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Abstract 

We consider a fully discrete qualocation method for Symm's integral equation. 
The method is that of Sloan and Burn [14], for which a complete analysis is available 
in the case of smooth curves. The convergence for smooth curves can be improved 
by a subtraction of singularity (Jeon and Kimn [10]). In this paper we extend these 
results for smooth boundaries to polygonal boundaries. The analysis uses a mesh 
grading transformation method for Symm 's integral equation, as in Elschner and 
Graham [4] and Elschner and Stephan [7], to overcome the singular behavior of, 
solutions at corners. 

1 Introduction 

Many methods have been proposed for the logarithmic-kernel integral equation on closed 
curves, but often with the unrealistic assumption that the curve is smooth. This is the 
case, for example, for the fully discrete ("discrete qualocation") method of [14], [13] and 
the modification [10], Our main aim in this paper is to extend these methods to curves 
with corners. 

We consider the Laplace equation with Dirichlet boundary data on a simply con-
nected domain n. We assume the boundary r is polygonal and Cap(r) =f:. 1. Let 

where {ri} are smooth pieces ofr, and {~0 , • • ·, s1 = s0 } are corner points on r. Consider 
the Dirichlet problem 

0 inn 
g on r =an. (1.1) 

Representing </>as a single layer potential 

<f>(t) = _]: flog It - slv(s) dls, t E n, 
7r lr (1.2) 

and using the continuity of the single layer potential up to boundary, we obtain the 
logarithmic-kernel integral equation 

g(t) = -~ flog It - sl v(s) dla, t Er, 
7r lr (1.3) 

where we seek the single layer density function v on r. It is well-known that v has . 
singularities at corners even with a smooth g [8], [12]. The regularity result states that 

J-1 
v(s) = L ails - silri + a smoother function, 

i=O 

where Bi is the interior angle at Si, and Is - Sil represents the arc length. 

1 

(1.4) 



As a first step, we introduce a parametrization of the boundary r. Let a( x) be a 
parametrization of r such that a(xi) =Si for i = O, ... ' I, where 

Q = Xo < X1 < · · · < X[ = 1, (1.5) 

SO that the subinterval [Xi-1' Xi] corresponds to the boundary segment I'i C I' under a, 
and la'I =f. 0 for x E (xi-1, Xi)· Now we choose a mesh-grading parameter q ~ 2 and a 
mesh-grading transformation 'Y: [O, 1] -7 [O, 1] such that 'Y is bijective, and 

· (i)(o) - (i)(1) - o · - 1 1 'Y -'Y - ''£- , ... ,q- . 

For example Kress [11] considered 

(1.6) 

with 
v(x)= (~-~)(2x-1)3 +~(2x-1)+~, q~2. 

. q q 
Then the parametrization transformed to the subinterval [xi-1, Xi], namely 

( ( 
X - Xi-1 )) a(x):=a Xi-1+(xi-Xi-1h 'Xi-1~X~Xi, i=l, ... ,J, 
Xi - Xi-1 

(1.7) 

satisfies 
a(j)(xi) = 0, j = 1, ... , q - 1, i = 1, ... , I. (1.8) 

Substituting t = a(x) and defining z(x) = v(a(x))a'(x)/(27r) and f(x) := -g(a(x)), 
Equation (1.3) becomes 

(1.9) 

Because of the factor la'(x)I, the new solution z will be smoother; in fact we see that 

I-1 
z(x) = L clx - Xilq(l+ri)-l + smoother terms, 

i=O 
(1.10) 

where Ti is defined in (1.4). For this reason we may hope that z will admit a higher 
order of convergence of an approximate solution. 

An important aspect of the parametrization that we have so far passed over is the 
choice of xo, ... , XJ-1, the preimages of the corners. They should be chosen so that 

I-1 
Xi+i - Xi = lsi+l - sill/q/ L ls;+i - s;ll/q, 

j=O 

so that practice and theory match. This choice ensures that there holds 
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The mesh grading transformation method has been extensively used for second kind 
integral equations [9], [11]. For first kind integral equations mesh grading transforma-
tions have recently been used by Elschner and Graham for the spline collocation [4] 
and quadrature methods [5]; by Elschner and .Stephan [7] for the trigonometric poly-
nomial collocation and discrete collocation methods; and by Elschner, Prossdorf and 
Sloan [6] for spline qualocation methods. In all of the papers the use of a mesh-grading 
transformation together with a uniform mesh has allowed the use of Fourier methods 
to analyse the principal term (i.e., the term which would represent the operator in the 
case of a circular contour r), together with Mellin convolution arguments to handle the 
difficulties introduced by the corners. 

In the present paper we use similiar methods to extend the discrete qualocation 
methods of [14] and [10], previously analysed only for smooth curves, to curves with 
corners. In Section 2 the method of Sloan and Burn [14] is reviewed, and in Section 3 
a modification of the method due to Jeon and Kimn [10] is presented. Section 4 deals 
with the stability analysis of the case of a polygonal boundary. In Section 5 an error 
a~alysis is presented both for the L2 norm and for certain linear functionals, for which 
one additional order of convergence can be proved. Section 6 is devoted to numerical 
results. 

The analysis in this paper follows closely that of Elschner and Stephan in [7] for the 
dicrete collocation method, but the present analysis goes beyond that in [7] in that it 
obtains results not only in the L2 norm, but also (and often with one p~wer of h more) 
for certain linear functionals. The. results for linear functionals hold also for the discrete 
collocation method. 

