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Abstract

We derive a two-scale homogenization limit for reaction-diffusion systems where
for some species the diffusion length is of order 1 whereas for the other species the
diffusion length is of the order of the periodic microstructure. Thus, in the limit the
latter species will display diffusion only on the microscale but not on the macroscale.
Because of this missing compactness, the nonlinear coupling through the reaction
terms cannot be homogenized but needs to be treated on the two-scale level. In
particular, we have to develop new error estimates to derive strong convergence
results for passing to the limit.

1 Introduction

The theory of periodic homogenization is concerned with partial differential equations with
periodically oscillating coefficients with small period € and describes ways for finding a
homogenized partial differential equation of which the solutions are the weak limits for
e — 0 of the original solutions. We refer to the books [JK0O94, MaKO06, Tar09| for general
introductions and surveys. An important step in homogenization theory was the introduc-
tion of two-scale convergence in [Ngu89|, which allows for the treatment of more general
equations. While the original notion of two-scale convergence in [Ngu89, All92, CDDOG|
can be called weak two-scale convergence, it is crucial that one can also introduce a notion
of strong two-scale convergence, see |Vis04, Vis06, MiT07|. It is this strong convergence
which can be used to study fully nonlinear problems like nonsmooth elastoplasticity (cf.
[Nes07, Vis08, ScV10, Hanl1, GiM11]) and to allow for efficient numerical approximation
[MaS02].

The present work applies the ideas of strong two-scale convergence to nonlinear reaction-
diffusion systems, which for fixed ¢ > 0 are simple semilinear parabolic systems. The
difficulty arises in the limit of ¢ — 0, since we allow some of the diffusion constants to
scale with €. Hence, we lose the compactness from the diffusion terms, but the nonlin-
earities in the reaction term can only be treated by strong convergence. The latter will
be obtained by exploiting the fact that strong two-scale convergence can be measured in
the norm topology of the two-scale functions and that these errors can be controlled by
suitable Gronwall estimates.

To be more precise, we consider the following inhomogeneous system of coupled
reaction-diffusion equations:

ui(t,r) = div(Di(z, 2)Vus(t,z)) + fi(t,z, 2 E’ W (t, ), v5 (L, 7)), .
U?(t,ﬂ?) = diV(gﬂDg(%,g)vv ( , )) —|—f2(t x, z ( ’Ua( ))7 (llPa )

for t > 0 and on a bounded Lipschitz domain Q C RY. We also add no-flux boundary
conditions on 0f). Here, I; € R™*™ are diffusion tensors and f; are reaction terms
acting on the vector of concentrations u® € R™!, resp. v € R™? referring to my, resp. mo
different species. The scaling €2 of D, takes into account that the species related to the
concentration vector v° diffuse much slower than those related to u®. Therefore, we call
v® the slow diffusive variable and u® the “classically” diffusing one. We also call (1.1.PZ"),
the non-degenerating part, while (1.1.PP), is called the degenerating part.

The coupling of the variables (u®,v®) occurs via the reaction terms (f1, f2). To focus
on the difficulties of the homogenization limit ¢ — 0, we avoid any questions concern-
ing global existence or positivity of the concentrations by assuming Lipschitz continuity,



namely
(f1, f2) is differentiable and globally Lipschitz continuous in (u®, v), (1.2)

see (2.5.L) & (2.6.C) for a precise statement of the assumptions and Example 2.3 for a
discussion. But as we explain in the following, the assumption of nonlinearity complicates
the limit passage ¢ — 0 in (1.1.P{?). In particular, confining the analysis to given data
(Dy,Dy) and (f1, f2) being spatially O(e)-periodic in the x/e-component, we show that
for ¢ — 0, the limit model is a two-scale model, given for ¢ > 0 on (z,y) € Q x Y by

w(t,r) = div(Deg(x)Vu(t,x)) + feg(t, x,u(t,z), V(t, z, *)),
Vilt,z,y) = divy(Da(z,y)V, V(L z,9) + fo(t, 2y, u(t, z), V(L, 2, y)).

