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Abstract

We consider the propagation of ultrashort optical pulses in nonlinear fibers and suggest
a new theoretical framework for the description of pulse dynamics and exact characteriza-
tion of solitary solutions. Our approach deals with a proper complex generalization of the
nonlinear Maxwell equations and completely avoids the use of the slowly varying enve-
lope approximation. The only essential restriction is that fiber dispersion does not favor
both the so-called Cherenkov radiation, as well as the resonant generation of the third har-
monics, as these effects destroy ultrashort solitons. Assuming that it is not the case, we
derive a continuous family of solitary solutions connecting fundamental solitons to nearly
single-cycle ultrashort ones for arbitrary anomalous dispersion and cubic nonlinearity.

1 Introduction

Optical solitons are stable localized wave packets resulting from interplay between nonlinearity
and dispersion. They are important on their own [2], and provide simple “building units” for com-
plicated chaotic states such as optical supercontinuum [10]. A fundamental optical soliton has
universal cosh−1(τ/t0) shape, the latter is imposed on a continuous carrier wave ei(β0z−ω0t)

where the wave vector β0 = β(ω0) is yielded by the carrier frequency ω0 and by the disper-
sive propagation constant β(ω). The related retarded time τ = t − z/V is determined by the
group velocity V = 1/β′(ω0) at the carrier frequency. The free parameter t0 may take different
values, it determines the temporal width of the pulse. The universal cosh-shape is observed for
ω0t0 � 1, i.e., the soliton should contain many cycles of the carrier wave. Decreasing t0 we
come up against new effects which are typical for the few-cycle solitons:

� for a favorable dispersion β(ω) the soliton radiates energy in the form of dispersive
waves. Strictly speaking, the soliton is then destroyed, in practice its living time still may be
exponentially long [3]. Correct description of such radiation may involve non-polynomial
representation of the dispersion profile [8, 6].

� effect of third harmonics generation may become important. It can destroy the soliton,
except for very special dispersion profiles [11].

� soliton’s shape deviates from the universal one. At some critical t0 the shape function
forms a cusp. Even in the absence of both the dispersive radiation and third harmonics
generation the solitary solution just does not exist for smaller durations [9, 7, 4].

Both effects of the dispersive waves and the third harmonics owe to the fact that the fundamen-
tal solitons do not solve Maxwell equations directly. They only solve a simplified version of the
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Maxwell equations in the form of the nonlinear Schrödinger equation (NLSE), derived for smooth
pulse shapes at ω0t0 � 1 [2]. In the NLSE, in particular, β(ω) is replaced by a parabolic func-
tion, namely the quadratic Taylor expansion around ω = ω0. On the contrary, cusp formation
seems to be an universal feature of Maxwell equations: existence of the sub-cycle solitons is
prohibited by Nature even in the absence of the higher harmonics and for the most favorable dis-
persion profile. The shortest pulse contains approximately one-and-half oscillations (full width
at half maximum, FWHM).

Non-existence of the sub-cycle solitons was demonstrated previously using analytic solutions for
the specially chosen linear [9, 7] and nonlinear [4] dispersions. Here we follow [5] and address
this problem numerically for arbitrary dispersion. Specifically we suggest a modeling framework
that allows separation and elimination of the higher harmonics without any reference to ω0t0 and
to the slowly varying envelope approximation (SVEA). One can then investigate the generalized
fundamental solitons while keeping many features of Maxwell equations that are not covered by
NLSE, such as arbitrary nonlocal dispersion and bidirectional character of wave propagation.
The fate of the fundamental soliton for t0 → 0 is then determined by dispersion: in all our
calculations the ultrashort soliton was destroyed either by dispersive radiation or by formation of
the singularity.

2 Model equation

Although the mathematical approach described in this section is very general, for the sake of
concreteness we focus on one-dimensional optical pulse with a single-component electric field
E = E(z, t) propagating along the fiber. z denotes the propagation coordinate. In the linear
case the pulse field is governed by a linear wave equation with real coefficients. To find a real-
valued E(z, t), one may look first for a complex-valued solution, E(z, t), of the same equation.
Such solutions appear in pairs, E(z, t) and E∗(z, t), and using linearity one can combine them
to get a real-valued field

E(z, t) =
E(z, t) + E∗(z, t)

2
= Re[E(z, t)]. (1)

A common opinion is that such trick works only for linear equations. In fact, one can generalize
the approach also for the nonlinear case. The only difference is that in the nonlinear case the
real E(z, t) and complex E(z, t) fields are governed by different equations. To illustrate this
fact we now consider pulse propagation in a nonlinear fiber as yielded by the nonlinear wave
equation