2 Review of the Discrete Qualocation Method 

In this section we review the discrete qualocation method for smooth curves of [14], 
[13] and [10]. Sloan and Burn [14] proposed the method, and provided an analysis by 
Fourier series. Saranen and Sloan [13] showed that the results obtained by the Fourier 
series analysis extend without loss to arbitrary smooth curves. Jeon and Kimn [10] 
introduced an improved treatment of the logarithmic singularity through an subtraction 
of the singularity (see Section 3). 

We start by introducing some notation. Let 7l be the set of integers, and 7l* = 
7l\{O}. For given NE 7l we define h = 1/N, and Ah={µ E 7l : -1: < µ ~ 1:}, and 
assume that each corner preimage Xi, i = O, ... , I - 1, is a multiple of h. Our trial space 
Th is a space of trigonometric polynomials, Th= span{e21riµ:c : µ E Ah, x E [O, 1]}, and 
our test space Sh is the space of 1-periodic smoothest splines of order r with uniformly 
spaced nodes { kh : 0 ~ k ~ N -1}. In contrast to the trigonometric trial space, the test 
space Sfi has a local basis: for example, St is the space of piecewise constant functions, 
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s~ is spanned by the hat functions 

( ) { 
1 - Ix - khl/h, 

Vk X = 0, 
x E [(k - l)h, (k + l)h], 
otherwise, 

and si is the space of cubic splines. 

Qualocation methods are characterised by special quadrature approximations of the 
inner-product integral (f,g) = J~ f(x)g(x)dx. Thus for f,g any 1-periodic continuous 
functions we define 

N-1 J u, g)h = h 2: 2: w;(fg)(kh + e;h), (2.1) 
k=O j=l 

where 0 < 6 < 6 < · · · < 6 < 1, w; > 0, and Ef=1 w; = 1. The inner product 
integral is therefore approximated by the composite rule that results from applying to 
each sub-interval [kh, (k + l)h] a suitably scaled version of a specially designed J-point 
rule 

J 

Qz = 2: w;z(e;). (2.2) 
j=l 

Let us write {1.9) symbolically as 

Kz=f. (2.3) 

Then the m~thod of Sloan ap.d Burn [14] takes the form: with an appropriate choice of 
Q (see below), find Zh E Th such that . 

(2.4) 

where 
N-1 

(Khz)(x) = h L log la(x) - a(kh)I z(kh). (2.5) 
k=O 

Theoretical results for the method of Sloan and Burn were previously known only for 
smooth curves and low orders of convergence. The known results include the following. 

Theorem 2.1 {L/.1 13} Suppose that r is a smooth curve, and that a E C 00 and la'(x)I :f. 
0., Assume also that r is even, and that J ~ 1, with the case J = 1 and e1 = 1/2 excluded. 
Define 

Then for 

if J = 2, ei = 1/6, 6 = 5/6, 
if J = 1, el = 1/6 or 5/6, 
otherwise. 

s ~ -1, t > -1/2 and s s t s s + p 
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there exists G > 0 such that {2.,.f.} has a unique solution Zh E Th for h sufficiently small, 
satisfying 

(2.8) 

Here H 0
, for s E lR, is the Sobolev space of 1-periodic functions (or distributions) with 

finite values of the norm 

II/II~= lf(O)l 2 + I: lml 20 lf(m)l2, (2.9) 
mEZ* 

·where 
j(m) = f f(z)e- 2.-im: dz. (2.10) 

The proof of Theorem 2.1 and of later theorems in this paper (and even the very 
definition of the modification of Jeon and Kimn) rests on the decomposition of K into 
a principal part A and a remainder B, 

K 

where 

A+B 
A(I +M), (2.11) 

(Az)(x) 

(Bz)(x) 

-2 flog l2e~1t2 sin(?r(z - y))I z(y) dy, (2.12) 

"72 f11ogl -l~;"'!(((y) ))lz(y)dy= [1b(x,y)z(y)dy,(2.13) lo 2e ~m 7r x - y lo 
and M = A-1 B. It is well known that A has a simple effect on the trigonometric 
monomial cPm = e27rim:c, namely 

1 
Ac/>m = max(l, lml) rPmi (2.14) 

from which it follows that A is an isometry operator from H 0 to H 0 +1 for s E JR .. 

Corresponding to the decomposition (2.11) we may write 

(2.15) 

where from (2.5) 
N-1 

(Ahz)(x) - -2h I: log l2e-1l 2sin(?r(x - kh))I z(kh), (2.16) 
k=O 

N-l I a(x) - a(kh) I 
(Bhz)(x) - -2h E log 2e-1/2 sin(?r(x - kh)) z(kh) (2.17) 

N-1 
- h I: b(x, kh)z(kh). 

k=O 
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The method of Sloan and Burn may now be written as: find Zh E Th such that 

(2.18) 

To allow us to write the defining equation (2.18) in operator form, we define, as in 
(13], [10], an operator Ph with image Th, where Ph: H 8 -+ Th for s > 1/2, is defined by 

(2.19) 

with the exact inner product on the left but the approximate inner product on the right. 
The following lemma, embracing Lemmas 1 and 2 in the Appendix of [13], shows that 
Ph is well defined and has optimal convergence properties: 

Lemma 2.1 [19} The operator Ph: H 8 -+ Th for s > 1/2 is well defined by (2.19}, and 
for 0 ::; s ::; t ::; s + r and t > 1/2 there exists C > 0 such that 

(2.20) 

The operator Ph has a convenient representation, given in [10], in terms of the spline 
basis functions 7/1µ, with the latter defined as in [1] by 

(µ)r . 'if;µ = L m <Pm if µ E Ah\ { 0}, 
m:=µ(modN) 

and 7/Jo = <Po = 1. Since ( </>11 , 7/1µ) ~ 811µ for v, µ E Ah, it is e~ily seen that 

Phz = L (z, 7/lµ)h</>µ-
µEAh 

Note that Phis not a projection operator, since PhPh :f Ph. 

