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Abstract

We are concerned with the acoustic scattering by an extended obstacle surrounded by point-like

obstacles. The extended obstacle is supposed to be rigid while the point-like obstacles are modeled

by point perturbations of the exterior Laplacian.

In the first part, we consider the forward problem. Following two equivalent approaches (the Foldy

formal method and the Krein resolvent method), we show that the scattered field is a sum of two

contributions: one is due to the diffusion by the extended obstacle and the other arises from the

linear combination of the interactions between the point-like obstacles and the interaction between

the point-like obstacles with the extended one.

In the second part, we deal with the inverse problem. It consists in reconstructing both the ex-

tended and point-like scatterers from the corresponding far-field pattern. To solve this problem, we

describe and justify the factorization method of Kirsch. Using this method, we provide several numer-

ical results and discuss the multiple scattering effect concerning both the interactions between the

point-like obstacles and between these obstacles and the extended one.

1 Introduction

Let D be a bounded and C2-smooth simply connected set of R3. We consider the scattering of a time-

harmonic acoustic plane wave from the obstacle D and an inhomogeneous isotropic medium with an

index of refraction n = n(x) > 0 in R3 \D. It is supposed that the inhomogeneous medium occupies

a bounded domain such that n(x) = 1 for x outside of some sufficiently large ball containing D. The

time-harmonic incident plane waves take the form

uin(x; d) = exp(iκ x · d) ,
where κ is the wave number corresponding to the background medium and d ∈ S2 := {x : |x| =
1} denotes the propagation direction, while their evolution in time is defined by the modulation factor:

exp (−iωt). Then, the total acoustic fields u satisfy the reduced time-harmonic acoustic equation

∆u+ κ2 n(x)u = 0 in R
3 \D , (1)

with the Dirichlet boundary condition

u = 0 on ∂D . (2)

The corresponding scattered fields usc := u − uin are required to satisfy the Sommerfeld radiation

condition

lim
|x|→∞

|x|(∇usc · x̂− iκusc) = 0 , (3)

uniformly in all directions x̂ := x
|x| ∈ S

2, leading to the far-field patterns u∞(x̂) given by the asymptotic

behavior

usc(x, d) =
eiκ |x|

4π |x|

{

u∞(x̂, d) +O(
1

|x|)
}

(4)
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as |x| → ∞. The function u∞(·, ·) : S2 × S2 → C2 is called the far-field pattern of usc and it is well

known that it is an analytic function.

In this work, we assume that the inhomogeneous medium in R3 \D consists of a finite number of compo-

nents whose diameter is much smaller than the incidence wavelength. Then, the interaction between the

incident wave and the inhomogeneous part of the medium can be modeled as a scattering problem with a

collection of point-like obstacles located in Y = {yj}N
j=1, where Y ⊂ R3 \D and supj |yj| <∞. As it

has been suggested in [8], this corresponds to introduce a formal delta-like perturbation of the refraction

index

(n(x) − 1) =
N

∑

j=1

aj κ
2 δ(x− yj) , (5)

as a potential term in the definition of the on-shell T -matrix. The resulting model, describes a system of

N points scatterers (see also the definition in [13]) surrounding an extended obstacle.

There is a large literature dealing with the forward problem for the case where the extended obstacle is

absent. We mention for instance the book [26] describing the corresponding Foldy method. Regarding

the inverse problem, which consist in locating the point-like scatterers and reconstructing the scattering

coefficients from the far-field pattern, we mention the works [7, 14, 18, 23, 24].

The contributions of the present work are two folds. In the first part, we study the forward problem fol-

lowing two equivalent approaches. As a first approach (section 3.1), we use the Foldy’s formal method,

introduced in [13], according to which the scattered field is the sum of two contributions: one is due to

the diffusion by the extended obstacle and the other one is a linear combination of the interactions be-

tween the point-like obstacles, and the interaction between the point-like obstacles with the extended

one through some scattering coefficients gj , j = 1, ..., N . We obtain a close form of the solution, see

(33) in Section 3.1. To use this formulation, we need to solve the scattering problem by the extended

obstacle only, i.e. in the absence of the point like obstacles, and then invert the algebraic system (30). To

obtain this close form we use the Green’s function of the scattering by the extended obstacle. A slightly

different strategy, still following the Foldy formal method, has been developed in [15, 16]. The authors use

only the fundamental solution of the free space and write the scattered field as a sum of point sources,

modeling the scattering by the point-like obstacles, and the scattered field due to the extended obstacle

represented by layer potentials. The price to pay is that the coefficients and the densities appearing in

this representation are solutions of a coupled system of integral equations instead of an algebraic system

as we do here. They propose and justify an iterative method to solve this system.

As a second approach, we model the point scatterers as (frequency-dependent) point interactions. In

section 3.2, we follow this line and look at the acoustic propagator as a point perturbation of the one mod-

eling the scattering without the point-like obstacles. The perturbed operator is obtained as a selfadjoint

extension of the symmetric operator Q0 acting as −∆ on the domain

D
(

Q0
)

=
{

u ∈ H2 ∩H1
0

(

R
3\D

)

| u(yi) = 0 , yj ∈ Y
}

. (6)

It is well known that these extensions are defined through boundary conditions occurring in the points

yj (e.g. in [1]). Using the boundary triples technique (e.g. in [10]), they can be parameterized by lin-

ear operators on CN . In particular, the ’local’ point interactions are those defined by using a parameter

matrix α ∈ CN,N of the form α = diag (αj), αj ∈ R. The explicit character of the model allows to

obtain a ’Krein-like’ formula for the corresponding scattered field due to incident plane waves. In section

3.2 we show that this is nothing else but the one obtained using the Foldy method where the scatter-

ing coefficients gj are explicitly related to the parameters αj and the boundary values of the singular

2



sources Φsc
D(yj, yj) (i.e. the scattered fields by the extended obstacle D corresponding to point sources

as incident fields) according to (see Remark 3.6)

gj :=
(

Φsc
D(yj, yj) +

iκ

4π
− αj

)−1
, j = 1, ..., N . (7)

The main interest in using the theory of operator extensions to build our model of point scatterers stands

upon the fact that this approach naturally leads to an appropriate scattering problem. More precisely, we

show that the scattered field solves the Helmholtz equation in R
3\ {D ∪ Y } with a Dirichlet condition on

∂D and impedance-like boundary conditions on Y , depending on αj (see the problem (66)).

In the second part of our work, we investigate the inverse scattering problem of reconstructing both the

extended and point-like obstacles from the corresponding far field pattern with infinitely many incident

directions. Based on the novel boundary value problem (66) for the forward scattering, our aim is to

describe and justify the factorization method. This method was firstly put forward by Kirsch [21] to recon-

struct extended obstacles from the spectral data of far-field operators. It requires neither computation of

direct solutions nor initial guesses and provides a sufficient and necessary condition for characterizing

the shape of the extended obstacle and positions of the point-like scatterers (see Theorem 4.10). We

refer to the monograph [20] and references therein for a detailed discussion of the various versions of the

factorization method for acoustic scattering from extended impenetrable and penetrable scatterers. Using

this method, we provide several numerical results and discuss the multiple scattering effects reflecting

the interactions between the point-like obstacles and also between these obstacles with the extended

one. It is worth noting that our arguments for the direct and inverse problems can be both extended to the

case where the extended scatterer is a sound-hard obstacle, an impedance-type obstacle or a penetrable

medium, see Remark 4.12 (iii).

For references related to the inverse issue we mention the work [17] where a MUSIC algorithm is used.

This algorithm is designed and wildly used mainly to detect point locations of small or point-like scatterers

however there is no guarantee that it provides correct information on the shape of extended scatterers

even though some explanation is provided in [34] for instance.

The paper is organized as follows. In section 2, we briefly recall some of the main ideas in the modeling

of point-like scatterers, namely the Foldy and the regularization methods, and suggest a possible link

with the theory of the singular perturbations of the Dirichlet Laplacian in R
3: this leads to an alternative

approach to the modeling of point scatterers. In section 3, we study our forward problem following these

two approaches. We first provide the farfield representation using the Foldy method in section 3.1 and

then, in section 3.2, we construct a frequency-dependent point interaction model leading to our scattering

problem. In section 4, we study the inverse problem and justify the factorization method for our problem

while in section 5, we test this method numerically.

2 Acoustic scattering by point scatterers

2.1 The Foldy formal method

The notion of point scatterer arises from the work of L.L. Foldy, [13], where the steady state scattering

problem for a scalar wave of a single frequency κ is considered in R3. Assuming the interaction to act

only on the spherical symmetric part of the incident waves (isotropy prescription), the scattered field near
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a point scatterer yj behaves as

AjΦ
κ(·, yj)

where Φκ (x, y) is the fundamental solution of the 3D Helmholtz equation

Φκ(x, y) =
eiκ|x−y|

4π |x− y| . (8)

The total field is represented by summation according to

u = u0 +
N

∑

j=1

AjΦ
κ (·, y) (9)

where the incident field, u0, is a solution of the problem (∆ + κ2) u0 (·, κ) = 0 , in R3 . The external

field uj acting on a scatterer yj is then

uj = u−AjΦ
κ(·, yj) = u0 +

∑

j′ 6=j

AjΦ
κ (·, y) . (10)

Assuming the coefficient Aj to be proportional to the external field at the scatterer yj , i.e. uj(yj),

Aj = gjuj(yj) (11)

we derives the following linear algebraic system

uj (yj) = u0 +
∑

j′ 6=j

gj′ (κ) uj′ (yj′) Φκ(yj, yj′). (12)

