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Abstract

The accurate and efficient simulation of bi-variate population balance systems is nowa-
days a great challenge since the domain spanned by the external and internal coordinates
is five-dimensional. This report considers direct discretizations of this equation in tensor-
product domains. In this situation, finite difference methods can be applied. The studied
model includes the transport of dissolved potassium dihydrogen phosphate (KDP) and of
energy (temperature) in a laminar flow field as well as the nucleation and growth of KDP
particles. Two discretizations of the coupled model will be considered which differ only
in the discretization of the population balance equation: a first order monotone upwind
scheme and a third order essentially non-oscillatory (ENO) scheme. The Dirac term on
the right-hand side of this equation is discretized with a finite volume method. The nu-
merical results show that much different results are obtained even in the class of direct
discretizations.

1 Introduction

Population balance modeling has gained a lot of attention in the last few years,
since many particulate processes can be described with its help, e.g., crystal-
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lization, comminution, precipitation, polymerization, aerosol, and emulsion
processes. In particular, population balance systems for crystallization pro-
cesses model the interaction of the surrounding medium and particles, which
are described by a particle size distribution (PSD). Moreover, this interaction
leads to different phenomena, e.g., nucleation, growth, aggregation, breakage,
and transport of particles [13,8]. Physical quantities in those systems, like
temperature and concentrations, depend on time and so-called external coor-
dinates, whereas the PSD depends on time, external coordinates, and so-called
internal coordinates, which describe additional properties of the individual
particles, e.g., diameter, volume, or main axes in case of anisotropic particles.
Population balance systems take into account a flow field transporting the
particles. This approach results in a system of partial differential equations
where the Navier–Stokes equations for the fluid velocity and pressure are cou-
pled to convection-diffusion equations for the concentration of the species and
the temperature of the system and a transport equation for the PSD. The
flow field, temperature field, and concentration field are defined in a three-
dimensional domain while the PSD is defined in a higher-dimensional domain,
spanned by the external and internal coordinates.

There are different goals of numerical simulations. One goal consists in gaining
a deeper insight into physical processes (models) by such simulations. In this
case, one should use accurate (high order) numerical methods. Of course,
such methods are generally computational expensive. Another goal might be
to utilize numerical simulations for a real time control of processes. In this
situation, very efficient methods have to be applied. However, such methods
are usually of low order, i.e., one has to expect only a low accuracy of the
numerical results. Altogether, different goals of numerical simulations require
the use of numerical methods with different properties and one should choose
the method according to the goal. This report focuses on the accuracy of
numerical methods. Main goals of this report consist, on the one hand, in
increasing the sensitivity of the population balance community on the possible
size of numerical errors and on the other hand, in motivating careful and
systematic studies of the properties of numerical methods for solving multi-
variate population balance systems in order to obtain guidelines on which
method is appropriate for which goal.

To this end, the crystallization process of potassium dihydrogen phosphate
(KDP) is considered as bi-variate model, i.e., with two internal coordinates.
Particle transport as well as temperature-dependent nucleation and growth are
taken into account. The coupling is modeled as one-way coupling, which means
that the flow field is used for the computation of concentration, temperature,
and the PSD. The back coupling can be neglected in the used model because
of a sufficiently small amount of particles, suspended in a dilute dispersion
medium, and of the presence of sufficiently small temperature gradients.
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The numerical solution of bi-variate population balance system is compu-
tationally challenging since the equation for the PSD is given in a five-di-
mensional domain in each discrete time. In order to overcome the increase
in dimension, techniques based on model simplification are widely employed.
One approach consists in replacing the higher-dimensional equation for the
PSD by a system of equations for the first moments of the PSD, which is a
system in three dimensions [13]. The most popular approaches in this direction
are the quadrature method of moments (QMOM) [25] and nowadays the di-
rect quadrature method of moments (DQMOM) [24]. The DQMOM has been
used for the simulation of multi-variate population balance systems, e.g., in
[4]. However, it is well known that the reconstruction of a PSD from a finite
number of its moments is a severely ill-posed problem [14,5]. Other approaches
consider directly the equation for the PSD, for instance, numerical methods
based on operator-splitting techniques or direct discretizations (so-called dis-
crete methods). The basic idea of operator-splitting techniques is to split the
high-dimensional equation into two low-dimensional equations, one with re-
spect to the external coordinates and one with respect to the internal coordi-
nates, and solve them sequentially, e.g., see [7] for the use of such methods for
the simulation of a crystallization process. However, this approach introduces
splitting errors whose magnitude is known only in model situations [6]. With
the increase of computational power, direct discretizations of the population
balance equation become an interesting option. In these methods, the external
and internal coordinates are discretized together, thus additional errors from
simplifying the equation are not introduced. In this report, it will be shown
that this approach is nowadays possible. To our best knowledge, the pre-
sented simulations are the first ones with direct discretizations for bi-variate
population balance systems. Altogether, we think that among the numerical
approaches mentioned here, potentially the most accurate simulations can be
performed by using direct discretizations. For this reason, two methods from
the class of direct discretizations will be studied.

