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Summary We show that the sequence of chi-square tests is asymptoti-
cally minimax if a number of cells increases with increasing sample size. The 
proof utilizes Theorem about asymptotic normality of chi-square test statistics 
obtained under new compact assumptions. 

1 Introduction. 
In recent years numerous papers have been devoted to studying the problems 
of nonparametric estimation. The problems of hypothesis testing versus non-
parametric sets of alternatives have been also considered in many papers (see 
Mann and Wald (1942), Stein (1956), Ingster (1985),(1988), (1993),(1994), 
Ermakov (1988),(1990),{1994),(1995) and others). The especial attention has 
been paid on the goodness-of-fit testing as one of widespread problem of non-
parametric statistics. The research in this domain is naturally separated into 
two parts: hypothesis testing about density and hypothesis testing about dis-
tribution function. 

The setting of the first problem can be described as follows. Let Xi, ... , Xn 
be i.i.d.r.v.'s with unknown density f. Let a priori information be given f E U 
where U is a set of functions satisfying some smoothness conditfons. The pr~b
lem is "to test a hypothesis f = Jo versus alternatives f E r n = {! : I If - Jo 11 > 
bn > 0, f E U} .. Here fo is a fixed density and 11 · 11 is a norm in Banach space 
containing the set U. For this setting Ingster (1986),(1993) has studied rates 
of convergence bn, (bn ~ 0 as n ~ oo ), allowing to distinquish the hypothesis 
and sets of alternatives r n· In the case of L2 norm the asymptotically minimax 
sequences of tests have been constructed in Ingster (1988) when densities f 
are infinitely differentiable and in Ermakov (1988) under weak assumptions on 
smoothness of density f. 

The problem of hypothesis testing on distribution function is natural to 
study in the framework of statistical inference on a value of functional. Let 
Xi, ... ,Xn be i.i.d.r.v.'s with distribution function (c.d.f.) F, let Fn be the 
empirical df of Xi, ... , Xn and let T be the functional on the set ~ of all 
c.d.f. 's. Suppose the problem is to test a hypothesis T( F) = 0, F E ~ 
versus alternatives F E ~(T, bn) = {F : T(F) > bn, F E ~}. For this 
setting the asymptotic minimaxity of test statistics T(Fn) is a standard so-
lution of the problem. In particular, the asymptotic minimaxity of Kol-
mogorov tests (see Ermakov (1990),(1995)) has been proved for the functional 
T(F) = max{IF(x )- xi, x E (0, 1)}. The same results have been also obtained 
for the functionals T corresponding to omega-square and rank tests and have 
been announced for chi-square tests with an -increasing number of cells (see 
Ermakov (1990),(1992),(1995)). Note that the asymptotic minimaxity of chi-
square tests with fixed cells follows easily from Wald (1943) results (see also 
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Borovkov (1984)). 
In practical applications we choose a number of cells depending on a sample 

size n. If a sample size n increases a number of cells k = k( n) is also increases. 
Therefore it is of interest to prove asymptotic minimaxity of chi-square tests 
when a number of cells k =kn depends on a sample size n. 

The exact setting of the problem is as follows. Let X11 ••• , Xn be i.i.d.r.v.'s 
with df F(x), x E [O, l]. Let the interval [O, 1] be divided into k =kn subinter-
vals Iin = [ejn, ei+i,n), Pin = ei+I,n - ein > 0, eon= 0, ekn = 1, 1 :::; j :::; k = kn. 
Fix the values 9jn, 0 < C1 < Gjn < C2 < oo, denote rjn = F( ejn) - F( ej-1,n) 
for 1 :::; j :::; kn and define. the functional 

k 

Tn(F) = n I: 9jn(rjn - Pin) 2pj; · 
j=l 

The functional Tn assigns the chi-square test statistic Tn(Fn)· As we show 
in the paper these test statistics Tn ( Fn) are asymptotically minimax in the 
problem of hypothesis testing Tn(F) = 0, F E ~ versus alternatives F E 
~(Tn, bn)· 

Note that the setting under consideration can be also interpreted in terms 
. of hypothesis testing about density. From this point one can say that· the hy-
pothesis testing based on chi-square tests has intermediate position between 
the problems of hypothesis testing about density and distribution function. 
The corresponding interpretation uses the representation of chi-square test 
statistic as L2-distance between the hystogram and the approximation of den-
sity of hypothesis by the function fn(x) such that fn(x) = rin/Pin for x E ljn, 
1 :::; j :::; k. Note that in the case of F = Fn the function fn coincides with the 
usual hystogram. We call fn(x) the hystogram function of c.d.f. F. For some 
choice of weights 9in we have 

Tn(F) = n fo\J(x) - fo(x)) 2dx. (1.1) 

Here f0 is the hystogram of uniform distribution, that is, f0 ( x) 1 for all 
x E (0, 1 ). Thus the following situation takes place. We cannot test the 
hypothesis about density in Lrnorm without any a priori information about 
its smoothness. At the same time we can replace the density by its simple 
approximation f, to consider the problem of hypothesis testing in terms of 
functional Tn ( F) and the problem is solved. 

The connection of chi-square tests with the problem of hypothesis testing 
about density is well-known. Using this connection Ingster (1986),(1993) has 
studied the problem of choice of number of cells for chi-square tests under 
a priori information on density smoothness. He considered the case of equal 
cells, Pin = 1/ k and showed that, if a density f belongs to a ball in Sobolev 
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space wr, then the optimal choice of number of cells is k = O(n2/(4r+i)). 
Thus, if f belongs to balls in Wir for all r then k = o( n 2-e) with arbitrary 
E > 0. The other aproaches to this problem can be found in Mann and Wald 
(1943), Greenwood and Nikulin (1987), and Kallenberg, Oosterhof£ and Schrib-
ver (1985). 

The results of the paper are as follows. If the cells have equal lengths 
Pin = l/k, 1 ~ j ~ k = k(n). the asymptotic minimaxity of chi-square 
tests is proved for kn = o( n 2 ). For the cells with different lengths the same 
assertion is shown when nmin{Pin,l ~ i _::::; k(n)} --l- oo as n --l- oo. Such an 
assumption implies that the number of random variables in each cell tends to 
infinity as n --l- oo. If this assumption does not satisfied and k = o(n2 ) then 
the asymptotic minimaxity is proved for some modification of chi-square test 
statistics. 