∂2
zE −

1

c2
∂2
t (ε̂E + χ(3)E3) = 0, (2)

where c is the speed of light, χ(3) is the nonlinear susceptibility of the third order, and the
operator ε̂ describes linear dispersion, i.e., in the frequency domain

E(z, t) =
∑
ω

Eω(z)e−iωt ⇒ ε̂E =
∑
ω

ε(ω)Eω(z)e−iωt. (3)
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The effective dispersion function, ε(ω), describes bulk medium dispersion, and, if necessary,
contains contributions from the waveguide geometry. Equation (2) applies both to the bulk prop-
agation and to a single-mode nonlinear fiber. It is further natural to consider the transparency
band, i.e., assume that Im[ε(ω)] ≈ 0. For simplicity we also assume that χ(3) ≈ const for the
frequency range of interest. Now, consider the following complementary equation

∂2
zE −

1

c2
∂2
t

(
ε̂E +

3

4
χ(3)|E|2E +

1

4
χ(3)E3

)
= 0, (4)

for the complex field E(z, t), where by definition (ε̂E)ω = ε(ω)Eω as motivated by Eq. (3). The
standard property

ε(−ω) = ε∗(ω) ⇒ ε̂ (E∗) = (ε̂E)∗

ensures that complex solutions of the Eq. (4) also appear in pairs, E(z, t) and E∗(z, t). More-
over, one can directly check that the linear combination (1) yields a real-valued solution of
Eq. (2). Equation (4) can be considered as one of many possible complexifications of Eq. (2).

In the linear case we benefit from the complexification because one can immediately substitute
ei(βz−ωt) for the wave field. The reasoning is different in the nonlinear case. Note, that nonlinear
terms in Eq. (4) explicitly distinguish between the self-phase modulation (SPM) and THG. If the
latter can be ignored, one is left with a kind of “bidirectional” NLSE

∂2
zE −

1

c2
∂2
t

(
ε̂E +

3χ(3)

4
|E|2E

)
= 0, (5)

which will be referred to as biNLSE. The biNLSE is more general than the standard NLSE and
possess a rich set of solitary solutions. However, in order to ignore E3 self-consistently, one first
has to relate E(z, t) to the analytic signal. As explained in the next section, such a relation exists
if fiber dispersion does not favor THG. In other words, we shall assume that the corresponding
phase-matching conditions

β(ω1) + β(ω2) + β(ω3) = β(ω4),

ω1 + ω2 + ω3 = ω4, ωi > 0,
(6)

are not satisfied for any four positive frequencies from the transparency region.

3 Field representation by analytic signal

The analytic signal relates the real physical field E(z, t) to some naturally defined complex one
Eas(z, t), such that Eq. (1) is automatically satisfied. Eas(z, t) is defined simply by keeping only
positive frequencies in the spectral representation (3)

Eas(z, t) = 2
∑
ω>0

Eω(z)e−iωt, E(z, t) = Re[Eas(z, t)]. (7)

Why should one believe that Eas(z, t) is provided by solutions of Eq. (5)? Of course, we can use
the input field [E(z, t)]z=0 and [∂zE(z, t)]z=0 to obtain [Eas(z, t)]z=0 and [∂zEas(z, t)]z=0,
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Figure 1: Blue line: power spectrum |Eω(z)|2 at z = 3 mm for a three-cycle soliton
(soliton number = 2) at initial carrier wavelength λ0 = 1.6µm obtained from biNLSE (5) for
the bulk fused silica dispersion. Red line: power spectrum |Eas

ω (z)|2 of the exact analytic signal
derived from the full Eq. (2). The reduced model properly describes both the soliton and the dis-
persive radiation. Still E(z, t) contains small negative-frequency part and is slightly inaccurate
for ω & 3ω0. Two models also show excellent agreement in the time domain [5]. Therefore, to
a good approximation, E(z, t) is determined by SPM and yields the analytic signal.

the latter two quantities naturally serve as initial conditions for the biNLSE (5). Therefore, by
construction E ≡ Eas at the beginning of the fiber. Still the difference ‖E −Eas‖ 6= 0 for z > 0,
just because the negative frequency components are permanently generated by the |E|2E term
in Eq. (5). However, a presupposed failure of the phase-matching conditions (6) guaranties
that the negative-frequency part remains small and E ≈ Eas. Indeed, Eqs. (6) directly indicate
that the sum-frequency generated from any three positive frequencies by virtue of the E3 term is
non-resonant and therefore E3 has only minor backward effect on solutions of Eq. (4). Moreover,
assume that a negative frequency component ω∗ < 0 is generated by three waves with positive
frequencies ω1, ω4, ω3 by virtue of the |E|2E term. The excitation would be resonant if

β(ω1)− β(ω4) + β(ω3) = β(ω∗), ω1 − ω4 + ω3 = ω∗.