This report focuses on the accuracy of the considered two methods from the
class of direct discretizations. In both methods, the flow field is simulated with
a higher order finite element method, the convection-dominated equations for
temperature and concentration with a linear flux-corrected transport (FCT)
finite element method, and the transport equation for the PSD with meth-
ods based on finite difference schemes. Both studied methods differ only in
the concrete finite difference approximation: a first order monotone upwind
scheme and a third order essentially non-oscillatory (ENO) scheme. In the
considered setup, the five-dimensional domain spanned by the external and
internal coordinates can be decomposed by a tensor-product mesh, which en-
ables the utilization of finite difference methods for the differential operator
on the left-hand side of the population balance equation. However, the right-
hand side of this equation contains a Dirac distribution such that a finite
difference approach cannot be applied for this term. In this report, a finite
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volume method will be used for the right-hand side and it is explained in de-
tail how the correct scaling has to be chosen to obtain finally a hybrid finite
difference - finite volume discretization for the population balance equation.

The report is organized as follows. The studied process is described in Sec-
tion 2. In Section 3, the system of equations modeling the bi-variate population
balance system is introduced. A brief description of the numerical methods and
the couplings within the population balance system is presented in Section 4.
Section 5 constitutes the main part of this report, which includes comprehen-
sive numerical studies and a discussion of the results. Finally, a summary and
an outlook are given in Section 6.

2 The studied process

In the studied process, KDP is the solute and water is the solvent. KDP is
a popular model substance for bi-variate crystal research. The shape of KDP
crystals is a tetragonal prism in combination with tetragonal bi-pyramids [22],
as illustrated in Fig. 1. The length of the crystal is given by L̃2 and the width
and depth are both equal to L̃1 ≤ L̃2.

Fig. 1. Characteristic lengths of KDP crystals.

The volume of the crystal is given by

Ṽ =
1

3
L̃3
1 +

(

L̃2 − L̃1

)

L̃2
1. (1)

The model parameters used in our simulations are based on experimental data
from [1,3,28].

For the considered configuration, we do not possess measurement data, neither
for an initial nor for a final particle size distribution. However, for the goals of
this report, it is sufficient to use some kind of realistic data sets and to demon-
strate the impact of different methods on the obtained numerical results. The
flow domain is a channel of the same size as in [10]. Note that the simulations
from [10] are based on experiments such that data sets taken as in, or simi-
lar to, [10] represent realistic situations. At the inlet, equally distributed seed
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particles of prescribed lengths within a rather narrow interval of both lengths
are chosen. The inlet of particles occurs only for a short time interval. Then,
the particles are transported from the inlet to the outlet of the channel. The
flow fields are almost the same as in [10], only the solvent ethanol in [10] is
here replaced by water. During the residence time in the channel, the particles
grow and new particles are created by nucleation in supersaturated solution.
Growth and nucleation depend on the temperature. The data for the temper-
ature field and the concentration field (initial and boundary conditions) are
computed or chosen the same way as in [10]. Aggregation of particles is not
included into the model for two reasons. First, one would need some model on
how to classify the aggregate of two particles of the from presented in Fig. 1
within the framework of the considered bi-variate population. And second, to
our best knowledge, predictive models for aggregation kernels for bi-variate
populations are not known so far.

Outputs of interest are the form of the PSD and its maximal value in three
planes perpendicular to the flow direction: one rather close to the inlet, one at
around one fourth of the length of the channel, and the last one at the outlet.

3 The model for the population balance system

The population of KDP crystals is modeled by a system of equations describ-
ing the flow field (velocity, pressure), the energy balance (temperature), the
mass balance (concentration), and the particle size distribution. Secondary
nucleation, growth, and transport of the particles are taken into account.

Based on the experimental setup from [2] and the simulations from [10], the
flow field will be described by the incompressible steady-state Navier–Stokes
equations

−µ∆ũ+ ρ ((ũ · ∇)ũ) +∇p̃ = ρg̃ in Ω̃,

∇ · ũ = 0 in Ω̃,
(2)

where Ω̃ = (0, 210)×(0, 1)×(0, 1) cm3 is the flow domain, µ = 1.5·10−3 kg/(ms)
is the dynamic viscosity of the overall solution at 298 K, ρ = 1160 kg/m3 is
density of the overall solution at 298 K, and g̃ [m/s2] is the gravitational
acceleration. The functions to be simulated are the fluid velocity ũ [m/s]
and the pressure p [Pa]. Since the process is set up in such a way that the
suspension is sufficiently dilute, the size of the particles is sufficiently small,
and the temperature gradient is also small enough, the influence of all these
aspects on the flow field can be neglected. The Navier–Stokes equations (2)
has to be equipped with boundary conditions. The boundary is given by Γ̃ =
Γ̃in ∪ Γ̃out ∪ Γ̃wall, with Γ̃in = {0 cm} × (1/3 cm, 2/3 cm) × (1/3 cm, 2/3 cm)
as the inlet boundary, Γ̃out = {210 cm} × (0 cm, 1 cm)× (0 cm, 1 cm) as the
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outlet boundary, and Γ̃wall = Γ \ (Γin ∪ Γout) as the boundary at the walls.
Analogously as in [10], it is assumed that only the flow rate at the inlet Γ̃in

is known from an experiment. The construction of a continuous boundary
condition at the plane where the inlet is situated, which matches a prescribed
flow rate, is described in [10]. It has the form

ũ(x̃) = Uin(Ψ(ξ(x̃), η(x̃)), 0, 0)T , x̃ ∈ Γ̃in,

where the profile Ψ(ξ, η) is the solution of the two-dimensional Poisson equa-
tion

−∆Ψ = 1 in Γ̃in, Ψ = 0 on ∂Γ̃in.