The proofs of results are based on the following approach. We assign the 
functional Tn as a sum of squares of quasi-ortogonal functions. As a conse-
quence the problem becomes similar to that of hypothesis testing about density 
(see Ermakov (1988),(1994), Ingster (1993),(1994)). The direct application of 
corresponding methods allows to show asymptotic minimaxity of chi-square 
test statistics only in the case k = o( n ). To weaken this assumption we modify 
essentially the method of the proof. In Ermakov (1988),(1994) and Ingster 
(1993),(1994) the proofs have been based on the analysis of expansion of log-
arithm of likelihood ratio. In this paper we analyze directly the expansion of 
likelihood ratio. 

The upper bounds for type I and type II error probabilities of chi-square 
tests follow from Theorem on asymptotic normality of chi-square test statistics. 
This Theorem is given in the following version. If the type I and type II 
error probabilities of chi-square tests are detached from one and zero then the 
sequence of chi-square tests statistics is asymptotically normal both in the case 
of hypothesis and under the sequence of alternatives. The proof is based on the 
representation of chi-square test-statistics as U-statistics and the application 
of central limit Theorem for martingales (see Brown (1971)) in the spirit of 
Hall (1984) paper. The problem of asymptotic normality of chi-square test 
statistics has been considered in numerous publications. We should mention 
Tumanyan (1956), Steck (1957), Morris (1975), Medvedev (1977) and others. 

The L 2 -distance ( 1.1) between hystogram and density is not unique mea-
sure of deviation of hystogram utilized in hypothesis testing. The functionals 
corresponding to Kullback-Leibler information 

k 

S1n(F) = n I: Tjn log(rjn/Pin) 
j=l 
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and Hellinger distance 

k 
S ( ) - ~( 1/2 1/2)2 2n F - n L.J rin - Pin 

j=l 

are also widely applied in hypothesis testing. As wellknown, in many cases 
chi-square test statistics Tn(Fn and test statistics S1n(Fn), S2n(Fn) are asymp-
totically equivalent (has the same asymptotic behaviour). In the paper we 
indicate the conditions when such an equivalence takes place if a number of 
cells increases with increasing sample size. We also consider the problems of 
hypothesis testing S1n(F) = 0 versus F E ~(S1n, bn) and S2n(F) = 0 versus 
F E ~(S2n, bn)· For these problems we prove asymptotic minimaxity of both 
chi-square test statistics Tn(Fn) and test statistics S1n(Fn), S2n(Fn)· The last 
assertion follows easily from the asymptotic equivalence result. 

We shall use the following notations. Denote by letters C, c arbitrary con-
stants, x(A) the indicator of event A, Hi, i E B} the number of elements of 
set B, [z] the whole part of z E R1 and ~(x) = (27rt1l 2 f~00 exp{-x2 /2}dx 
the standard normal distribution function. If the context is clear the index n 
will be omitted in notation. For example Pi= Pin' and 9i = 9in· 

2 Main Results. 
For any test Ln = Ln(X1, ... , Xn) denote a(Ln) its level and /3(Ln, F) its 
type II error probability under alternative F E ~(Tn, bn)· Put /3(Ln, bn) = 
sup{j3(Ln, F): FE ~(Tn, bn)} 

Denote 
k k 

dn = EoTn(Xn) = L9i - L9iPh 
i=l i=l 

k 

O"~ = VarTn(Xn) = 2k-1 I: g]. 
j=l 

Introduce the sequence of chi-square tests Kn = x{ k-1! 2a;;1(Tn(X(n)) - dn) > . 
Xan(l + o(l))} with Xan defined by the level O'.n = a(Kn)· 

Suppose that at least one from the following Assumptions holds. 
A. k =kn= o(n2), kn -r oo as n -r oo and Pin= 1/k for all 1 ~ j ~ k. 
B. nmin{Pin, 1 ~ j ~ k} -r oo, max{Pin, 1 ~ j ~ k} -r 0 as n -r oo. 
C. nk112 min{Pin'1 ~ j ~ k} -r oo, max{Pin' 1 ~ j ~ k} -r 0 as n -r oo. 
If Pin~ 1/kn for all 1 ~ j ~ k(n) then Assumption C implies kn= o(n2

) 

and Pin = o(l) as n -r oo. 
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We call a sequence of tests Kn asymptotically minimax if for any sequence 
of tests Ln, a(Ln) < a(I<n) it holds 

lim sup (3(I<n, bn) - (3(Ln, bn) :::; 0. 
n-1-00 

Theorem 2.1. Assume A or B. Let 

(2.1) 

Then the sequence of chi-square tests Kn is asymptotically minimax. 
Let 0 < /1 :::; an = a(I<n) :::; /2 < 1 Then Xan can be set by equation 

O'.n = 1 - <I>(xan) and 

(2.2) 

as n-+ oo. 

Remark. It follows from Theorem 2.1 that if a(I<n) > a > 0 and bnk;;112 -+ 0 
then (3(I<n, bn) = 1 + o(l) as n -+ oo. If a(I<n) > a > 0 and bnk;;112 -+ oo as 
n -+ oo then (3(I<n, bn) = o(l) as n -+ oo. 

The proof of Theorem 2.1 is based on the following representation of functionals 
Tn in terms of quasiortogonal system of functions </Yjn(x) = x(x E ljn) - Pin, 
x E (0,1), 1 :::;j:::; k(n) 

(2.3) 

Such an assignment of functional Tn(F) allows to utilize the technique de-
veloped in the problems of asymptotically minimax hypothesis testing about 
density (see Ermakov (1988),(1994) and Ingster (1993),(1994)). For this prob-
lem the corresponding functional Tn is L2-norm of deviation of alternative, 
that is, 

f'n(F) = ~(l e;(x)d(F - F0 )(x))2 

where ei, 1 :::; j < oo, is ortonormal system of functions and F0 is a distribution 
function of hypothesis. The functions <Pin, 1 :::; j :::; k, are not ortogonal and 
this cause the essential differences in the proof. 

