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Abstract

We present and analyze different splitting algorithms for numerical solution of the both
classical and generalized nonlinear Schrödinger equations describing propagation of wave
packets with special emphasis on applications to nonlinear fiber-optics. The considered
generalizations take into account the higher-order corrections of the linear differential dis-
persion operator as well as the saturation of nonlinearity and the self-steepening of the field
envelope function. For stabilization of the pseudo-spectral splitting schemes for general-
ized Schrödinger equations a regularization based on the approximation of the derivatives
by the low number of Fourier modes is proposed. To illustrate the theoretically predicted
performance of these schemes several numerical experiments have been done.

1 Introduction

Nonlinear Schrödinger equation (NLSE) is widely used to model pulse propagation in nonlinear
dispersive media, e.g., along a micro-structured optical fiber [15, 2, 13]. Optical properties (dis-
persion) of the fiber are described by a relation between wave vector and frequency, β = β(ω),
for a monochromatic linear wave in which the wave field is proportional to ei(βz−ωt). The prop-
agation coordinate z is directed along the fiber. The dispersion relation is typically encoded
in a sequence of the so-called propagation constants βj = djβ/dωj , j = 0, 1, . . ., which
are calculated or measured for some reference wave frequency ω0. It is convenient to assume
that ω0 equals the pulse carrier frequency. In particular, β0 is the carrier wave vector and 1/β1

describes the group velocity at the carrier frequency.

NLSE yields evolution of the complex pulse envelope, ψ(z, τ), along the fiber. Here the so-
called retarded time τ = t − β1z corresponds to a coordinate system moving together with
the pulse at the group velocity 1/β1. The latter generally differs from the phase velocity of the
carrier wave ω0/β0. The corresponding electric field E is related to the field envelope ψ by a
rapidly oscillating carrier wave ei(β0z−ω0t):

E(z, t) = Re
[
ψ(z, t− β1z)ei(β0z−ω0t)

]
. (1)

An important precondition for the NLSE description is that the complex envelope ψ evolves
slowly as compared to the carrier wave, such that |∂τψ| � |ω0ψ|. This slowly varying envelope
approximation (SVEA) is used to derive a class of the NLSEs for ψ(z, τ).

The simplest, classical NLSE is given by the relation [3]

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ 2
+N [ψ] = 0, N [ψ] = γ|ψ|2ψ, (2)
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where z ∈ [0, L] is the propagation coordinate, L indicates the total length of the fiber, and the
retarded time τ plays role of the lateral coordinate of the considered computational domain. The
nonlinear term N [ψ] represents an instantaneous cubic (Kerr) nonlinearity, β2 is referred to as
the group-velocity dispersion parameter, and γ characterizes nonlinear properties of the fiber.

The initial conditions
ψ(z = 0, τ) = ψ0(τ), (3)

are defined by the incoming field envelope ψ0, which can be expressed from the corresponding
electric fieldE(0, t) using the SVEA and the so-called sliding average [27]. The lateral boundary
conditions are determined either by the natural assumption that the pulse is localized w.r.t. τ ,

|ψ(z, τ)| → 0 for τ → ±∞, (4)

or by the pulse periodicity assumption

ψ(z, τ + T ) ≡ ψ(z, τ), (5)

where 1/T is the pulse repetition rate.

The cubic NLSE (2) is just one representative of a huge family of the generalized nonlinear
Schrödinger equations (GNLSE). The generalizations can be made by using more involved
dispersion operator D̂,

i
∂ψ

∂z
+ D̂ψ +N [ψ] = 0, where D̂ψ :=

[
M∑
m=2

βm
m!

(
i
∂

∂τ

)m]
ψ, (6)

i.e., taking into account higher order propagation constants βj , j = 3, . . . ,M , which can be
important once operating close to the zero dispersion frequency (ZDF) at which β2 = β′′(ω0)
vanishes, or modeling ultra-short pulses determined on a large frequency range. Another type of
generalizations occurs by assuming a more general form of nonlinearity N [ψ], as, for example,

N [ψ] = f(|ψ|2)ψ with lim
ξ→0

f(ξ)

ξ
= γ and inf

ξ≥0
f(ξ) < +∞;

N [ψ] =

(
γ + iσ

∂

∂τ

)
|ψ|2ψ with σ = γω−1

0 ;

N [ψ] =

[
γ1|ψ|2 + γ2

∫ ∞
0

|ψ(z, τ − τ ′)|2h(τ ′)dτ ′
]
ψ with γ1 + γ2 = γ.

Here, a real function f can describe a simple saturating nonlinearity e.g.,

f(ξ) = γ(ξ − sξ2) or f(ξ) =
γξ

1 + sξ
, with s > 0. (7)

An operator iσ ∂
∂τ

represents a self-steepening of the field envelope function and accounts for
non-perfectness of the envelope description, whereas a convolution with the quickly decreasing
real function h(τ ′) s.t.

∫∞
0
h(τ ′)dτ ′ = 1 represents a delayed medium response Raman
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effect. Below in this paper we ignore a delayed medium response and consider the GNLSE (6)
with the nonlinearity

N [ψ] = f(|ψ|2)ψ + iR(ψ), R(ψ) = σ1|ψ|2
∂

∂τ
ψ + σ2ψ

∂

∂τ
|ψ|2. (8)

It is worth mentioning that the simplest Eq. (2) possess a very special property: it is completely
integrable by means of the inverse-scattering method [29]. Usually this property is destroyed by
generalizations, but in some cases the integrability is preserved. For example, the normalized
GNLSE

i
∂ψ

∂z
+

1

2

∂2ψ

∂τ 2
+ |ψ|2ψ + i

[
c1
∂3ψ

∂τ 3
+ c2|ψ|2

∂ψ

∂τ
+ c3ψ

∂|ψ|2

∂τ

]
= 0, (9)

preserves integrability for special combinations of coefficients, such as c1 = 0, c2 = 1 and
either c3 = 1 or c3 = 0 (different derivative Schrödinger equations), c1 = 1, c2 = 6, and
c3 = 0 (Hirota equation), or c1 = 1, c2 = 6, and c3 = 3 (Sasa-Satsuma equation).