Replacing the only negative frequency ω∗ with −ω2 we see that such three-wave interactions
are again non-resonant due to condition (6). Therefore, the initially small negative-frequency
part of E , while being present, is not accumulated in the course of pulse propagation.

We conclude that for favorable dispersion β(ω) the complex field E yielded by Eq. (5) should
be a good approximation to the analytic signal Eas yielded by the full wave equation Eq. (2) and
definition (7). This conclusion is confirmed by numerical examples, as illustrated in Fig. 1. We
now turn to solitary solutions of Eq. (5).

4



Normalized time delay ωpτ Normalized time delay ωpτ

Po
w

er
 (a

rb
itr

. u
ni

ts
)

No
rm

al
iz

ed
 fi

el
d

NLSE s
ol

ito
n

biNLSE
soliton

-6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 6

-0.1

0.0

0.1

0.2 cusp
formation

(a) (b)

Figure 2: Ultrashort solitary solution of the biNLSE (5) (blue thin line) and the standard fun-
damental soliton which approximates pulse electric field as good as possible (red thick line).
Calculations are made for the Drude dispersion, ε(ω) = 1 − ω2

p/ω
2, pulse carrier frequency

is twice the plasma frequency, ω0 = 2ωp. (a) power, (b) electric field. Further decrease of the
pulse duration leads to cusp formation.

4 Solitons and spectral renormalisation

Equation (5) is well suited for the description of solitons, because the soliton spectrum is con-
centrated near its carrier frequency and the main precondition (6) can be easily verified. To
derive solitary solutions we substitute the expression

E(z, t) = f(τ)ei(κ+β0)z−iω0t, τ = t− β1z (8)

into Eq. (5). Here, f(τ) denotes the unknown shape function, we use a standard notation
βm = β(m)(ω0), and solitons are parametrized by the nonlinear correction κ to the carrier
wavenumber β0. The soliton duration parameter t0 is calculated self-consistently, for the funda-
mental soliton f(τ) is proportional to cosh−1(τ/t0) and t0 =

√
|β2|/(2κ), see, e.g., [2]. The

resulting equation in the frequency domain reads[
κ− β̃(Ω)

]
fΩ =

ω0 + Ω

c

3χ(3)/8

n(ω0 + Ω) + η

(
|f |2f

)
Ω
, (9)

β̃(Ω) = β(ω0 + Ω)− β0 − β1Ω, η =
κ− β̃(Ω)

ω0 + Ω

c

2
. (10)

where fΩ denotes a Furrier component of f(τ). We define operator N̂ such that Eq. (9) be-
comes f = N̂ [f ] the latter is solved using successive iterations in a full analogy with the spec-
tral renormalisation method for NLSE [1]. Note, that each iteration is rescaled to improve con-
vergence, first fn+1/2 = N̂ [fn] and then fn+1 = snfn+1/2, where sn yields 〈fn+1|fn+1〉 =
〈fn|fn〉. The final solution is given by f(τ) =

√
s∞f∞(τ).

In general, the universal cosh−1 soliton shape always appears for κ → 0. As κ increases
the soliton duration decreases and its shape becomes more and more sharp. Our approach
allows to trace solitons up to a nearly single-cycle duration. The further decrease of the pulse
width appears to be limited by two other effects. Most often too short solitons are destroyed by
Cherenkov radiation [3, 10]. Up to small nonlinear correction, Cherenkov resonant frequency ωr
is determined by the condition β(ωr) = β0−β1(ωr−ω0) indicating that operator N̂ in Eq. (9)
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is singular. On the other hand, for a favorable, i.e., convex with β′′(ω) < 0, dispersion func-
tion the Cherenkov resonance does not appear. The solitons are then destroyed by singularity,
the envelope forms a cusp in accord with analytical predictions [7, 4]. An exemplary shortest
ultrashort solution calculated for a Drude dispersion function is shown in Fig 2.

To conclude we note that familiar spectrally-narrow, Ω� ω0, solitons appear from Eq. (9) under
the following four simplifications:

(1) no higher-order dispersion β̃(Ω)→ β2Ω2/2, where β2 < 0
(2) shock term is ignored (ω0 + Ω)/c→ ω0/c
(3) bidirectionality is ignored η → 0
(4) nonlinear dispersion is ignored 3

8
χ(3)/n(ω0 + Ω)→ n2 = 3

8
χ(3)/n(ω0)

One can now use the full Eq. (9) and investigate the relative role of these effects, which are all
neglected in the simplest integrable NLSE. The most important one is proven to be the higher-
order dispersion followed by the shock term. Bidirectionality and dispersion of the nonlinear
term are less important and can be ignored up to single-cycle regime. Even in the latter case
their contribution to the soliton shape is only several percents, as compared to the higher-order
dispersion and self-steepening [5].
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