In more general situation of Assumption C we can prove only asymptotic 
minimaxity of some modification of chi-square test statistics 
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with Ajn = Fn( ejn) - Fn( ej-1,n)· 
Such an assignment of test statistics T1n can be explained as follows. We 

have 
k n 

Tn(Fn) = n-l L9in( L (/>j(Xs)) 2pj};, (2.4) 
j=l s1=l 

k 

2n-l L9in L </>j(Xsi)ef>j(Xs2 )Pj~ (2.5) 
j=l l:5s1 <s2:5n 

where 
k n 

Nn(Fn) = n-l L9in L </JJ(Xs)Pj,; · 
j=l s=l 

If Assumption A fullfils then Nn( Fn) = dn = const. 
If Assumption B. is valid then 

EpNn(Fn) - EoNn(Fn) = o(EFTn(Fn) - EoTn(Fn)), (2.6) 

VarpNn(Fn) = o(VarpTn(Fn)) (2. 7) 

for all .F E CZS(Tn, bn)· 
Thus the influence of addendums Nn is neglected in these cases. 
If Assumption C is valid then (2.6) holds and in many cases 

(2.8) 

This implies that the influence of Nn is essential. For this reason we have been 
obliged to introduce the test statistics T1n(Fn)· Note that a similar modifi-
cation of asymptotically minimax tests statistics has been also considered in 
the problems of hypothesis testing on density (see Ermakov (1988), Ingster 
(1994)). 

Let 9in = 1, Pin = 1/ k for all 1 ~ j ~ k. Then the test statistics 

can be interpreted as a normalized sum of pairs of observations Xs1 ,X82 con-
taining in the cells. Thus the hypothesis and the sets of alternatives are dis-
tinquishable by test statistics T1n(X(n)) if a number of cells containing at least 
two observations tends to infinity with increasing sample size. 

Introduce a sequence of tests Kin(X(n)) = x{ k-1!2(J';;, 1T1n(Fn) > Xan (1 + 
o(l))} with Xan defined by the levels an= a(K1n)· 
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Theorem 2.2. Assume C and (2.1 ). Then the sequence of tests K1n is 
asymptotically minimax. If 0 < / 1 < an < 12 < 1 then 

(2.10) 

with xetn defined by equation an = 1 - q>(xetn)· 
Remark. Assume A and (2.1 ). Then the sets of alternatives are defined by the 
equation 

Tn(F) = n fo\J(x) - 1)2dx :2: bn X k112 • 

Thus the assumption kn = o( n2 ) allows to cover all possible deviations of L2 -

norm of density. 
Remark. It follows fro.gi Theorems 2.1, 2.2 and (1.1) that we have to take 
into account two factors in the choice of chi-square test statistics. The first 
one is Lrdistance bn between hystogram of hypothesis and alternatives. The 
second factor is deviation of density from its hystogram constructed by kn 
cells. Thus, from this point of view the statistical procedure has to have the 
following character. We indicate a desired value bn and find values kn such 
that by a priori information the distance between density and its hystogram 

. has the same order bn. After that a hypothesis is tested. In such a way a choice 
of number of cells kn is defined by Lrdistance bn and density smoothness. 

In this p·aper we do not ·consider adaptive methods of choice of a number of 
cells. The study of such procedures requires a special technique which is out 
of scope of the paper. Recently such interesting procedures has been proposed 
in Bogdan (1995), Fan (1995) and Kallenberg and Ledwina (1995). 

The results on asymptotic normality of tests statistics Tn(X(n)) and T1n(X(n)) 
will be given in terms of parameters (Jn= ()n(F) = {()jnH, ()jn = (rjn -Pjn)/Pjn· 
It is clear that the distributions of tests statistics Tn(X(n)), T1n(X(n)) are 
uniquely defined by these parameters. 

Denote 
k 

Mn(())= (n - 1) L e}nPin· 
j=l 

Theorem 2.3. Assume A or B. Then 

Assume C. Then 

EoTn(Fn) - dn = Mn(()n)(l + o(l)), 

VaroTn(Fn) = ku~ + o(M2 (()n) + k). 

EoT1n(Fn) = 0, 

VaroT1n(Fn) = ku~ + o(M~(()n) + k). 
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By Chebyshov inequality it follows from (2.11)-(2.14) that if k;,1!2 Mn(Bn) --1' 

oo then /3(1<n, Bn) --1' 0, /3(1<1n, Bn) ---+ 0 as n --1' oo. Hence it suffices to 
study the asymptotic behaviour of /3(1<n, F), /3(I<1n, F) under the assumption 
Bn(F) E I'n(C) = {B(F): Mn(B(F)) < Ck1l2 }. 

Theorem 2.4. Assume A or B. Then Pe distributions k-1! 2a;,1(Tn(Fn) - k) 
converge to normal uniformly in B = Bn(F) E r n( C). 4 

Assume C. Then Pe distributions k;_112a;,1T1n(Fn) converge to normal uni-
formly in(}= Bn(F) E I'n(C). 
Remark. In Theorem 2.4 the distribution function F does not assumed fixed as 
opposed to the previous results (see Tumanian (1956), Morris (1975), Medvedev 
(1977) and others). 

As mentioned we also consider the problems of hypothesis testing for the 
sets of alternatives P t: ~(S1~, ·bn) and' F E ''l.S(S2·~;bn)· The corresponding 
results are obtained under essentially more strong assumptions. 
Cl. Cif kn< Pin< C2f kn for all l ~ j ~kn. 
C2. kn = o(n213 ) as n --1' oo. 

For any test Ln denote /3i(Ln, bn) = sup{f3(Ln, F) : F E ~(Sin, bn)}, i = 
1, 2 .. 

Theorem 2.5. ·Assume Cl,C2 _and (2.1). Then, for the problem of testing a 
hypothesis Sin(F) = 0 versus F E ~(Sin, i-2bn) ,i = 1, 2, the sequence of chi-
square tests I<1n is asymptotically minimax. !JO < /l < an = a(I<1n) < /2 < 1 
then 

/3i(I<1n, bn) = <P(xCtn - bnk;1l2)(l + o(l)). 
with Xcxn defined by the equation an= 1 - <P(xcxn) 

Make the following assumption. 
C3. kn= o(n112/logn) as n --1' oo. 

(2.15) 

Define the sets of c.d.f. 's ?R( Sin, C, en) = r n( C) n { F : F( x) has a density 
J(x) = dF(x)/dx and sup IJ(x) -11 <en}· 

Theorem 2.6. Assume Cl,C3 and let en --1' 0 as n --1' oo. Then, for all 
E>O 

-1/2 " " P(kn ITn(Fn) - S1n(Fn)I > c) = o(l), (2.16) 
uniformly in FE ?R(S1n, C, en) as n --1' oo and 

P(k;1!2ITn(Fn) - 4S2n(Fn)I > c) = o(l) (2.17) 

uniformly in FE ?R(S2n, C, en) as n --1' oo. 
Remark. A slight modification of technique developed in the paper allows to 
obtain similar results for Neyman test and to strengthen results on asymp-
totically minimax hypothesis testing about density see Ermakov (1988, 1994). 
These problems will be considered in another paper. 
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3 Proof of Theorems 2.1and2.2. Lower bounds. 
Main Lemmas. 