Above, Dyg denotes the classical effective diffusion tensor, cf. [BLP78, All92, LNW02|.
However, the reaction term feg is a macroscopic, one-scale function, but depending on the
microscopic function V (¢, x, *), namely

(1.3.P)

fur(t, ., u(t, ), V(t, 2, %)) = /y fi(t 2y, ult, 2), V(t2,y)) dy,

where ) = R%/,4 denotes the so-called periodicity cell, which can be obtained from the
unit cell Y = [—1/2,1/2)? by identifying opposite faces of Y. In contrast, the effective
data Dy and f> in (1.3.Pg"), are indeed two-scale functions, which additionally depend on
ye .

In Section 2 we discuss the existence and uniqueness of a weak solution for both the

original one-scale problem (1.1.P%) and the effective problem (1.3.P") simultaneously,

making use of a suitable abstract setting. To perform the limit passage (1.1.P¢P) =0

(1.3.Py") we develop the necessary tools of two-scale convergence in Section 3. Since the
equations in (1.1.PP) feature different scalings, their limit passage can be carried out
using different methods. The limit in the non-degenerating equation (1.1.P); can be
obtained with the classical theory of G- or two-scale convergence and by exploiting the
compact embedding of H*(€2) into L*(€2) for handling the nonlinear reaction terms f;. For
homogenization results based on two-scale convergence in the case of non-degenerating
quasilinear parabolic PDEs we refer to e.g. [NeJ07, EK*10, Woul0, FMP12, Mah13, Sch08|
and for monotone parabolic operators and multiscale-convergence in space and time, to
|[F1006, Per12| and references therein.

Compared to the treatment of (1.1.PZ?),, the limit passage in the degenerating equa-
tion (1.1.P{), is much more involved and needs special attention. This is why we first
elaborate this limit passage separately in Section 4 and then merge it with the classi-
cal procedure to pass to the limit with the full system in Section 5. Let us explain the
difficulties coming along with the degenerating equation and the nonlinear reaction terms.

Since the ellipticity of the diffusion tensor in (1.1.P¢"), degenerates for ¢ — 0, the
general theory of G-convergence (see e.g. [MuT97]) is not suited here. But the concept
of two-scale convergence, introduced in [Ngu89|, is applicable, if Df and ff, i = 1,2,
are e-periodic in z € 2. Hereby, we operate with the equivalent definition of two-scale
convergence formulated in [CDG02, MiT07, CDGO8| via the periodic unfolding operator
7. : L*(Q) — L*(R? x Y), see (3.2). With the aid of 7., weak and strong L?-two-scale
convergence can be defined in terms of weak and strong L*-convergence of two-scale
functions, see Definition 3.3.



For the degenerating equation (1.3.Pg"), we will make use of the following compactness
result, cf. |A1192, CDGO02|, Theorem 3.5: If (v°). C H' () satisfies the a priori bound

=10 >0 Ve>0: ||'U8||L2(Q) + €||VUE||L2(Q) < C, (14)

then there exists a two-scale function V' € L*(Q; H'(Y)), and, up to a subsequence, we
have weak two-scale convergence in the following sense

T.(v°) = V™ and T.(eVv°) — (V, V)™  weakly in L*(R? x V). (1.5)

For a function A € L2(Qx Y), A* € L*(R¢x ) denotes its extention with 0 outside of Q.
Moreover, H'()Y) C H*(Y') is the subspace of functions with periodic boundary values.