For a real-valued set of βm, localized in τ pulses, and smooth enough initial function ψ0(τ)
the initial value problem (3), (4), (6), (8), can possesses some conservation laws. The classical
cubic NLSE (2) has an infinite set of conservation laws [29]. For the general Eq. (6) with the
vanishing generalized reaction term R(ψ) (i.e., σ1 and σ2 ), at least three conservation laws
can be found. One can easily derive them by writing (6) as a Hamiltonian equation

i
∂ψ

∂z
+
δH
δψ∗

= 0,

where ψ∗ denotes a complex conjugate of ψ, functional H is defined below in (12), and δH
δψ∗

is a variational derivative. The first two integrals are derived from continuous symmetries of the
HamiltonianH, namely

M(ψ) :=

∫
R
|ψ(z, τ)|2 dτ = const, (10)

and

S(ψ) :=
i

2

∫
R

(
ψ∗
∂ψ

∂τ
− ψ∂ψ

∗

∂τ

)
dτ = const. (11)

Finally, the Hamiltonian as such yields another conservation law,

H(ψ) :=

∫
R

[
ψ∗D̂ψ + ψD̂ψ∗

2
+ F (|ψ|2)

]
dτ = const, (12)

where F (ξ) =
∫ ξ

0
f(s) ds.

The same conservation laws (10), (11), and (12) with integration limits 0 and T are valid in the
case of T -periodic boundary conditions (5). Generalizations of these integrals can be derived
also for non-vanishing σ1 and σ2, see Ref. [7, 18, 21] and Section 3 of this paper.
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2 Numerical approximation of NLSE

There are many numerical algorithms for the solution of nonlinear Schrödinger type problem.
They are based on finite-difference schemes (see, e.g., [8, 11, 12, 22, 25]), finite-element and
Galerkin approaches (see, [6, 8]), or spectral and pseudo-spectral methods (see the well-known
pioneer paper [14], then these methods where developed in many papers [9, 10, 21, 26], see
also references given therein). Various splitting techniques are used to construct efficient inte-
grators of the obtained semi-discrete problems [17, 19, 26].

Our main goal is to compare efficiency of different solvers for the generalized NLSE. In this
section we will construct numerical solvers and apply all of them for a standard nonlinear
Schrödinger problem (2) with a cubic nonlinearity N [ψ] = f(ψ) = |ψ|2ψ.

2.1 Numerical schemes

The considered domain Ω̄ := Ω∪ ∂Ω = [a, b] is covered by the following discrete uniform grid

Ω̄h =
{
τj : τj = a+ jh, j = 0, . . . , J, h = (b− a)/J

}
with the grid points denoted by τj , the grid boundary ∂Ωh = {τ0 = a, τJ = b}, and the inner
part of the grid Ωh = Ω̄h \ ∂Ωh. Let ωk be a uniform grid

ωk = {zn : zn = nk, n = 0, . . . , N, Nk = L},

where k is the discretization step. For simplicity, the step-size is taken constant. We consider
numerical approximations Un

j to the exact solution values ψnj = ψ(zn, τj) at the grid points
(zn, τj) ∈ ωk × Ω̄h.

The following notation for difference and averaging operators is used

∂τU
n
j = (Un

j+1 − Un
j )/h, ∂τ̄U

n
j = (Un

j − Un
j−1)/h,

∂2
τU

n
j := ∂τ∂τ̄U

n
j =

Un
j+1 − 2Un

j + Un
j−1

h2
,

∂zU
n
j = (Un+1

j − Un
j )/k, Ũ

n+1/2
j = (Un+1

j + Un
j )/2.

All numerical schemes for the problem (2), (3) presented below can be written as

B
(
Un+1
j , Un+1

j±1 , U
n
j , U

n
j±1

)
= 0, zn ∈ ωk, τj ∈ Ω̃h, (13)

U0
j = ψ0(τj), τj ∈ Ω̃h, (14)

where the selection of the grid Ω̃h ⊂ Ω̄h depends on the assumed conditions at the boundaries
ωk × ∂Ωh of the computational domain. These conditions depend on the considered problem
and/or preferred numerical scheme. For example, in the case of localized pulses satisfying (4)
we can set

Ω̃h = Ωh, Un
j = µ(zn, τj), (zn × τj) ∈ ωk × ∂Ωh. (15)
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We use homogeneous Dirichlet condition µ = 0 in (15) if the evolving envelope function does
not reach lateral bounds of the computational domain, or some more sophisticated µminimizing
envelope back-reflection to the computational domain once the envelope function reaches the
lateral bounds [8, 11]. For (b − a)-periodic sequence of envelope pulses satisfying (5) we can
set

Ω̃h = τ0 ∪ Ωh, Un
0 = Un

J , Un
−1 = Un

J−1, zn ∈ ωk. (16)

With these periodic boundary conditions we avoid artificial envelope reflections from the lateral
boundaries at large z, but feel an influence of the envelope pulses from the neighboring periods,
instead. In many cases the usage of these conditions is presupposed by the fast Fourier trans-
form driven split-step numerical schemes resolving the dispersion operator in the wave-vector
domain. In these cases we assume that J is even and write the grid function as a discrete
Fourier sum

Uj =
[
F−1(Û)

]
j

:=
1

J

J/2−1∑
`=−J/2

Û` exp

(
2πi`jh

b− a

)
,

where the Fourier coefficients are defined as

Û` = [F(U)]` :=

J/2−1∑
j=−J/2

Uj exp

(
−2πi`jh

b− a

)
.