With the aid of the operator Ph, equation (2.18) may be written as 

or equivalently as 
Ph(Ah + Bh)zh = Ph(A + B)z, 

where the last step follows from the following elementary result: 

Lemma 2.2 For Wh E Th, if ( Wh, x) = 0 Vx E Sh, then Wh = 0. 

Proof: Write 
Wh = L av<f>v, 

vEAh 

and use (<Pv, 'if;µ)= 8vµ for v, µ E Ah to show aµ= 0 forµ E Ah. 
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A key role in the analysis in this paper is played by the special case of (2.24) with 
B = O, in which case Zh E Th satisfies 

Theorem 2.1 for the case B = 0 holds not just for h sufficiently small, but for all h. 
Thus this theorem establishes the existence and approximation properties of a solution 
operator for the case B = 0 defined by 

where the inverse is to be taken in the space Th. In more detail, we have: 

Theorem 2.2 {14} Assume that r is even, and that J ~ 1, with the case J = 1 and 
6 = 1/2 excluded. Then PhAh is bijective on Th, and so 

(2.25) 

is well defined. Let p be defined as in (2.6). Then for 

s ~ -1, t > -1/2, s ~ t ~ s + p (2.26) 

there exists C > 0 such that 

(2.27) 

If p ~ 2 then Rhz = z for all constant functions z. 

Note that Rh is not a projection operator, since RhRh -:f. Rh. With the aid of the 
operator Rh, equation (2.24) is equivalent to 

(2.28) 

This is the form of the Sloan and Burn method in which we begin our analysis in 
Section 4. 

3 A modified method 

We begin by observing that A, the operator defined by (2.12) has, because of (2.14) 
with m = 0, the representation 

Az(x) = -2 l log l2e-l/a sin(:z: - y)I (z(y) - z(x)) dy + z(x), 
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in which the singularity in the integral has been weakened by the process of 'substraction 
of the, singularity'. This motivates the definition of a new discrete approximation to 
replace Ah, 

N-1 
-2h 2: log j2e-1/ 2 sin(7r(x - kh))l(z(kh) - z(x)) + z(x) 

k=O 
- (Ahz)(x) + eh(x)z(x), 

where 
N-1 

eh(x) = 1+2h :E. log j2e-1l 2 sin(7r(x - kh))I. 
k=O 

The modified method of [10] is: find Zh E Th such that 

where 
Kf:l = Ar + Bh; 

or equivalently, find Zh E Th such that 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Analogou~ly to Section 2, let R{:f : H 8 -+ Th for s > 1/2 be the solution operator for 
the problem 

(3.6) 

Thus 
(3.7) 

where the inverse is again taken in the space Th. The following theorem of Jeon and 
Kimn [10] establishes the existence and approximation properties of Rf:: 

Theorem 3.1 {10} Assume that r is even, and that J ~ 1, with the case J = 1 and 
ei = 1/2 excluded. Then PhA{:f is bijective on Th, and so 

is well defined. Let 

if J = 2, ei = e, 6 = 1 - e, 
otherwise, 

where e = 0.2308296503 ... is the smallest zero of 

00 1 
G(x) = 2 L l3 cos(27rlx). 

l=l 
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Then for 
s ~ -1, t > -1/2, s::; t::; s+p 

there exists C > 0 such that 

Moreover, Rf! z = z for all constant functions z. 

The last statement in the theorem follows from (3.1), (3.6) and (2.12). 

4 Stability 

In this section we study the stability of the qualocation methods (2.4) and (3.3). 

(3.10) 

From here on we will not distinguish between the solution operators Rh and Rf! 
because there is no difference in our stability and convergence analysis except through 
the different values of the parameter pin (2.6) and (3.8). We therefore write Rh for both 
solution operators and Ah for both Ah and Af!. To simplify our analysis we assume 
.that r has a single corner at s0 , s0 = a(O) = a(l). To be more precise we assume 
that r is infinitely smooth, with the exception of one corner point s0 , and that in a 
neighborhood of s0 , r consists of two straight lines intersecting with an interior angle 
(1 - X)7r. Consider a parametrization a 0 : [O, 1] -t r which is C00 on [O, 1] and. satisfies 

lao(x).- sol= ex, x E JO,c:], lao(x) - .sol= c(l - x), x E [1- c:, 1], (4.1) 

for some c > 0 and sufficiently small c: > 0. Defining ; as in (1.6), we choose the 
mesh-grading parametrization a(x) := a 0 (;(x)), which satisfies because of (4.1) 

lao(x)- sol= lao(l - x) - sol, x E [O,c:]. (4.2) 

(Note that la(x)-sol = c;(x), la(l-x)-sol = c(l-;(x)) and that ;(x) = 1-;(1-x).) 
The extension of our analysis to polygonal boundaries with multiple corners can be 
carried out with minor extra effort~ We shall also assume throughout that the order of 
convergence parameter p is at least 2, so that Rh reproduces the constant functions. 

For r > 0 sufficiently small, we define the truncation Trv as the 1-periodic extension 
of 

(Trv)(x)= { O, x E (O,r)U(l-r,1), 
v(x), x E (r, 1- r). 

(4.3) 

Then Ti•h is the truncation operator with r = i* h. As usual, stability can only be proved 
if we admit the possibility of modifying the approximation near the corner. Thus instead 
of (2.24) we consider the modified approximation 

(4.4) 
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where 
N-i*-1 

BhTi•hZ = h L b(x, kh)z(kh). 
k=i*. 