The proof of lower bounds is based on some asymptotic analogue of Lemma on 
the least favourable distribution (see Lehmann (1986)). We assign a sequence 
of Bayes distributions and show that Bayes likelihood ratio can be presented as 
a function of test statistics T1n(X(n)). Then we prove that Bayes type II error 
probabilities of K1n(X(n)) equal /3(K1n, bn)(l + o(l)). By asymptotic analogue 
of Lemma about the least favourable distribution and Theorems 2.3,2.4 this 
implies Theorem 2.2. By (2.6),(2. 7) if A or B is satisfied then the difference of 
test statistics Tn(X(n)) and T1n(X(n)) is unessential. Thus Theorem 2.1 follows 
from Theorem 2.2. 

Denote by Un the set of all c.d.f.'s Gr with the densities . 
. k 

9r(x) = 1 + LTjq)j(x); 
j=l 

Define the sets 
k k 

. Qn = {r: n Egjpj(Tj - LTtPt)2 > bn,T = {rj}~, Gr E Un}· 
j=l t=l 

For any c.d.f. F E c;}(Tn, bn) there exists c.d.f. Gn r E Qn such that B(F) = 
r( Gr) and Tn(F) = Tn( Gr) = n L,j=I 9iPi( Tj - L,:=l TtPt)2. Thus it suffices 
to prove Theorem 2.2 for the parametric sets of alternatives Qn instead of 
c;}(Tn, bn)· 
Lemma 3.1. For any j, t, 1 ::=:; j < t ::=:; k it holds 

k 

Er<PAX1) =Pi( Tj - L TiPi), 
i=l 

k 

(3.1) 

Er<PJ(Xi) =PAI - Pi - LTiPi - TjPj(l - 2pj)), (3.2) 
i=l 

k 

Er<Pj(X1)<Pt(X1) = -PiPt(l - 2 LTiPi + Tj + Tt)· (3.3) 
i=l 

Let 1 ::=:; ii < i2 < ... < jz ::=:; k and Tji = rJin) = o(l) as n --7 oo for all i, 
1 ::=:; i ::=:; l. Then for any integers ti, ... , tz 

(3.4) 

Denote 
k 

Pns = k(l + 8)(Lg]t1
• 

j=l 
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Put "'J = "'Jns = n-1 k-19jPnsbnpj1 for all j, 1 ~ j ~ k. Define a random 
vector r/n) = 77in) = { 1]j }~ with independent components 1]j having Binomial 
distribution P(ru = "'i) = P( 17i = -K,j) = 1/2. Denote µn the probability 
measure of random vector 77(n). Then Bayes a priori probability measure Vn is 
the conditional measure of µn under the condition 77(n) E Qn. 

Note that the choice of Binomial distribution as the least favourable dis-
tribution does not play essential role in the proof. One can take arbitrary 
independent bounded random variables (Jn) with the same first and second 
moments as 17Jn), 1 ~ j ~ k. 

Define the sets Wn = {B: Bi= ±"'i' 0={Bi}:,1 ~ j ~ k} W1n = {B: 0 E 
Wn,Tn(Ge) > bn} and W2n = Wn \ W1n· 

Since "'n = max{"'jnS, 1 ~ j ~ k} = o(l) then 9w(x) 2: 0 for all x E (0, 1) 
and w E. Wn. Thus 9w,.is.a density.for all w E Wn· 
Lemma 3.2. 

(3.5) 

The proofs of Lemma 3.2 and next Lemmas 3.3-3.5 will be given in section 
4. Lemma 3. 7 will be proved in section 5. 

Take In = µn or In = Vn and for any tests Ln denote 

(3.6) 

By Lemma 3.2, /3(Ln, µn) = /3(Ln, vn)(l + o(l)) for any sequence of tests Ln 
such that /3(Ln, µn) > c > 0. Thus Theorem 2.2 will follow from 

lim lim /3(K1n, µn) = lim lim /3(K1n, bn) = 
S-+O n-+oo 8-+0 n-+oo 

(3.7) 

Here Sn = Sn(X(n)) is Bayes likelihood ratio test with the same level as Kn 
n 

Sn(X(n)) = x{Ery II 911(Xs) >Can}. (3.8) 
s=l 

In the remaining part of section we show that Bayes likelihood ratio can be 
presented as a function fn(T1n(X(n)) )(1 + op(l) ). This will be imply that the 
left and right-hand sides of (3. 7) coincide. 

We have 
n k n 

II (1+L1]j</>j(Xs)) = 1 + L l/l!Rz. (3.9) 
s=l j=l l=l 

Here R1 is the sum of all addendums 

(3.10) 
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such that the indices 81, ... , 81 are different, that is, Rz = R11 - R21 where 

n k 
Rll = (LL T/j</>i(Xs) )1, 

s=lj=l 

and R2t contains all addends of Riz having factors </>j1 (Xs1 )¢>i2 (XsJ with 81 = 
8 2 • The multiplier 1/l! arises in (3.9) since each addend of (3.9) is contained 
in R1 l!-times. 

It is clear that ETJ Rz = 0 for the add l. 
If l = 2 then ET/R2 = T1n(X(n)). 
Put 

I 

J1 = J1(Xn) = (2r- l)!!LKJ1 .. KJr</>j1 (Xs1 )</>j1 (Xs2 )x 

</>h \-Xs;J</>12{Xs:J ... </>ir (Xsi_J</>ir (XsJ · (3.11) 
Here E' denotes summation over all different indices 1 :::; ii, ... , j r :::; k and 
1 :::; Si, ... , s1 :::; k that is ji1 =/:- ji2 and St1 =/:- 8t2 for 1 :::; ii < i2 :::; r and 
1 :::; t1 < t 2 :::; l respectively. 