Here, [F−1(Û)]j and [F(U)]` are corresponding components of the vectors F−1(Û) and
F(U) determined by the backward Fourier transform F−1 and the forward Fourier transform
F , respectively. The differential operators ∂s

∂τs
, s = 1, 2, . . . can be approximated by the exact

derivative of the J/2-degree trigonometric interpolant Ds
J :

∂sψ(z, τj)

∂τ s
≈ (Ds

JU)j :=
1

J

J/2−1∑
`=−J/2

ωs` Û` exp

(
2πi`jh

b− a

)
,

ω` =
2π`

b− a
i, ` = −J/2, . . . , J/2− 1.

(17)

Consequently, a general differential dispersion operator D̂ψ defined in (6) is approximated as

D̂ψ(z, τj) ≈
(
D̂h,JU

)
j

:=
1

J

J/2−1∑
`=−J/2

[
M∑
m=2

(iω`)
mβm

m!

]
Û` exp

(
2πi`jh

b− a

)
. (18)

We should take into account that on the uniform space grid we can only represent Fourier modes
with |`| ≤ J/2. The energy of higher waves is moved by the discrete Fourier transform to the
low number waves.

It is noteworthy, that both transformations can be computed very efficiently by the fast Fourier
transform (FFT) algorithm, which reduces the number of arithmetic operations to 5J log J mul-
tiplications.
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In this paper we are also interested to check how accurately the discrete schemes constructed
below preserve the conservation laws (10) and (12). In the case of standard NLSE (2) the
discrete analogs of these laws are given by

Mh(U
m) := ‖Um‖2 = ‖ψ0‖2, (19)

Hh(U
m) :=

β2

2
‖Um‖2

E + (F (|Um|2), 1)h =
β2

2
‖ψ0‖2

E + (F (|ψ0|2), 1)h, (20)

where F (ξ) = γξ2

2
in our cubic nonlinearity case, and the discrete inner products and norms in

the expressions above are defined as follows:

(V,W )h =
J−1∑
j=1

VjW
∗
j h+

V0W
∗
0 + VJW

∗
J

2
h, ‖V ‖ =

√
(V, V )h,

(V,W )2 =
J−1∑
j=0

VjW
∗
j h, ‖V ‖2

E =
(
∂τV, ∂τV

)
2
.

Crank-Nicolson scheme. The standard Crank-Nicolson scheme is given by

i∂zU
n
j −

β2

2
∂2
τ Ũ

n+1/2
j +

F (|Un+1
j |2)− F (|Un

j |2)

|Un+1
j |2 − |Un

j |2
Ũ
n+1/2
j = 0, τj ∈ Ω̃h. (21)

For sufficiently smooth solutions it is easy to check that the approximation error of the discrete
scheme (21), (14) with the corresponding boundary conditions (15) or (16) isO(k2 + h2). The
convergence of a discrete solution of the Crank-Nicolson scheme (21) has been investigated
in many papers, and the second-order accuracy is proved in various norms, see [6, 22] and
references therein.

The implementation of the nonlinear discrete scheme (21), (14), (15) is done by using iterative
algorithms, then a sequence of simple linear systems with tridiagonal matrices are solved. For
periodic boundary conditions (16) the tridiagonal structure of the corresponding matrices is
slightly violated, and approximately doubled number of the arithmetic operations is required for
the effective implementation of the scheme.

It is easy to prove that the solution of Crank-Nicolson scheme (21), (14) supplemented by the
boundary conditions (15) with µ = 0 or (16) satisfies exactly discrete conservation laws (19)
and (20).

Splitting algorithm. The second algorithm is based on splitting method. We split the diffrac-
tion and nonlinear interaction processes by using the symmetrical Strang splitting approach (see
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[5, 16, 17, 23, 24, 26]):

∂ψl
∂z

= −iβ2

2

∂2ψl
∂τ 2

, z ∈ [zn, zn+1], ψl(z
n, τ) = ψ(zn, τ),

∂ψm
∂z

= if(|ψm|2)ψm, z ∈ [zn, zn+1], ψm(zn, τ) = ψl(z
n+1, τ),

ψ(zn+1, τ) := ψm(zn+1, τ),

∂ψm
∂z

= if(|ψm|2)ψm, z ∈ [zn+1, zn+2], ψm(zn+1, τ) = ψ(zn+1, τ),

∂ψl
∂z

= −iβ2

2

∂2ψl
∂τ 2

, z ∈ [zn+1, zn+2], ψl(z
n+1, τ) = ψm(zn+2, τ),

ψ(zn+2, τ) := ψl(z
n+2, τ).

(22)

Assuming that n is even, we formulate two sequential steps of the corresponding finite difference
scheme as follows:

i
U
n+ 1

2
j − Un

j

k
=
β2

4
∂2
τ

(
U
n+ 1

2
j + Un

j

)
, τj ∈ Ω̃h,

Un+1
j = exp

[
ikf
(
|Un+ 1

2
j |2

)]
U
n+ 1

2
j , τj ∈ Ω̃h,

U
n+ 3

2
j = exp

[
ikf
(
|Un+1

j |2
)]
Un+1
j , τj ∈ Ω̃h,

i
Un+2
j − Un+ 3

2
j

k
=
β2

4
∂2
τ

(
Un+2
j + U

n+ 3
2

j

)
, τj ∈ Ω̃h.

