposition 2.2 is given by

1
(2πt)n/2

∫
EK

(ū0(F0,F) + tū1(F0,F)) exp
(
−

d(F0,F)2

2t

)
Hn−1(dF) = hū0

0 + t
(
hū0

1 + hū0
0

)
+ o(t),

where, by abuse of notation, we denote the function F 7→ ūi by ūi again, i = 0, 1. For the
denominator, we get

1
(2πt)n/2

∫
EK

(û0(F0,F) + tû1(F0,F)) exp
(
−

d(F0,F)2

2t

)
Hn−1(dF) = hû0

0 + t
(
hû0

1 + hû1
0

)
+ o(t).

As
a1 + b1t + o(t)
a2 + b2t + o(t)

=
a1

a2
+

a2b1 − a1b2

a2
2

t + o(t),

we arrive at

σloc(K,T )2K2 =
hū0

0

hû0
1

+
hû0

0 (hū0
1 + hū1

0 ) − hū0
0 (hû0

1 + hû1
0 )(

hû0
0

)2 T + o(T ).

As ū0 = σ2
N ,B

û0, we can easily simplify

hū0
0

hû0
1

= σ2
N ,B(F0).

For the first order term, we note that all the terms hū j
i and hû j

i have the common factor
|w|
|wn |

1√
2πT det Q

, which, hence, cancels out in the first order term – in particular, implying that
the “first order term” is really first order in T . Thus, we get

Proposition 4.1. For K = F0 =
∑n

i=1 wiF0,i, the basket local volatility has the asymptotic
expansion σ2

loc(T,K) = σ2
loc,0(K) + σ2

loc,1(K)T + o(T ), with

σ2
loc,0(K) =

σ2
N ,B

(F0)

K2 ,

σ2
loc,1(K) =

hû0
0 (hū0

1 + hū1
0 ) − hū0

0 (hû0
1 + hû1

0 )(
hû0

0

)2
K2

.

5 Implied volatility

The strategy for obtaining an asymptotic expansion for the implied volatility is as follows: we
first compute an asymptotic expansion of the basket option price in our local volatility model,
then we compare coefficients with the short time expansion of the corresponding call option
price in the Black-Scholes or Bachelier model, respectively. Hence, we first apply our general
asymptoic expansion obtained in Proposition 3.3 to the Carr-Jarrow formula from Proposi-
tion 2.1, getting (for K = F0)
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Now we can insert these results back into Proposition 2.1, and we obtain

CB (F0,K,T ) =
1

2 |w|

∫ T

0

(
hū0

0 + t
(
hū0

1 + hū1
0

)
+ o(
√

t)
)

dt

=
1
2

∫ T

0

gū0
0
√

t
+
√

t
(
gū0

1 + gū1
0

)
+ o(
√

t)

 dt

= gū0
0

√
T +

1
3

(
gū0

1 + gū1
0

)
T 3/2 + o

(
T 3/2

)
,

where

gū j
i B

√
t
|w|

hū j
i , i, j = 0, 1 (5.1)

is independent of t. Finally, using (3.8) together with (3.3), and Lemma 3.5, we get

gū0
0 =

σ2
N ,B

(F0)
√

det g(F0)

|wn|
√

2π det Q
=
σN ,B(F0)
√

2π
.

Proposition 5.1. The expansion of the call prices (at-the-money) in drift-less local volatility
models is asymptotically equivalent, to first order, to

CB(F0,K,T ) =
σN ,B(F0)
√

2π
+

1
3

(
gū0

1 + gū1
0

)
T 3/2 + o(T 3/2)

as T → 0.

5.1 Zero-th order implied vola

In the final step, we compute an expansion of the implied volatility with respect to either Black-
Scholes or Bachelier model. Let us consider the prices of call options with stock price F0 =∑n

i=1 wiF0,i = K in the Black-Scholes and Bachelier models, assuming that the respective
volas are of the form σBS = σBS ,0 + TσBS ,1 and σBach = σBach,0 + TσBach,1. We obtain

CBS (F0,K,T ) = CBS (K,K,T ) =
K
√

2π
σBS ,0

√
T +

K
√

2π

[
σBS ,1 −

1
24
σ3

BS ,0

]
+ o(T 3/2),

CBach(F0,K,T ) = CBach(K,K,T ) =
K
√

2π
σBach,0

√
T +

K
√

2π
σBach,1T 3/2 + o(T 3/2).