The parameter Uin is chosen to match the given inflow rates . The boundary
condition at the outlet Γ̃out is the standard do-nothing condition,

(µ∇(ũ)− p̃I) · ñΓ̃ = 0, x̃ ∈ Γ̃out, (3)

where ñΓ̃ is the unit outer normal on Γ̃. A boundary condition at the outlet is
often not known from experiments. In particular it is unclear how good this
boundary condition corresponds to (3). For this reason, the computational
domain should be somewhat larger than the actual domain such that a possible
slight incorrectness of the outflow boundary condition (3) has no impact on
the computational results in the region that corresponds to the outlet of the
actual domain. In this report, this aspect is taken into account by studying
x̃ = 200 cm as outlet plane. At all other boundaries (the walls), the no-slip
condition

ũ(x̃) = 0, x̃ ∈ Γ̃wall,

is applied.

The mass balance of the KDP system is modeled by

∂c̃

∂t̃
−D∆c̃+ ũ · ∇c̃ =

σ̃gr

mmol

in (0, t̃end)× Ω̃, (4)

where c̃ [kg/m3] is the concentration of the solute, σ̃gr [kg/(m3s)] is the mass
transferred from the suspension to the solid phase due to the growth per unit
time and unit space, mmol = 136.08 · 10−3 kg/mol is the molar mass of KDP,
and D = 5.5 · 10−10 m2/s is the diffusion coefficient of KDP in water. The
consumption of the solute by the growth of particles is modeled by the term
on the right-hand side in (4)

σ̃gr = −ρd
∫ L̃2,max

L̃2,min

∫ min{L̃2,L̃1,max}

L̃1,min

(

2G̃1(L̃1L̃2 − L̃2
1) + G̃2L̃

2
1

)

×f̃(t̃, x̃, L̃1, L̃2) dL̃1dL̃2, (5)
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with L̃1,min = L̃2,min = 0 m, L̃1,max = 1200 ·10−6 m, and L̃2,max = 4000 ·10−6 m.
The growth rates for the individual internal coordinates are given by

G̃i(c̃, T̃ ) =















kgi

(

c̃− c̃sat(T̃ )

c̃sat(T̃ )

)gi

if c̃ > c̃sat(T̃ ),

0 else,

i = 1, 2,

with the model parameters ρd = 2338 kg/m3 as the density of KDP (dispersed
phase), kg1 = 1.221 · 10−5 m/s as growth rate constant with respect to L̃1,
kg2 = 10.075·10−5 m/s as growth rate constant with respect to L̃2, g1 = 1.48 [·]
as growth rate power with respect to L̃1, and g2 = 1.74 [·] as growth rate power
with respect to L̃2. Equation (4) has to be equipped with initial and boundary
conditions. The boundary condition is given by















c̃(t̃, x̃) = c̃sat(T̃ ), x̃ ∈ Γ̃in,

D
∂c̃

∂ñΓ̃

= 0, x̃ ∈ Γ̃out ∪ Γ̃wall,

with the saturation concentration taken as in [23]

c̃sat(T̃ ) =
9.3027 10−5T̃ 2 − 9.7629 10−5T̃ + 0.2087

mmol

,

where T̃ [K] is the temperature of the system. With this boundary condition,
equation (4) without the coupling term to the PSD is solved until a steady
state is reached. This steady state is used as initial condition

c̃(0, x̃) = c̃steady(x̃).

Next, the energy balance of the KDP system is modeled by

ρcp

(

∂T̃

∂t
+ u · ∇T̃

)

− λ∆T̃ = ∆hcrystσ̃gr in (0, t̃end)× Ω̃, (6)

where cp = 4181.3 J/(kg K) is the specific heat capacity of water, λ =
0.602 J/(K m s) is the thermal conductivity of water, and ∆hcryst = 119 J/kg
is the heat of solution (enthalpy change of solution). The decrease of tempera-
ture with respect to the growth of the particles is modeled by the term on the
right-hand side of (6), where σ̃gr is defined as in (5). The boundary conditions
are given by































T̃ (t̃, x̃) = 308.15 K, x̃ ∈ Γ̃in,

λ
∂T̃

∂ñΓ̃

= 0, x̃ ∈ Γ̃out,

T̃ (t̃, x̃) = 291.15 K, x̃ ∈ Γ̃wall.
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Hence, the suspension is cooled at the wall. As initial condition, a fully de-
veloped temperature field, based on the solution of a steady-state equation
without the coupling term to the PSD, is chosen

T̃ (0, x̃) = T̃steady(x̃).

Finally, the population balance equation for the bi-variate model is given by

∂f̃

∂t̃
+ G̃1(c̃, T̃ )

∂f̃

∂L̃1

+ G̃2(c̃, T̃ )
∂f̃

∂L̃2

+ ũ · ∇f̃ = H̃nuc (7)

in (0, t̃end)× Ω̃× (L̃1,min, L̃1,max)× (L̃2,min, L̃2,max).

The right-hand side in (7) accounts for nucleation which is assumed to occur
at the smallest particles

H̃nuc = B̃nuc(c̃, T̃ )Ṽcrystδ(L̃1 − L̃1,nuc)δ(L̃2 − L̃2,nuc), (8)

with δ being the Dirac delta distribution,

δ(L̃i − L̃i,nuc) =







1 if L̃i = L̃i,nuc,

0 else,
i = 1, 2,

with L̃1,nuc = 50 · 10−6 m and L̃2,nuc = 100 · 10−6 m. This model for the
nucleation is standard and it has been proposed, e.g., in [1]. The volume for
the crystalline phase can be computed by

Ṽcryst =
∫ L̃2,max

L̃2,min

∫ min{L̃2,L̃1,max}

L̃1,min

Ṽ f̃ dL̃1dL̃2,

where Ṽ is given in (1), and the nucleation rate is defined by

B̃nuc(c̃, T̃ ) =















kb

(

c̃− c̃csat(T̃ )

c̃csat(T̃ )