Lemma 3.3 Let l = 2r, r 2:: 1. Then 

Thus it remains to analyze the structure of J1. Denote 

k 

An(X(n)) = 2 L L Kj</>J(Xs1 )</>J(Xs2), 
j=l l~s1 <s2~n 

k 
An= EAn(X(n)) = n2 L KjpJ(l + o(l)). 

j+l 
Put e = [r /2]. For any A > 0 denote 

(3.12) 

H (A X (n)) 1 Tr (X(n)) 1 Ae 1 . H (A X(n))Ae-1 
l ' = 2rr! ln - 2re! - 2r-'l(e - 1)!4! 2 ' - ... 

2r-i(e ~ i)!(4i)! Al-i H2;(A, X(n))- ... - 2•+1(:- 2)! H1-2(A, X(nl)A 

for even r and 

H (A X(n)) = - 1-Tr(x(n))· - - 1-Ae H (A X(n))-
z ' 2e f n 2r I 2 ' r. e. 

1 Ae-1 rr (A x(n)) r! H (A X(n))A 
2r-l(e -1)!4! .c:zs ' - ... - 2e+l(r - 2)! l-2 ' 

11 



for add r. 

Lemma 3.4. Assume A3. Then 

Lemma 3.5. Assume A3. Then 

as l -+ oo uniformly in n. 

Lemma 3.6. Assume A3. Then 

(3.14) 

(3.15) 

Proof. It follows directly from (3.9) and Lemmas 3.3-3.5 that Bayes likelihood 
ratio can be presented as fn(T1n(X(n))) + op(l) . This implies (3.15). · 

Lemma 3. 7. Assume C. Then, both in the case of hypothesis and Bayes 
alternatives the distribution of chi-square test statistics k-1! 20";112T1n(X(n)) is 
asymptotically normal. It holds 

k 

EvnT1n(X(n)) = n ~9iKJPi(l + o(l)}, (3.16) 
j=l . 

(3.17) 
as n-+ oo. 

Now Theorems 2.1 and 2.2 follows from Lemmas 3.6,3.7 and Theorems 
2.3,2.4. 

4 Proof of Lemmas 3.2-3.5. 

Proof of Lemma 3.2. Denote €j = 'f/j / ITJi I, 1 ~ j ~ k. We have 

k 
,..,, (G ) _ b b ( J: k-1 ~ 3/2 1/2 1/2 .Ln 77 - n + n Un - 2pn L.J €t9t Pt 9t + 

t=l 

k k 
Pnk-1 L, 9iPt(°L, €tPi 12 9i12 )2). ( 4.1) 

t=l t=l 

By Chebyshov inequality we obtain 
k 

P(L, EtP!12gi12 > CfJ~l2k) = o(l), (4.2) 
t=l 

12 



k 

PCf:J EtPi 12g~12 > C8~12k) = o(l). ( 4.3) 
t=l 

Now ( 4.1)-(4.3) imply (3.5). 

Proof of Lemma 3.3. Denote J01 = ETJR1 - J1. We have 

T * 
Jot= LLV(ti, ... ,tu) ( 4.4) 

u=l 

with 
l l I 

( ) . ~ t t V ti, ... ,tu = 1 I 1 1 6ETJ'T/j~ .. ·'T/j:x ti .... tu.ml .... mv. 
cPj1 (Xs1) • · • cPi1 (Xst1 )cPj2 ( Xst1 H) • • · cPi2 (Xst1 +t2 )cPj3 (Xst1 +t2+1) • · · cPiu (XsJ· 

. "(4.5) 
Here I:* is taken over all integers ti, ... , tu, with ti+ ... + tu = 1 such that at 
least one value ti > 2 for 1 :::; i :::; u. The sum I:' is taken over all different 
indices 1 :::; ji, ... , Ju :::; k, and 1:::; Si, ... , s1 :::; k. The values mi, ... , mv 
are defined by the relations m 1 = ~{ti : ti = d1 , d1 = min{ ts, 1 :::; s :::; k} }, 
m2 =. U{ti : ti = d2, d2 = min{ts, 1 :::; s :::; u, ts > di}}, ... ' mv = U{ti, ti = 
dv, dv = min{ts, 1:::; s:::; u, ts> dv-d· 

It is clear that EV(t1, ... , iv)= 0 and 

(4.6) 

Note that 
l! 

w(l,u) = L 1 I I I 
t + +t -/ti .... tu.ml .... mv. 1 ••• u-

is Stirling number of second kind having the following generating function 

Putting z = 1 we obtain 

( l ) 
l! exp { u} 

w ,u < I u. (4.7) 
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By (4.6),(4.7), applying Stirling formular we obtain 

r 

(l!)- 2 VarJ01 ~ (~= 2: a(t1, ... , tu)) 2 < 
u=l ti + ... +tu=l 

(4.8) 

Proof of Lemma 3.4. First of all, note that 

( 4.9) 

where J11 contains all addendums of J1 that can not be presented in the form 
A~-i(X(n))H4i for even ·r· and A~-i(X(n,))H4t:-trfor a:dd r·(the exact assignment 
of addendums J11 is given below in ( 4.15)) 

Prove that 

(4.10) 

For the proof of ( 4.10) it suffices to show that 

for all even m. The left-hand side of ( 4.11) can be written as the sum of 
following addends 

n 

L KJ:1 ... KJ~u E</>J1 (Xs1) •••</>Ju (Xsv ). ( 4.12) 
i1 , ... ,ju s1 , ... ,sv =1 

Here t1 + ... +tu = m, each function <Pl ,1 ~ i ~ u, enters in the product 
exactly 2ti- times and 2u < v < 2t. 

By direct calculations we obtain that 

Lemma 4.1 Assume Al. Then 

as n-+ oo. 

Proof The left handside of ( 4.14) is the sum of following addends 

I 

Bn = L KJ:1 • • · KJ~u</>j1 (Xs1) · · · </>jJXsJ (4.15) 
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where the sum 2:' is taken over all integers ti, ... , tu such that t1 + ... +tu = r 
and the product </>ii (Xs1 ••• c/>iu (Xsv) has 2r-factors. The sum Bn does not have 
to be equal C A~-i(X(n))J2i for some i, 1 :::; i :::; r. 