(23)

The important property of the splitting algorithm is that the nonlinear part of the problem is
solved exactly by the explicit formula. For sufficiently smooth solutions it is easy to check that
the approximation error of this discrete scheme is O(k2 + h2). The splitting scheme satisfies
the first discrete conservation law (19).

Split-step pseudo-spectral scheme. We use the same splitting algorithm (22) as a template
for the third algorithm. Now the diffraction part is approximated by using the pseudo-spectral
method [9, 10, 21, 26]. In general, this algorithm assumes periodicity of functions ψ (5), i.e., the
related grid functions U satisfy the periodic boundary conditions (16).

According to the Fourier pseudo-spectral approach the second order dispersion operator ∂2

∂τ2
in

(22) is approximated by the exact second derivative of the J/2-degree trigonometric interpolant
D2
J , defined in (17). Then the symmetrical splitting algorithm can be written as

Û
n+ 1

2
` = e−ikβ2ω

2
` /2 Ûn

` , ` = −J/2, . . . , J/2− 1,

Un+1
j = exp

[
ikf
(
|Un+ 1

2
j |2

)]
U
n+ 1

2
j , τj ∈ Ω̃h,

U
n+ 3

2
j = exp

[
ikf
(
|Un+1

j |2
)]
Un+1
j , τj ∈ Ω̃h,

Ûn+2
` = e−ikβ2ω

2
` /2 Û

n+ 3
2

` , ` = −J/2, . . . , J/2− 1,

(24)
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where each intermediate subproblem within the given small z-coordinate step is solved exactly,
and the scheme preserves the first discrete conservation law (19). If results at intermediate
levels zn are not required, we can use a trapezoidal symmetrical splitting scheme, which twice
reduces the number of required operations. In this case this algorithm formally can be written
as

UN = ekLe2kN e2kL · · · e2kN ekLU0, (25)

where L denotes the linear diffraction operator andN denotes the nonlinear interaction. Obvi-
ously a similar modification is valid for the splitting algorithm (23).

The pseudo-spectral algorithms are very efficient in the case when solutions are smooth func-
tions. The estimate for the interpolation error of the J/2-degree trigonometric interpolant IJu is
given by [10]

‖u− IJu‖Hl ≤ cJ l−m
∥∥∥∥dmudτm

∥∥∥∥
L2

.

Thus for functions u ∈ C∞ we have the exponential convergence rate.

Other pseudo-spectral algorithms. Next we formulate a more general pseudo-spectral algo-
rithm for solving NLSE (2). The discrete Fourier transformation is applied for the NLSE in order
to get a system of nonlinear ODEs for the Fourier spectral coefficients:

i∂zÛ`(z)− β2

2
ω2
` Û`(z) +

[
F
(
f(|U |2)U(z)

)]
`

= 0, ` = −J/2, . . . , J/2− 1.

This system can be rewritten in the operator form as

∂zÛ(z) = GÛ := iAÛ + iF
(
f(|U |2U

)
, 0 < z ≤ L, (26)

where A = −β2
2

diag(ω2
−J/2, . . . , ω

2
J/2−1), coefficients ωl are defined in (17), and Û =(

Û−J/2, . . . , ÛJ/2−1

)T
is a column vector with T denoting a transpose.

In the following sections this algorithm will be easily extended to a large variety of NLSE-type
problems.

2.2 Time integration

For time integration, the adaptive explicit Runge-Kutta-Fehlberg (RKF) method is used [16].
Here we should put two important remarks dealing with the computational efficiency of the
pseudo-spectral algorithm (26).

First, in order to step forward from Ûn to new approximation Ûn+1 by using the RKF algo-
rithm we should compute six vectors G(Ûm), thus the forward and backward discrete Fourier
transformations needed to evaluate the nonlinear function f(|U |2)U should be computed six
times.

8



Second, the specific stability properties of the explicit Runge-Kutta methods should be taken
into account. Let us consider the standard test problem

i
du

dz
− λu = 0, 0 < z < L, u(0) = 1. (27)

Here the parameter λ defines the the spectral coefficient and it satisfies the asymptotic relation

λ = (cj)p, p ≥ 2,

where p is the corresponding order of the derivative in the dispersion term, j defines the jth
spectral mode. By introducing z′ = λz, we put equation (27) into non-dimensional form

i
du

dz′
− u = 0, 0 < z′ < L′, L′ = λL.

We solve this problem by using the classical explicit fourth-order Runge-Kutta method or by the
Runge-Kutta-Fehlberg method [16]. Let us denote the error of the obtained discrete solution
U(z) by E(z) = u(z)− U(z). It satisfies the estimate

|E(L′)| ≤ CL′(k′)4,

where k′ = λk and k is the discretization step. The linear dependence of the error on L′ follows
from the fact that the exact solution is a periodical function and the error depends linearly on
the number of full cycles of the solution. Returning back to the physical parameters we get the
error estimate

|E(L)| ≤ CLλ5k4. (28)

Thus in order to guarantee some specified accuracy ε, the discretization step k must be related
to λ as

k ≤ C
(ε/L)1/4

λ5/4
. (29)

It is well-known that the A-stability region of the classical fourth-order Runge-Kutta (RK4)
method includes an interval in the imaginary axis[
−i2
√

2, i2
√

2
]

[16]. Thus, due to the stability requirements, we get the restriction on the inte-
gration step

k ≤ 2
√

2

λ
, (30)

which guarantees the boundedness of the solution. Comparison of estimates (29) and (30)
shows that the A-stability requirement is slightly weaker than the approximation requirement
(29). But here we should take into account that the approximation estimate must be guaranteed
only for spectral modes having a sufficient amount of energy, while the stability estimate must
be fulfilled for all modes. Thus the stability estimate will be the most restrictive requirement if the
number of modes is large. The last remark is important for the adaptive Runge-Kutta-Fehlberg
method, which is only ρ-stable, i.e. the imaginary axis is not included into the A-stability region
of this method.