By comparison of coefficients, we thus find we find that

σBS ,0 = σBach,0 =
1
|wn|K

ū0(F0,F0) (det Q)−
1
2 =

σN ,B(F0)

F0
, (5.2)

where we also used F0 = K.

Remark 5.2. The right hand side in equation (5.2) is nothing but the local volatility of the
basket

∑n
i=1 wiFi at F0 in the Black-Scholes (i.e., log-normal) sense. Hence, we have obtained

that the zero order term in the small time expansion of the implied volatility of the basket is
equal to its local volatility when we consider an ATM option. That result is not surprising in
light of [8], where similar results were obtained (in one-dimensional models). In this sense,
one could even take (5.2) as an ex-post justification of Lemma 3.5.
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Remark 5.3. We may express the zeroth order implied volatility in terms of the zeroth order
implied volatilities of the individual components. Let us, for simplicity, assume wi > 0, i =

1, . . . , n. Then, as we have seen above, the zeroth order implied vola of the basket at the
money is given by

(σBS ,0)2 =

n∑
i, j=1

ρi jwiw j
σi(F0,i)

K
σ j(F0, j)

K

=

n∑
i, j=1

ρi jwi
F0,i

K
w j

F0, j

K
σi(F0,i)

F0,i

σ j(F0, j)
F0, j

=

n∑
i, j=1

ρi jwi
F0,i

K
σi

BS ,0w j
F0, j

K
σ

j
BS ,0, (5.3)

where σi
BS ,0 denotes the implied volatility of the ith asset for the strike price Ki = F0,i, i.e.,

stroke at the money. If we assume the weights to sum up to one, the weighting terms wi
F0,i
K

can be interpreted as the relative moneyness of the ith asset, so that the total implied volatility
of the ATM basket is represented in (5.3) as a weighted average of the individual implied
volatilities, stroke at the money, respectively, weighted by correlation and relative moneyness.

5.2 First order implied vola

The first order implied volatilities in the Black Scholes and the Bachelier model do not coincide
any more. Indeed, we immediately have the first order correction term in the Bachelier model

σBach,1 =

√
2π

3K

(
gū0

1 + gū1
0

)
. (5.4)

On the other hand, for the Black-Scholes model we have

σBS ,1 =

√
2π

3K

(
gū0

1 + gū1
0

)
+
σ3

BS ,0

24
= σBach,1 +

σ3
BS ,0

24
, (5.5)

implying that implied vola quoted in the Black-Scholes framework is strictly larger than the
implied vola in the Bachelier framework up to first order – the prices are, of course, equal up
to first order.

6 Numerical results

6.1 The CEV model

As in [3], we consider the CEV model for the numerical examples. The CEV model is a special
case of the general local volatility model considered so far, where the local volatilities are given
by

σi(Fi) = ξiF
βi
i , i = 1, . . . , n,

for some parameters ξi ≥ 0 and βi > 0. In fact, the most realistic scenario here is 0 < βi ≤ 1.
Note that we allow βi < 1/2.
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6.2 Implementation of the approximate formulas and simulation

Implementation of the zero order terms of the implied volatilities in either Black-Scholes or
Bachelier setting is, of course, easy using (5.2). On the other hand, the formulas for σBS ,1
and σBach,1 are much less straightforward to implement. While the formulas in the ATM case
are fully explicit (unlike in [3]) an efficient implementation is much less trivial. The formula for
h1 in Lemma 3.2, for instance, depends on the derivatives up to order four of the squared
Riemannian distance at F0 and on the Jacobi matrix of F 7→ u0(F0,F). Already the evaluation
of the (n − 1) × (n − 1) × (n − 1) × (n − 1) tensor D4Φ can be very time-consuming, if a
naive implementation is used, which does not take into account that most derivatives actually
vanish. But even when more efficient implementations are used, the sheer size of the tensor
may impose limitations on the dimension of the problem. So far, we have implemented (3.11)
in Mathematica using symbolic differentiation of the squared Riemannian distance and the
zeroth order heat kernel coefficient u0, which works for small dimensions, up to n = 5, say.