Estimate EBn. Write the product in ( 4.15) as 

(4.16) 

Let ( 4.16) contain elements "'io. <Pia (Xst )Kio. c/>io. (Xst) and the index St does not 
appear in the other factors. Then we have 

( 4.17) 
St=l 

Let t1 = 1. Extract the factors "'ii </>j1 (Xs1.).,. Kfr</>j1 (Xsz) and.all factors with 
random variables Xs1 ,X52 • It is clear that we can estimate the corresponding 
sum 

k 

Yn = 2 LE L "'ii c/>j1 (XsJKj~1 </>j:1 (XsJ · • • Kjtt </>jtt (Xs1) X 
i1 l$s1<s2$n 

( 4.18) 

separately from remaining sums in (4.15). 
Denote f'j(a) = py2k-1l 4n-1!2 if a = 1 and 1j{a) = n-a/2p0

/
2k-a/4 = 

0( n-1 k-1! 2 ) if a > 1. 
· Then, by direct calculation, we obtain 

( 4.19) 

Let t1 >1 and let "'J;1<1>j:(XsJ ... </>ft(XsJ be all factors with indexj1. Sup-
pliment to this product all elements Kji11¢>ji11(Xs1 ) ••• Kj;</>jtt(Xsw) containing all 
random variables Xsm' 1:::; m:::; w. Then we obtain 

k 

EL KJ:1 </>f: (Xs1) ·••</>ft (XsJKji11 </>ji~ (Xs1) · · • K'J: </>j;(XsJ < 
i1 

k 

EL "'~: 1 <1>j:(Xs1 ) ... </>j~(Xswhii1 (ai) ... f'iit(at) < 
i1=l 

( 4.20) 

where 
k 

D(ti, w) L nw-t1 k-tif2pj,_-t1 = o( k-w/2+1) 
i1=l 
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for w ::; ti and 
D(ti,w) = o(nw-tik-tif2 ) 

for w > ti. Note that in the last case 2( w - ti) does not exceed a number of 
r.v.'s Xsi entering in <Pj;(Xs1) ... <Pj;(XsJ only one time. Each Xsi enters in 
the product in ( 4.15) at least twice. Thus taking into accaunt the assignment of 
1'i( a) we obtain that the factor n w-ti for w > ti is reduced by other multipliers. 

Now (4.17)-(4.20) together implies E(Jz - Hz)= o(l). 
Estimate EB~. Note that B~ can not be presented as a product of several 

factors An(X(n)) and H2i type and admits the same assignment as En in ( 4.15). 
This implies EB~= o(l) and completes the proof of Lemma 3.4. 

Proof of Lemma 3.5. We have 

2 ~J ~·~. ·~ . ~ 4 4 
EJ1 = 221(!!)2 Li Li . ~ Li K,i1 · · · K,iu x 

u=O v=O Jl , ... 1J21-u s1 , ... s21-211 

/'i,Ju+l · · · /'i,J2i-u <f>J1 (Xs1)<f>J1 (Xs2)<f>J2 (Xs3)</>J2(Xs4) • · • </>J11 (Xs211-1)</>J11 (Xs2J X 

<Pi11+1 (Xs211+J<Pi11+1 (Xs211+J<f>h1-JXs21-211-l )</>h1-JXs21-2J· . ( 4.21) 
Here the indices ii, ... , i21-u, si, ... , s21-2v take over different values 1 ::; ii, ... , i21-u ::; 

k, 1 ::; Si, ... , s21-2v ::; n, that is, ji1 ::J ji2 , Sti. ::J St2 for ii # i2, 1 ::; ii, i2 ::; 
2! - u, ·and t1 ::J t2 , 1 ::; ti, t2 ::; 2! - 2v respectively. Each random variable Xsi, 
2v ::; i ::; 2! - 2v enters twice in the product <Piv+i (Xs211+1 ) ••• <Pi21_JXs21_2J 
and each function </>ii, v ::::; i ::::; 2! - u, is also presented twice in the product. 

By direct calculation we obtain 

2 < (2!)! · u! ( )1 v-l 
EJ1 - 221(!!)2(2! - 2u)!u!2u (u - v)!v! 2! - 2v .k . ( 4.22) 

Denote x = (l - u)/l, y = v/l. Applying Stirling formular we have 

log EJ( ::; -(21 + u) log 2 - 21 log l + 2l log(2l) - (2! - 2u) log(2l - 2u )+ 

(2v-u )-( u-v) log( u-v )-vlog v+(2l-2v) log(2l-2v )-(l-v) log k. ( 4.23) 

The extremumof the right hand side of (4.23) is achieved in 8x2 = (l-x-y)/12 
and y = 1/2(1 - (1 - k/l2)if2) if k/12 < 1 or y = 0, y = 1 - x if k/12 > 1. 

Let x = 0, y = 1. Then 

2 (2!)! 
EJ1 < 231(!!)3 = o(l). ( 4.24) 

Let y = 0. Then x = (Sl)-i/2 and 

2 . 21 l 
EJ1 ::::; C( ek) = o(l ). ( 4.25) 
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Let k/12 < 1. Then 

EJ?::; exp{l(l - x - 2y)}(ly/k)1 ::; 

C{l/2exp{(l - k/12
)

112}(1- (1- k/12 ) 112 } 1 = o(l). (4.26) 
Since ez(l - z) < 2 for all 0::; z::; 1. 

Now (4.21)-(4.26) together implies (3.14). 

5 Proofs of Theorems 2.3 and 2.4. 
Proof of Theorem 2.3. Write Tn(X(n)) = I1n + I2n + I3n + I4n where 

··~J1n=2."L Un(XipXi2 }, 

k 

Un(x, y) = L9i('Pi(x) - Eocpj{Xi))(cpj(Y) - Eocpj(Xi))/(npj), 

We have 

j=l 

k n 

I2n =LL ¢/j(Xs)/(npj), 
j=ls=l 

k n 

I3n ·= (n - 1) L gAnPjt1 L( </>/X;) - Eo</>j(Xs))Eo</>j(Xs), 
j=l s=l 

k 

I4n = (n -1) L9iPj1(Eo</>j(Xi))2. 
j=l 

Eol1n = Eol3n = 0, 
k 

Eol2n = L9i(1 - Pi+ Bjpj(l - 2pj)), 
j=l 

k 

I4n = (n - 1) L 9iPiBJ. 
j=l 

By Shwartz inequality we obtain 

k ( k ) 1/2 -1 1/2 - -1/2 E9JP/li ::::; E9iPi (n M(O)) - o (M(O)n ) . 