The weak two-scale convergence from (1.5) is well suited to pass to the limit ¢ — 0
in linear equations of the type v = div(e2DVv®) + f¢ - v7, see [All92, PeB08, MeM10,
MiR13|. But since we deal with nonlinear reaction terms, we need the strong convergence
of T.(v°) — V™ in L?(R? x Y), which does not follow from (1.4) & (1.5). Therefore
the limit passage in the semilinear equation (1.1.PP), is not straightforward and needs
additional assumptions. For example, in [HJM94], an effective system is rigorously derived
for a degenerating equation with nonlinear reaction terms that are not directly coupled,
Le. fi(us,v%) = fi(u®) and f5(u®,v%) = fo(v®). Assuming further that fs is the gradient of
a A-convex potential ¢, a homogenization result is established using methods from convex
analysis, solely based on weak two-scale convergence; strong two-scale convergence is not
investigated. Moreover, in light of the general gradient structures for reaction-diffusion
systems in [Miell, Miel3| it is clear that the assumption that fo has a potential ¢ is
only reasonable for vy being scalar. For nonlinear problems, without the property of
compactness, it is necessary to use concepts based on strong two-scale convergence, see
e.g. |Vis07, MiT07, Han11, Vis11]. In a similar spirit, [Eck05] uses two-scale correctors to
prove strong convergence with explicit convergence rates. However, there the assumptions
are rather strong, e.g. V,V € L*(Q; H'())) and continuity w.r.t. y € ) of all functions
in (1.3.Py"),. Quantitative homogenization results also exist for attractors for nonlinear
reaction-diffusion systems, e.g. [FiV01, FiV03].

In some sense, we are following a similar strategy as in |Eck05|, but we do not need
any additional regularity in the x or y variables. Our main result Theorem 4.1 shows that
the weak solutions v® and V' of (1.1.P?), and (1.3.Pg"),, respectively, satisfy

| Ze v (t) — V()| L2 maxyy 2% 0 uniformly in 0, T7]. (1.6)

We neither assume that v® admits an asymptotic expansion in € nor that V' is continuous
in space, and yet we prove (1.6) rigorously. If V' were spatially continuous, then (1.6)
would be equivalent to |[v°(t) — [V]*(¢)|| 2 =29 0, where we set [V]e(x) := V(z,z/¢e) as
in [Eck05], see Remark 5.4.

The general strategy for proving this strong convergence is explained in an abstract
way in Section 4.2. For the difference We(t) = Z-v°(t) — V(¢) we derive a Gronwall
estimate of the form

d € (3 3 3 3 3
T IW@IE < ZIW= (012 + AT(6) + A5(1) + A5(0) + AL(),

where the error terms A7 are shown to converge pointwise to 0. To derive this estimate, we
reformulate the weak formulations of (1.1.P{"), and (1.3.P{"), via the unfolding operator
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7., the folding operator F., and the gradient folding operator G., see (3.5) and Definition
3.7. The rough idea is to subtract these prepared weak equations and to test with the
difference W¢. While the errors A§ and Aj measure the standard approximation errors
of the linear diffusion terms and the nonlinear reaction terms, respectively, there occur
two additional and more difficult errors to be controlled. The error Aj arises through the
fact, that we need to invert the unfolding operator 7. in two different ways, namely first
by the classical folding operator F. and second by the gradient folding operator G., see
Theorem 3.9 in Section 3.4, where we follow ideas in [MiT07, Han11].

However, the most difficult error term Aj arises from the fact that we cannot test with
We directly, since the unfolding operator 7; is incapable to directly implant Y-periodicity,
as T.v® € L*(RG HY(Y)) 2 L*(R%G HY(Y)) for all v° € H'(Q2), see Theorem 3.2. But
as a consequence of the compactness result (1.5), Y-periodicity will be a characteristic
feature of the admissible functions for the limit problem (1.3.P¢"),. It is a well-known
fact (cf. [Ngu89, Thm. 3|, [All92, Prop. 1.14|, [VisO4, Thm.6.1]) that the two-scale limit
V' is Y-periodic, although the unfolded sequence 7. v° is in general not Y-periodic, see in
particular [CDG02, Prop. 3] and [Dam05, Thm. 5.2] for a proof in the periodic unfolding
formulation. In other words, the unfolding operator 7. is incapable to directly generate
Y -periodicity, but automatically ensures the recovery of periodicity in the weak two-scale
limit. Since this effect plays a crucial role in our analysis, we term it the

T.-property of recovered periodicity: while T, u® € L*(R% H*(Y)) ounly,
1.
we have U™ = w-lim 7, u° € L*RGHNY)) S LHRGHY(Y)). (17)
E—>
In principle, our method is strong enough to supply quantitative error estimates as in
|Eck05], but this will be subject of future work.