Here, i* is a positive integer independent of h, which represents the number of subinter-
vals cut off around corners. In fact i* appears only for theoretical purpose, and in our 
numerical experiments we get the stability of our numerical system with i* = 0. 

Multiplying equation ( 4.4) by (PhAh)- 1 and using the solution operator Rh, we 
obtain 

(4.5) 

where Mh = A-1 Bh, which replaces (2.28). In this section, we will prove the stability 
of ( 4.5) in H 0 , i.e., we prove 

(4.6) 

for some constant C > 0 independent of h, provided i* is sufficiently large. Then ( 4.5) 
is uniquely solvable for zh, and so therefore is ( 4.4). 

For the proof of ( 4.6) we now recall from [4, 5] some analytical results on Equation 
(1.9) or (2.3) which are needed in the convergence analysis of the qualocation method. 
The first theorem was proved in [4], using a decomposition of Minto a Mellin convolution 
operator local to the corner and a compact operator on H 0 • 

Theorem 4.1 The opemtors I+ M : H 0 --+ H 0 and K : H 0 --+ H 1 are continuously 
invertible, and we have the strong ellipticity estimate 

Re((I + M + T)v, v) ~ Cllvll~, v E H 0
, 

with some compact operator T on H 0 • 

The next result, also taken from [4], shows that the unique solution of (1.9) is smooth 
provided the given data g in (1.3) is smooth and the grading exponent is sufficiently 
large. Let Hz(r), l > O, denote the restriction of the usual Sobolev space Hz+1/ 2 (1R.2) 

to r. 

Theorem 4.2 Let l E JN, q > (l + 1/2)(1 + lxl), and suppose that g = f o a-1 E 
HZ+s/2(r). Then the unique solution of {1.9} satisfies z E Hz. Moreover, there exists 
8 < 1/2 such that 

Dmz(x) = O(lxlz-m-o) as x--+ O, for m = O, .•. , l. (4.7) 

The following result from [5] describes the properties of the kernel function b(x, y) 
of the operator B defined in (2.13). 
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Theorem 4.3 On each compact subset of lR x lR \ (.mx %}, the derivatives D~D;'b(x, y) 
of order i + m ~ q are bounded and 1-periodic. Moreover, for x, y E [-1/2, 1/2] \ {O}, 
we have the estimates 

lb(x, Y)I ~Cl log(lxl + IYl)I, 

ID~D;;1b(x, Y)I ~ C(lxl + IYl)-i-m, 1 ~ i + m ~ q. 

Let us now return to the modified approximation ( 4.5). 

Lemma 4.1 For fixed q ~ 2 and each e > 0 there exists i* ~ 1 such that 

ll(J - Rh)MTi*hvllo ~ c:llvllo, v E H 0
, 

and for all h sufficiently small 

where C is independent of hand v. 

Proof: First consider (4.8). Note that the operator M takes the form (cf. [4]) 

M=A-1B=-HDB+JB, 

(4.8) 

(4.9) 

with Dv(x) = v1(x), Jv(x) = v(O) and H the (suitably normalized) Hilbert transform 
1 rl . 

Hv(x) = 27rp.v. Jo cot('rr(x - y))v(y) dy, 

which is bounded in L 2• This representation, together with the approximation property. 
(2.27) or (3.10), and the fact that I - Rh annihilates the constants, yields . 

ll(J - Rh)MTi*hvllo ~ ChllDMTi*hvllo ~ ChllD2 BTi*hvllo, v E H 0
• 

Hence ( 4.8) holds if we can show 

llD2 BT;.hvllo :'> i~h llvllo, v E H0
, (4.10) 

where C is independent of i*, h and v. But ( 4.10) is shown in [7] by using the fact 
that from Theorem 4.3 D 2 BTi*h is bounded by (i*h)-1 times an integral operator with 
a Mellin convolution kernel y/(x + y)2, which is a bounded operator in L2 (0, oo). (cf. 
Theorem 2.3 in [7]). 

Next we consider ( 4.9). Since, by Theorem 4.1, I + M is strongly elliptic and 
invertible on H 0 , we obtain stability of the finite section operators T.,.(I + M)T.,. as 
r -7 O, which implies the estimate (see [4, Theorem 6]) 

v E H 0 , r ~ ro. (4.11) 

Therefore the inequality ( 4.8) implies ( 4.9). D 

For our analysis, the following standard estimate for the trapezoidal rule is needed. 
Here Jhv denotes the trapezoidal rule approximation to Jv = v(O), with steplength h. 
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Lemma 4.2 Let l E JN, and suppose that v has 1-periodic continuous derivatives of all 
orders < l on lR and that Dlv is integrable on ( 0, 1). Then for h sufficiently small 

where c does not depend on v and h. 

The proof of Lemma 4.2 is based on the representation 

where Pz is some 1-periodic piecewise polynomial of degree l, see [3, Chap. 2.9]. 

The following lemma is the key to the stability of ( 4.5). 

Lemma 4.3 a)For fixed q 2::: 2 and i* 2::: 1, and for all h sufficiently small, 

ll(M-Mh)Ti*hullo s ~llullo+ChllDullo, u E H 1
. 