For illustration of the obtained theoretical results we present results of computational experi-
ments. The test problem (27) is solved in domain 0 < z ≤ 5 with the dispersion parameters

λj =
1

2
(πj)2, j = 1, 2, 4, 8.

9



We have listed in Table 1 the numbers of the discretization points N1
RK , N1

RKF , which are
sufficient to get a bounded solution |U(z)| ≤ 2.1 to solve the test problem with the classi-
cal fourth-order Runge-Kutta and the adaptive Runge-Kutta-Fehlberg methods respectively. We
also have listed the numbers of the discretization points N2

RK , N2
RKF , which are sufficient to

solve the test problem with the accuracy 1.22 · 10−4.

Table 1: Results of computational experiments for RK and RKF solvers

N1
RK N1

RKF N2
RK N2

RKF

j = 1 9 11 160 100
j = 2 35 66 900 565
j = 4 140 400 5120 3200
j = 8 560 2200 28800 17920

The results of computational experiments have confirmed the theoretical conclusion that the
classical RK4 solver guarantees the boundedness of the discrete solution for weaker require-
ments on the discrete time step k, but the adaptive RKF solver gives a more accurate ap-
proximation for the same fixed values of k. Fully in agreement with the theoretical conclusions,
the asymptotics of N1

RK follows the estimate (30), while N1
RKF , N2

RK and N2
RKF satisfy the

estimate (29).

2.3 Numerical Experiments

In this section we solve the normalized nonlinear Schrödinger equation

i
∂ψ

∂z
− ∂2ψ

∂τ 2
− |ψ|2ψ = 0, z > 0. (31)

The single soliton solution of (31) is given by [16]

ψ(z, τ) = e−i(
1
2
cτ−( 1

4
c2− 1

2)z) sech
(√

1/2(τ − cz)
)
.

For the numerical tests we consider the superposition of two solitons. The initial profile is given

ψ(0, τ) = e−i
1
2
c1τ sech

(√
1/2 τ

)
+ e−i

1
2
c2(τ−δ) sech

(√
1/2 (τ − δ)

)
,

with constants c1 = 1, c2 = 1/10 and δ = 25. We solve the problem in the domain −20 ≤
τ ≤ 80 for 0 ≤ z ≤ 40. For these values of z the solution is negligibly small outside the τ -
domain, thus the choice of boundary conditions is not important for this test problem. The most
difficult part of the test is to simulate accurately the collision of the solitons, when the faster
soliton catches the slower and passes through it. The shape and velocity of solitons remains
unchanged after the collision.

In all computations the errors have been estimated by comparing the results with a numerical
reference solution Uref calculated by the pseudo-spectral splitting algorithm (24) on a fine grid
with J = 8192, N = 200000.
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First, we have investigated the error introduced mainly by finite difference approximation of the
diffraction operator. We have listed in Table 2 the errors ZCN(L;N, J) = UCN − Uref in the
maximum norm of the discrete solution UCN of Crank-Nicolson scheme (21) at the final point
L = 40, when the faster soliton have passed through the slower one. The integration was done
with a very small step k in order to make the influence of this part of error negligibly small.

Table 2: Errors of the solution of scheme (21) in the maximum norm for the fixed small k and
various h = 100/J at L = 40.

J = 512 J = 1024 J = 2048 J = 4096 J = 8192

‖ZCN(L; J)‖∞ 0.3153 0.0772 0.0190 0.0046 0.0011

The presented results show that the error changes asO(h2) in accordance with the theoretical
results.

Next we have compared the full approximation Crank-Nicolson scheme (21) with the splitting
scheme (23) on a fixed uniform transversal grid Ωh with J = 8192. Our aim is to study the
influence of splitting errors to the accuracy of the discrete solution. Results are presented in
Table 3.

Table 3: Convergence analysis of the discrete solutions of the full approximation scheme (21)
and the splitting scheme (23) with respect to the truncation errors of the integration method.
Errors are computed in the maximum norm for fixed h = 100/8192 and various k = L/N at
L = 40. The last row of each block defines the errors of both schemes for a balanced relation
of discrete steps J = CN .