As in the paper [3], we compare the approximate prices against prices obtained from sophis-
ticated Monte Carlo simulation. Here, the CEV-SDE is discretized using the Ninomiya-Victoir
scheme [15], which is a second order weak approximation scheme based on a splitting of the
generator. Strictly speaking, the CEV process violates the strong regularity assumption of that
scheme, especially at the boundary of the domain, but, as often in equity modelling, we do
empirically observe second order convergence for CEV-baskets, yet another beneficial effect
of “not feeling the boundary”. For variance reduction, we combine the discretization with the
mean value Monte Carlo method, see [16]. This is a variant of the control variate technique,
where a linear combination of one-dimensional geometrical Brownian motions is used as con-
trol variate. More precisely, we freeze each component but one of the basket, and replace
the dynamics of the remaining basket by a corresponding Black-Scholes dynamics. In the re-
sulting model, the true option price can be explicitly calculated. Finally, we choose a linear
combination of those partially frozen model so as to minimize the variance of the Monte Carlo
estimator.

The expectation of the random variable obtained by combining the Ninomiya-Victoir discretiza-
tion of the CEV process and the mean value Monte Carlo method is the approximated using
Sobol numbers. In some sense, this contradicts the above motivation for the variance reduc-
tion, but we do find empirically that the integration error for a Quasi Monte Carlo estimator is
also reduced by the variance reduction, i.e., the variance reduction also seems to reduce the
number of most relevant dimensions of the integration problem. Finally, we sacrifice some of
the accuracy available by the combination of the three techniques mentioned so far by intro-
ducing a random shift of the Sobol numbers, i.e., we use the Randomized Quasi Monte Carlo
technique, see L’Ecuyer [12]. In this way, we can obtain reliable computable error bounds for
the integration error.

6.3 Numerical examples

Example 6.1. In the first example, we consider a three-dimensional spread option, which is
determined by the following parameters:

F0 =

 8
17
12

 , σ =

0.40.8
0.7

 , β =

0.70.5
0.3

 , w =

−1
1
1

 ,
13



with a correlation matrix

ρ =

 1 0.9167390 0.7425194
0.9167390 1 0.8099573
0.7425194 0.8099573 1

 .
We compute the ATM price, i.e., the option price at K = 21, for maturities T ∈ {0.5, 1, 2, 5, 10}

Time Price 0th order price 1st order price Error bound
0.5 0.88073 0.88092 0.88072 2.43e-05
1 1.24525 1.24581 1.24524 4.63e-05
2 1.76023 1.76184 1.76024 8.90e-05
5 2.77895 2.78571 2.77941 3.21e-04
10 3.91968 3.93959 3.92176 5.92e-04

Table 1: Prices and implied volas in Example 6.1. Error bounds given correspond to the (quasi)
Monte Carlo error in the numerical scheme. The discretization error is of higher order.

Time 0th order rel. error 1st order rel. error Error bound
0.5 2.19e-04 6.85e-06 2.43e-05
1 4.49e-04 3.80e-06 4.63e-05
2 9.15e-04 9.02e-06 8.90e-05
5 2.43e-03 1.65e-04 3.21e-04
10 5.08e-03 5.33e-04 5.92e-04

Table 2: Relative errors in Example 6.1. Error bounds given correspond to the (quasi) Monte
Carlo error in the numerical scheme. The discretization error is of higher order.

years, which we compare with the zeroth and first order prices in the corresponding Bachelier
model. We also report σBach,0 = 0.1487036 and σBach,1 = −6.72781× 10−5. Note that the “error
bounds” reported in Tables 1 and 2 are upper estimates for the integration error (i.e., quasi
Monte Carlo error) for the reference values. Hence, numbers obtained from the first order
approximation formula are within the error bounds around the reference values.

In Figure 6.1, we plot (linear interpolations of) the relative errors of the zeroth and first order
approximate pricing formulas close to the money (as obtained in [3]) and compare them to
the ATM-formulas represented by circles. We see that the accuracy is extremely good in both
cases, and that our approximation formulas for ATM CEV-basket options nicely interpolate the
formulas available away from the money. Indeed, deviations from the non-ATM values only
appears at very small orders of magnitude in the logarithmic scale of Figure 6.1 (where the
Monte Carlo error contained in the reference values probably dominates). For the sake of
completeness, Figure 2 reports the absolute errors of the respective asymptotic formulas over
a wide range of strike prices, indicating that the asymptotic formulas exhibit their worst quality
ATM.
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Figure 1: Relative errors in Example 6.1. Solid lines correspond to prices obtained from (non-
ATM) zeroth order approximate formulas, dashed lines to (non-ATM) first order approximate
formulas. The corresponding ATM-approximate prices are represented by circles.