)b

if c̃ > c̃csat(T̃ ),

0 else,

with the model parameters kb = knuc · Voverall [1/(m
3s)] with knuc = 3.75 ·

1013 1/(m6s), Voverall = 2.1 · 10−4m3 (volume of the channel), and b = 2.04 [·]
as the nucleation rate power. The initial condition is given by

f̃(0, x̃, L̃1, L̃2) = 0 in Ω̃× (L̃1,min, L̃1,max)× (L̃2,min, L̃2,max),

i.e., there are no particles in the flow domain. Boundary conditions are neces-
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sary on the closure of the inflow boundaries

f̃(t̃, x̃, L̃1, L̃2) =











f̃in(t̃, x̃, L̃1, L̃2), x̃ ∈ Γ̃in, t̃ ∈ [0, t̃inj] s,

0, else,

where f̃in is given by, see Fig. 2,

f̃in(t̃, x̃, L̃1, L̃2) =







1, if L̃1 ∈ (150, 250) · 10−6 m, L̃2 ∈ (600, 1000) · 10−6 m,

0, else,

for t̃ ∈ [0, t̃inj] s with t̃inj = 10 s.

L̃ 1 [m ]

L̃
2
[
m

]
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Fig. 2. Equally distributed seed PSD at the inlet of the channel for t̃ ∈ [0, t̃inj] s.

Numerical simulations are based on dimensionless equations. In our numerical
studies, the following reference values are used for deriving these equations:
f∞ = 1013 1/m5, l∞ = 0.01 m, u∞ = 0.01 m/s, T∞ = 1 K, c∞ = 1 mol/m3,
L1,∞ = 1000 · 10−6 m, and L2,∞ = 1000 · 10−6 m.

4 Numerical methods

The model of the population balance system presented in Section 3 results in a
system of partial differential equations where the Navier–Stokes equations for
the fluid velocity and pressure are coupled to convection-diffusion equations
for the species concentration and the system temperature and a transport
equation for the particle size distribution. The last three equations are coupled
mutually. All spatial discretizations are performed on a hexahedral grid.

For the considered flow rates, it turns out that the Navier–Stokes equations
(2) admit a stable steady-state solution. Since the computation of the velocity
u and the pressure p does not require any information from temperature (T ),
concentration (c), and PSD (f), the steady-state flow field is computed in
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a preprocessing step. For discretizing this equation, the inf-sup stable pair of
finite element spaces Q2/P

disc
1 is applied, which is considered to be an accurate

choice, e.g., see [9].

Both equations for the temperature and the concentration are time-dependent
and strongly convection-dominated. Therefore, apart from the spatial dis-
cretization, a discretization in time is also required. To this end, the Crank–
Nicolson scheme is applied. In space, the Q1 finite element is used. Due to
the dominant convection, a stabilized finite element has to be applied. Here,
a linear flux-corrected transport (FEM-FCT) method is used, which is a vari-
ant of a method proposed in [21]. The combination of this method and the
Crank–Nicolson scheme has been proved to be one of the best performing,
with respect to the ratio of accuracy and efficiency, finite element methods in
competitive studies [19,20,17].

Altogether, the equations that are defined in the physical domain only are
discretized with accurate finite element methods that are state of the art.

Since the domain Ω̃ is of tensor-product form, the domain spanned by the ex-
ternal and internal coordinates can be decomposed by a tensor-product mesh.
Such a mesh enables the utilization of finite difference methods. Finite differ-
ence methods are comparatively cheap methods. In competitive studies [17]
it has been shown that they are superior, with respect to the ratio of accu-
racy and efficiency, to finite element methods in the tensor-product setting.
However, the usual application of finite difference methods to (7) becomes
impossible due to the Dirac distribution contained in the right-hand side (8),
because for finite difference methods, the right-hand side must be a continu-
ous function. But the Dirac distribution can be discretized with finite volume
methods since the integral of this distribution is well defined.

Thus, in the numerical simulations, a hybrid discretization is utilized that uses
for the left-hand side of (7) finite difference methods and for the right-hand
side a finite volume method. Let ΩL = [L1,min, L1,max] × [L2,min, L2,max]. This
domain is decomposed by cells

Ki,j =
[

L1,i−1/2, L1,i+1/2

]

×
[

L2,j−1/2, L2,j+1/2

]

, 1 ≤ i ≤ NL1
, 1 ≤ j ≤ NL2

,

with Li,min = Li,1/2 ≤ Li,3/2 ≤ · · · ≤ Li,NLi
+1/2 = Li,max, i = 1, 2. Denote by

(L1,i, L2,j) the barycenter of Ki,j and by ∆L1,i = L1,i+1/2 − L1,i−1/2, ∆L2,j =
L2,j+1/2 − L2,j−1/2 its edge sizes. The finite volume formulation of (7) with
respect to the internal coordinates for the cell Ki,j reads [12]

∫

Ki,j

G · ∇Lf dL1dL2 =
∫

Ki,j

Hnuc dL1dL2, (9)
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with

G =







G1

G2





 , ∇Lf =







∂f
∂L1

∂f
∂L2





 , Hnuc = Cnucδ(L1 − L1,nuc)δ(L2 − L2,nuc),

where Cnuc comprises the parameters from (8) and the factor coming from de-
riving the dimensionless equations. Applying the Gaussian divergence theorem
to (9) and using the fact that ∇L ·G = 0 yields

∫

ΓKi,j

(G · nKi,j
)f dΓL = Cnuc

∫

Ki,j

δ(L1 − L1,nuc)δ(L2 − L2,nuc) dL1dL2

= Cnuc







1 if (L1,nuc, L2,nuc) ∈ Ki,j,

0 else,
(10)

=:Cnuc,δij ,

where nKi,j
is the unit outward normal vector to ΓKi,j

. The left-hand side in
(10) is discretized by applying the midpoint rule on the edges of Ki,j, leading
to

∫

ΓKi,j

(G · nKi,j
)f dΓL

≈G1∆L2,j

(

fh
i+1/2,j − fh

i−1/2,j

)

+G2∆L1,i

(

fh
i,j+1/2 − fh

i,j−1/2

)

.