N = 800 N = 1600 N = 3200 N = 6400

‖ZCN(L;N, 8192)‖∞ 0.01641 0.00305 0.00038 0.00094

‖Z̃CN(L;N)‖∞ 0.01751 0.00415 0.00148 0.00016
‖ZCN

(
L;N, 8192N

3200

)
‖∞ 0.00675 0.00154 0.00038 0.00010

‖ZSS(L;N, 8192)‖∞ 0.07760 0.02030 0.00431 0.00045

‖Z̃SS(L;N)‖∞ 0.07870 0.02141 0.00541 0.00155
‖ZSS

(
L;N, 8192N

6400

)
‖∞ 0.02200 0.00669 0.00176 0.00045

The first row of the table lists the global errors ‖ZCN(L;N, J)‖∞ of the discrete solutions
UCN of the full approximation scheme (21) in the maximum norm. The behavior of the error is
quite intricate, these results can be explained assuming that the errors due to the z-stepping
algorithm and the time approximation can cancel out each other and we predict that the global
error can be represented in the following form:

ZCN(L;N, J) ≈ Z̃CN(L;N)− C2h
2, (32)

where Z̃CN(L;N) describes the z-stepping error. By taking from Table 2 that C2h
2 = 0.0011

for J = 8192 and solving the equation (32), we compute the modified errors ‖Z̃CN(L;N)‖∞.
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They are presented in the second row of Table 3. The indicated interaction of two types of errors
can be used to minimize the global error of the discrete solution. We keep the linear relation
for discrete steps k = Ch, in order to maximize the cancellation effect of two different sources
of approximation error. In the third row of Table 3 we present errors ‖ZCN(L;N, J)‖∞ of the
Crank-Nicolson scheme when J = 8192N/3200. The results of numerical experiments show
that the obtained errors are smaller even though the computational grid is more sparse.

The maximum norms of errors ZSS and Z̃SS induced by the symmetrical splitting scheme (23)
are given in the last three rows of Table 3. Once estimating ZSS in the last row of the table
we have used J = 8192N/6400. Comparing the obtained results we note that in order to
achieve the same accuracy the splitting algorithm requires twice smaller integration step than
the full approximation algorithm (21), but this increase of computations is compensated by the
non-iterative origin of the splitting algorithm.

Next we consider the pseudo-spectral splitting scheme (24). The accuracy of spectral approx-
imation of the solitons is very high even for a quite small number of modes. The exponential
convergence rate can be illustrated by the following results (they are obtained for the same
problem of interacting solitons):

‖ZPSSS(L;N, 256)‖∞ = 4.12× 10−4, ‖ZPSSS(L;N, 512)‖∞ = 6.36× 10−7,

where N = 200000 is used in numerical experiments.

The behavior of the splitting error is very similar to that one obtained for the finite difference
splitting scheme (23) The results are presented in Table 4.

Table 4: Convergence analysis of the discrete solutions of the pseudo-spectral splitting scheme
(24) with respect to the integration step k. Errors are computed in the maximum norm for fixed
h = 100/512 and various k = L/N at L = 40.

N=400 N=800 N=1600 N=3200 N=6400

‖ZPSSS(L; 512, N)‖∞ 0.6466 0.1934 0.0506 0.0128 0.00321

It follows from the presented results that errors of of the discrete solution of the pseudo-spectral
splitting scheme (24) are approximately two times larger than errors of the finite difference split-
ting scheme (23) (see the errors presented in the fifth line of Table 3)

In the last experiment we have investigated the stability and approximation accuracy properties
of the explicit solver (26) based on the pseudo-spectral approximation and the adaptive RKF
algorithm. We note, that being ρ-stable, this adaptive integration algorithm should automatically
guarantee not only the approximation requirement but also the boundedness of the solution by
selecting a sufficiently small integration step k. In Table 5 we list the number of integration steps
N for different numbers of spectral modes J .

The presented results have confirmed the theoretically established results, that for smaller J the
more restrictive is the requirement (29), which can be written as k ≤ CJ−2.5, while for larger
numbers of spectral modes the stability requirement (30) starts to be a dominant one.
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Table 5: Stability analysis of the discrete solution of the pseudo-spectral scheme (26). N is the
number of integration steps of the explicit adaptive RKF solver for different numbers of spectral
modes J .

J = 256 J = 512 J = 1024

N 3347 19004 86427

Our main conclusion of this section is that for given benchmark problems the most efficient is
the symmetrical splitting scheme (23). The high-order approximation accuracy of the pseudo-
spectral scheme (26) is not sufficient to compensate two drawbacks – the need to compute six
forward and backward FFT per one step and to keep integration step sufficiently small due to
the stability requirements of the explicit RKF solver.

3 Generalized NLSE

In this section we consider splitting algorithms for a generalized nonlinear Schrödinger equa-
tion (6) with a nonlinear term defined in (8). We note, that for simple cubic nonlinear function
f = γ|ψ|2ψ, vanishing higher order dispersion terms, βj , j ≥ 4, and β2γ < 1 this problem is
equivalent to Eq. (9).

It is known that for certain values of the coefficients and certain initial conditions, solutions of
this problem experience finite-time blow up [20]. Therefore, the development of robust numerical
schemes for such problems is important and challenging task.

3.1 Numerical algorithms

Different forms of the GNLS problem (6), (8) are solved numerically in papers [18, 21], see also
references therein. Pathria and Morris [21] have investigated spectral split step methods, they
have restricted to the first order splitting techniques. The splitting algorithms treat separately
the linear diffraction L, the local nonlinear interaction N and the generalized reaction Q. All
algorithms differ only in the way how the subproblemQ is treated. Four different algorithms are
proposed to solve the subproblem Q. The high-order spectral splitting algorithms are investi-
gated in [18], where only the linear diffraction L and nonlinear reaction N +Q processes are
split in the schemes.

Pseudo-spectral split-step algorithm. We are using the symmetrical split-step approxima-
tion where N is even and, like in [21], all three processes are resolved separately:

Un+1 = ekLekQekNUn, Un+2 = ekN ekQekLUn+1, n = 0, 2, . . . , N − 2. (33)

The solver for the local nonlinear N term is defined in the second line of the pseudo-spectral
splitting algorithm (24). The first line of the same algorithm defines also the solver for the linear

13



term L once the dispersion operator is determined by β2 alone. In general case, the linear
operator L is determined by

Û
n+ 1

2
` = exp

(
ik

M∑
m=2

(iω`)
mβm

m!