As a further technical issue let us mention that a priori v$(t) € H'(Q)*, merely, whereas
the operator 7; is well-defined for integrable functions, only. To avoid technicalities we
therefore improve the time-regularity of the weak solutions in Proposition 2.2 by imposing
the differentiability on (fi, f2) and additional regularity on the initial datum (u, v§), see
(2.9). For the reader’s convenience we here provide a list of spaces used throughout this
work:

H=L*Q), X = H'(Q) function spaces in the abstract setting (2.2)
X.=(X, | [lx.) e-weighted function space for the species v° (4.5)

H = L2(Q x ) . .
X = L2(0: HY (D)) function spaces for the limit problem (4.4.P) (4.6)
H, X., H X function spaces for the coupled systems (5.4)

2 Assumptions and existence of weak solutions

Let Q C R? be a bounded domain with Lipschitz boundary I' = 0 and let T > 0 be
fixed. We abbreviate the time-space cylinder (0,7") x Q with Q7 and analogously we write
['r for (0,7) x I'. Moreover let 77 denote the outer unit normal vector of 2. The focus of
the paper are nonlinear reaction-diffusion equations of the type

Uy = AU + f(U) in QTa
(DVw)-© on I'r, (2.1.P)
u(0) = wup in Q.



Here A denotes an elliptic differential operator of the form Au = div (DVu). For the
application we have in mind, u : [0,7] x  — R™ denotes the concentration, D : Q —
R(mxd)x(mxd) the diffusion tensor, and f : Q x R™ — R™ the reaction term.

Both systems, (1.1.P{P) and (1.3.Pg"), can be reformulated in terms of (2.1.P). In this
section, we present a mathematical setting that accounts for both systems and that is
independent of £ > 0 and y € Y. We introduce the notion of weak solutions in Section 2.1
and give results concerning the existence of weak solutions and improved time-regularity
in Section 2.2.

2.1 Weak formulation and data qualification

Let X and H denote two given Hilbert spaces. We denote with X™* the dual space of X
and with (-, ) x+ x the associated dual pairing. We assume that H can be identified with
its dual, i.e. H = H*, and we write (-, )y for the scalar product on H. Assume that X is
dense and continuously embedded in H, then we obtain the evolution triple X C H C X™.
If not indicated otherwise, we set

X =HYQ) and H=L*Q), (2.2)

and we call X the space of test functions. We always abbreviate L*(Q; R™) with L*(Q).
For the evolution triple X C H C X*, the relevant space for our analysis is L?(0,T; X) N
H'Y(0,T; X*). By [Eva98, Thm. 3 p. 287|, we have that L*(0,7;X) N HY(0,T; X*) is
continuously embedded in C°([0,T]; H). We call u € L*(0,T; X) N H'(0,T; X*) a weak
solution to (2.1.P), if u satisfies a.e. in (0,7") the weak formulation

(ug, ) x+ x = (=DVu, Vo)u + (f(u), p)x+x forall p € X (2.3.WF)

and it holds u(0) = ug. Since we are, among others, interested in the homogenization of
the reaction term f, we do not want to understand f(-,-,u(-,-)) as general distribution
(which is sufficient for the existence of weak solutions), but as an integrable function.
Thus, we assume the reaction f : u — f(u) to be differentiable and globally Lipschitz
continuous (and not just locally) which is not too restrictive in practice as Example 2.1
shows.

Uniform Ellipticity: The diffusion tensor D € L*°(Q; R(m*d)x(mxd)) j5 measurable and
uniformly elliptic, i.e.

Ju>0: D@)A: A>plA? forall Ac R™ aa zecQ. (2.4.11)

Lipschitz continuity: The reaction f : [0,7] x © x R™ — R™ is measurable on 2 for
all (t,A) € [0,T] x R™ and f(-,z,-) € C'([0,T] x R™) for a.a. z € . Moreover,

AL >0: |f(t,z,A)— f(t,z,B)| < L|A— B| for all t,z, A, B. (2.5.L)

Boundedness: It holds

3D >0: |D(z)A| < Dy|A| forall Ac R™ aa. z€Q, (2.6.D4)
1Cx >0: |f(t,x,0)| < Cy fora.a. (t,z) € Qr. (2.6.C)



