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Abstract

Systems of operator-differential equations which hysteresis operators can have unsta-

ble equilibrium points with an open basin of attraction. In this paper, a numerical example of

a robust homoclinic loop is presented for the first time in a population dynamics model with

hysteretic response of prey to variations of predator. A mechanism creating this homoclinic

trajectory is discussed.

1 Introduction

Hysteresis in relationships between various physical variables such as magnetic field and mag-

netization or mechanical stress and deformation can be modelled by a special class of non-

smooth maps called hysteresis operators [6, 17, 24]. For example, constitutive equations of fer-

romagnetic, elastoplastic, piezoelectric, magnetostrictive and other smart materials have been

modelled by the Preisach hysteresis operator and the Prandtl-Ishlinskii hysteresis operator

[3, 9, 23, 25, 30]. Macroscopic models where such operator constitutive equations are coupled

with differential equations of motion (or some form Maxwell’s equations) [1, 2, 8, 12, 18–22, 29]

present a class of infinite-dimensional dynamical systems whose dynamics may be substantially

different from dynamics of smooth differential systems [4, 5, 10, 11, 15, 16]. As one example, a

coupled system of differential equations

u′ = f(u, v), x′ = g(u, v) (1)

and an operator equation

x(t) = (Pv)(t) (2)

with the Preisach hysteresis operator P can have an unstable equilibrium which has an open

basin of attraction (in the infinite-dimensional phase space of the system). Such equilibria, which

have been called partially stable [26], can be compared to a saddle-node singular point of an

ordinary differential system. Indeed, they simultaneously attract and repel many trajectories.

However, unlike the classical saddle-node point, partially stable equilibria of system (1), (2) are

robust.

The rigorous stability analysis presented in [26] for equilibria of equations (1), (2) has been illus-

trated with prototype examples of a few stable systems including an electronic circuit, a hydro-

logical model, and a predator-prey dynamics model with safe and risky patches. Partially stable

equilibria have been found numerically in an epidemiological model of a similar (but different)

type [28]. The nature of partial stability suggests that if there is a homoclinic orbit attached to a

partially stable equilibrium, then this homoclinic orbit is robust too. This may be interesting, for
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example because a homoclinic orbit is associated with the so-called excitability phenomenon1

when the system responds with a pulse to a small perturbation (which is localized in time);

such a pulse is a manifestation of a large excursion in the phase space along the homoclinic

orbit. Again, robust homoclinic orbits of operator-differential systems contrast with generic ho-

moclinic orbits of smooth differential systems, as the latter are removable by arbitrarily small

perturbations (a homoclinic bifurcation to a saddle or saddle node).

In this paper, we give a numerical evidence that a robust homoclinic orbit exists in a population

dynamics model where the prey switches between two modes of behaviour, risky and safe, in

response to varying abundance of predator. In the safe state, the prey enjoys lower killing rate

by the predator at the price of increased competition rate. The Preisach operator defines how

the rate of exchange between the risky and safe prey populations responds to variations of the

predator number. Effectively, it introduces memory in the switching strategy (rule) of the prey.

The homoclinic orbit results from a combination of local dynamics near a partially stable equi-

librium and global dynamics which drives those trajectories that leave a small neighbourhood of

this equilibrium back to it. The homoclinic trajectory has two parts separated by a point where

the predator population achieves maximum. The trajectory satisfies a different system of ordi-

nary differential equations on each of these two parts. Both ordinary differential systems have

the same equilibrium which is unstable for the first system and stable for the second system.

Moreover, the switching point belongs to the basin of attraction of the equilibrium of the second

system.

A rigorous proof of the existence of a stable homoclinic orbit near the observed numerical solu-

tion is beyond the scope of this paper and will be the subject of future work. We note that when

stability is analysed, one has to consider not only perturbations of phase variables (predator

and two prey populations), but also perturbations of the infinite-dimensional memory state of

the Preisach operator [27].

The system and a brief description of the Preisach hysteresis operator are presented in the next

section, which is followed by the sections presenting numerical results, some related analysis

and discussion. The derivation of the model is contained in the Appendix.