Now (5.1) - (5.4) imply (2.11), (2.13). Prove (2.14). We have 
k 

Varol1n = 2~gJpj2 Var~</>j(Xi) 
j=l 

17 
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(5.4) 



+2 L 9i19i2P}/Pj,}(Cove(</>ii(Xi)<Pi2(Xi)))2 

l:$j1 <i2:$k 
k 

= 2 L9}(1 - Pi+ Bjpj(l - 2p~)) 2 + 4 L 9i19i2PiPi2(l + Oj) 2 (1 + BjJ2
• 

j=l l:$j1 <i2:$k 

By (5.4) we obtain 

Varel1n = k(J"~ + o(n-1 M(B) + n-2 M 2 (0)). (5.5) 

We have 
(5.6) 

where 

x Ee</>j1 (Xi) Ee</>h (Xi) P]i1 pj,/ 

= 2n-1 (n - 1)2 L 9i19i2 Pi1Ph(l + Oi1)(l + OjJ (}i1 (}i2 · (5.7) 
1 :$i1 <i2 :$k 

k 

132n = n-1(n -1)2 L9}Vare</>j(Xi) E~</>j(Xi)Pj2 

j=l 

k 

= n-1 (n - 1)2 L9}Pi(l - Pi+ Bj(l - 2pj) - pjBj)BJ. (5.8) 
j=l 

We estimate now a part of addendums in 131n, 132n. The estimates of other 
addendums are trivial and are omitted. 

Using Shwartz inequality, Assumption C and (5.4) we have 

Therefore 

k 

n L 9}p/}J ::; C M(O) max{IBjl, 1 ::; j ::; k} 
j=l 

n """"' . . . . 82 8. < -112M3f2(e) L...J 9J9n PJIPJ2 ii n - n , 
l:$j1 <i2:$k 

n L 9i9i2 Pi1Pi2 ejej2 < n-1M 2(0), 
l:$i1 <i2:$k 

k 

n L9J PJ e; < n-1 M2 (8). 
j=l 

V a:re13n = o(k + M~(O) ). 
This completes the proof of (2.14). 

18 

(5.10) 

(5.11) 

(5.12) 

(5.13) 



Assume B. Then 
k 

Varo l2n = n-1 L9J p"j2 Varo ef>J(Xi) 
j=l 

k 

< n-1 ~gJ pj1 (1 +!Bil) (1 + o(l)) = o(k) (5.14) 
j=l 

smce 

Assume C. Then 
k n . k n 

l2n ~ k/n L °'L(x(Xs E (ej-1' ej)) - Pi)2 = k + k L LPJ - Dn (5.15) 
j=l s=l j=l s=l 

where 
k n 

Dn = 2 k/n L LPi X (Xs E (ej-1, ej)). 
j=ls=l 

We have 
k n 

EoDn = 2 k L LPJ(l + Bj), (5.16) 
j=ls=l 

k n k 

VaroDn = 4 k2n-2 L LP~(l + Bjs) - l/n E~ N:::; C n-1 + C n-1k-1 L IBil 

We have 

j=ls=l j=l 

C I I D 1121 D1121 OV(J ln 2n :::; (J ln (J 2n, 

C 1 I D 1121 D1121 OV (J 2n 3n :::; (J 2n (J 3n' 

C OV(J f 1n f 3n :::; D~12 f1n D~12 f3n· 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Now (5.6), (5.7), (5.13) - (5.20) together imply (2.12). This completes the 
proof of Theorem 2.3. 

Proof of Theorem 2.4. By (5.6), (5.13) - (5.20) it suffices to prove asymptotic 
normality of l1n. 

Denote 

Ynj = L Un(Xi,Xj), 
l<i<j 
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Znj = LYni, 
i=l 



where 1 ~ j ~ n. 
The sequence Znj is a martingale. Therefore we may apply the following 

variant of central limit theorem for martingales. 
For any c > 0 let 

(5.21) 

n 

k-1 O"~ L EeY;j X (I Ynj I> cO"n k112) = o(l) (5.22) 
i=l 

uniformly in () E T n as·· n -+ oo . 
Then Pe distributions ( k o-~)-1 12 Znn converge to normal uniformly in 

BEI'n as n-+oo. 
The proof of this statement is similar to that of Central Limit Theorem for 

martigales given in Brown (1971) and is omitted. 
Pu~ qn(x,y) = EeUn(x,Xi)Un(Xi,Y) for any x,y E [0,1]. By direct 

calculations we have 

(5.23) 

k 

n 4 Eeq~(Xi, X2) < L9J + o(M~(B)) = o(k2 a~+ M~(B)), (5.24) 
j=l 

n3 Eeq~(X1 , X2) = n3 Eo q~(Xi, X2) + o(.NI~(B)) 
k 

= L9J/(npi) + o(M~(B)) = o(k312 a~) (5.25) 
j=l 

uniformly in () E I' n as n -+ oo . 
Combining (5.23-5.25) together we obtain (5.21). For the proof of (5.22) 

we estimate Ee Yn] . Write 

k 

Ee Yn! = LPr(l + Br)Ee (Yn! I Xs E (er-ler)) = Bn1 + Bn2 (5.26) 
r=l 

where 
k k 

B1 n = 3 L Pr ( 1 + () r) I: 9i19i29ia9i4. 
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x(¢>i3(X2) - Pi/Ji3)(¢>i4(X2) - Pi40jJ, 

Ilji,j2,iJ,j4 = Ee(IIz=i(<Pii(Xi)- PiiOiJ I Xs1 E (er-ier)). 
The assignment of sum B2n is similar to Bin· The unique difference is that 
r)~~h,j3,j4 is replaced by 

For any ii,i2,j3,j4, ii=/= h , h =/= j4 , 1:::; ii,h,ja,j4:::; k we have 

r}~~j2 ,j3 ,j4 = Pi1Pi2Pi3Pj4 (1 + (}i1)(l + Oh)(l + OiJ(l + Bj4), 

r}~ ~jl ,iJ ,j4 = Pi1Pj3pj4 ( 1 - Pi1 + Pi1 (}ii (1 - 2pjl) - Pi1 e;l) 

x(l + Oj3)(1+ Oj4); 

r}~~j1,j2,h = Pi1Ph (1 - Pi1 + Pi1 (}ii (1 - 2pj1) - Pi1 e;l) 