Thus, the finite volume discretization of (9) becomes

G1∆L2,j

(

fh
i+1/2,j − fh

i−1/2,j

)

+G2∆L1,i

(

fh
i,j+1/2 − fh

i,j−1/2

)

= Cnuc,δij . (11)

Multiplying this equation by 1/(∆L1,i∆L2,j), one gets

G1

(

fh
i+1/2,j − fh

i−1/2,j

)

∆L1,i

+G2

(

fh
i,j+1/2 − fh

i,j−1/2

)

∆L2,j

=
Cnuc,δij

∆L1,i∆L2,j

, (12)

which is the central finite volume discretization. This type of discretization
might lead to spurious oscillations in the numerical solutions in the case that
convection dominates. Then, other types of finite volume schemes are used,
e.g., schemes of upwind type. Applying the standard upwind technique to (12)
yields the upwind finite volume scheme

G1

(

fh
i,j − fh

i−1,j

)

∆L1,i

+G2

(

fh
i,j − fh

i,j−1

)

∆L2,j

=
Cnuc,δij

∆L1,i∆L2,j

, (13)
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for G1 ≥ 0 and G2 ≥ 0. Now, one can observe that the left-hand side of
(13) coincides with the upwind finite difference discretization of the convec-
tive term with respect to the internal coordinates of the left-hand side in (7).
This correlation provides the link between applying a finite difference method
for discretizing the left-hand side of (7) and a finite volume method for dis-
cretizing the right-hand side of (7): the right-hand side of the finite volume
discretization (11) has to be multiplied with the scaling factor 1/(∆L1,i∆L2,j)
to become the correctly scaled right-hand side for a discretization with a finite
difference operator on the left-hand side.

The last important component of the numerical method is the solution of
the nonlinear coupled system consisting of the equations for temperature,
concentration, and PSD. This system is solved iteratively with a fixed point
iteration where one iteration consists of three steps:

• solve the equation for temperature with the currently available approxima-
tions of the concentration and the PSD;

• solve the equation for concentration with the approximation of the temper-
ature computed in the first step and the currently available approximation
of the PSD;

• solve the equation for PSD with the approximations of the temperature and
concentration computed in the first two steps.

The iteration for solving the coupled system is stopped if the sum of the
Euclidean norms of the residual vectors for concentration and temperature is
below a prescribed tolerance.

The main topic of the numerical studies will be the finite difference discretiza-
tion for the left-hand side of (7). On the one hand, a popular low order method
is used, which consists of the forward Euler discretization for the temporal
derivative and the simple upwind discretization for the derivatives with re-
spect to the external and internal coordinates. This first order approach has
been applied in our work so far [16,18,10]. For sufficiently small time steps,
this method is monotone, i.e., the numerical solution does not possess spuri-
ous oscillations, like negative values for the PSD. A detailed description of this
method can be found in [18]. The second discretization studied in this report
is a total variation diminishing (TVD) Runge–Kutta method for the temporal
derivative in combination with an essentially non-oscillatory (ENO) scheme
for the derivatives with respect to external and internal coordinates [11,26].
This discretization is of third order. It is, as the name already suggests, only
essentially monotone. Thus, small spurious oscillations might sometimes oc-
cur, as seen, e.g., in the numerical studies of [17]. In this paper, one can find a
detailed description of this method. To our best knowledge, this method has
not been used in the direct discretization of bi-variate population balances
systems so far.

12



5 Numerical studies

The numerical studies consider two numerical methods for simulating the pop-
ulation balance system from Section 3. These methods differ only in one com-
ponent, namely the discretization of the left-hand side of the PSD equation (7),
where a forward Euler scheme with an upwind finite difference discretization
(FWE-UPW-FDM) and a TVD Runge–Kutta method combined with an ENO
finite difference discretization (RK-ENO-FDM) are used. The main focus is
on the differences in accuracy of the computed results. In a first study, a flow
field with inflow rate 30 ml/min will be considered. After having evaluated the
results for this configuration in detail, results obtained for a configuration with
inflow rate 90 ml/min will be discussed briefly. For simplicity of notation, the
whole numerical methods for simulating the population balance system are
abbreviated by FWE-UPW-FDM and RK-ENO-FDM, respectively.

The flow domain is long compared with its thickness and there is a preferred di-
rection of the flow, which enables the use of an a priori adapted and anisotropic
grid of 132 × 12 × 12 cells, see [10] for details. For the internal coordinates,
a uniform mesh was used with 25 nodes with respect to the smaller length of
the particles, L̃1, and 81 nodes with respect to the larger length of the parti-
cles, L̃2. The corresponding numbers of degrees of freedom for simulating the
population balance system are given in Table 1.

Table 1
Degrees of freedom for simulating the population balance system.