Following [13], (9)-(11)-(12) are referred to as the fundamental equations of the multiple scattering, while

gj is referred to as ’scattering coefficient’ of the jth scatterer. These coefficients, possibly depending both

on the frequency and on some ’scattering parameter’, are considered in [13] as assigned functions fixing

the properties of the interactions they are intended to describe. Next, assume u0 to describe an incident

plane wave of wave number κ propagating in the direction d and scattering on a single point scatterer

located in y. The previous equations read as

u = u0 + g (κ) u0 (y)Φκ(·, y) , u0(x) = eiκ d·x. (13)

2.2 A point interaction model

In operator theory, equations similar to (13) are known to represent the scattering wave functions associ-

ated to pointwise singular perturbations of the 3D Laplacian (we refer to [1] for an exhaustive presentation

of this topic). Consider as an example the case of a one-point interaction centered in y ∈ R
3. This in-

teraction is modeled by a one-parameter family of operators Hα, with α ∈ R (in the selfadjoint case),

whose domain D (Hα) is

D (Hα) =
{

u ∈ L2
(

R
3
) ∣

∣ u = ϕζ + (α− iζ/4π)−1 ϕζ (y)Φζ(·, y) , ϕζ ∈ H2
(

R
3
)

, ζ ∈ C
+

}

,
(14)
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where C+ is the upper complex half-plane. It is worthwhile to notice thatD (Hα) is independent from the

choice of ζ , while for any u ∈ D (Hα) and ϕζ ∈ H2 (R3) related as in (14), the action of Hα is defined

according to
(

Hα − ζ2
)

u =
(

−∆ − ζ2
)

ϕζ . (15)

It has been shown in [1] (see the eq. 1.4.10 in [1] and the subsequent remarks) that Hα acts nontrivially

only in the s-wave (i.e. spherically symmetric states in D (Hα)) and the related s-wave scattering length

aα depends on the parameter α according to: aα = − (4πα)−1
. In addition, the outgoing scattering

functions propagating in the direction d with wave number κ are of the form

Ψα (x, κ, d) = eiκ d·x + (α− iκ/4π)−1 eiκ d·yΦκ(·, y) . (16)

Comparing (16) and (13), it follows that the scattering waves for an acoustic point scatterer defined by the

scattering coefficient g(κ), coincide, for each frequency κ, with those associated to a one-center point

interaction Hamiltonian Hα(κ) with a frequency-dependent parameter α (κ) defined according to

(α (κ) − iκ/4π)−1 = g (κ) . (17)

Scattering from point scatterers can be described in terms of a boundary value problem. In the case of

a single point scatterer located in y, the total field u, corresponding to the incident wave u0 = eiκ d·x, is

given in (13) or (16). Taking into account (17), the scattered field usc := Ψα (x, κ, d)− eiκ d·x solves the

problem






















(∆ + κ2)usc(x) = 0 , in R
3\ {y} ,

limx→y 4π |x− y|usc(x) = (α (κ) − iκ/4π)−1 eiκ d·y ,

lim|x|→∞ |x| (∇usc · x̂− iκusc) = 0 , ∀ x̂ ∈ S .

(18)

By straightforward computations, the condition across the scatterer y can be replaced by the following

’impedance type condition’, for the total field u,

Γ2(u) = α (κ) Γ1(u) (19)

where

Γ1(u) := lim
x→y

4π|x− y|u(x) and Γ2(u) := lim
x→y

(

u(x) − Γ1(u)

4π|x− y|

)

.

This way of representing the condition across the point scatterer y will be very useful in studying the

inverse problem in section 4.

2.3 The regularization method

A physical interpretation of the Foldy’s coefficients, for the interaction between classical waves and matter,

has been given in [8] . Here, the authors define the interaction through the corresponding on-shell T -

matrix (see the definition in [30]) which, for a single point scatterer in y, is formally given as the sum of a

Born series where the frequency-dependent ’delta’ function: V (κ, x) = − κ2aδ (x− y), plays the role

of a potential term in the Helmholtz equation. In the acoustic case, it describes a pointwise perturbation

of the refraction index at the energy κ2 inside an almost-everywhere homogeneous medium. A formal

computation, based on a ’regularization’ of the integral kernels to avoid the singularity at the interaction
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point, allows to sum this series and leads to the non-perturbative formula representing the integral kernel

of T (κ) as

Ta,Λ (κ, x, x′) = τ (κ, a,Λ) δ(x− y)δ (x′ − y) . (20)

The coefficient ’τ ’ depends on the wave number κ and the coupling coefficient a according to

τ (κ, a,Λ) = − κ2

1/a− κ2Λ/4π − iκ3/4π
. (21)

In our framework, a = n(0) − 1, while Λ, the cutoff momentum used in the regularization of the un-

perturbed Green’s function, is an auxiliary parameter. The Lipmann-Schwinger equation for the outgoing

scattering states of this model writes as

ψa (x, κ, d) = eiκ d·x + τ (κ, a,Λ) eiκ d·yΦκ (x, y) . (22)

Comparing this formula with the equation (16) and using (21), we obtain the relation

α :=
1

κ2a
− Λ

4π
, (23)

For fixed Λ and κ, this provides with a link between a pointwise perturbation of the refraction index and

the scattering length of the corresponding point-interaction model. The previous formal computations can

be made rigorous, see [5] for instance where this is done for the Maxwell system.

3 The model for acoustic scattering by extended and point-like

scatterers

In what follows, we adapt the methods described in the sections 2.1 and 2.2 to the case of point scatterers

in the exterior domain R3 \D.

3.1 The Foldy method

Let uD denotes a solution of the scattering problem (1)-(3), when n = 1, i.e. homogeneous medium,

corresponding to an incident field uin; the scattered field usc
D is defined according to

usc
D = uD − uin . (24)

The Green’s function Φκ
D associated to this problem is the unique solution of the boundary value equation







(∆ + κ2) Φκ
D = −δ(·, y), in R3 \D ,

Φκ
D(·, y) = 0, in ∂Ω ,

(25)

such that the scattered field

Φsc
D (·, y, κ) = Φκ

D (·, y) − Φκ (·, y) , (26)

with Φκ given in (8), satisfies the Sommerfeld radiation condition.
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In what follows, we use the Foldy method to study the scattering problem from the sound soft obstacle

D surrounded by a system of point scatterers located in Y = {yj}N
j=1, where Y ⊂ R3 \ D and

supj |yj| <∞ (we refer also to [13] or [26, Page: 298] for the acoustic case without extended obstacles).

Proceeding as in Section 2.1, the total field is represented as

u(x) = uD(x) +
N

∑

j=1

Φκ
D(x, yj)Aj , (27)

where Aj are unknown constants. The field

uj(x) = u(x) − Φκ
D(x, yj)Aj = uD(x) +

N
∑

l=1
l 6=j

Φκ
D(x, yl)Al , (28)

is now regarded as the external field incident on the jth scatterer in the presence of all the other scatter-

ers. The physical assumption in Foldy method is that the strength of the scattered wave from the scatterer

yj is proportional to the external field on it. In our case this is given by the assumption that

Aj = gj uj(yj) (29)

where gj is the scattering coefficient of the scatterer yj . Evaluating (28) at yj , we obtain

uj(yj) = uD(yj) +

N
∑

l=1
l 6=j

glΦ
κ
D(yj, yl) ul(yl) , (30)

and then (27) becomes

u(x) = uD(x) +

N
∑

j=1

gjΦ
κ
D(x, yj) uj(yj) . (31)

Following the seminal paper [13], we refer to the equations (30)-(31) as the fundamental system of multi-

ple scattering.

In particular, (30) can be written as the algebraic linear system

[Γ̃]N×N [Λ]N×1 = [u]N×1 ,

with Λ := (u1(y1), u2(y2), · · · , uN(yN))> ∈ CN×1, u := (uD(y1), · · · , uD(yN))> ∈ CN×1 and

Γ̃ := Γ̃(κ) =











I −g2Φ
κ
D(y1, y2) −g3Φ

κ
D(y1, y3) · · · −gNΦκ

D(y1, yN)
−g1Φ

κ
D(y2, y1) I −g3Φ

κ
D(y2, y3) · · · −gNΦκ

D(y2, yN)
...

...
...

. . .
...

−g1Φ
κ
D(yN , y1) −g2Φ

κ
D(yN , y2) −g3Φ

κ
D(yN , y3) · · · I











.

(32)

Assuming det(Γ̃) 6= 0 and denoting the elements of Γ̃−1 ∈ C
N×N by [Γ̃−1]lj for l, j = 1, 2, · · ·N , we

deduce from (27) that the scattered field takes the form

usc(x) := u(x) − uin(x) = usc
D(x) +

N
∑

l,j=1

gj Φκ
D(x, yj) [Γ̃−1]jl uD(yl) , (33)
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with the far-field pattern

u∞(x̂) = u∞D (x̂) +
N

∑

l,j=1

gj (Φ∞
D (x̂, yj) + e−iκx̂·yj )uD(yl) [Γ̃−1]jl p, x̂ ∈ S

2

where Φ∞
D (x̂, yj)+e

−iκx̂·yj is the far field corresponding to the incident source Φκ
D(·, yj) = Φsc

D(·, yj)+
Φκ(·, yj) and u∞D (x̂) is the far field corresponding to the scattered field usc

D by the obstacle D.

3.2 A point interaction model in R
3 \D

As it has been remarked in section 2, scattering by point scatterers can be described in terms of point

interactions models provided that a suitable correspondence between the scattering coefficients and

some operator extension parameter is established. In what follows, we develop this approach in the case

of a set of point scatterers, located in Y = {yj}N
j=1, and surrounding an extended sound-soft obstacle

whose support, D, is assumed to fulfill the conditions discussed in the introduction. The corresponding

point interactions models, obtained as singular perturbations of the Dirichlet Laplacian in R
3\D, are

defined as a selfadjoint extension of the symmetric operator Q0







D (Q0) = {u ∈ H2 ∩H1
0 (R3\D) | u(yi) = 0 , yi ∈ Y } ,

Q0u = −∆u,
(34)

and their physical properties are encoded by conditions occurring in the boundary points yi. The exten-

sions of symmetric operators and the related spectral properties are the objects of a permanent interest,

both from the theoretical point of view as from the application perspectives. Focusing on the case of

selfadjoint point interactions models, a large and exhaustive introduction can be found in [1].