1The term “Excitability” was originally coined in the analysis of the action potential of the axon of the giant

Atlantic squid [14]. It is now commonly used to describe any stable dynamical system that exhibits pulses when

perturbed above a certain threshold level.
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2 Excitable behaviour in a predator-prey system

2.1 The model

In this work, we consider a two-patch extension of the model proposed in [13], which has non-

trivial dynamical properties such as multiple stable equilibria:

u̇R = aR(uR)− fR(uR)g(v) + hR(t)uS − hS(t)uR, (3)

u̇S = aS(uS)− fS(uS)g(v)− hR(t)uS + hS(t)uR, (4)

v̇ = σ(fR(uR) + fS(uS))g(v)− c(v). (5)

Here dot denotes differentiation with respect to time; uR is the number of prey in the Risky

patch; uS is the number of prey in the Safe patch; v is the number of predator; the terms

aR/S(u) = ρu− λR/Su
2

describe logistic growth of the prey inside the patches with birth rate ρ and competition rates

λR/S ;

fR/S(u) =
ωR/Su

φ+ u

is the Holling type II functional response;

g(v) =
v

1 + βv

is the predator interference; σ is the efficiency of conversion of food to growth; and, the term

c(v) = γv

describes death of the predator with the death rate γ. The attack rates for Risky and Safe

patches satisfy ωR > ωS ≥ 0, and we assume that the prey pays a price for choosing the safe

patch with higher competition, λS > λR > 0. A similar two-patch system was considered, e.g.,

in [7].

There is flow of prey from the Risky to Safe patch, hS(t)uR, and in the opposite direction,

hR(t)uS . The simplest choice of the flow rate hS(t) in one direction is a constant, hS(t) = kS0.

In terms of the differentials, duS = kS0uRdt. Another option is to implement a flow in reaction to

the change of some function p(v) of the predator number by assuming that duS = kSuRdp(v).
Combining these two formulas results in

hS(t) =

(

kS0 + kS
dp

dv
v̇

)+

,

where we ensure that the flow is positive by applying the function x+ = max{x, 0}. Now,

equation (5) can be used to substitute for v̇. Similarly, hR(t) =
(

kR0 − kR
dp
dv
v̇
)+

.

In this paper, we are interested in the situation when the reaction of prey to variations of the

predator population is hysteretic. Namely, we assume that

duS = kSuRd(P[η0]v), duR = −kRuSd(P[η0]v),
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where P is the Preisach operator with the initial state η0 [5], and the total flow to the Risky and

Safe patch is defined by

hS(t) =

(

kS0 + kS
d

dt
(P[η0]v)(t)

)+

, hR(t) =

(

kR0 − kR
d

dt
(P [η0]v)(t)

)+

, (6)

respectively. The Preisach operator appears from the assumption that the prey does not respond

immediately to a change of the trend in predator dynamics (i.e., the change of the sign of v̇).

The change of the rate of flows between the patches is delayed until the abundance of predator

drops/increases from its extremum value by a certain sufficiently large amount. More detailed

derivation of the model is presented in the Appendix.

The Preisach operator is defined by

(P[η0]v)(t) =

∫ ∞

0

∫ αS

0

µ(αR, αS)(RαR,αS
[η0(αR, αS)]v)(t) dαRdαS, (7)

where v(t), t ≥ t0 is the input; the function η0 = η0(αR, αS) which takes values 0 and 1 is the

initial state function; µ(αR, αS) is an integrable density function; and RαR,αS
is the non-ideal

relay operator with thresholds αR, αS satisfying 0 < αR ≤ αS :

(RαR,αS
[η0]v)(t) =























0 if v(τ) ≤ αR for some τ ∈ [t0, t]
and v(s) < αS for all s ∈ [τ, t];

1 if v(τ) ≥ αS for some τ ∈ [t0, t]
and v(s) > αR for all s ∈ [τ, t];

η0(αR, αS) if αR < v(τ) < αS for all τ ∈ [t0, t].

(8)

It is convenient to represent states (8) of the relays graphically in the domain 0 ≤ αR ≤ αS

of the plane (αR, αS). It suffices to consider the situation when this domain is divided into two

parts by a staircase polyline Ω = Ω(t) with the relays in state 1 below (to the left) of this line and

in state 0 above (to the right) of this line, see Fig. 1 (left). The polyline Ω can have either finite or

infinite number of horizontal and vertical links, but in the latter case the only accumulation point

of the corners is the right end of the polyline. The right end is the point αR = αS = v(t) at any

moment t ≥ t0 [17].