Simulation quantity Number of d.o.f.

velocity 496 875

pressure 76 032

temperature 22 477

concentration 22 477

PSD 45 515 925

To highlight the differences of the results obtained with both methods, the
PSD was studied at different locations in the channel. To this end, three cut
planes are chosen, one close to the inlet at x̃1 = 17.5 cm, one more downstream
at x̃1 = 49 cm, and the last one close to the outlet at x̃1 = 200 cm, see Fig. 3.

5.1 Inflow rate 30 ml/min

In the first numerical study, a flow rate of Ṽr = 30 ml/min at the inlet was
considered. The stationary flow field at the inlet of the channel is shown in
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Fig. 3. Cut planes, parallel to the plane x̃1 = 0, for comparing the results obtained
with the two numerical schemes.

Fig. 4. Based on the mean velocity at the inlet (4.5 cm/s), the kinematic
viscosity of the fluid, and the height of the channel (0.01 m), the Reynolds
number of the flow is Re ≈ 348.

Fig. 4. Inflow rate Ṽr = 30 ml/min, the stationary velocity field at the inlet of the
channel in a cut plane, domain not to scale.

At the beginning of the process, in the time interval t̃inj ∈ [0, 10] s, seed
particles are injected into the channel, see Fig. 2 for the initial PSD. It turns
out that almost all particles had left the domain after t̃ = 300 s, such that the
simulations are performed in the (dimensionless) time interval [0, 300].

First, an appropriate time step has to be found. If the time step is too large,
instabilities have to be expected because explicit time-stepping schemes are
applied. If the time step is too small, then the simulation is inefficient. In
addition, from our experience, we expected that for sufficiently small time
steps the discretization error with respect to the external and internal coor-
dinates dominates, and therefore a further decrease of the time step does not
lead to an increase of the accuracy of the results. To find possible instabili-
ties, the PSD in the center of the channel at the plane close to the inlet, at
(x̃1, x̃2, x̃3) = (17.5, 1/2, 1/2) cm, is studied, see Fig. 5. Up to this point, there
is more or less only a transport of the initial PSD. In particular, one does not
expect values that are much larger than the maximal value of the initial PSD,
which is 1013. It can be seen in Fig. 5, upper pictures, that such values are
computed for ∆t = 0.2 (both schemes) and ∆t = 0.15 (RK-ENO-FDM). The
lower pictures of Fig. 5 reveal that for both schemes the results for ∆t ≤ 0.1
are very similar. From Fig. 6, it can be observed that this statement holds
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Fig. 5. Inflow rate Ṽr = 30 ml/min: maximal value of the PSD at
(x̃1, x̃2, x̃3) = (17.5, 1/2, 1/2) cm for different time steps, FWE-UPW-FDM (left),
RK-ENO-FDM (right). Note the different scaling of the y-axes.

Fig. 6. Inflow rate Ṽr = 30 ml/min: maximal value of the PSD
for different time steps, FWE-UPW-FDM (left); RK-ENO-FDM (right),
(x̃1, x̃2, x̃3) = (49, 1/2, 1/2) cm (top), (x̃1, x̃2, x̃3) = (200, 1/2, 1/2) cm (bottom).
Note the different scaling of the y-axes.

true also for the other cut planes. Therefore, ∆t = 0.1 satisfies the conditions
for an appropriate length of the time step and only results obtained with this
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length will be presented in the detailed discussion.

For a detailed evaluation of the computational results, the temporal evolution
of the PSD was studied not only at the center of the cut planes shown in Fig. 3,
but also at other points situated in these planes. These points are sketched in
Fig. 7. There is one set of points reaching from the center of the channel to
the center of a lateral wall and another set, where the points reach from the
center to the corner of two lateral walls. Due to the different velocities in all
these points, a different evolution of the PSD can be expected.

Fig. 7. Studied nodes for the cut planes parallel to the plane x̃1 = 0.

Fig. 8. Inflow rate Ṽr = 30 ml/min: maximal value of the PSD at different nodes
(17.5, x̃2, x̃3) cm, FWE-UPW-FDM (left); RK-ENO-FDM (right). Note the different
scaling of the y-axes.

To keep the presentation of the results concise, only the evolution of the max-
imal value of the PSD in these points in the first and last cut plane will be
presented, see Figs. 8 and 9. It can be seen that the largest maximal values
are predicted in the center of the channel, i.e., the bulk of particles follows the
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Fig. 9. Inflow rate Ṽr = 30 ml/min: maximal value of the PSD at different nodes
(200, x̃2, x̃3) cm, FWE-UPW-FDM (left), RK-ENO-FDM (right). Note the different
scaling of the x- and y-axes. Maximal values of the PSD in the nodes with a distance
less than or equal to 1/6 cm of one of the walls are negligible (magenta and cyan
curves).

flow very well. The further the point of observation is away from the center,
the smaller the maximal value of the PSD becomes. This general qualitative
behavior is predicted by both of the studied schemes, FWE-UPW-FDM and
RK-ENO-FDM. However, the height of the peaks (highest amount of particles
that can be observed at the point at a certain time) and the time interval where
the curve is clearly larger than zero (time interval where a notable number of
particles can be observed at the point) often differ considerably between both
methods. One can observe that the differences in the numerical results are
the larger, the further the cut plane is away from the inlet, i.e., the longer the
particles needed to reach the cut plane. Always, the method FWE-UPW-FDM
gives results with smaller peaks and larger time intervals in which particles
can be observed. Already close to the inlet, at the plane x̃ = 17.5 cm, notable
differences can be seen. At the outlet, the differences are very large. As an
example, at the center of the channel (x̃1, x̃2, x̃3) = (200, 1/2, 1/2) cm, the
method FWE-UPW-FDM predicts a notable amount of particles in the time
interval [190, 290] s, whereas RK-ENO-FDM shows this event in [215, 265] s,
thus the lengths of the respective time intervals are 100 s and 50 s. Moreover,
the maximal amount of particles computed by RK-ENO-FDM is almost four
times larger than the prediction of FWE-UPW-FDM.