3.2.1 The Green’s functions

Since Q0 ⊂ (Q0)
∗
, the selfadjoint extensions of Q0 identify with a class of restrictions of (Q0)

∗
fulfill-

ing prescribed linear relations on a ’boundary space’. Following this line, we next consider the adjoint

operator. Making use of the von Neumann’s decomposition formula (e.g. in [29], chp. X), this writes as

D
((

Q0
)∗)

= D
(

Q0
)

⊕Ni ⊕N−i , (35)

where Nz , the defect spaces of Q0, are defined by

Nz = ker
((

Q0
)∗ − z

)

. (36)

Then, due to the inclusion Q0 ⊂ (Q0)
∗
, (Q0)

∗
acts as −∆ on the regular part of its domain, while from

the above definition we have
(

Q0
)∗
u = ±iu , as u ∈ N±i . (37)

Next we give an explicit representation of Nz in terms the Green’s functions Φζ
D introduced before. Let

ζ ∈ C+ and x, y ∈ R3\D such that x 6= y. To be consistent with (26) we write

Φsc
D(x) = Φsc

D(x, y, ζ) := Φζ
D (x, y) − Φζ (x, y) , (38)
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where

Φζ (x, y) =
eiζ|x−y|

4π |x− y| . (39)

Then, the function hζ (·, y) := −Φsc
D(·, y, ζ) solves the boundary value problem























(−∆ − ζ2) hζ (·, y) = 0 , in R3\D ,

hζ(·, y)|∂D = Φζ (·, y) |∂D ,

lim|x|→∞ |x| (x̂ · ∇x − iζ)hζ (·, y) = 0 .

(40)

In what follows, Q0 denotes the Dirichlet Laplacian in the exterior domain R3\D, i.e.

Q0 :







D (Q0) = H2
(

R3\D
)

∩H1
0

(

R3\D
)

,

Q0u = −∆u.
(41)

The Green’s function Φζ
D (x, y) enjoys the following properties:

Lemma 3.1. Let x, y ∈ R3\D.

1 For x 6= y, the map ζ → Φζ
D (x, y) is holomorphic in C+ and continuously extends to the whole

real axis.

2 For a fixed ζ ∈ C+, it results: Φζ
D (·, y) ∈ L2 (R3\D), while for ζ ∈ C+ the functions Φζ

D (·, y)
are C∞-smooth in R3\

(

D ∪ y
)

and satisfy the Sommerfeld radiation condition

(

x

|x|∇x − iζ

)

Φζ
D (x, y) = o

(

1

|x|

)

. (42)

Proof. From the definition (39), the result holds in the case of Φζ (·, y). We consider next hζ (·, y). Recall

that it is the unique solution of the scattering problem (40). This solution can be represented using the

layer potentials approach (see for instance [6, 25] ) as follows

hζ(·, y) =

∫

∂D

{

∂νΦ
ζ (·, y′) − iηΦζ (·, y′)

}

ϕ(y′, y) ds(y′) , (43)

where ∂ν denotes the normal derivative oriented towards the exterior of D while η is fixed in R∗. The

potential ϕ (·, y) is the unique solution of the integral equation of second kind

(

I +K − iηS
)

ϕ(·, y) = 2Φζ(·, y) on ∂D (44)

where S and K are respectively the single and double layer potential operators defined by

S(u)(x) := 2

∫

∂D

Φζ(x, y)u(y)ds(y), for x ∈ ∂D

K(u)(x) := 2

∫

∂D

∂ν(y)Φ
ζ(x, y)u(y)ds(y), for x ∈ ∂D.
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The integral operator I+K−iηS : L2(∂D) → L2(∂D) (respectively:C(∂D) → C(∂D)) is Fredholm

and since η 6= 0 it is injective, see for instance [6, 25]. In addition it is holomorphic in C. From the

Fredholm theory, its inverse is meromorphic in C. This implies that ϕ is also meromorphic as a function

from C toL2(∂D). From the representation (43), we deduce that for every x, y in R3\D, hζ(x, y) is also

meromorphic in C. Next, we show that the eventual poles are located in C−. Let introduce the auxiliary

function s(·, y, ζ) := Φζ(·, y)v(·) where v ∈ C∞
0 (R3) such that v = 1 in D. Setting ρζ = hζ − s, the

problem (40) is rephrased as







(−∆ − ζ2) ρζ (·, y) = F ζ (·, y) , in R3\D ,

ρζ (·, y)
∣

∣

∂D
= 0 , F ζ (·, y) = (−∆ − ζ2) s (·, y, ζ) .

(45)

Correspondingly, we denote the solution of the above problem as

ρζ (·, y) =
(

Q0 − ζ2
)−1

F ζ (·, y) . (46)

Recall that (by the limiting absorption principle) the operator (Q0 − ζ2)
−1

: L2
σ(R3\D) → H2

−σ(R
3\D),

σ > 1, where L2
σ(R3\D) and H2

−σ(R3\D) are the Agmon spaces, is well defined for ζ ∈ C+ and

(Q0 − ζ2)
−1

: C+ → L(L2
σ(R3\D), H2

−σ(R
3\D)) is analytic in C+ and Hölder continuous up to C+,

see for instance [33]. Hence ρζ (·, y) : C+ → H2
−σ(R3\D) is also analytic in C+ and Hölder continuous

up to C+. By the continuous injection ofH2
loc(R

3\D) in the space of continuous functionsC(R3), we de-

duce that for x, y in R3\D fixed, the function ρζ (x, y), and hence hζ(x, y), is analytic in C+ and Hölder

continuous up to C+. The first point in the lemma follows now since Φζ
D (x, y) = Φζ (x, y) + hζ(x, y).

Let us consider the second point. Since Φζ
D (x, y) identifies with the integral kernel of (Q0 − ζ2)

−1
, the

absence of poles in the upper complex half-plane implies that ζ2 ∈ res (Q0) (the resolvent set of Q0)

for any ζ in C+. Hence, for ζ ∈ C+, (Q0 − ζ2)
−1

is a bounded map: L2 (R3\D) → D (Q0) and

the relation (46) gives ρζ (·, y) ∈ D (Q0). Taking into account that Φζ(·, y) ∈ L2(R3), this leads to:

Φζ
D (·, y) ∈ L2 (R3\D). For the x-regularity of this function when ζ ∈ C+, let us assume, in addition

to the previous conditions, s(·, y, ζ) to be defined through a smooth cutoff function v such that: supp

v ⊂ R
3\Bδ (y), with Bδ (y) denoting the ball of center y and radius δ small enough. In this case, follow-

ing the definition in (45), the functionF ζ (·, y) is infinitely many times differentiable, and each derivative is

in L2 (R3\D). Then, by the the limiting absorption principle, we have: ρζ (·, y) ∈ H∞
loc(R

3\D). Finally,

the radiation condition (42), holding for Φζ , also holds for the ’regular part’ hζ as a direct consequence of

the representation (43).

As in the whole space case (cf. [1]), the defect space Nz are N -dimensional and can be represented in

terms of the Green’s kernel of (Q0 − z)−1
. This is shown in the next Lemma.

Lemma 3.2. Let Nz be defined according to (34) and (36). For any z ∈ C\R+, Nz is N -dimensional

and generated by the linearly independent set

{

Φζ
D (·, y) , y ∈ Y

}

, with ζ ∈ C+ and ζ2 = z.

Proof. Consider the problem: u ∈ ker
(

(Q0)
∗ − z

)

; since C∞
0 (R3\ (D ∪ Y )) is dense in D (Q0), this

is equivalent to







〈(

(Q0)
∗ − z

)

u, ϕ
〉

= 0 , ∀ϕ ∈ C∞
0

(

R3\
(

D ∪ Y
))

,

u ∈ L2
(

R3\D
)

.
(47)
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The above equation writes as

∫

R3\D

u∗(x) ((−∆ − z)ϕ (x)) dx = 0 , ∀ϕ ∈ C∞
0

(

R
3\

(

D ∪ Y
))

, (48)

with u ∈ L2
(

R3\D
)

. This implies

(−∆ − z) u(x) = µ ∈ H−2
(

R
3\D

)

: µ(ϕ) = 0, ∀ϕ ∈ C∞
0

(

R
3\

(

D ∪ Y
))

. (49)

Thus, the only possible solutions of (47) are those u ∈ L2
(

R3\D
)

s.t. (−∆ − z) u coincides with a

bounded measure supported in Y . Let µ ∈ H−2 (R3\D) be such a measure and f ∈ H2 (R3\D);
since µ acts linearly on H2 (R3\D) and its action on f depends only on the boundary values of the

function in Y , we have

µ (f) =
∑

cjf (yj) .

This allows to identify µ with a linear superposition of delta measures concentrated in Y and, according

to the definition (38)-(40), implies: dimNz = #Y = N , with

Nz =
{

Φζ
D (·, y) , y ∈ Y

}

for ζ2 = z ∈ C.

Remark 3.3. Take ζ, ζ ′ ∈ C and α ∈ R+. Since (−∆ + α)(Φζ
D (·, yj) − Φζ′

D (·, yj)) = (ζ2 +

α)Φζ
D (·, yj) − ((ζ ′)2 + α)Φζ′

D (·, yj) with a homogeneous boundary condition on ∂D and that both

Φζ′

D (·, yj) and Φζ′

D (·, yj) are in L2(R3\D) then we deduce from the regularity of elliptic problems that

Φζ
D (·, yj) − Φζ′

D (·, yj) ∈ H2(R3\D) ∩H1
0

(

R
3\D

)

. (50)

Then, the decomposition (35) can be rephrased asD
(

(Q0)
∗)

= H2(R3\D)∩H1
0

(

R3\D
)

⊕Nz , with

z ∈ C\R+.