Formula (8) defines how the staircase polyline Ω(t) dividing the domains where RαR,αS
= 0

and RαR,αS
= 1 changes over time in response to variations of a continuous non-negative

input v(t). For example, suppose that Ω at t = t0 is the horizontal segment αS = v(t0),
0 ≤ αR ≤ v(t0) (see Fig. 1, right). If v(t) monotonically decreases on an interval t ∈ [t0, t1],
then Ω acquires the vertical link αR = v(t), v(t) ≤ αS ≤ v(t0) as shown in Fig. 2, left. If

thereafter the input monotonically increases for t ∈ [t1, t3], then a new horizontal link αS =
v(t), v(t1) ≤ αR ≤ v(t) appears (see Fig. 2, right). However, if the input reaches its initial

value v(t0) at some moment t∗, then Ω becomes a horizontal segment again, as at the initial

moment (see Fig. 1, right). If the input increases further, Ω(t) remains horizontal until the input

reaches a maximum point v(t3) (at which a vertical link will be created with the subsequent

decrease of the input to v(t4), see Fig. 3). In this manner, vertical and horizontal links can

be created and deleted in response to variations of the input v(t). An input with many local
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Figure 1: The domain 0 ≤ αR ≤ αS of the plane (αR, αS) is divided into two parts by a

staircase polyline Ω = Ω(t) with the relays in state 1 below (to the left) of this line (grey colour)

and in state 0 above (to the right) of this line (white colour). Here v0 = v(t0). In the right figure

Ω(t0) is the horizontal segment αS = v(t0), 0 ≤ αR ≤ v(t0).

maximum and minimum points can create a staircase line Ω with multiple links. We refer to [5]

for more details. The polyline Ω(t) is often referred to as the state of the Preisach operator.

In equations (3)-(6), the derivative of the output of the Preisach operator is used. For the evalu-

ation of this derivative, the most right link Ωe = Ωe(t) which is attached to the right end point

αR = αS = v(t) of the staircase polyline Ω(t) is of importance, see Fig. 4, left (if Ω has

infinitely many links, then Ωe = ∅). Denote by (vm, v), (v, vM) the end points of the segment

Ωe, where vm = v if Ωe is a vertical segment and vM = v if Ωe is horizontal. If v = v(t)
increases, then the time derivative of the output of the Preisach operator satisfies

d(P[η0]v)

dt
= v̇H(v, vm) with H(v, vm) =

∫ v

vm

µ(αR, v) dαR. (9)

If v decreases, then

d(P[η0]v)

dt
= v̇V (v, vM) with V (v, vM) =

∫ vM

v

µ(v, αS) dαS. (10)

In the case of increasing v, substituting formula (9) in equations (6), we see that the flows

between the patches are equal to

hS(t) = (kS0 + kS v̇H(v, vm))
+ , hR(t) = (kR0 − kRv̇H(v, vm))

+ , (11)

where v̇ can be replaced with the right hand side of equation (5). Similarly, when v decreases,

hS(t) = (kS0 + kS v̇V (v, vM))+ , hR(t) = (kR0 − kRv̇V (v, vM))+ . (12)

Equilibria of system (3)-(8) can be found from the algebraic system, which is obtained by setting

the derivatives of all the variables including d/dt(P[η0]v) in (3)-(8) to zero. In the next section,
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Figure 2: Evolution of the staircase state Ω = Ω(t) from the initial state Ω(t0) shown in Fig. 1

(right) in response to an input v(t), which monotonically decreases on an interval t ∈ [t0, t1].
For t0 < t ≤ t1 the line Ω consists of two segments. Left panel presents the state at the

moment t1: the vertical link αR = v(t1), v(t1) ≤ αS ≤ v(t0) connects to the horizontal link,

which is a part of the segment Ω(t0) shown in Fig. 1 (right). After the moment t1, the input v(t)
monotonically increases for t ∈ [t1, t2]. We assume v(t1) < v(t2) < v(t0). In this case, the

state Ω has three links for t1 < t ≤ t2 as shown on the right panel for the moment t = t2.

The left horizontal link and the vertical link of the line Ω(t2) are parts of the staircase Ω(t1)
presented on the left panel. The extra right horizontal link is αS = v(t2), v(t1) ≤ αR ≤ v(t2).
Here vi = v(ti).