X (1 - Ph + Pi2(}h(l - 2ph) - PhBJJ · 

If i1 =/= h , ii =/= j4 , i2 =/= h , i2 =/= j4 , also then 

r)~~i2,j3,j4 = -3II[=iPii(l +(}ii) (i -tpi,(}i•) ,. 
i=l 

r~~~i1,i2,j3 = Pi1Pi2Pi3(l + (}i1)(l + (}i2)(l + OiJ 

x (1- (Pi1(1 + (}i1) + Ph(l +Oh)+ Pi3(1 +Oh) )Pi1(1 + Bi1)), 

r}~~ii.h,h = Pi1Ph(l + (}i1)(l + Bh) (Pi1 (1 + (}i1) + Ph(l +Oh) 

-3PiiPh(l + Bii)(l + (}i2) (1 + Pi1 (1 + (}i1) + Ph(l + (}i2))), 

I'J~~ii,ii,h = -Pi1Ph(l + (}i1)(l +Oh) ( (1- Pii - Pi10ii)
3 

-(1 - Pi1 (1 + Bi1) - 2Pi2(l + Bi2) .) pj1 (1 + Bii)) Pi2(1 +Oh), 

r}~~i2,iJ,j4 = Pi1 (1 +(}ii) (1 - Pi1 (1 + ()i1) ( (1 + ()i1 )3 PJ1 + (1 - Pi1 (1 + ()i1) )
3

) · 

For any ji, i2, js, j4 =/= r we have 

IIi1,h,iJ,j4 = Pi1PhPi3Pi4(1 + Bi1)(l + Bh)(l + Bh)(l + BiJ (5.27) 

and if jl = r, 1 :::; £:::; 4 , then the corresponding multiplier Pil(l +Oil) in 
(5.27) is replaced by (-l)(l-pr -PrBr). 

It follows from M( B) < C k112 that 

k k . 
L ()j :::; k1f2(L Bj)i/2 < ck, (5.28) 
j=l j=l 
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k k 
LPj(}j:::; (LPjBJ)l/2 < cn-1/2kl/4. (5.29) 
j=l j=l 

Using (5.28), (5.29) for the estimation of B1n, B2n, it is eary to see that the 
largest order of estimates is attained on the following addendums 

k 

3 LPr(l +Br) (gr/(npr) )4 r~;~r I1rrrr 
r=l 

k 
< C'L(l + Br)n-4p;1s2 < cn-1k3/2 (5.30) 

r=l 

k 

LPr(l +Br) (gr/(npr) )4 r~;~r I1rrrr 
r=i~ ·· . 

k 

< C ( s - 1) L Pr ( 1 + I (} r I) ( n 4 P; )-1 = o( k2 / n) . ( 5. 31) 
r=l 

We have 

Ee y;s x(IYnsl > c; k112) < c:-2k-1Ee yn~ x(IYnsl > c k112). (5.32) 

Now (5.26),_ (5.30)-(5.32) i.mply (2.22). ~his completes the proof of Theorem 
2.4. 

6 Proofs of Theorems 2.5 and 2.6. 

Proof of Theorem 2.5. First the proof of lower bounds will be given. In this 
proof a priori Bayes distributions has the same assignment as in the proof of 
Theorems 2.1 and 2.2. Naturally we put here 9jn = 1 for all 1 ::=; j ::=; kn. Thus, 
a priori Bayes measure is a probability measure of random vector T/ = { T/j }~ 
where TJi, ... , T/k are i.i.d.r.v.'s having Binomial distribution P(TJj = ±Kj) = 1/2, 
KJ = (1 + 8)n-1 k-lbnpj1/2. Therefore, for the proof of Theorem 2.5 it suffices 
to show only that 

k 

Sin( G.,,) = i-2n L T/JPj(l + (n) (6.1) 
j=l 

where (n-+ pO as n --+ oo. 
We have 

k k 

S1n(F.,,) = n LPi((l + T/j - L T/tPt) 112 -1)2, (6.2) 
j=l t=l 
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k k k 

S2n(FTJ) = 1/4n LPi((l + 'l/j - L'l/tPt)log((l + 'f/j - L'l/tPt) (6.3) 
j=l t=l t=l 

By Bernstein inequality, for any E > 0 and all n > n0 ( c) 

k 

P(I L Pt"ltlc) < exp{-c2nk/(2bn)} (6.4) 
t=l 

Therefore (6.1) follows from (6.2)-(6.4) by Taylor formular. 
Similarly to the proof of Theorems 2.1 and 2.2 the upper bounds can be 

proved under the assumptions 'Lf=1 BiPi = 0 and B E r n( C). This implies that 

k 

Mn(B) = n "f:/J]nPi < Ck1l 2
• (6.5) 

j=l 

By Cl,C2 and (6.5) we get 

k 
L e}n < Ck312n-1 = o(l) 
j=l 

and max{ IBjn I : 1 ::; j ::; kn} = o(l) as n ----+ oo. 
Hence, by Taylor formular, we get 

as n----+ oo. 
The last relation shows that all arguments in the proof of Theorem 2.4 are 

also valid for this setting. This completes the proof of Theorem 2.5. 

Proof of Theorem 2.6.Denote ef>i(Xs) = x(Xs E Ii) - Pi(l + Bi(l - Pi)). 
We have 

k n n 

Sin= n LPi((l+Bi(l-pi)+(npit1 L ef>i(Xs)) log(l+Bi(l-pi)+(npit1 L ef;i(Xs)) 
j=l s=l s=l 

k n 

S2n = n LPA(l + Bi(l - Pi)+ (npit 1 L ef>i(Xs)) 1l 2 - 1)2 

j=l s=l 

By Bernstein inequality we get 

k n 

L P((npit1!2I L ef>i(Xs)I >En log n) 
j=l s=l 
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< kexp{-c~log2 n} = kn-f~logn = o(l) (6.6) 

with En= o((logn)-112 ). Since sup{lf(x)-11,x E (0, 1)} < Cn then 

max{IOinl, 1 ~ j ~ k} ~ 0 (6.7) 

as n ~ oo. 
By (6.6),(6.7), expanding in Taylor series, we get 

(6.8) 

where 
k 

D1 = Cn LPilOil3
, (6.9) 

j=l 

k n 

D2 = Cl::(npit2
I L¢i(Xs)l3

• (6.10) 
j=l s=l 

By (6.6), (6.7), for any 8 > 0 we have 

D1 = o(M(O)), (6.11) 

Now (6.8)-(6.11) together imply (2.16),(2.17). 
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