Comprehensive illustrations of the PSD in the different points are provided in
Figs. 10 – 13. For brevity, the presentation is restricted to the plane close to
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(a) O = (200, 1/2, 1/2) cm, t̃max =
240 s

(b) E = (200, 5/12, 1/2) cm, t̃max =
245 s

(c) D = (200, 4/12, 1/2) cm, t̃max =
264 s

(d) C = (200, 3/12, 1/2) cm, t̃max =
300 s

Fig. 10. Inflow rate Ṽr = 30 ml/min: (logarithm of the) PSD at (200, x̃2, x̃3) cm,
nodes on the line between the wall and the center; FWE-UPW-FDM. Note that at
A = (200, 1/12, 1/2) cm and B = (200, 2/12, 1/2) cm there is no notable amount of
particles predicted.

the outlet because the results at the outlet are of most interest. Details with
respect to the other cut planes can be found in [27]. For each picture, the time
instance is chosen where the maximal value of the PSD is obtained. It can be
clearly observed that the results obtained with RK-ENO-FDM are much less
smeared than the results computed with FWE-UPW-FDM. In addition, the
maximal values of the PSDs are larger for RK-ENO-FDM. The smearing in-
troduced by FWE-UPW-FDM results even in the fact that a notable amount
of particles has already left the domain of computation for the internal coor-
dinates at the end of the channel. In addition, there is also a certain amount
of particles which are physically wrong since for them holds L̃1 > L̃2. For both
methods, the results in the points close to the center of the channel are almost
identical with the results in the center itself. Only the maximal value of the
PSD is taken a little bit earlier at the center. Towards the walls, the amount of
particles becomes smaller, to be negligible close to the walls. In the point C ′,
see Figs. 12 and 13, the results are qualitatively different. The pictures in Figs.
10 – 13 also allow to distinguish between the part of the PSD that originates
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(a) O = (200, 1/2, 1/2) cm, t̃max =
240 s

(b) E = (200, 5/12, 1/2) cm, t̃max =
245 s

(c) D = (200, 4/12, 1/2) cm, t̃max =
264 s

(d) C = (200, 3/12, 1/2) cm, t̃max =
300 s

Fig. 11. Inflow rate Ṽr = 30 ml/min: (logarithm of the) PSD at (200, x̃2, x̃3) cm,
nodes on the line between the wall and the center; RK-ENO-FDM. Note that at
A = (200, 1/12, 1/2) cm and B = (200, 2/12, 1/2) cm there is no notable amount of
particles predicted.

from the inlet seed and the part which comes from the nucleation. Also for the
latter part, the smearing introduced by FWE-UPW-FDM is clearly visible.

Differences in the numerical results can be seen also in other quantities of
the population balance system. The final concentration fields computed with
FWE-UPW-FDM and RK-ENO-FDM are depicted in Fig. 14. On the whole,
both fields look similar, but they are actually different in details. A clear dif-
ference can be seen in the middle of the channel, at x̃1 ≈ 100 cm, toward
the walls, where the concentration obtained with FWE-UPW-FDM is much
smaller than the concentration computed by RK-ENO-FDM. Even more strik-
ing, the same situation can be observed at the end of the channel. The smaller
values for FWE-UPW-FDM at the end of the channel arise from the fact that
due to the smearing of this method larger particles are produced. For creating
larger particles, more of the dissolved species has to be consumed, leading
finally to smaller values for the concentration.
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(a) O = (200, 1/2, 1/2) cm, t̃max =
240 s

(b) E′ = (200, 5/12, 5/12) cm, t̃max =
251 s

(c) D′ = (200, 4/12, 4/12) cm, t̃max =
291 s

(d) C ′ = (200, 3/12, 3/12) cm, t̃max =
300 s

Fig. 12. Inflow rate Ṽr = 30 ml/min: (logarithm of the) PSD at (200, x̃2, x̃3) cm,
nodes on the line between the corner and the center, FWE-UPW-FDM. Note that
at A′ = (200, 1/12, 1/12) cm and B′ = (200, 2/12, 2/12) cm there is no notable
amount of particles predicted.

5.2 Inflow rate 90 ml/min

A second study was performed with the inflow rate of Ṽr = 90 ml/min. For
brevity, only a few results will be presented in this report, for a detailed
evaluation of this study it is referred to [27].

The inflow rate Ṽr = 90 ml/min leads to a stationary flow field with Reynolds
number Re ≈ 1044. Since the flow is considerably faster than in the study
from Section 5.1, the residence time of the particles is shorter. Consequently,
there will be less time to achieve large particles by nucleation and growth
compared with the study from Section 5.1.