3.2.2 Extensions of Q0 and boundary triples

Let H be an Hilbert space and Γi=1,2 ∈ L
(

D
(

(Q0)
∗)
,H

)

a couple of linear maps fulfilling the relation

〈

ψ,
(

Q0
)∗
ϕ
〉

L2(R3\D)
−

〈(

Q0
)∗
ψ, ϕ

〉

L2(R3\D)
= 〈Γ1ψ,Γ2ϕ〉H − 〈Γ2ψ,Γ1ϕ〉H , (51)

for all ψ, ϕ ∈ D
(

(Q0)
∗)

, and such that: (Γ1,Γ2) : D
(

(Q0)
∗) → H×H is surjective. When the above

conditions are satisfied, the set {H,Γ1,Γ2} defines a boundary triple for the adjoint (Q0)
∗

operator. This

structure, introduced as an abstract generalization of the Green’s identity (e.g. in [19]), allows to relate

the proper extensions of a symmetric operator with some corresponding linear relations on a boundary

space (see [3], [28], [9], [10] and references therein). In what follows, we set H = CN and define Γi=1,2

according to

(Γ1u)j = lim
x→yj

4π |x− yj|u(x) ; (Γ2u)j = lim
x→yj

(

u(x) −
(Γ1u)j

4π |x− yj |

)

. (52)

Lemma 3.4. The set
{

C
N ,Γ1,Γ2

}

defined according to (52) forms a boundary triple for (Q0)
∗
.
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Proof. The proof easily follows by adapting the one given in [2] in the bounded domains case.

Now we focus on point perturbations describing physical interactions localized in the points yj ∈ Y . In

this perspective, we consider the selfadjoint extensions ofQ0. Following the results exposed in [28], these

are parameterized by couples (A,B) ∈ L
(

C
N ,CN

)

such that

i) AB∗ = BA∗ , (53)

ii) the N ×N matrix (AB) has maximal rank. (54)

The corresponding selfadjoint extension QA,B is defined according to: QA,B ⊂ (Q0)
∗

and

D (QA,B) =
{

u ∈ D
((

Q0
)∗) | AΓ1u = BΓ2u

}

. (55)

Let us introduce the linear maps γ(z) and q(z)

γ−1(z) = Γ1|Nz
, q(z) = Γ2 ◦ γ(z) , (56)

where Γ1|Nz
is the restriction of Γ1 to the defect space Nz. According to the results in [9], the func-

tions z → γ(z) and z → q(z) exist as holomorphic bounded operators valued maps: C\R →
L

(

CN , L2
(

R3 \D
))

and C\R → L
(

CN ,CN
)

respectively. Moreover, they allow analytic contin-

uations to the resolvent set res (Q0) of the particular ’reference’ extension Q0 defined by the bound-

ary condition: Γ1u = 0. From the definition (52), Q0 identifies with the Dirichlet Laplacian in the ex-

terior domain defined in (41). With this formalism, a generalized Krein formula expresses the differ-

ence (QA,B − z)−1 − (Q0 − z)−1
in terms of a finite rank operator with range Nz. Namely, for all

z ∈ res (QA,B) ∩ res (Q0) we have (see the Theorem 1 in [28])

(QA,B − z)−1 − (Q0 − z)−1 = −γ(z)
[

(Bq(z) − A)−1B
]

γ∗(z̄) , (57)

Explicit expressions for the operators γ(·, z) and q(z) appearing at the r.h.s. of (57), are obtained by fixing

a particular basis of the defect spaces. As it has been shown in Lemma 3.2, a possible representation of

Nz is given in terms of the Green’s functions of the operator (Q0 − z). Let {ej}N
j=1 denotes the standard

basis in C
N , and consider the action of the linear map γ(z) on ej . Setting z = ζ2, ζ ∈ C

+, a direct

computation gives: γ(ζ2) (ej) = Φζ
D (·, yj), and

(

q(ζ2)
)

n,j
=







Φζ
D (yn, yj) , n 6= j ,

Φsc
D(yj, yj) + iζ

4π
, n = j .

(58)

As already noticed in the section 3.1, the notion of point scatterers, given according to the Foldy’s defini-

tion, basically describes systems of independent scatterers, in the sense that the strength of the scattered

wave from the jth scatterer depends only on the value of the external field in yj . This appears to be a

quite natural assumption to describe the multiple scattering by ’small’ inhomogeneities of an acoustic

medium. In the mathematical modeling, the independence of point interactions corresponds to assume

separated boundary conditions at each point yj (cf. [1], Appendix G). Using the parameterization (55),

this is equivalent to take

Bn,j = δn,j , An,j = αnδn,j , (α1 , ..., αN) ∈ R
N , (59)

where the diagonal coefficients αj is related to the inverse of the scattering length of the jth point

interaction.
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3.2.3 Direct acoustic scattering by extended and point scatterers

We consider the scattering problem for a selfadjoint extension of Q0 modeling independent point inter-

actions. Let α ∈ RN and consider the operator Qα obtained from (55) by fixing A and B as in (59).

Denoting with Φζ
α,D the Green’s kernel of (Qα − ζ2)

−1
, the resolvent formula (57) explicitly writes as

Φζ
α,D(x, y) = Φζ

D(x, y) −
N

∑

n,j=1

(q(ζ2) − diag (α))−1
n,jΦ

ζ
D(x, yn)Φ

ζ
D(y, yj) , (60)

where (diag (α))n,j = αnδn,j . According to the result of the Lemma 3.1, Φζ
α,D is holomorphic w.r.t. ζ in

C+ and continuously extends to C+, provided that the limits of M (ζ2, α))−1 exists as ζ2 → κ2 ∈ R∗
+.

The formula (60) models the total field corresponding to point sources Φκ(·, y) as incident waves. To

derive the total field corresponding to incident plane waves, we need only to take the source point y
tending to infinity in the following way. The far field pattern of the point source Φκ(x, y), with respect to

the second argument, is given by e−iκŷ·x, ŷ := y
|y|

. Precisely, we have

lim
|y|→∞

4π|y| exp(−iκ|y|)Φκ(x, y) = eiκx·d =: uin(x, κ, d), d := −ŷ. (61)

Correspondingly, from (60), we obtain the relation

u(x, d) = uD(x, d) −
N

∑

i,j=1

(M (κ, α))−1
i,j Φκ

D(x, yi) uD(yj, d) (62)

where the matrix valued function M (κ, α) is defined on R × R
N

according to

lim
z→κ2±i0

(q(z) − diag (α)) = M (± |κ| , α)|κ∈R+
, (63)

and the far field patterns are

u∞(x̂, d) = lim
|y|,|x|→∞

{

4π|y| |x| exp(−iκ(|y| + |x|)
[

Φκ
α,D(x, y) − Φκ(x, y)

]}

,

u∞D (x̂, d) = lim
|y|,|x|→∞

{4π|y| |x| exp(−iκ(|y| + |x|) [Φκ
D(x, y) − Φκ(x, y)]} . (64)

In this setting, uD(·, d) is the total field corresponding to incident plan waves eiκx·d by the obstacle D. It

satisfies the scattering problem







(∆ + κ2)uD = 0 in R
3\D,

uD = 0 on ∂D,
uD := uin + usc

D , (∂r − iκ)usc
D(x, d) = o(1) for r = |x| → ∞ .

(65)

It is well known that (65) admits a unique solution which is κ-continuous and C∞
(

R
3 \D

)

w.r.t. x (e.g.

in [6]). The function u(·, d) = u(·, d, κ, α), introduced above, denotes the total field corresponding to

incident plan waves eiκx·d scattered by D ∪ Y . In the next proposition, we show that u is the solution of

the scattering problem







(∆ + κ2) u = 0 in R
3\D ∪ Y ,

u|∂D = 0 , Γ2u = diag (α) Γ1u ,
u := uin + usc (∂r − iκ)usc(x, d) = o(1) for r = |x| → ∞ .

(66)
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Proposition 3.5. Let Sα denote the subset

Sα = {κ ∈ R | detM (κ, α) = 0} , (67)

and uD(·, d) be the solution of the problem (65). Then, for κ ∈ R\Sα, the problem (66) has one and

only one solution given by (62).

Proof. Since the direction of the incident wave does not play a role in this proof, the dependence of the

scattering functions from d is omitted. From Rellich’s lemma and the weak unique continuation property,

it follows that the solution of (66) is unique. Regarding the existence issue, we next show that the function

(62) solves the problem (66); we explicitly consider the case κ > 0, while the problem for κ < 0 can

be treated by a suitable adaptation of the arguments below. The terms uD (yj, d), Φκ
D (·, yi) at the

r.h.s. of (62) are well defined smooth functions of x. Then, for any κ ∈ R\Sα, the r.h.s. of (62) exists.

According to the definition of uD and Φκ
D (·, yj), the function at the r.h.s. of (62) solves the equation

(−∆ − κ2) u = 0, in R3\
(

D ∪ Y
)

, fulfilling the Dirichlet condition on ∂D. Moreover, the scattered

field

usc(x, d) = usc
D(x, d) −

N
∑

i,j=1

(

M−1 (k, α)
)

ij
uD (yj, d) Φκ

D (·, yi) , (68)

satisfies the Sommerfeld radiation conditions since both usc
D(x, d) and Φκ

D(x, yi) do. Let us now show

that Γ2u = diag (α) Γ1u. To this aim, we notice that the regularity of the unperturbed total field implies

uD (yj) = (Γ2uD)j . Thus, (62) also writes as

u(·, d) = uD (·, d) −
N

∑

i,j=1

(

M−1 (κ, α)
)

i,j
(Γ2uD (·, d))j Φκ

D (·, yi) . (69)

Set u(·, d) = φ− ψ with

φ = uD (·, d) , (70)

ψ =
N

∑

i,j=1

(

M−1 (κ, α)
)

i,j
(Γ2uD (·, d))j Φκ

D (·, yi) . (71)

The function ψ can be pointwise approximated by elements of the defect spaces Nz as z → κ2 + i0.