α
R

α
S
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α R
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α Sv3

α
R

α
S

v0
α R

=
α Sv3

v4

(t  ) 4(t  ) 3
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Figure 3: Evolution of Ω(t) from the state Ω(t2) shown in Fig. 2 (right). The input v(t) increases

on an interval [t2, t3] from the value v(t2) = v2 < v0 to a value v(t3) = v3 > v0. At the

moment t∗ when the input reaches the value v0, the state Ω becomes the horizontal segment

(as a matter of fact, Ω(t∗) = Ω(t0)) and remains the horizontal segment αS = v(t), 0 ≤
αR ≤ v(t) for all t∗ ≤ t ≤ t3 as shown on the left panel. The input is assumed to decrease

again after the moment t3. The corresponding stateΩ presented on the right panel for a moment

t4 > t3 is similar to the staircase in Fig. 2 (left).
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Figure 4: Evolution of the staircase state Ω(t) for the numerical example of a homoclinic trajec-

tory (see Figs. 5, 6); Ωe(t) is the lower right segment of this staircase state with the end-point

αR = αS = v(t) on the bisector. The initial state Ω(t0) (solid line on the left panel) con-

sists of a horizontal segment and the vertical segment Ωe(t0). During the time interval (t0, t1]
when the input v(t) increases, Ω(t) has three segments, the segment Ωe(t) is horizontal (solid

dashed line). The right panel shows the state Ω(t1) (solid line) at the moment when the input

achieves its maximum v(t1) = v1. After this moment, the input decreases, Ω(t) consists of

four segments, and the segment Ωe(t) is vertical (solid dashed line).

we present a numerical example of the homoclinic trajectory (see Fig. 5, 6) which is obtained as

follows. First, an equilibrium (u∗R, u
∗
S, v

∗) of system (3)-(8) is identified, and we choose an initial

state Ω(t0) of the Preisach operator at the equilibrium with a sufficiently long vertical segment

Ωe(t0) (see Fig. 4, left). Next, we consider an (arbitrarily) small perturbation of initial values

(uR(t0), uS(t0), v(t0)) from the equilibrium with v(t0) = v∗ such that v̇(t0) > 0. Hence,

initially, v(t) increases, therefore the trajectory of (3)-(8) can be obtained as a solution of the

system of ordinary differential equations (3)-(5), (11) with vm = v(t0). The choice of parameters

ensures that the point (u∗R, u
∗
S, v

∗) is an equilibrium of saddle type for this ordinary differential

system, hence the solution deviates from the equilibrium. Now, we extend the solution (with the

increasing component v(t)) to a point where it hits the surface v̇ = 0 at a moment t1 (see

Fig. 4, right). After this moment, v(t) decreases, hence the next segment of the trajectory of

system (3)-(8) becomes a solution of ordinary differential system (3)-(5), (12) with vM = v(t1).
Our choice of parameters ensures that (u∗R, u

∗
S, v

∗) is a stable node for this ordinary differential

system and that the switching point (uR(t1), uS(t1), v(t1)) belongs to the basin of attraction

of this node. Therefore the trajectory converges back to the equilibrium. In particular, the state

Ω(t) of the Preisach operator converges to its initial state Ω(t0) as t → ∞. Summarizing,

the homoclinic orbit of system (3)-(8) has two parts, satisfying two different ordinary differential

systems which have the same equilibrium. This equilibrium is a saddle for the first system and

a node for the second system.
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2.2 Numerical results

Using a criterion for existence of multiple positive equilibria [13], we set ρ = 1.35, φ = 0.1,

β = 1.2, γ = 0.5, ωR = 2, ωS = 0 (no predators in the safe patch), kS0 = 0.01, kR0 =
0.001, λS = 0.1, λR = 0.01 to ensure that system (3)-(8) has three positive equilibrium points

(u∗R, u
∗
S, v

∗) = (0.206995, 13.4915, 0.2904365), (13)

(u†R, u
†
S, v

†) = (0.306704, 13.4923, 0.4235345), (14)

(u‡R, u
‡
S, v

‡) = (133.387, 14.4153, 0.8373). (15)

If kR = kS = 0 (the exchange terms (6) do not have a component with the Preisach opera-

tor), then equilibria (13), (14), (15) of the system of ordinary differential equations (3)-(5) have

the eigenvalues (−1.35, 0.084, 0.67), (−1.35,−0.062, 0.89), and (−1.53,−1.33,−0.25),
respectively. That is, the first and the second equilibria are saddles and the third equilibrium is

a stable node.