1, 
( 4.12) 

· b) For fixed q 2::: 2 and each e > 0 there exists i* 2::: 1 such that for all h sufficiently small 

Proof: Using 

ll(M - Mh)Ti*hMhTi*hvllo S ellvllo, 
ll(M - Mh)Ti•h(I - Rh)MhTi•hvllo < ellvllo-

A-1 =-HD+J 

and the definition of Mh = A-1 Bh, we get 

( 4.13) 

(4.14) 

Furthermore using Lemma 4.2 (for l = 1 and the interval (-1/2, 1/2)) and Theorem 4.3 
we can show, as in [7], that (4.15) implies (4.12). There it is shown that 

where Ji*h = (-1/2, -i*h) U (i*h, 1/2). Hence taking L2 norms and using the fact that 
an integral operator with Mellin convolution kernel ym /(x + y)m+l, m 2::: O, is bounded 
in L2 (0, oo) we get (4.12) from (4.16). To prove (4.13) we set u = MhTi•hV in (4.12). It 
is shown in [7] that with some constant C, independent of h and i*, 

(4.17) 
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and 
( 4.18) 

With these two inequalities (4.13) follows for i* sufficiently large. To prove (4.14) we 
set u = (I - Rh)MhTi*hv in ( 4.12) to obtain 

c 
ll(M -Mh)Ti*h(I -Rh)MhTi*hvllo ~ -:;ll(I-Rh)MhTi*hvllo+ChllD(I-Rh)MhTi*hvllo· 

i 
( 4.19) 

Using the approximation property (2.27) or (3.10) together with ( 4.18), the last expres-
sion can further be bounded by 

Ch C 
-:-;-llDMh1i*hvllo + ChllDMhTi*hvllo ~ ChllDMhTi*hvllo ~ -:;llvllo, (4.20) 
i i 

which gives (4.14) for i* sufficiently large. D 

We are now in the position to prove stability of the fully discrete method ( 4.5). 

Theorem 4.4 Assume q ~ 2 and suppose that i* is sufficiently large. Then the estimate 

( 4.21) 

holds for all h sufficiently small, where C is independent of v and h. 

Proof: By ( 4.9) the operators 

(I+ RhMTi*h)-1 
: Th--)- Th, 

exist and are uniformly bounded with respect to the. H 0 operator notm if i* is large 
enough. Consider 

We see that 

with 
Dh := (I+ RhMTi*h)-1 Rh(Mh - M)Ti*hRhMhTi*h· 

From ( 4.12) we have 

( 4.22) 

(4.23) 

This together with the uniform boundedness of Rh on H 0 gives that RhMhTi*h and hence 
Ch are uniformly bounded, too. Furthermore from the expression above and ( 4.13) and 
( 4.14), we have, for given e E (0, 1), 

llDhvllo ~ CjjRh(Mh - M)Ti*hRhMhTi*hvllo 
~ C{ll(M - Mh)Ti*hMhTi*hvllo + ll(M - Mh)1i•h(I - Rh)Mh1°i*hvllo} 
~ sllvllo, v E Th, h ~ho, 

provided that i* is sufficiently large. He.nee (I - Dh)-1 exists and is uniformly bounded 
for i* sufficiently large, so that ( 4.22) yields the assertion of the theorem. D 
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5 Convergence Analysis 

Theorem 5.1 Let p 2: 2 be the parameter given by (2.6} or (3.8}, and let l E IN and 
q > (l + 1/2)(1 + lxl). Suppose also that g E Hz+5/ 2(r) and that i* 2: 0 is such that the 
stability property (4..21} holds. Then (4.5} has a unique solution for all h sufficiently 
small, and for l ~ p 

llz - zhllo ~ Chl, (5.1) 

where z denotes the solution of ( 1. 9) and the constant C is independent of h. 

Proof: Step 1. First we verify (5.1) if the stability property ( 4.21) holds for some i* 2: 1. 
Note that Theorem 4.4 implies that property provided i* is sufficiently large. We have 

in which the first term is of order hl by (2.27) or (3.10). Using (4.21), together with 
Equation (4.5) and the uniform boundedness of Rh, we obtain for the second term 

llzh - Rhzllo < Cll(J + RhMhTi•h)(zh - Rhz)llo 
= CllRh(I + M)z - (I+ RhMhTi•h)Rhzllo 
< CllMz - MhTi*hRhzllo. 
< Cll(M - MhTi*h)zllo + CllMhTi•h(z - Rhz)llo· (5.2) 

Again using. ( 4.12) and the approximation property (2.27) or (3.10) we can estimate . . 

llMhTi•h(z - Rhz)llo < llMTi•h(I - Rh)zllo + ll(M - Mh)Ti•h(I - Rh)zllo 
< Cll(I - Rh)zllo + ChllD(I - Rh)zllo ~Chi, (5.3) 

since z E Hl (see Theorem 4.2). 

The first term in (5.2) can be estimated as in [7] by using again Mellin technique 
arguments. There it is shown that ll(M - MhTi•h)zllo::; Chl since 

(5.4) 

· due to (4.7). 

Step 2. Now we prove (5.1) under the assumption that the stability property ( 4.21) 
holds for i* = 0, i.e., the unmodified approximation I+ RhMh is stable. In order to do· 
so, we modify the operator Bh defined in (2.17) without changing the method (2.18) or 
(3.3). Let 0 < rJ::; min(6, 1 - 6), and set 

(Bhz)(x) = (Bhz)(x), x E [rJh, 1- rJh], 
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and 
N-1 

(Bhz)(x) = h L b(x, kh)z(kh) + hb(T/h, O)z(O), 
k=l 

x E [ff, T/h] U [1 - T/h, l]. 