Let ψz be given by

ψz =

N
∑

i,j=1

(

(q(z) − α)−1)

i,j
(Γ2φ)j Φζ

D (·, yi) . (72)

For ζ ∈ C+ , z = ζ2, this function is well defined and belongs to Nz , while it results

lim
z→κ2+i0

ψz = ψ , (73)

provided that M−1 (κ, α) exists. Since uD is C
1
x-continuous in R, we have Γ1φ = 0 and the following

relation holds

M (κ, α) Γ1 (φ− ψ) = −M (κ, α) Γ1ψ = − lim
z→κ2+i0

(q(z) − α) Γ1ψz

= − lim
z→κ2+i0

(Γ2γ(·, z) − α) Γ1ψz = − lim
z→κ2+i0

(Γ2 − αΓ1)ψz

= (−Γ2 + θΓ1)ψ . (74)
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The n-th component of the vector at the l.h.s. of (74) writes as

(M (κ, α) Γ1 (φ− ψ))n = (−M (κ, α) Γ1ψ)n =

−
N

∑

i,j=1

(

M−1 (κ, α)
)

ij
(Γ2uD (·, d))j (M (κ, α) Γ1Φ

κ
D (·, yi))n .

Recalling that Γ1Φ
κ
D (·, xi) = ei, we get

(M (κ, α) Γ1 (φ− ψ))n = −
N

∑

i,j=1

(M (κ, α))ni

(

M−1 (κ, α)
)

ij
(Γ2φ)j = − (Γ2φ)n ,

which implies

M (κ, α) Γ1 (φ− ψ) = −Γ2φ . (75)

From (74), (75) and (69), the interface conditions Γ2u = αΓ1u follows.

Remark 3.6. The explicit form of M (κ, α), obtained by using (58) and the definition (63), is given by

(M (κ, α))n,j =







Φκ
D (yn, yj) , n 6= j ,

Φsc
D(yj, yj) + iκ

4π
− αj , n = j .

(76)

Let consider the expression of the total field obtained in (33) with the Foldy’s approach. With the above

notations, this can be written as

u(x, d) = uD(x, d) +

N
∑

i,j=1

(

[Γ̃−1]diag (g)
)

i,j
Φκ

D(x, yi) uD(yj, d) , (77)

where the vector g = (g1, ..., gn) fixes the Foldy’s scattering coefficients. Comparing this formula with

(62), we deduce a condition for the equivalence of the two models

diag

(

1

g

)

Γ̃ = M (κ, α) . (78)

Then, using (32) and (76) it follows that

gj =
(

Φsc
D(yj, yj) +

iκ

4π
− αj

)−1
, j = 1, ..., N. (79)

Under this condition, the representation of the total field due to the obstacles D ∪ Y using the Foldy

approach with scattering coefficients gj , is nothing but the one obtain by using a multiple point interaction

model with independent points and choosing frequency-dependent parameters αj according to (79).

In order to use the formula (62) it is important to characterize the set Sα where this representation fails.

We next show that the inverse matrix M−1 (κ, α) is defined on R outside a discrete set.

Lemma 3.7. In the assumptions of the Lemma 3.4, the representation (62) holds a.e. w.r.t. κ ∈ R with

the only possible exception of a discrete set of points.
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Proof. Let us introduce the matrix valued function Q(ζ)

(Q(ζ))n,j =







Φζ
D (yn, yj) , n 6= j ,

Φsc
D(yj, yj) + iζ

4π
, n = j .

(80)

Taking into account the definition of Φζ
D (eq. 38) and the properties of its regular part hζ (see the proof

of the Lemma 3.1), it follows that Q(ζ) is analytic in C+ and meromorphic in C, while, according to the

definition (58), the identity

q(ζ2) = Q(ζ) , (81)

holds for ζ ∈ C+. Thus, the map

Fα (ζ) = det (Q (ζ) − diag (α))−1 ,

is analytic in C+ and meromorphic in the whole complex plane. Moreover, from the definition (63) and the

identity (81), we get

M (κ, α) = lim
ζ→κ,

Im ζ>0

(Q (ζ) − diag (α)) . (82)

Therefore, Sα (see the definition (67)) identifies with the discrete set of the possible poles of the mero-

morphic function Fα (ζ) on the real axis.

Remark 3.8. The previous lemma says that for a fixed configuration of the extended as well as the point-

like scatterers, the set of the singular points of the matrix M (k, α) is at most discrete. In this remark,

we provide a condition linking all the parameters of the scattering model, namely the configuration of the

scatterers, the frequency κ as well as the coefficients α, under which the matrix M (k, α) is diagonally

dominant and hence invertible. This condition is

C
N − 1

d
max

j=1,...,N
|Φsc

D(yj, yj) +
iκ

4π
− αj |−1 < 1 (83)

where d := minj 6=m|yj−ym| andC is the constant (depending onD) appearing in the known estimates

|ΦD(x, y)| ≤ C|x − y|−1, x, y ∈ R3 \D. Let us finally mention the following behavior of the function

Φsc
D(yj, yj) in terms of yj in the two regimes:

1 yj ’s are far away from the extended scattererD. In this case we have: |Φsc
D(yj, yj)| ≤ Cd−1(yj, D)

where the constant C depends on D. Here d(yj, D) is the Euclidean distance between yj and

D. In this case, the condition (83) behaves like C N−1
d

maxj=1,...,N | iκ
4π

− αj|−1 < 1 which re-

flects only the multiple scattering between the point-like scatterers, i.e. the interaction between the

point-like scatterers and the extended one is neglected.

2 yj ’s are close to the extended scatterer D. In this case we have: Φsc
D(yj, yj) = 1

4π d(yj ,D)
+

O(ln(d(yj, D))) where the constant appearing in the second term of the expansion depends on

D, see for instance Proposition 3.2 of [27]. In this case, the condition (83) is mostly satisfied. Here,

the effect of the interaction between each point-like scatterer and the extended one dominates the

effect of the interaction between the point-like scatterers.
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4 The inverse scattering by extended and point-like scatterers

In this section we turn to studying the inverse problem of detecting the shape of the extended sound-soft

obstacle and positions of the point-like scatterers from the far-field data corresponding to all incident plane

waves at a fixed frequency. Our goal is to establish the factorization method by Kirsch for the two-scale

model under consideration.

Let uin be a time-harmonic incident wave. The classical scattering theory in the absence of the point-like

scatterers is devoted to finding the scattered field usc
D ∈ H1

loc(R
3\D) satisfying

(I)







(∆ + κ2)usc
D = 0, in R

3\D,
usc

D = −uin, on ∂D,
∂usc

D/∂r − iκusc
D = o(1/r), as r → ∞, r = x/|x|.

If the obstacle consists of both extend and point-like scatterers, we have seen in the previous sections

that the corresponding model is to look for the scattered field usc ∈ H1
loc(R

3\D) such that

(II)















(∆ + κ2)usc = 0, in R
3\{D ∪ Y },

usc = −uin, on ∂D,
(Γ2u)j = αj(Γ1u)j, αj ∈ C, j = 1, 2, · · · , N,
∂usc/∂r − iκusc = o(1/r), as r → ∞, r = x/|x|,

where u = usc + uin denotes the total field and the operators Γ1,Γ2 are defined as in (52).

We review several symbols employed in sections (2) and (3). If uin is a plane wave with the incident angle

d ∈ S
2 = {x : |x| = 1}, i.e., uin(x) = exp(iκx · d), we denote by usc

D(x, d), uD(x, d), u∞D (x̂, d)
resp. usc(x, d), u(x, d), u∞(x̂, d) the scattered field, total field and far-field pattern to problem (I) resp.

(II). Analogously, if the incident wave is a point source, i.e., uin = Φκ(x, y) for some y ∈ R3 \ D, we

employ the symbols Φsc
D(x, y),Φκ

D(x, y),Φ∞
D (x̂, y) resp. Φsc

α,D(x, y),Φκ
α,D(x, y),Φ∞

α,D(x̂, y) to denote

the corresponding quantities.

The well-posedness of (II) is described in the following lemma, where uin is allowed to be either a plane

wave or a point source wave.

Lemma 4.1. Let uD = uin+usc
D where usc

D is the unique solution to problem (I). Then the unique solution

to problem (II) is given by

usc(x) = usc
D(x) −

N
∑

m,j=1

{

[M−1(κ, α)]m,j [(Γ2uD)j − αj(Γ1uD)j] Φ
κ
D(x, ym)

}

, (84)

where the matrix M(κ, α) is defined as in (76). In particular, if Γ1uD = 0, then the expression (84)

reduces to

usc(x) = usc
D(x) −

N
∑

m,j=1

{

[M−1(κ, α)]m,j (Γ2uD)j Φκ
D(x, ym)

}

. (85)

The proof of (84) can be carried out analogously to the proof of (69) in section 3.2.3, where (85) is justified

under the assumption Γ1uD = 0. Note that Γ1uD = 0 if uin is continuous at yj , e.g., uin is a plane

wave. However, Γ1uD 6= 0 if uin = Φκ
D(x, yj) for some yj ∈ Y . By the definition of the far-field pattern,

we get from (85) the far field of usc for incident plane waves.
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Corollary 4.2. If uin(x) = exp(iκx · d), then the far-field pattern of the scattered field corresponding to

(II) can be formulated as

u∞(x̂, d) = u∞D (x̂, d) −
N

∑

m,j=1

{

[M−1(κ, α)]m,j (eiκyj ·d + usc
D(yj, d)) (e−iκx̂·ym + Φ∞

D (x̂, ym))
}

. (86)

We are interested in the following inverse problem

(IP): Recover ∂D and yj (j = 1, 2, · · ·N ) from the far-field data u∞(x̂, d) over all observation points

x̂ ∈ S2 corresponding to all incident directions d ∈ S2.