When the hysteresis terms are present, we give a numerical evidence that equilibrium (13) can

become partially stable and can have a homoclinic orbit attached to it. We set kR = 0.1kS and

define the density function of the Preisach operator (7) by the formula

µ(αR, αS) =
exp(−900(αR − 0.2904365)2)

0.042
,

in the triangle 0 ≤ αR ≤ αS ≤ 1 with µ = 0 outside this triangle. The maximum of this Gaus-

sian density distribution corresponds to the equilibrium value v∗ of the predator. The integral of

µ over the whole half plane αS ≥ αR is normalized to 1.

As the initial state of the Preisach operator we choose the polyline Ω(t0) which has two links:

a vertical link Ωe(t0) = {αR = v∗, v∗ ≤ αS ≤ vM} and a horizontal link {αS = vM , 0 ≤
αR ≤ v∗} with vM = 1 (see Fig. 4, left). The initial populations are v(t0) = v∗, uR(t0) ≈
u∗R +10−5, uS(t0) = u∗S . For kS = 1, the trajectory of system (3)-(8) starting from these initial

values, which are close to equilibrium (13), converges to equilibrium (15) (see Fig. 5, dashed

line). The component v(t) of this trajectory monotonically increases, hence this trajectory is

simultaneously a solution of the ordinary differential system (3)-(5), (11) with vm = v(t0) = v∗,

for which equilibrium (13) is a saddle with eigenvalues

(−1.34931, 0.0839766, 0.665618) (16)

and equilibrium (15) is a stable node.

Increasing the parameter kS to the value kS = 5.035, we observe that the trajectory Γ of sys-

tem (3)-(8) with the same initial values hits the surface v̇ = 0 at v(t1) = 0.3707. Again, on the

interval [t0, t1] this trajectory is a solution of the ordinary differential system (3)-(5), (11) (with

vm = v(t0) = v∗), for which the saddle equilibrium (13) has the same eigenvalues (16). How-

ever, after the moment t1 the component v(t) of the trajectory Γ of system (3)-(8) decreases

and we show numerically that the trajectory Γ is attracted asymptotically towards the same equi-

librium (13) near which it started (see Fig. 5, solid line). The part of Γ corresponding to t > t1
is a solution of the ordinary differential system (3)-(5), (12) (with vM = v(t1)), for which the

8
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Figure 5: Time series of the predator for two trajectories obtained by a small perturbation of

initial date from the equilibrium (0.206995, 13.4915, 0.2904365) (equilibrium (13)) for kS = 1
(dashed line) and kS = 5.035 (solid line).

equilibrium (13) is a stable node with the eigenvalues (−2.66012,−1.34664,−0.0210543).
Hence, the above results of numerical simulation of system (3)-(8) complemented by the local

stability analysis of the associated ordinary differential systems suggest that we have demon-

strated a robust homoclinic behaviour in system (3)-(8) with the Preisach hysteresis operator

(see Fig. 6) by following the plan outlined in the previous subsection.

Increasing kS further above the value kS = 5.1, we observe numerically more complicated

behaviour of trajectories of system (3)-(8) such as oscillating transients before convergence to

an equilibrium, which for higher values of kS give rise to a periodic regime (Hopf bifurcation

scenario). However, discussion of these dynamics is beyond the scope of the paper.

3 Conclusion

We have proposed a predator-prey model, where the prey can prefer to stay in one of two

patches: the Safe patch, where the prey enjoys lower killing rate by the predator at the price

of increased competition rate; and the Risky patch. The rate of flow between the patches is

assumed to depend on the number of predator; this dependence is described by a hysteresis

operator. A mechanism which can produce a homoclinic orbit attached to a partially stable

equilibrium of a differential system with hysteresis nonlinearity has been discussed. Using the

two-patch predator-prey system as an example, we have demonstrated numerically for the first

9
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Figure 6: Homoclinic loop for kS = 5.035. The orbit starts from the leftmost point and continues

in the direction of the arrow.

time a homoclinic orbit, which persists for a substantial range of parameter values (a robust

homocline).