Since b(T/h, 0) = b(l - T/h, 0) by (4.2) and the definition of bin (2.13), we see that Bhz 
is a 1-periodic continuous function, which coincides with Bhz at every point of the 
quadrature rule in (2.1). Further we observe from (2.24) and the definition (2.22) of Ph 
that 

Ph(Ah + Bh)zh = Ph(Ah + Bh)zh = Ph(A + B)z, 
hence (2.28) (or equivalently ( 4.5) for i* = 0) can be written 

(5.5) 

Thus by assumption the operators I+ RhMh are stable in H 0 , and as in (5.2) we obtain 
the estimate 

(5.6) 
Note that (M -Mh)z = (M -Mh)z because of z(O) = 0, and as in the proof of Theorem 
3.4 in [7] we can show that ll(M - Mh)zllo is of order h1, using (5.4). The last term in 
(5.6) is bounded by 

(5.7) 

where the first term is again of order _h'. To complete the proof of (5.1), we have to 
· show that the last term in (5. 7) is of order hl. The proof of this relies on the following 
analogue of the inequality ( 4.12): namely that for fixed q ~ 2 and all h sufficiently small 

(5.8) 

This has the desired effect, since using (5.8) we now obtain ( cf. (5.3)) 

It remains to prove the estimate (5.8). Applying (4.12) for i* = 1, we get 

So we are left with proving an analogous bound for the term ll(M - Mh)(I - Th)ullo· 
Since Mh = (-HD + J)Bh (cf. the proof of Lemma 4.1), we have 

ll(M - Mh)(I - Th)ullo ~ llBh(I -Th)ullo + llD(B - Bh)(I - Th)ullo 
+ llB(I - Th)ullo· (5.10) 

Furthermore, by the definition of Bh and the kernel estimate of Theorem 4.3, 
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and 

IBh(I - Th)u(x)I ~Chi log lxll lu(O)I, x E J11h = (-1/2, 1/2)\(-7Jh, 7Jh), 

which gives 
(5.11) 

Moreover, using Theorem 4.3 and Lemma 4.2 we obtain 

ID(B - Bh)(I - Th)u(x)I IDB(I - Th)u(x)I 

J_
l/2 1 

< C _
112 

(lxl + IYI) lu(y)I dy, x E (-7Jh, 7Jh), 

ID(B - Bh)(I -Th)u(x)/ < eh{ I: (/a:/~ /y/)2/u(y)/ dy+ 1: (/a:/~ /y/)/u'(y)/ dy} 

J_h 1 J_h 1 
< C -h (lxl + IYI) lu(y)I dy + Ch -h (Ix!+ IYI) lu'(y)I dy. 

Taking L 2 norms we get as in the proof of Lemma 4.3 

(5.12) 

Combining (5.10)-(5.12) with the fact that B is bounded on H 0 finally gives 

which finishes the proof of (5.8). D 

In many applications integral functionals of z are required. This happens, for exam-
ple, when the solutions of boundary value problems are represented by interior potentials. 
These potentials may be written as smooth linear functionals (z, v) of the solution z of 
(1.9), if vis sufficiently smooth. For the purpose of studying such linear functionals we 
assume that ( 4.5) with i* = 0 is stable in H 0 so that for given f E H 1 a unique solution 
Zh E Th of (2.4) exists for all h sufficiently small. 

Theorem 5.2 Suppose that Theorem 5.1 holds with i* = 0 and that vocc1 E H 1+sl2(r). 
Then, for l ~ p - 1 we have the error estimate 

l(z - Zh,v)I = O(h1+1) ash--+ 0. (5.13) 

Remark. Theorems 5.1 and 5.2 hold, in particular, for the discrete trigonometric 
collocation method considered in [7], without any restriction on l. 
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Proof of Theorem 5.2: Let w be the unique solution of Kw = v with v E Hl+5/2(r). 
Then Theorem 4.2 implies w(s) = O(lsll-o) as s --7 0 for some 8 < 1/2. Furthermore, 
since K = A( I + M) and since A and K are self-adjoint we obtain 

(z - zh, v) = ((I+ M)(z - zh), Aw) (5.14) 

= ((I - Rh)(I + M)(z - zh), Aw)+ (Rh(I + M)(z - zh), Aw). 

From (5.5) one derives 

Rh(!+ M)(z - zh) = (zh - Rhzh) + (RhMhzh - RhMzh)· 

Therefore we get 

(z - zh, v) ((I - Rh)(I + M)(z - zh), Aw)+ (zh - Rhzh, Aw) 
+ (Rh(Mhzh - Mzh), Aw) 

= Pi +P2 +P3. 

Since Rh is bounded on H 0 , its conjugate R'h exists and is bounded on H 0 • Then with 
Theorem 4.1 and the approximation property of Rh in the H-i norm we have 

IPil = l((J - Rh)(!+ M)(z - zh), Aw)I - l((J + M)(z - zh), (I - R'h)Aw)I 
< Cllz - zhllo ChjjAwlli (5.15) 

< Chllz - zhllollwllo 
< c hl+i. 

Using Zh - Rhzh = (z ~ Rhz) +(I - Rh)(zh - z), we have 

IP2I = l((zh - Rhzh), Aw)I < l((z -· Rhz), Aw)I + j.((J - Rh)(zh - z), Aw)I 
< llz - Rhzll-illwllo + Chllzh - zllo llwllo (5.16) 
< Chz+i. 

For P3 we have 

where 

IP3I < l((Mhzh - Mzh), Aw)I + 1((1 - Rh)(Mhzh - Mzh), Aw)I 
Qi+ Q2, 

Qi= l((Mh - M)zh, Aw)I l(A-i(Bh - B)zh, Aw)I 
- l((Bh - B)zh, w)I 
~ l((Bh - B)zh, w)I + l((Bh - Bh)zh, w)j. (5.17) 

Now by Lemma A.lJn the Appendix we have, for v > 1/2, 
N-i i 

= I L b(x,jh)zh(jh) -1 b(x, y)zh(Y) dyl 
j=O 0 

< Ch"llbxllvllzhllo, 
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where b:z:(Y) = b(x, y). Taking v = l + 1, we find 

2 ,. 2 l+l 2 11!2 1 llb:z:llz+i - lb:z:(O)I + CllD b:z:llo ~ C + C _112 (Ix!+ lyl)2z+2 dy 

c 
< lxl 2l+l' a; E (-1/2, 1/2)\{0}. 