Here A : B = tr(A'B) and a - b denote the scalar product for matrices in R™*? and for
vectors in R™, respectively; | - | denotes the induced (matrix resp. vector) norm. For the
sets of parameters (i, Do) and (L, Cy) with p, L > 0 and D, C, > 0, we introduce the
classes of functions

M(Q, i, Doo) :={D : Q — RM*Dx(mxd) | Dy gatisfies (2.4.u) and (2.6.Dso) with (11, Doo)},
F(Q,L,Cy) :=={f : Qr x R™ — R™| f satisfies (2.5.L) and (2.6.C,) with (L,Cy)}.

For our analysis it is not necessary that D is symmetric. The assumptions (2.5.L) and
(2.6.C,) guarantee (t,z) — f(t,x,u(t,z)) € L*(0,T; H) for all w € L*(0,T; H). Indeed,
using (2.5.L) with B = 0 and (2.6.C,) give the growth-condition

|f(t, 2, A)| < max{L,C}(1+|A|) forall A e R™, a.a. (t,x)€ Q. (2.7.C1)

The existence result (Theorem 2.1) and the homogenization result (Theorem 4.1) do
not rely on the homogeneous Neumann boundary conditions in (2.1.P). In the case
of non-homogeneous Neumann boundary conditions, the boundary integral frg - pdo
would appear as linear term on the right-hand side in (2.3.WF). Other choices such as
Dirichlet or periodic boundary conditions are admissible as well and then X = H}(Q) or
X = H].(Q), respectively, and (2.3.WF) holds as it is. A Poincaré-type inequality is not
needed.

2.2 Existence of weak solutions and improved time-regularity

We emphasize that we do not use the compactness of the embedding X C H, recall (2.2),
because in Section 4 we choose spaces X C H (see (4.6)) that do not embed compactly.

Theorem 2.1. Assume that D € M(Q, u, Do), f € F(2, L,Cy) and ug € H. Then there
exists for every given T > 0 a unique weak solution u € L*(0,T;X) N H(0,T; X*) to
problem (2.1.P). Moreover, there exists a positive constant C, such that it holds

||u||C([0,T};H) + \/m|vu||L2(o,T;H) + HutHLQ(O,T;X*) <C, <1 + Dﬁ) ) (2.8)

where C, depends on the given quantities ||uo||g, T, L, Cwo, |€)].

Proof. The existence of a unique weak solution is deduced by applying Banach’s fixed-
point theorem to u™ +— u™* where v € L*(0,T; X)N H(0,T; X*) is the unique weak
solution of the linear equation v} = div(DVu") + f(u") according to |[Tem88, Thm.
3.1], cf. [Eva98, Thm. 2 p. 500]. (Similar existence results can be found in e.g. [Paz83,
Thm. 1.2 p. 184] and [Hen81, Thm. 3.3.3|.) In the following three steps of the proof, we
derive (2.8).

Step 1: Let u be the unique weak solution of (2.1.P). Testing (2.3.WF) with ¢ = u
and using % (u, w) i = 2(uy, u)x- x as well as (2.7.C) gives

d
%E“u”%{ = (-DVu, Vu)y + (f(u), u)n

< = Vullf +11C1 (1 + 2[ul*)|zre) < er(1+ [[ullf),



where ¢, = ¢(C1,]9?|) and C) is from (2.7.Cy). Applying Gronwall’s lemma yields
lu(OI +1 < (JJuoll? + 1)exp(2T¢;) for all ¢ € [0,T]. Hence, there exists ¢y =
ca(|[uol|lm. T, L, Cx, |2]) > 0, independent of ¢, such that ||ul|cojo.r,m) < ca.

Step 2: Again testing (2.3.WF) with ¢ = u and integrating over (0,¢) for 0 <t < T,
yields

t
0

t t
u/ y|vu||§1drg/(Dvu,vu)HdT:/ (f(u) — ur,u)x- x dr
0 0
t1d
S/O —§EIIU(T)II%+||01(1+2IUI2)IIil(Q> dr < 1 (J[u(0)]|F; = lu(t)||7;) + Clea).