A Proof of Lemma 3.5

We present a proof of Lemma 3.5. Recall that we want to compute the determinant of the
Hessian Q of the map

Φ(G) B
1
2

d (F0, (G, FN(G,K)))2

evaluated at G =
(
F0,1, . . . , F0,n−1

)
. Let Si(x) denote the anti-derivative of 1/σi satisfying

(for simplicity) Si(F0,i) = 0. Now consider the change of variables F → y with yi B Si(Fi),
i = 1, . . . , n. As verified in [3], this transformation turns the Riemannian geometry introduced
above into an (almost) Euclidean geometry, with

d(F0,F)2 = yTρ−1y.
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Figure 2: Absolute errors in Example 6.1. Solid lines correspond to prices obtained from (non-
ATM) zeroth order approximate formulas, dashed lines to (non-ATM) first order approximate
formulas. The corresponding ATM-approximate prices are represented by circles.
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Of course, the constraint on F translates into a constraint on y, which can be removed by
eliminating one variable. Indeed, setting x B (y1, . . . , yn−1), we get

yn(x) = Sn (Fn) = Sn

 1
wn

K −
n−1∑
j=1

w jS
−1
j (y j)


 .

This way, we understand Φ(G) as a function ϕ(x) in the new (reduced) coordinates, and obtain
for the Hessian

HGΦ(G) = J(G)T Hxϕ(x)J(G),

where HG and Hx denote the Hessians in the G- and x-coordinates, respectively, and J(G)
denotes the Jacobian matrix of the change of coordinates G → x. As S′i = 1/σi, we have
J(G) = diag(1/σ1(F1), . . . , 1/σn(Fn)). Regarding the matrix Hxϕ, an elementary calculation
using the fact that F = F0 corresponds to y = 0, we obtain

Hxϕ(0) =

(
ρi j − ρin w jσ j(F0, j)

wnσn(F0,n)
− ρ jn wiσi(F0,i)

wnσn(F0,n)
+ ρnn wiσi(F0,i)w jσ j(F0, j)

w2
nσn(F0,n)2

)n−1

i, j=1
.

From the structure of the above expression and the expression in Lemma 3.5, we see that we
may assume that wi = 1, i = 1, . . . , n, and σn(F0,n) = 1. In this case, we are left to prove that
the determinant of the matrix

A B
(
ρi j − ρins j − ρ

jnsi + ρnnsis j
)n−1

i, j=1

is equal to the expression a B sTρs/ det ρ, where we used the short-hand notation si = σi(F0,i),
i = 1, . . . , n − 1, and sn = 1, and s = (s1, . . . , sn).

As both det A and a are polynomials in s1, . . . , sn−1, we prove this equality by establishing that
they have the same coefficients. Here, Cramer’s rule is the essential tool:

B−1 =
1

det B
Adj(B),

where the adjugate matrix Adj B is the transpose of the matrix of co-factors, i.e.,(
Adj B

)
i j = (−1)i+ j det B ĵî,

with B ĵî being obtained from B by removing the j’th row and the i’th column. By symmetry, we
hence have

ρi j

det ρ
= (−1)i+ j det ρ−1

î ĵ
, ∀(i, j) ∈ {1, . . . , n − 1}2, (A.1)

where ρ−1
î ĵ

is understood in the sense of (ρ−1)î ĵ.

Let us also establish a few notations. Let S n−1 be the set of all permutations of {1, . . . , n − 1}
and let, similarly, be S (A; B) denote the set of all bijective maps from A ⊂ N to B ⊂ N, with
A, B having the same (finite) size. Moreover, the definition of the signature sign is extended to
S (A; B) in the obvious way (as being ±1 depending on the number of inversions being even or
odd). Moreover, for a monomial x in the variables s1, . . . , sn−1 we denote by πx p the coefficient
of any polynomial p w. r. t. the monomial x. In order to establish Lemma 3.5, we need to prove
that

∀x ∈
2(n−1)⋃

k=0

{s1, . . . , sn−1}
k : πx det A = πxa.

We distinguish different cases according to the degree.
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Case 0

For deg x = 0, i.e., x = 1, we have

π1 det A =
∑

σ∈S n−1

sign(σ)
n−1∏
i=1

ρiσ(i) = det ρ−1
n̂n̂ = Adj(ρ−1)nn =

ρnn

det ρ
= π1a.