)
Ûn
` , ` = −J/2, . . . , J/2− 1. (34)

The subproblem Q is solved in a different way than in [21]. We define the following system for
the vector Û of spectral coefficients

−∂zÛ(z) = Q(Û) := F
(
(σ1 + σ2)|U |2D1

J0
U + σ1U

2D1
J0
U∗
)
, 0 < z ≤ L, (35)

where the first order derivative is approximated by the exact derivative of the J0/2-degree
trigonometric interpolantD1

J0
defined in (17). In order to control the possible ill-posedness of the

numerical differentiation, we introduce the regularization by restricting the degree of the trigono-
metric interpolant J0 < J . The obtained system of ordinary differential equations is solved by
using the Runge-Kutta-Fehlberg adaptive algorithm.

Generalized pseudo-spectral algorithm. We have also solved the GNLS problem (6), (8)
using the following generalization of the pseudo-spectral algorithm (26) discussed in Section 2:

∂zÛ(z) + iF
(
D̂h,J1U − f(|U |2)U

)
+Q(Û) = 0, 0 < z ≤ L, (36)

where Q(Û) is defined in (35). The advantage of this approach is that the approximation error
can be controlled automatically by the robust adaptive RKF integration algorithm. But we should
take into account that due to conditional stability the restriction on the integration step depends
linearly on the spectrum of the discrete diffraction operator. In order to control the stiffness of
the matrix, we introduce into the scheme the additional regularization: the differential disper-
sion operator D̂ is approximated by the exact differential operator of the reduced J1/2-degree
trigonometric interpolant D̂h,J1 from (18) with J1 < J .

3.2 NLSE with the generalized nonlinearity

In this section we consider a generalized nonlinear Schrödinger problem (6), (8) with a nonlinear
function f(|ψ|2) = γ1|ψ|2 + γ2|ψ|4, an additional higher-order (e.g., saturating) term in the
nonlinear part, and a standard second-order dispersion operator D̂ = −β2

2
∂2

∂τ2
. Assuming that

the solution ψ and all it derivatives converge to zero as τ → ±∞, one can show that the
solution of this problem conserves the following three quantities [20], which can be used as
convenient aposteriori measures to test the accuracy of the discrete solution [18, 21]:

M =

∫ ∞
−∞
|ψ|2 dτ, S =

∫ ∞
−∞

(
β2 Im

(
ψ
∂ψ∗

∂τ

)
+ σ1|ψ|4

)
dτ,

H =

∫ ∞
−∞

[
β2

2

∣∣∣∣∂ψ∂τ
∣∣∣∣2+ F (|ψ|2)+

2σ1+σ2

2
|ψ|2

(
Im
(
ψ
∂ψ∗

∂τ

)
+

2σ1

3β2

|ψ|4
)]
dτ.
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It is noted in [21] that the quantitiesM, S and H provide aposteriori check on the numerical
results and that the energy integral H is the most sensitive of the three in indicating numerical
difficulties.

To test the performance of the numerical schemes for GNLSE with a standard second order
dispersion operator we have solved numerically the test problem from [18, 21]

i
∂ψ

∂z
+
∂2ψ

∂τ 2
+

1

2
|ψ|2ψ − 7

4
|ψ|4ψ − i∂|ψ|

2

∂τ
ψ − 2i|ψ|2∂ψ

∂τ
= 0.

This equation has a traveling solitary wave solution:

ψ(z, τ) =

(
4

4 + 3 sinh2(τ − 2z − 15)

)1/2

exp
(
iΦ(z, τ)

)
Φ(z, τ) = 2 tanh−1

(
0.5 tanh(τ − 2z − 15)

)
+ τ − 15.

The purpose of the numerical experiments is to verify numerically (i) that the proposed split-
step and full approximation schemes exhibit the second-order and fourth-order convergence in
space, respectively, (ii) to compare the stability regions of both schemes and (iii) to check the
conservativity of proposed algorithms.

In all computations the regularization parameter J0 = 60 is used to compute the approximation
of the derivative D1

J0
U . In Table 6 we presents errors of the solution of pseudo-spectral splitting

scheme (33) with respect to the space integration step. The errors are computed at L = 2, the
computations are done in the transversal domain [0, 35].

Table 6: Convergence analysis of the discrete solutions of the pseudo-spectral splitting scheme
(33) with respect to the space integration step. Errors are computed in the maximum norm for
two different h = 35/J and various k = L/N at L = 2.

N = 100 N = 200 N = 400 N = 800 N = 1600

J = 256 1.077e-3 2.672e-4 6.667e-5 1.665e-5 4.150e-6
J = 1024 1.082e-3 2.686e-4 6.702e-5 1.676e-5 4.197e-6

The presented results show that the error changes asO(k2) in accordance with the theoretical
results. The regularized algorithm is stable with respect to the number of modes J . In the case,
when the derivative of the solution is computed as D1

JU , i.e. no regularization is done, the
scheme becomes unstable for J ≥ 512 and N ≥ 300. Such a behavior of the error shows the
boundary effects of high order modes amplified due to numerical differentiation.

Results of computational experiments with full approximation scheme (36) have confirmed the
theoretical results. Due to conditional stability of the explicit scheme the restriction on integration
step k leads to the need to integrate the system with very small steps, much smaller than
required by the approximation accuracy. For the given test problem the scheme is unstable if
N ≤ 300 for J = 256, N ≤ 3600 for J = 512 and N ≤ 18000 for J = 1024. In
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order to improve the stability of the pseudo-spectral scheme (36) it is recommended to include
the regularization technique for approximation of the second derivative D2

J1
U . If parameter

J1 = 60 is used, than the full approximation scheme (36) computes in stable way for any
integration steps and the accuracy of orderO(10−6) is achieved for N = 100 (due to the forth
order approximation accuracy of RKF algorithm).