It can be seen in the numerical simulations that after t̃ = 150 s almost all
particles had left the domain. Using the same methodology as in Section 5.1,
it is found that ∆t = 0.025 is an appropriate length of the time step in this
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(a) O = (200, 1/2, 1/2) cm, t̃max =
240 s

(b) E′ = (200, 5/12, 5/12) cm, t̃max =
251 s

(c) D′ = (200, 4/12, 4/12) cm, t̃max =
291 s

(d) C ′ = (200, 3/12, 3/12) cm, t̃max =
300 s

Fig. 13. Inflow rate Ṽr = 30 ml/min: (logarithm of the) PSD at (200, x̃2, x̃3) cm,
nodes on the line between the corner and the center, RK-ENO-FDM. Note that at
A′ = (200, 1/12, 1/12) cm and B′ = (200, 2/12, 2/12) cm there is no notable amount
of particles predicted.

study, which is used in the simulations.

The evolution of the maximal value of the PSD for different nodes at the
outlet is depicted in Fig. 15. Again, one can observe clear differences between
the results obtained with FWE-UPW-FDM and with RK-ENO-FDM. For
instance, considering the center of the channel, FWE-UPW-FDM predicts
a notable amount of particles in the time interval [60, 100] s, whereas RK-
ENO-FDM predicts the same event in [70, 90] s. The maximal amount of
particles predicted by RK-ENO-FDM is almost twice as large as the prediction
by FWE-UPW-FDM. Having a look at the PSD in the center of the outlet,
Fig. 16, the much stronger smearing of FWE-UPW-FDM compared with RK-
ENO-FDM can be observed well. Altogether, both methods give results which
differ considerably in important properties. But the differences are smaller
than for the study in Section 5.1. The same trend can be observed also for all
other results. We think that the shorter residence time of the particles in the
channel is the reason for the smaller differences.
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Fig. 14. Inflow rate Ṽr = 30 ml/min: final concentration field (t̃ = 300 s) with
FWE-UPW-FDM and RK-ENO-FDM, domain scaled by factor 40 in y- and
z-direction.

Fig. 15. Inflow rate Ṽr = 90 ml/min: maximal value of PSD at different nodes
(200, x̃2, x̃3) cm, FWE-UPW-FDM (left), RK-ENO-FDM (right). Note the different
scaling of the y-axes. Maximal values of PSD in the nodes close to the wall (corner)
are negligible (magenta, cyan curves).

5.3 Discussion and further aspects of the simulations

In this section, two direct discretizations of a bi-variate population balance
system were studied, which differ only in the discretization of the differential
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Fig. 16. Inflow rate Ṽr = 90 ml/min: (logarithm of the) PSD at (200, 1/2, 1/2) cm,
t̃max = 79 s, FWE-UPW-FDM (left), RK-ENO-FDM (right).

operator in the equation for the PSD. Since the solutions in the considered ex-
amples are smooth, it can be expected that the third order method RK-ENO-
FDM gives more accurate results than the first order method FWE-UPW-
FDM. For the time steps which were chosen to be appropriate, difficulties with
spurious oscillations, which might generally arise in using RK-ENO-FDM, did
not occur.

Both methods predicted that the bulk of the particles follows the flow field
very well, i.e., most of the particles stay in the center of the channel and
much less particles can be found closer to the walls. In all simulations, the
computed PSDs at the outlet allow to distinguish clearly the contributions
coming from the seed at the inlet and coming from the nucleation. Apart
from these general agreements, there are considerable differences between the
results computed with FWE-UPW-FDM and RK-ENO-FDM. The solutions
computed with RK-ENO-FDM are considerably less smeared compared with
the the solutions obtained using FWE-UPW-FDM. A notable amount of par-
ticles at the outlet is predicted by RK-ENO-FDM in time intervals that are
only half as long as the time intervals predicted by FWE-UPW-FDM. In
addition, the maximal value of the PSD was two to four times larger for RK-
ENO-FDM. Altogether, these results are quantitatively much different. The
numerical studies show also that the differences between the results obtained
with the two methods become larger the longer the residence time of the
particles is.

The simulations were performed with the codeMooNMD [15] on HP BL2x220c
computers with 2933 MHz Xeon processors. Simulating one time step for
FWE-UPW-FDM took around 30 seconds, including the calculation of all
data for evaluating the numerical simulations. The method RK-ENO-FDM
had higher computational cost, in our simulations of around a factor of five.
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6 Summary and outlook

This report presented numerical studies of two methods for simulating a bi-
variate population balance system, modeling growth and nucleation of parti-
cles. Both methods differed only in the discretization of the differential oper-
ator of the population balance equation, where both discretizations belonged
to the class of direct discretizations (discrete methods). One method applied
a monotone first order discretization (FWE-UPW-FDM) whereas the other
one used an essentially non-oscillatory third order discretization (RK-ENO-
FDM). The main goal of the simulations consisted in studying the accuracy of
the numerical results. It turned out that important quantities of interest, like
the maximal value of the PSD at the outlet or the time interval in which a
notable amount of particles passed the outlet, were predicted much differently
by both methods. It was discussed in Section 5.3 that the results computed
with the higher order method can be considered to be more accurate.

As discussed in the introduction, the choice of a numerical method for a simu-
lation should depend on the goal of that simulation. From the results presented
in this report, we draw the conclusion to use as accurate methods as affordable
if, e.g., the detailed study of a population balance system is of interest. For
such purposes, it is more beneficial to get an accurate solution after a longer
(but affordable) computing time than to obtain an inaccurate solution in a
short time.

Of course, also the efficiency of accurate (higher order) methods has to be
studied and improved. From the point of view of implementation, paralleliza-
tion might help considerably. With respect to population balance systems,
the potential of other approaches, like moment-based methods or operator-
splitting schemes, has to be studied for computing similarly or even more
accurate solutions in a more efficient way than the used direct discretizations.
To our best knowledge, the investigation of this topic is widely open and we
plan to pursue it in our future work.
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