4 Appendix

We consider a two-layer-type environment, where the top layer corresponds to risky conditions,

and the bottom layer corresponds to safe conditions (such as sandy bottom of a natural water

reservoir, which can serve as a refuge for some fish species). We assume that the predator

species move freely around the whole environment and there is a flow of prey species between

Safe and Risky layers. Environment is composed of equally-sized cells such that each cell has

both layers (patches) in the same proportion, and the prey moves freely between the cells. Then

a change in the number of species in each patch can be represented symbolically in terms of

10



differentials as follows:

Population dynamics duR = XR(uR, v)dt;
duS = XS(uS, v)dt;
dv = Y (uR, uS, v)dt;

Constant flow from Risky to Safe patch duS = −duR = kS0uRdt;

Constant flow from Safe to Risky patch duS = −duR = −kR0uSdt;

Flow to Safe patch in reaction to v duS = −duR = kSuRd(Fr[η0]v);

Flow to Risky patch in reaction to v duS = −duR = kRuSd(Fr[η0]v).

Here

w(t) = (Fr[s0]v)(t), t ≥ t0 (17)

is the so-called play operator [17] of width 2r ≥ 0 with the initial state s0 ∈ [−r, r], which is

defined on the class of all piecewise monotone continuous inputs v = v(t) by the recurrent

relationships w(t0) = v(t0)− s0 and w(t) = φr(v(t), w(ti−1)), t ∈ [ti−1, ti], i ≥ 1, where

φr(v, w) = max{v − r,min{v + r, w}}

and [ti−1, ti] are intervals of monotonicity of the input v. The play operator admits a contin-

uous extension v(t) 7→ w(t) = (Fr[s0]v)(t) to the space of continuous functions with the

supremum norm; furthermore, the extended play operator has a continuous restriction to the

the space of absolutely continuous functions with W 1,1-norm [6].

According to the definition of the play operator, the intensity of exchange of prey between the

patches responds to the predator abundance v(t) as follows. If v monotonically increases (and

s0 = r) or v monotonically decreases (and s0 = −r), then increments of the rate (17) of flow of

prey between the patches are proportional to increments of the predator abundance, dw = dv.

If v(t) reaches a local maximum at v(t1) = vM (or a local minimum at v(t2) = vm), then

there is a window of inactivity such that dw/dt = 0 while v remains between vM − 2r and

vM (between vm and vm + 2r, respectively). After v(t) has reached either end of the inactivity

window, the increments of w and v become proportional again, dw = dv, until v reaches

another extremum value and another window of inactivity occurs. In other words, if the trend of

predator abundance reverses, the prey hesitates until either the new trend changes the number

of predator by 2r or until the old trend resumes and the number of predator recovers. Then the

prey acts according to the trend of the predator again.

Now, we allow for heterogeneity of the cells of environment by assuming that the width of the

inactivity window 2r is specific to a cell and has a distribution ψ(r) over all cells. Assuming that

the free movement of prey between the cells is much faster than all other processes, we arrive

at the averaged formulas for flows between the Safe and Risky patches in response to v(t):

duS = −duR = kSuRd(P [s0]v), duS = −duR = kRuSd(P [s0]v),

where

(P [s0]v)(t) =

∫ ∞

0

ψ(r)(Fr[s0(r)]v)(t)ds (18)
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is the Prandtl-Ishlinskii hysteresis operator with the initial state s0 = s0(r) [17]. Furthermore, we

allow a more general form of the expression for differentials of the exchange flows by replacing

the Prandtl-Ishlinskii operator with the Preisach operator. According to P. Krejčı’s formula, the

Preisach operator has an equivalent representation

(P [η0]v)(t) =

∫ ∞

0

φ(r, (Fr[s0(r)]v)(t))dr.

For φ(r, u) = ψ(r)u, this formula reduces to (18).

Combining the population terms with the hysteretic exchange terms and the constant flows, we

obtain the system

u̇R = XR(uR, v) + hR(t)uS − hS(t)uR,
u̇S = XS(uS, v)− hR(t)uS + hS(t)uR,

v̇ = Y (uR, uS, v)

with hS, hR defined by formulas (6). System (3)-(8) is obtained by choosing specific population

terms XR/S , Y in accordance with assumptions presented in Section 2.
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