Thus 
l+i lw(x)I l((Bh - B)zh(x))w(x)I ~ Ch llzhllolxll+l/2 ' 

and therefore, because w(x) = O(lxll-o) with 8 < 1/2 

J_
l/2 

l((Bh - B)zh(x))w(x)I dx ~ Chl+lllzhllo ~ Chl+lllzllo, -1/2 (5.18) 

where we have used the stability of (5.5). Furthermore, since 

l(Bh - Bh)zh(x)I ~ h(lb(x, O)I + jb(17h, O)j) lzh(O)I 
~ Chi log lxll lzh(O)I, x E (-17h, 17h), 

and 

we obtain for some 8 < 1/2 

l((Bh - Bh)zh, w)I ~ Chlzh(.O)I j_.,,h IYll-o dy -.,,h 
~ Chz+2- 0 j(z - zh)(O)I ~ Ch1+1llz - zhll1-o· (5.19) 

Here we have used the fact that z(O) = 0 and Sobolev's embedding theorem. Applying 
the approximation property of Rh, the inverse property of Th and (5.1), we can further 
estimate 

llz - zhll1-o ~ llz - Rhzll1-o + llzh - Rhzll1-o 
~ Ch61lzll1 + Ch0- 1jjzh - Rhzllo ~ Ch0 . (5.20) 

Combining (5.18), (5.19) and (5.20) gives Q1 ~ Chl+l. It remains only to prove an 
analogous result for Q2 • We have 

Q2 ~ l((M - Mh)z, (I - Rh)Aw)I + l(M - Mh)(z- zh), (I - Rh)Aw)I 
~ Chll(M - Mh)zllo + Chll(M - Mh)(z - zh)llo, 

in which the first term is of order h1+1 ; cf. the proof of Theorem 5.1. Finally, using the 
inequalities (5.8) and (5.1) and arguing as in (5.20), we see that the last term can be 
bounded by 

Chllz - zhllo + Ch2 llz - zhll1 ~ Ch1+1 + Ch2llz - zhll1 
< Chl+i + Ch2{llz - Rhzll1 + Ch-1llzh - Rhzllo} 
< Ch1+i. 
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6 Numerical results 

Consider a domain n with a re-entrant corner, enclosed by the curve 

r : (-(2/3) sin((3/2)r), - si.n(r)), 0 ~ T ~ 211". (6.1) 

The angle of the re-entrant corner is 311" /2. We also assume that the solution of (1.1) is 

to give a realistic behaviour of</> at the corner. Because </> is the real part of an analytic 
function, it is clear that </> satisfies the Laplace equation in our domain. Let <f> = g on r. 
Then g is smooth on r, and using the single layer potential to represent </>, we obtain 
the equation (1.3). The single layer density v will have regularity 

v(x) = cx-1/ 3 + a smoother function (6.3) 

around the corner, where x represents the arc length from the corner. By a mesh grading 
transformation of order q, the new solution will be of the form, 

z( x) = Cx(2q/3)-l + a smoother function, (6.4) 

which is much smoother than the original solution . 

. Let us define the functional 
. 1 

· JP(z) := -2 fo log IP- a(y)Jz(y) dy, Pen, (6.5) 

and its approximation 

2 N-1 

J[(zh) := --N L: log IP- a(kh)lzh(kh). + l k=O 
(6.6) 

Now the function log IP-a(y)I is smooth if P is not a boundary point and Theorem 5.2 
is applicable. In the following tables, the error eN and the experimental convergence 
order f3 are defined as 

p = (0.4, 0), 

{3 _ log(eNi/fN2 ) 

- log(Ni/N2) . 

The experiments reported there show at least the order of convergence expected by the 
estimate (5.13). In our example with a re-entrant corner of 311" /2 using a mesh grading 
with q = 2, 3, 4, 5 and a smooth right hand side we expect the solution z to belong to the 
Sobolev space H 1 with l = 5/6, 3/2, 13/6, 17 /6, respectively. Then Theorem 5.2 yields 
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the theoretical convergence order f3o = l + 1 = 11/6, 5/2, 19/6, 23/6, respectively. How-
ever, the numerical convergence rate observed in our experiments seems to be O(h21+1) 
instead of 0 ( h1+1). 

Table 1 contains the numerical results for the discrete collocation discussed in [7]. 
Tables 2 and 3 show that we achieve the maximal orders of convergence 3 and 5 for the 
Sloan and Burn method and for the modified method, respectively. 

If the grading parameter is q = 3, then the worst singularity 2q/3 - 1 becomes 
smooth. In this case the modified method yields very fast convergence, whereas the 
other methods converge as expected. For q = 2 the convergence order of the Sloan and 
Burn method seems to exceed the maximal order 3 predicted by the theory. 