The following lemma generalizes the reciprocity relation for an extended obstacle to the two-scale model.

Lemma 4.3. It holds that

(i) u∞(x̂, d) = u∞(−d,−x̂) for all x̂, d ∈ S2.

(ii) usc(y,−d) = Φ∞
α,D(d, y) for all d ∈ S2, y /∈ D ∪ Y .

Proof. We have

u∞(−d,−x̂) = u∞D (−d,−x̂) −
N

∑

m,j=1

{

[M−1(κ, α)]m,j (e−iκyj ·x̂ + usc
D(yj,−x̂)) (eiκd·ym + Φ∞

D (−d, ym))
}

.

Comparing this identity with (86) and making use of the following reciprocity relations for the extended

obstacle D:

u∞D (x̂, d) = u∞D (−d,−x̂), usc
D(x, d) = Φ∞

D (−d, x), Φ∞
D (x, y) = Φ∞

D (y, x), (87)

for all x 6= y, x, y ∈ R3\D, we finish the proof of the first assertion. The second assertion follows from

the equations

usc(y,−d) = usc
D(y,−d) −

N
∑

m,j=1

{

[M−1(κ, α)]m,j (e−iκyj ·d + usc
D(yj,−d)) Φκ

D(y, ym)
}

,

Φ∞
α,D(d, y) = Φ∞

D (d, y)−
N

∑

m,j=1

{

[M−1(κ, α)]m,j Φκ
D(yj, y)(e

−iκym·d + Φ∞
D (d, ym))

}

and the last two identities in (87).
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4.1 Data-to-pattern operator

Given f ∈ H1/2(∂D) and c = (c1, c2, · · · , cN) ∈ CN , we consider the problem of finding v ∈
H1

loc(R
3\(D ∪ Y )) such that

(III)















(∆ + κ2)v = 0, in R3\{D ∪ Y },
v = f, on ∂D,
(Γ2v)j − αj(Γ1v)j = cj , j = 1, 2, · · · , N,
∂v/∂r − iκv = o(1/r), as r → ∞, r = x/|x|.

By Lemma 4.1, problem (III) is uniquely solvable with the solution taking the form

v(x) = usc
f (x) −

N
∑

m,j=1

{

[M−1(κ, α)]m,j [(Γ2u
sc
f )j − cj ] Φ

κ
D(x, ym)

}

,

where usc
f denotes the unique solution to (I) with the Dirichlet data usc

f = f on ∂D. The far-field data v∞

of v defines the data-to-pattern operator G̃ : H1/2(∂D) × CN → L2(S2) as

G̃(f, c) := v∞(x̂) = u∞f (x̂) −
N

∑

m,j=1

{

[M−1(κ, α)]m,j [(Γ2u
sc
f )j − cj] (e

−iκx̂·ym + Φ∞
D (x̂, ym))

}

(88)

with u∞f being the far-field pattern of usc
f .

Remark 4.4. If f = −uin|∂D, cj = −(Γ2u
in)j + αj(Γ1u

in)j , then v coincides with usc given in (84).

The set D∪Y of extended and point-like obstacles can be characterized by the ranges of G̃. Recall that

the far-field pattern of the free-space fundamental solution is given by φy(x̂) := e−iκx̂·y.

Lemma 4.5. The function φy belongs to the range R(G̃) of G̃ if and only if y ∈ D ∪ Y .

Proof. Assume first y ∈ D ∪ Y . Set f = Φκ(x, y)|∂D and c = {cj} ∈ CN with

cj := (Γ2Φ
κ(x, y))j − αj(Γ1Φ

κ(x, y))j =







Φκ(yj, y) if y ∈ D,
Φκ(yj, ym) if y = ym ∈ Y,m 6= j,
iκ/(4π) − αj if y = yj ∈ Y.

(89)

Then we see the unique solution to problem (III) is v = Φκ(x, y) and hence G̃(f, c) = v∞ = φy.

Now suppose φy = G̃(f̃ , c̃) for some f̃ ∈ H1/2(∂D) and c̃ ∈ CN . Let ṽ be the solution to (III) with

f = f̃ and c = c̃ so that ṽ∞ = φy. Applying Rellich’s identity and the unique continuation of solutions

to the Helmholtz equation, we get ṽ(x) = Φκ(x, y) for all x /∈ D ∪ Y . If y ∈ ∂D or y ∈ R3\(D ∪ Y ),

one can readily derive a contraction from the boundedness of the limit ṽ(x) → ṽ(y) as x → y and the

singularity of Φκ(x, y) at x = y. This implies y ∈ D ∪ Y .

However, the above characterization cannot be numerically implemented, since knowledge of the data-

to-pattern operator is not available from our measurement data. The essence of the factorization method

is to connect the ranges of G̃ with the far-field operator F̃ : L2(S2) → L2(S2) defined as

(F̃ g)(x̂) =

∫

S2

u∞(x̂, d) g(d) ds(d), g ∈ L2(S2). (90)
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To do this we shall factorize F̃ in terms of G̃ in the subsequent section. It is obvious that the spectrum of

F̃ can be straightforwardly extracted from u∞(x̂, d) for all x̂, d ∈ S2. Below we show some properties of

G̃ which will be used in Section 4.4 for establishing the relation between R(G̃) and R(F̃ ).

Lemma 4.6. Assume that κ2 is not a Dirichlet eigenvalue of −∆ in D. Then the data-to-pattern operator

G̃ is one-to-one, compact with dense range in L2(S2).

Proof. Define G : H1/2(∂D) → L2(S2) as the data-to-pattern operator in the absence of the point-like

scatterers. It is seen from (88) that the compactness of G̃ follows from the compactness of G, shown in

[20, Lemma 1.13], since Γ2u
sc
f is smoothing. The injectivity and denseness can be proved in the same

way as in [20, Lemma 1.13] for G.

4.2 Factorization of the far-field operator

Introduce the Herglotz wave function

(Hg)(x) :=

∫

S2

eiκx·dg(d) ds(d), g ∈ L2(S2).

The far-field operator F̃ defined in (90) is nothing else but the far-field pattern of the scattered field to

problem (II) with the incident wave uin(x) = (Hg)(x). Define the bounded operator H̃ : L2(S2) →
H1/2(∂D) × CN as

H̃g :=
(

Hg|∂D, (c1, · · · , cN)
)

, cj := (Γ2Hg)j − αj(Γ1Hg)j = (Hg)(yj).

Then it holds the factorization

F̃ = −G̃H̃.

Introduce the single layer potentials

S(ϕ)(x) :=

∫

∂D

Φκ(x, y)ϕ(y)ds(y), x ∈ R
3,

J(ϕ)(x) :=

∫

∂D

Φκ(x, y)ϕ(y)ds(y), x ∈ ∂D, (91)

for ϕ ∈ H−1/2(∂D) and the function

(K(b))(x) :=

N
∑

j=1

bj Φκ(x, yj), x 6= yj, b = (b1, b2, · · · , bN ) ∈ C
N .

Clearly, the sum S(ϕ) +K(b) =: S̃(ϕ, b) is a radiating solution to the Helmholtz equation in R3\(D ∪
Y ). Define the operator S : H−1/2(∂D) × CN → H1/2(∂D) × CN as

S(ϕ, b) :=
(

S̃(ϕ, b))|∂D, {cj}N
j=1

)

, cj := (Γ2S̃(ϕ, b))j − αj(Γ1S̃(ϕ, b))j. (92)

Then, the unique solution to problem (III) with (f, c) = S(ϕ, b) is given by

v(x) = S̃(ϕ, b)(x), x ∈ R
3\(D ∪ Y ).
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This implies that, for any (ϕ, b) ∈ H−1/2(∂D) × CN ,

G̃S(ϕ, b) = v∞(x̂) =

∫

∂D

e−iκx̂·yϕ(y)ds(y) +

N
∑

j=1

e−iκx̂·yjbj = H̃∗(ϕ, b),

where the last equality is derived from the definition of H̃ . Hence, we get H̃ = S∗G̃∗ and

F̃ = −G̃S∗ G̃∗. (93)

Remark 4.7. In the absence of the point-like scatterers, i.e., Y = ∅, there holds H̃ = H, G̃ = G and

S = J , see [20]. If there is no extended obstacle, i.e.,D = ∅, then the factorization (93) can be reduced

to the case of MUSIC algorithm as considered in [4] or [20, Chapter 4].

4.3 Properties of the middle operator

Define the entries of the matrix Θ(κ, α) = [Θ]m,j in the following way

Θm,j = Θm,j(κ, α) :=

{

Φκ(ym, yj) if m 6= j,
iκ/4π − αj if m = j.

(94)

Note that Θ(κ, α) differs from M(κ, α) only in the diagonal terms. Let Bε(yj) := {x : |x − yj| = ε}
for some ε > 0. Assume that f(x) is a continuous function at x = yj . Using mean value theorem, one

can easily prove that

lim
ε→0

∫

Bε(yj)

∂νΦ
κ(x, ym)f(x)ds(x) =

{

−f(yj) if m = j,
0 if m 6= j,

(95)

where the normal ν on Bε(yj) is directed into the region |x− yj| > ε, and

Aj,m,l(ε) :=

∫

Bε(yj)

Φ
κ
(x, yl)∂νΦ

κ(x, ym)ds(x) =







o(ε) if m 6= j,

−Φ
κ
(yj, yl) + o(ε) if m = j 6= l,

(iκ− 1/ε)/(4π) if m = j = l,
(96)

where o(ε) → 0 as ε → 0.

The properties of the middle operator S are shown below.