Since t € (0,7] was chosen arbitrarily, we obtain /u||Vul|r2(0,rm) < c3 < 0o and c3
depends on the same set of parameters as cs.
Step 3: Analogously to Step 2, we obtain by applying Holder’s inequality and (2.7.C}):

2
T
Hut||2L2(O,T;X*) :/0 ( sup —(DVu, Vo)g + (f(u), p) x+ x dl’) dt

llollx=1

2
T 2

</ <sup Doo||Vu||H||so||X+o%<|m+||u||H>||so||X> At < T (Do by +Cler))

0

llellx=1

where D, is from (2.6.D.,). Hence Step 1-3 imply the existence of a constant C,,
depending on ||ug||g, T, L, Cx, |€2|, such that (2.8) holds true. O

We complete Section 2 with Proposition 2.2 that gives improved time-regularity for
weak solutions u of (2.1.P), i.e. uy € C°([0,T]; H) & L*(0,T; X*). This is motivated by
the fact that the folding and unfolding operators, defined in Section 3.2, are only well-
defined for integrable functions. Finally Example 2.3 gives an exemplary system satisfying
all the assumptions presented in this section.

Proposition 2.2 (Improved time-regularity). Let the assumptions of Theorem 2.1 hold
true. We assume the additional reqularity for the initial value:

AUO € H. (29)

Then we have for all weak solutions u to (2.1.P) that uw € H'(0,T; X)N H?*(0,T; X*) and

HuHcl([O,T];H) + \//7||VU’|H1(O,T;H) —|— ||ut]|H1(0,T;X*) S CZ <1 + Dﬁ) (210)
with the constant C > 0 depending on C, from (2.8) and || Augl|g-

Proof. We follow the idea of the proof to |Tem88, Thm. 3.2]. By setting w = wu; and
recalling the definition of A from (2.1.P), we obtain w, = uy = (div(DVu) + f(u)), =
div(DVw) + fi(u) + Df(u) - w. This leads to a reaction-diffusion equation of the type
(2.1.P), i.e.

wy = div(DVw) + f(w) in Q. (2.11)

Here f(t, 2, A) == f(t,z,u(t,x)) + Df(t,z,u(t,z))A and Df denotes the derivative of
f wrt. A with [Df(z,A)] < L for all (t,z,A) € Qp x R™. It holds further that
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t— f(t,z,wt,z)) = filt,z,ult,z)) + Df(x,ult,z))w(t,z) € L*0,T; H) for all u,w €
L?*(0,T; H) due to the continuity of f; and Df (in the third argument). With (2.9), the
initial value for w in (2.11) satisfies

w(0) = u(0) = div(DVug) + f(ug) € H.

Furthermore we have for a.e. (t,z) € Qr that |f(t,x,A~) — f(t,x,B)| < L|A — B for all
(A,B) € R™ x R™ and f(t,2,0) = 0. Regardless that f is not differentiable with respect
to time, it satisfies (2.5.L) and (2.6.C') and hence the necessary assumptions of Theorem
2.1. Therefore w € L*(0,T; X) N H'(0,T; X*) is the unique weak solution of (2.11) and
hence u € H'(0,T; X) N H*(0,T; X*) Cc C'([0,T); H). O

The additional assumption (2.9) seems to be quite restrictive, on the initial value w
and on the diffusion tensor D, but actually D can be as general as in Theorem 2.1. We
interpret (2.9) as a restriction on the choice of the initial value g, while D is possibly
discontinuous. Indeed for D € M(Q, i, D+,) and arbitrary g € H, we can solve the static
equation

div(DVug) —ug =g in Q (2.12)
and we obtain (by the Lax-Milgram lemma) a unique weak solution ug € X. In particular,
we have Aug = div(DVug) € H.

We emphasize that the improved time-regularity, and therefore the more restrictive
assumptions on f (differentiability) and ug (as in (2.12)), are only needed for technical
reasons, i.e. the application of 7;. In particular, we expect that Theorem 4.1 can be proved
without this improved time-regularity, but then the proof would become more technical
by using time-discretized approximations of ;.