Case 1

For some fixed sk we have

πsk det A =
∑

σ∈S n−1

sign(σ)(−1)

ρσ−1(k)n
∏

i∈{1,...,n−1}\{σ−1(k)}

ρiσ(i) + ρσ(k)n
∏

i∈{1,...,n−1}\{k}

ρiσ(i)


= −2

∑
σ∈S n−1

sign(σ)ρσ(k)n
∏

i∈{1,...,n−1}\{k}

ρiσ(i)

by symmetry of ρ−1. There is a one-to-one correspondence between S n−1 and S ({1, . . . , n} \
{k}; {1, . . . , n − 1}) given by σ 7→ σ̃ defined by

σ̃(i) =

σ(i), i ∈ {1, . . . , n − 1} \ {k},
σ(k), i = n.

Moreover, one can see that sign(σ̃) = (−1)k+n−1 sign(σ). Hence, we obtain

πsk det A = −2
∑

σ∈S n−1

sign(σ)ρnσ̃(n)
∏

i∈{1,...,n−1}\{k}

ρi ˜σ(i)

= 2(−1)k+n
∑

σ̃∈S ({1,...,n}\{k};{1,...,n−1})

sign(σ̃)ρnσ̃(n)
∏

i∈{1,...,n−1}\{k}

ρi ˜σ(i)

= 2(−1)k+n det ρ−1
k̂n̂

= 2 Adj(ρ−1)kn =
2ρkn

det ρ
= πsk a.

Case 2

We consider x = sksl. For simplicity, we assume k = l (k , l works analogously). We have

πs2
k

det A =
∑

σ∈S n−1

sign(σ)
[
1k=σ(k)ρ

nn
∏

i∈{1,...,n−1}\{k}

ρiσ(i)+

+ 1k,σ(k)ρ
σ(k)nρσ

−1(k)n
∏

i∈{1,...,n−1}\{k,σ−1(k)}

ρiσ(i)
]
.

We construct a bijective map from S n−1 to S ({1, . . . , n}\{k}; {1, . . . , n}\{k}) by mapping σ ∈ S n−1
to σ̃ defined by

σ̃(i) =

σ(i), i ∈ {1, . . . , n − 1} \ {k},
n, i = n,
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for the case k = σ(k) and

σ̃(i) =


σ(i), i ∈ {1, . . . , n − 1} \ {k, σ−1(k)},
n, i = σ−1(k),
σ(k), i = n,

else. Note that it is easy to see that sign(σ) = sign(σ̃). Hence, we have

πs2
k

det A =
∑

σ∈S n−1

sign(σ)
∏

i∈{1,...,n}\{k}

ρiσ̃(i)

=
∑

σ̃∈S ({1,...,n}\{k};{1,...,n}\{k})

sign(σ̃)
∏

i∈{1,...,n}\{k}

ρiσ̃(i)

= det ρ−1
k̂k̂

= πs2
k
a.

Higher order terms

Regarding the higher order terms, we note that πxa = 0 for any monomial of degree larger than
two. Therefore, the same should be true for det A, where it does not to seem to follow from
an obvious argument. Note that we only need to consider polynomials where each individual
variable sk appears at most two times, as any other monomial cannot appear in det A by
the definition of A and of the determinant. But any coefficient of det A with respect to such
monomials can be understood as the determinant of a matrix ρ̃−1, which is obtained from
ρ−1 by omitting one row and one column and by replacing some rows/columns by copies
of other rows/columns. Of course, any such matrix ρ̃ has vanishing determinant, implying that
πx det A = 0. For concreteness, we indicate this mechanism by appealing to two special cases.
First, take x = s2

k sl, l , k. Similarly to the case of x = sk, one can show that

πs2
k sl

det A = −2
∑

σ∈S n−1

sign(σ)
[
1k=σ(k)ρ

nnρσ
−1(l)n

∏
i∈{1,...,n−1}\{k,l}

ρiσ(i)+

+ 1k,σ(k)ρ
σ(k)nρσ

−1(k)nρσ
−1(l)n

∏
i∈{1,...,n−1}\{k,σ−1(k)σ−1(l)}

ρiσ(i),

which is (the multiple of) the determinant of ρ̃−1, which is obtained from ρ−1
k̂k̂

by replacing the

l’th row by the last row. As the last row appears twice in ρ̃−1, the determinant, and hence
πs2

k sl
det A, vanishes.

The mechanism is even more transparent for the most extreme monomial x = s2
1 · · · s

2
n−1. In

this case,
πs2

1···s
2
n−1

det A =
∑

σ∈S n−1

sign(σ)(ρnn)n−1 = 0,

as the determinant of the (n − 1) × (n − 1) matrix with all entries being equal to ρnn.
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