Table 1: Discrete collocation 

q=2 q=3 q=4 q=5 
N eN {j eN {j eN {j eN {j 
61 5.34 -6 2.61 -6 2.42 -6 2.34 -6 

4.22 10.23 13.39 15.57 
91 9.84 -7 4.36 -8 1.14 -8 7.97 -9 

2.72 4.73 9.13 14.92 
121 4.54-7 1.13 -9 8.46 -10 1.13 -10 

2.68 4.05 5.55 7.97 
151 2.51-7 4.61 -9 2.47 -10 1.94 -11 

2~68 4.03 5.39 6.81 
181 1.54 -7 2.22 -9 9.30-11 5.64 -12 

2.68 4.03 ·5.39 6.78 
211 1.02 -7 1.20 -9 4.07 -11 1.99 -12 

2.68 4.02 5.39 6.76 
241 7.16 -8 7.01-10 1.99 -11 8.12 -13 

2.67 4.02 5.39 6.78 
271 5.23 -8 4.38 -10 1.06 -11 3.67 -13 

2.67 4.01 5.37 6.69 
301 3.95 -8 2.87 -10 6.03 -11 1.82 -13 

2.67 4.01 5.37 6.72 
331 3.07 -9 1.96 -10 3.62 -12 9.60 -14 

2.67 4.01 5.37 7.10 
361 2.43 -9 1.38 -10 2.27 -12 5.18 -14 

f3o 1.83 2.50 3.17 3.83 
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Table 2: Method of Sloan and Burn of order 3 

q=2 q=3 q=4 q=5 
N eN {3 eN {3 eN {3 eN {3 
61 1.61 -5 1.73 -5 1.52 -5 1.28 -6 

3.52 3.39 3.43 3.49 
91 3.93 -6 4.48 -6 3.86 -6 3.16 -6 

3.12 3.01 3.01 3.01 
121 1.61 -6 1.89 -6 1.64 -7 1.34 -6 

3.12 3.00 3.00 3.00 
151 8.08 -7 9.76 -7 8.42 -7 6.90 -7 

3.13 3.00 3.00 3.00 
181 4.58 -7 5.67 -7 4.86 -7 4.01 -7 

3.14 3.00 3.00 3.00 
211 2.83 -7 3.58 -7 3.08 -7 2.53 -7 

3.15 3.00 3.00 3.00 
241 1.86 -7 2.40 -7 2.07 -7 1.70 -7 

3.16 3.00 3.00 3.00 
271 1.29 -7 1.69 -7 1.45 -7 1.19 -7 

3.16 3.00 3.00 3.00 
301 9.22 -8 1.23 -7 1.06 -7 8.71 -8 

3.17 3.00 3.00 3.00 
331 6.82 -8 9.27 -8 7.98 -.8 6.55 -8 

3.18 3.00 3.00 3.00 
361 5.14 -8 7.15 -8 -8 5.05 -8 
.f3o 1.83 2.50 3.00 '3.00 
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Table 3: Modified method of order 5 

q=2 q=3 q=4 q=5 
N eN {3 eN {3 eN {3 eN {3 

61 1.90 -6 2.58 -6 2.47 -6 2.31 -6 
5.16 11.57 12.07 15.57 

91 2.41 -7 2.52 -8 1.98 -8 4.55 -9 
2.34 6.91 6.65 6.93 

121 1.24 -7 3.51 -9 2.97 -9 6.31-10 
2.56 6.05 5.03 4.88 

151 7.02 -8 9.20 -10 9.75 -10 2.14 -10 
2.60 6.60 4.99 5.04 

181 4.37 -8 2.78 -10 3.95 -10 8.58 -10 
2.63 7.66 4.99 5.03 

211 2.92 -8 8.60 -11 1.84 -10 3.96 -11 
2.64 10.26 4.99 5.03 

241 2.06 -8 2.20 -11 9.46 -11 2.03 -11 
2.65 43.63 4.99 5.03 

271 1.51 -8 1.32 -13. 5.27 -11 1.12 -11 
2.65 4.99 5.04. 

301 1.14 -8 7.39 -12 3.12 -11 6.62 -12 
2.66 4.99 5.05 

331 8.87 -9 9.13 -12 1.94 -11 4.10 -12 
2.66 4.99 5.05 

361 7.04 -9 8.86 -12 1.26 -11 2.65 -12 

f3o .1.83 2.50 3.17 3.83 
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Appendix 

Lemma A.1Assumev>1/2 and</> E Hv. Then 
1 N-1 11 <f>(t)u(t) dt- h L (<f>u)(jh)I ~ C hvll</>llvllullo 

0 j=O 

holds for all u E Th, with C independent of u. 

Remark. This is an improved version of Lemma 4 in the Appendix of Saranen and 
Sloan [13]. 

Proof: As in Saranen and Sloan, we observe that 

f c/J(t)u(t) dt = L: U(n)~(-n), 
o nEAh 

in which the right-hand side is a finite sum because u E Th. On the other hand 
N-1 

h I: (<f>u)(jh) = I: (<f;t)(kN), 
j=O ke7.Z 
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where the latter series is absolutely convergent since </YU E H 11 with v > 1/2. Now we 
easily obtain, using again u E Th, 

(;j;i,)(kN) = L ~(kN - n)u(n), 
nEAh 

which gives 

L (~)(kN) = I: u(n) [~(-n) + L ~(kN - n)] . 
keZZ nEAh k:f;O 

Altogether there follows 

1 N-1 fo <P(t)u(t) dt - h :E (<f>u)(jh) = - :E u(n) · :E ~(m), 
0 j=O nEAh m.=:-n. 

m:f:-n 

so 

1 N-l ( ) 1/2 ( ( ) 
2
) l/

2 

la ,P(t)u(t) dt - h ~ (</>u)(jh) ~ .. ~, lil(n)l2 
.. ~, ::F:':. l~(m)I . . 

But 

m.~n. l~(m)I = m.~n. lml-11Jmlvl~(m)I ~ (m.~n. lml-
211

) 

112 

(m.~n. lml 211j~(m)l 2) 
112

, 

m:f:-n m:f:-n · m:f;-n m:f;-n · 

C hv, for v>l/2 
so 

1 N-1 la ,P(t)u(t) dt- h ~ (</>u)(jh) < llullo ( .. ~, C h
2
" £n lml2"l~(m)l2) 

112 

m:;C-n 

< C h11 ll</>ll111lullo· 

D 
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