Lemma 4.8. Assume that κ2 is not a Dirichlet eigenvalue of −∆ in D and that the matrix Θ is invertible.

Then,

(i) The operator S : H−1/2(∂D) × CN → H1/2(∂D) × CN is an isomorphism.

(ii) We have

Im 〈(ϕ, b),S((ϕ, b)〉 < 0, for all (ϕ, b) ∈ H−1/2(∂D) × C
N , ϕ 6= 0, |b| 6= 0,

provided Imαj ≤ 0 for all j = 1, 2, · · · , N .
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(iii) There exists a self-adjoint and coercive operator S0 : H−1/2(∂D)×CN → H1/2(∂D)×CN such

that S − S0 : H−1/2(∂D) × C
N → H1/2(∂D) × C

N is compact.

Proof. (i) From (89) and the definitions of Γm(m = 1, 2), K(b) and Θ, we see

(Γ2S(ϕ))j − αj(Γ1S(ϕ))j = (Γ2S(ϕ))j, {(Γ2K(b))j − αj(Γ1K(b))j}j=N
j=1 = Θ b.

This enables us to rewrite the operator S in (92) as the matrix form

S(ϕ, b) =

(

J K
Γ2S Θ

) (

ϕ
b

)

. (97)

If κ2 is not a Dirichlet eigenvalue of −∆ in D, the single layer operator J is an isomorphism from

H−1/2(∂D) to H1/2(∂D). Since Θ : CN → CN is invertible and K : CN → H1/2(∂D), Γ2S :
H−1/2(∂D) → CN are compact operators, it can be concluded that S is a Fredholm operator with index

zero. Consequently, S is an isomorphism provided it is injective.

Suppose that S(ϕ, b) = 0 and that S̃(ϕ, b) is the unique solution to problem (III) with (f, c) = S(ϕ, b).

The uniqueness of solutions to (III) gives S̃(ϕ, b) = 0 in R
3\(D ∪ Y ). Again using the fact that κ2 is

not a Dirichlet eigenvalue of −∆ in D, we see S̃(ϕ, b) = 0 in D. Then ϕ = 0 follows from the jump

relations of S̃(ϕ, b) over ∂D. Inserting ϕ = 0 into (97) and using S(ϕ, b) = 0, we arrive at Θ b = 0.

Finally we get |b| = 0 as a consequence of the invertibility of Θ. This together with Fredholm alternative

yields the unique solvability of S(ϕ, b) = (φ, c) for any (φ, c) ∈ H1/2(∂D) × CN .

(ii) From (97) and (92),

Im 〈(ϕ, b),S((ϕ, b)〉 = Im 〈ϕ, S̃(ϕ, b)|∂D)〉 + Im 〈b, (Γ2S)ϕ+ Θb〉. (98)

The first term on the right hand side of (98) will be calculated as follows. Set w(x) = S̃(ϕ, b)(x), x ∈
R3\(D ∪ Y ). Choose R > 0 sufficiently large and ε > 0 sufficiently small. Using the jump relations of

w over ∂D and integration by parts, we get

〈ϕ, S̃(ϕ, b)|∂D)〉 =

∫

∂D

(
∂w−

∂ν
− ∂w+

∂ν
)w ds

=

∫

D∪DR,ε

|∇w|2 − κ2|w|2dx−
∫

BR(O)

w
∂w

∂ν
ds+

N
∑

j=1

∫

Bε(yj)

w
∂w

∂ν
ds, (99)

where DR,ε := {x : x ∈ R3\D, |x| < R, |x − yj| > ε, j = 1, 2, · · · , N}. In view that w(x) =
S(ϕ) +K(b), using (95) we find that

∫

Bε(yj)

w
∂w

∂ν
ds =

∫

Bε(yj)

{

Sϕ
∂K(b)

∂ν
+K(b)

∂K(b)

∂ν

}

ds+ o(ε) as ε→ 0,

since S(ϕ) is continuous at each yj . From (95) and the definition of K(b), it follows that

∫

Bε(yj)

Sϕ
∂K(b)

∂ν
ds =

N
∑

m=1

bm

∫

Bε(yj)

Sϕ
∂Φκ(x, ym)

∂ν
ds = −bj Sϕ(yj) + o(ε),
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as ε→ 0. By (96), it holds that

∫

Bε(yj)

K(b)
∂K(b)

∂ν
ds =

N
∑

l,m=1

bl bmAj,m,l(ε) =
|bj |2
4π

(iκ− 1

ε
) −

N
∑

l=1,l 6=j

bl bj Φ(yj, yl).

Hence, summarizing over j and recalling the definitions of Γ2 and Θ,

N
∑

j=1

∫

Bε(yj)

w
∂w

∂ν
ds = −〈b,Γ2Sϕ〉 − 〈b,Θb〉 − |b|2/(4πε) −

N
∑

j=1

αj |bj|2 + o(ε). (100)

Since w satisfies the Sommerfeld radiation condition, letting R → ∞ we get

∫

BR(O)

w
∂w

∂ν
ds = iκ

∫

|x|=R

|w|2ds+ o(R) =
iκ

(4π)2
||w∞||2L2(S2) + o(1/R), (101)

where w∞ denotes the far-field pattern of w. Inserting (100), (101) back to (99), taking the imaginary part

and letting R → ∞, ε→ 0, we get

Im 〈ϕ, S̃(ϕ, b)|∂D)〉 = −Im 〈b, (Γ2S)ϕ+ Θb〉 − κ/(4π)2||w∞||2L2(S2) +
N

∑

j=1

|bj|2Imαj. (102)

Now, it is seen from (98) and (102) that

Im 〈(ϕ, b),S((ϕ, b)〉 = −κ/(4π)2||w∞||2L2(S2) +

N
∑

j=1

|bj|2 Imαj ≤ 0

under the assumption that Imαj ≤ 0 for j = 1, 2, · · · , N .

If Im 〈(ϕ, b),S((ϕ, b)〉 = 0, then we have w∞ = 0, and by Rellich’s lemma, w(x) = S̃(ϕ, b)(x) = 0
for x ∈ R3\(D ∪ Y ). Arguing the same as in the proof of assertion (i) we obtain ϕ = 0, b = 0 . This

implies that Im 〈(ϕ, b),S((ϕ, b)〉 < 0 for all ϕ 6= 0 and |b| 6= 0.

(iii) Denote by J0 the single layer operator defined as in (91) with the κ = i. It was proved in [20, Lemma

1.14] that J0 is a self-adjoint and coercive operator from H−1/2(∂D) to H1/2(∂D), i.e.,

〈ϕ, J0ϕ〉 ≥ c0||ϕ||2H−1/2(∂D), ϕ ∈ H−1/2(∂D),

for some positive constant c0. Moreover, J − J0 is compact from H−1/2(∂D) to H1/2(∂D). To prove

(iii), we define the operator S0 : H−1/2(∂D) × CN → H1/2(∂D) × CN as

S0(ϕ, b) = (J0ϕ, c0 b), ϕ ∈ H1/2(∂D), b ∈ C
N .

Then S0 is coercive, i.e.,

〈(ϕ, b),S0(ϕ, b)〉 ≥ c0 (||ϕ||2H−1/2(∂D) + |b|2).

With such a choice, the difference

(S − S0)(ϕ, b) =
(

(J − J0)ϕ+K(b)|∂D, Γ2Sϕ+ Θb − c0 b
)

is compact, since J − J0, K,Γ2S and the multiplication operator by Θ or c0 are all compact.
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4.4 Uniqueness and Inversion algorithms

The properties of the data-to-pattern operator G̃ and the operator S (see Lemmas 4.6 and 4.8) put us

in a position where we can directly apply the following range identity (see [20, Theorem 2.5.1]) to the

factorization of the far field operator established in (93). Recall that the real and imaginary parts of the

operator F over a Hilbert space are given by

ReF := (F + F ∗)/2, ImF := (F − F ∗)/(2i).

Obviously, both ReF and ImF are selfadjoint operators.

Lemma 4.9 (Range Identity). Let X ⊂ Y ⊂ X∗ be a Gelfand triple with Hilbert space Y and reflexive

Banach space X such that the embedding is dense. Furthermore, let Y be a second Hilbert space and

F : Y → Y , G : X → Y and T : X∗ → X be linear and bounded operators with F = GTG∗.

Suppose further that

(a) G is compact and has dense range.

(b) There exists t ∈ [0, 2π] such that Re [exp(it)T ] has the form Re [exp(it)T ] = T0 + T1 with some

compact operator T1 and some coercive operator T0 : X∗ → X , i.e. there exists c > 0 with

〈ϕ, T0ϕ〉 ≥ c‖ϕ‖2
for all ϕ ∈ X∗

(103)

(c) ImT is non-negative on R(G∗) ⊂ X∗, i.e., 〈ϕ, ImTϕ〉 ≥ 0 for all ϕ ∈ R(G∗).

(d) Re [exp(it)T ] is one-to-one or ImT is strictly positive on the closure R(G∗) of R(G∗), i.e., for all

ϕ ∈ R(G∗) with ϕ 6= 0 it holds 〈ϕ, ImTϕ〉 > 0.

Then the operator F] := |Re exp(it)F | + |ImF | is positive definite and the ranges of G : X → Y

and F
1/2
] : Y → Y coincide.

To apply Lemma 4.9, we set

t = π, F = F̃ , G = G̃, T = −S∗, T0 = S0, T1 = Re (S − S0),

Y = L2(S2), X = H−1/2(∂D) × CN .