3.3 GNLSE with the third-order dispersion

In the rest of this paper we consider a generalized NLSE with an additional third-order dispersion
(TOD) term (see [4, 28])

i
∂ψ

∂z
+

1

2

∂2ψ

∂τ 2
− iε∂

3ψ

∂τ 3
+ |ψ|2ψ = 0, (37)

where the TOD operator is included as a perturbation of the classical nonlinear Schrödinger
equation (2). It is well-known that for the unperturbed (ε = 0) equation (37) the fundamental
soliton solution reads

ψ0(z, τ) = A sech(Aτ) exp(ikz), (38)

where k = A2/2 is the soliton wave number. To explain the TOD effect, let us use the Ansatz
ψ(z, τ) = Aϕ(s) exp(iA2z/2), s = Aτ motivated by Eq. (38) with the yet unknown function
ϕ(s). The latter should be derived from the equation

T̂ ϕ = |ϕ|2ϕ, where T̂ ϕ =

(
1

2
− 1

2

∂2

∂s2
+ iAε

∂3

∂s3

)
ϕ. (39)

Now, for ε = 0 the operator T̂ is positive-defined and Eq. (39) yields the solitary solution
(38). The soliton can be derived even for a more general nonlinearity (8) by properly rescaled
successive iterations [1]. For ε 6= 0 this is not the case, because T̂ becomes singular. In terms
of pulse propagation that means that the initial pulse (38) emits radiation. Two different cases
should be distinguished here. If Aε < 0.04 the emitted radiation is extremely weak [28]. To first
order of ε we have a quasi-solitary solution with the shape

ψε(z, τ) = A sech(Aτ ε) exp
(
ikz + iε[2A2τ − 3 tanh(Aτ ε)]

)
, (40)

where τ ε = τ − εA2z. If Aε > 0.04, the radiation is strong and the carrier wavelength of
the pulse is quickly shifted into the red. The underlying physical mechanism is similar to that of
Cherenkov radiation created by superluminal objects in dispersive media [4].

In this section our main aim is to analyze the influence of the TOD to the stability and accuracy of
the split step scheme (33) and the full approximation pseudo-spectral algorithm (36). It follows
from the computational experiments that for the accurate approximation of the soliton (40) it
is sufficient to use J = 128 spectral modes. Thus if we use more spectral modes, then it is
important to check how different algorithms are resolving these excessive modes.

As it was proved in the previous section the RKF method used for integration of generalized
pseudospectral algorithm (36) is only conditionally ρ-stable, thus in the case of TOD the integra-
tion step k automatically will be restricted as k ≤ Ch3. This conclusion is confirmed by results
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of computational experiments. The problem (37) was solved in the domain −20 ≤ τ ≤ 20
for 0 ≤ z ≤ 100, and A = 1, ε = 0.02. In Table 7 we present the total CPU times T in
seconds and the number of integration steps N for different numbers of spectral modes J , the
accuracy of RKF algorithm was fixed to 10−7. Computations were performed on VGTU cluster
of computers "Vilkas", consisting of nodes with Intel R©CoreTM processor i7-860 @ 2.80 GHz
and 4 GB RAM.

Table 7: Results of numerical experiments: problem (37) is solved by the pseudo-spectral
scheme (36). T is the the total CPU time is seconds and N is the number of integration steps
of the explicit adaptive RKF solver for different numbers of spectral modes J .

J = 128 J = 256 J = 512

N 11963 74511 701209
T 1.7 20.4 395

In the case of the split step scheme (33) the unconditional stability of the discrete scheme guar-
antees a more flexible control of the integration step k, it is sufficient to resolve accurately the
active spectral modes and the remaining modes will be kept bounded. This theoretical conclu-
sion is confirmed by results of computational experiments. The number of integration steps is
fixed to N = 50000. The accuracy of discrete solutions in the maximum norm is obtained of
order 10−4 for all numbers of spectral modes. Finally, we present the CPU times T (J) of these
experiments:

T (128) = 1.8s, T (256) = 3.3s, T (512) = 7s.

As interesting remark we note, that our computations have confirmed the theoretical accuracy
of the corrected form of the soliton (40). For this reason we have integrated numerically the TOD
problem for A = 1 and different values of the small parameter ε. The errors

Zε(z; J) = U − ψε(z, t)

(U is the numerical solution of the problem obtained by the scheme (36)) in the maximum norm
estimated at z = 500 are given in Table 8.

Table 8: Results of numerical experiments: problem (37) is solved by the scheme (36) until
z = L = 500 using J = 512, and different ε.

ε = 0.02 ε = 0.01 ε = 0.005

‖Zε(500; J)‖∞ 0.0619 0.0164 0.0048

The presented results agree well with the theoretical prediction that these errors should be of
order O(ε2).
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4 Conclusions

We have considered several splitting algorithms for numerical integration of standard NLSE and
GNLSE. These algorithms are based on separate treatment of local and/or nonlocal nonlinear-
ities and linear dispersion processes. We have shown, that the numerical schemes for GNLSE
obtained by the straightforward generalization of the related pseudo-spectral schemes of NLSE
can be only conditionally stable. The stability of these schemes can be improved by neglecting
higher-order Fourier modes in the approximation of the derivative terms of GNLSE.
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