In our settings, all the conditions in Lemma 4.9 are satisfied. In fact, conditions (a) and (b) follow from

Lemma 4.6 and Lemma 4.8 (iii), respectively. Conditions (c) and (d) are guaranteed by Lemma 4.8 (i) and

(ii) under the assumption that Imαj ≤ 0 for all j = 1, 2, · · · , N . Combining Lemmas 4.5 and 4.9, we

conclude

Theorem 4.10. Assume that κ2 is not a Dirichlet eigenvalue of −∆ in D, the matrix Θ(α) is invertible

and that Imαj ≤ 0 for all j = 1, 2, · · · , N . Then,

(i) The function φy(x̂) belongs to R(F̃
1/2
] ) if and only if y ∈ D ∪ Y .

(ii) The far-field data u(x̂, d) for all x̂, d ∈ S2 uniquely determine the shape of the extended obstacle

and positions of the point-like scatterers.
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Note that the uniqueness described in Theorem 4.10 (ii) is only a corollary of the first assertion. By

Picard’s theorem (see e.g, [6, Theorem 4.8]), the setD∪Y can be characterized through the eigensystem

of the far-field operator as follows.

Corollary 4.11. Suppose the assumptions in Theorem 4.10 hold. Let (λj , ψj) be an eigensystem of the

(positive) operator F̃] := |Re F̃ | + |Im F̃ |. We have the following characterization of D ∪ Y :

y ∈ D ∪ Y ⇐⇒ W (y) :=
∞

∑

j=1

[ |(φy, ψj)L2(S2)|2
λj

]−1

> 0, (104)

where φy(x̂) := exp(−iκx̂ · y) for x̂ ∈ S2.

Thus, the function W (y) on the right hand side of (104) can be regarded as an indicator function for the

unknown scatterer D ∪ Y where the variable y is the sampling point. The values of W for y ∈ D ∪ Y
should be much larger than those for y ∈ R3\{D ∪ Y }. We complete this section by the following

remarks.

Remark 4.12. (i) Remark that the matrix Θ(κ, α) is the same as the matrix M(κ, α) in section 2,

see Remark 3.8, when the extended obstacle is absent. Hence a similar condition as in Remark

3.8 is enough to invert Θ(κ, α). Precisely, if

N − 1

d
max

j=1,...,N
| iκ
4π

− αj|−1 < 1 (105)

then Θ(κ, α) is diagonally dominant and hence invertible. Remark that we took the constant C
appearing in Remark 3.8 to be C = (4π)−1 and h = 0 since D = ∅ and hence |ΦD(x, y)| =
|Φκ(x, y)| = (4π)−1|x − y|−1. Actually, in the case of absence of extended obstacles, we have

a weaker condition than (105) to ensure the invertibility of Θ(κ, α). Namely, there exists a positive

constant a0 such that if

maxj=1,...,N | iκ
4π

− αj|−1

d
< a0 and min

j 6=m
cos(κ|yj − ym|) ≥ 0 (106)

then Θ(κ, α) is invertible. Note that this last condition is independent on the number of obstacles

N . Such condition is derived in the framework of scattering by many small obstacles in [4], where

the coefficients | iκ
4π

− αj|−1 are replaced by the diameters of the small obstacles.

(ii) The condition Im αj = 0 is needed to have the selfadjointness of the scattering operators in

section 2. Indeed, we know that (Qα)∗ = Qα∗ and hence we need α∗ = α which implies that

Im αj = 0 if we take α := diag(α1, ..., αN).

(iii) Our arguments apply to the case where the extended scatterer D is of sound-hard or impedance

type, or is a penetrable medium. For the forward problem, the waves usc
D , uD and Φκ

D in (84)

should be redefined according to the underlying extended scatterer D. Concerning the inverse

problem, our approach in section 4 extends to these cases with an additional complexity from

how to factorize the far-field operator with an appropriate middle operator and then to justify the

conditions in Lemma 4.9. We believe that this can be achieved taking into account the various

versions of the factorization method in [20] for extended penetrable or impenetrable scatterers

only.
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5 Numerical results and discussions

This section is devoted to reporting numerical examples for testing accuracy and validity of the Factoriza-

tion method in R2. We first list the necessary changes for carrying over the mathematical analysis of the

direct and inverse scattering from three to two dimensions. The free space fundamental solution to the

Helmholtz equation (∆ + κ2)u = 0 in 2D is given by

Φκ(x, y) =
i

4
H

(1)
0 (κ|x− y|), x 6= y,

where H
(1)
0 (t) denotes the Hankel function of the first kind and of order zero. In R

2, the Sommerfeld

radiation condition has to be replaced by

lim
r→∞

√
r(∂ru− iκu) = 0, r = |x|,

uniformly for all directions x/|x|. With some normalization we defined the far field pattern as

u(x) = γ
eiκ|x|

√

|x|
{

u∞(x̂) + O(
1

|x|)
}

, γ =
eiπ/4

√
8πκ

.

The operators Γj (j = 1, 2) introduced in (52) have to be replaced by

(Γ1u)j = lim
x→xj

− 2π

ln |x− xj |
u(x) , (Γ2u)j = lim

x→xj

(

u(x) +
1

2π
ln |x− xj | (Γ1u)j

)

. (107)

Then, using the expansion of Φκ(x, yj) (see e.g., [6, Chapter 3.4]) we see

(Γ1Φ
κ(x, yj))j = 1, (Γ2Φ

κ(x, yj))j =
i

4
− 1

2π
ln
κ

2
− C

2π
=: η,

where C denotes Euler’s constant. Consequently, we define the matrix

[M(κ, α)]m,j =

{

Φκ
D(ym, yj) if m 6= j,

Φsc
D(yj, yj) + η − αj if m = j,

in place of the one given in Lemma 4.1. Then the well-posedness of the forward scattering and the

factorization method for the inverse scattering can be established in the same manner as for 3D.

In the following experiments, unless otherwise stated we always set the wavenumber κ = 1. The far-field

operator F is discretized by 64 incident directions and 64 observation directions equivalently distributed

in the unit disk.

Experiment 1: We use the inversion algorithm (104) to reconstruct a kite-shaped obstacle and a fi-

nite number N of point-like obstacles equivalently lying on the line segment {(x1, x2) ∈ R2 : x1 =
−6, x2 ∈ [−3, 3]}. The numerical results are shown in Figure 1. We take αj = 1. The number N is

set as N = 4, 6, 8 in (1(a)), (1(b)) and (1(c)), respectively, where the plots of the indicator functions are

visualized from the direction (0,0,1). Figures (1(d)) and (1(e)) show the recovery of the point-like obstacles

corresponding to (1(a)) and (1(b)) from the viewpoint (-1,0,0), while (1(f)) is the view of (1(c)) from the

point (1,−3, 0.5). We conclude from Figure 1 that the factorization method works well only if the point-

like scatterers are well-separated. When the number N increases, neither the positions of the point-like
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obstacles can be precisely retrieved nor the shape of the extended obstacle; see Figures (1(c)) and (1(f))

where the minimum distance between the pointwise scatterers is less than the wavelength. In the well-

separated case, e.g. Figures (1(a)) and (1(d)), the point-like scatterers that are closer to the extended

obstacle are less resolved than those further away from the extend obstacle (see also Figure (1(b)))

Experiment 2: We show the sensitivity of the factorization method to the distance between the point-like

and extended obstacles. The recovery of a fixed kite and one point-like obstacle with different locations

at (8,8), (4,4), (1,5,1,5) are illustrated in Figures (2(a)),(2(b)) and (2(c)), respectively. We set α = αj = 1
in each test. The shape of the extended obstacle can be identified only if the point-like obstacle keeps

some distance from it (see Figure (2(a))). In Figure (2(c)), neither of them is well-reconstructed since they

are getting too closed. The location of the point-like obstacle in (2(a)) or (2(b)) can be visualized from the

XY-plane rather than from the direction (0,0,1).

Experiment 3: Figure 3 illustrates the sensitivity of the factorization method to the values of αj . We fix

the kite as in Experiment 2 and also the position of the point-like obstacle at (2.5,2.5). We set α = αj =
10, 1, 0.05 in (3(a)), (3(b)), (3(c)), respectively. These figures are visualized from the direction (0, 1, 0) in

(3(d)), (3(e)) and (3(f)), respectively. If α is big, e.g., in Figures (3(a)) and (3(d)), the position of the point-

like obstacle cannot be located. If α is too small, e.g., in Figures (3(c)) and (3(f)), the reconstruction of the

extend obstacle becomes distorted and unreliable. It can also be observed that the values of the indicator

function around the point-like obstacle grow as the value of α decreases, i.e., the point-like obstacle is

more visible for small α.

Experiment 4: The factorization method can be applied to the case where only partial far-field data are

available, i.e., u∞(x̂, d) for x̂, d ∈ S̃2 ⊂ {x : |x| = 1}. For the details we refer to [20, Chapter

2.3]. In this experiment, we consider the reconstruction from limited aperture data S̃2 = {(cos θ, sin θ) :
θ ∈ [−π/2, π/2]}. This implies that the obstacles are illuminated by incident plane waves only from right

hand side and the far-field data are measured at the same side. To make the numerical results comparable

with the case where the full far-field data are used, we discretize the corresponding far-field data by 32

incident directions and 32 observation directions equivalently distributed in the right half of the unit disk.

We put N point-like obstacles equivalently lying on the half-circle {(x1, x2) : x1 = cos β − 3, x2 =
sin β, β ∈ [π/2, 3π/2]}.

Figure (4(a)) illustrates the recovery of the extended obstacle in the absence of the point-like scatterers

(i.e., N = 0). It can be observed how the reconstruction of the unlighted (left half) part of the kite

deteriorates due to the limited incident directions from the right hand side. The shadow part can be well

reconstructed in Figures (4(c)) and (4(f)) by virtue of the multiple scattering effect between the point-like

and extend obstacles. In Figures (4(d)), (4(e)) and (4(f)), we fix the number of point-like obstacles (i.e.,

N = 4) and change the value of the coefficients αj . It is seen that the visibility of the unilluminated part

also depends on αj . However, numerical experiments show poor reconstructions for αj less than 0.2.
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