Assuming further structural assumptions on f and wug, one can prove even L>())—
estimates for the solutions, cf. e.g. |GIH97, Thm. 4.2|, |BoH03, Lem. 1|, [NeJ07, Lem.
3.1], and |Piel0, Lem. 1.1]. Such boundedness is meaningful, when u; denote chemical
concentrations. In particular, it justifies the modification of the nonlinear reaction term
outside a large ball and hence, the assumption of global Lipschitz continuity can be fulfilled
easily.

Example 2.3 (A system with quadratic nonlinearity). We consider a system with two
species X, and X,, with densities u,v > 0 interacting through one reaction of the type
X, = 2X,. Normalizing the densities suitably, the mass-action law leads to the system

uy = 0,Au+ k(02 —u), v = 0,Av + 2k (u —v?), (2.13)
ke
1+au+ fv

numerator kg > 0 denotes the empirical reaction rate and the denominator 1 4+ au + Po,
for 0 < a, 3 K 1, leads to partial saturation of the reaction for large values of u,v > 0.
2 _
The nonlinearity f(u,v) = k(u,v) (2(Uu_:2)) is differentiable and globally Lipschitz
continuous with constant L = O(max{ g, %}) Hence f satisfies the assumptions (2.5.L)-
(2.6.C). In many applications (cf. e.g. [Miell, Miel3] for general reaction-diffusion
systems based on the mass-action law) the reaction terms are given by polynomials and
choosing suitable prefactors one obtains globally Lipschitz continuous f € F(2, L,Cy),
e.g. the Shockley-Read-Hall term in semiconductor equations [MRS90, Eq. (3.1.9)] or in
Michaelis-Menten kinetics for enzymatic catalysis [Mur02, pp. 175].

where 0,0, > 0 and the reaction coefficient k is given via k(u,v) = The



3 Two-scale convergence

In the introduction, the original model (1.1.P) is formulated on one scale, i.e. x € ,
while the limit model (1.3.P¢") is defined on the two-scale space (z,y) € 2 x ). Here the
microscopic variable y captures periodic oscillations in /¢ and = denotes the macroscopic
variable. In order to describe the convergence from (1.1.P%) to (1.3.Pg"), we introduce
the concept of two-scale convergence, which is designed for problems with underlying
periodic microstructure. But before giving the definition (in Section 3.3), we introduce
the concept of the periodicity cell ), the decomposition in macro- and microscopic scale
(in Section 3.1) and the unfolding and folding operators 7. and F. (in Section 3.2).

3.1 Microstructure and the periodicity cell Y

Following [CDGO08, Sec. 2.1], let @ C R? be a bounded domain and let ¥ C R? denote

the unit cell. Here and afterwards, we set Y = [—%, %)d, but more general choices for Y
are possible, see e.g. [MiT07, Sec. 2.1], so that R? is the disjoint union of translated cells
A +Y, where A € Z%. Furthermore, we distinguish the unit cell Y from the periodicity

cell ), which is obtained by identifying the opposite faces of Y, i.e. the torus
Y =R/

But, in notation, we will not distinguish between elements of the unit cell y € Y and the
ones of the periodicity cell y € Y. Using the mappings []y : R? — Z? and {-}y : RY - Y
defined via the relation x = [2]y + {z}y, each point z € R? is uniquely decomposed
into an element of the unit cell {r}y € Y and a lattice point [r]y € Z% A function
f € LL.(R?) is called Y -periodic, if f(x) = f({z}y) for a.a. z € R, Then we can identify
every periodic function f with a function f on V. Whereas LP(}) and LP(Y) can be
identified, H'(Y) = H},.(Y) is a closed subspace of H*(Y").

For our problem (1.1.P{), we introduce the small length-scale parameter ¢ > 0 and
we use the abbreviation NV.(z) := e [£], for the nodes of the microscopic cells {e(X +
Y)|A € Z%}, which describe the macroscopic scale. The microscopic scale is given by
y ={%}y €Y so that we obtain for all # € R the decomposition 2 = N.(x) + ey. Since
the domain  is bounded and not the whole R? we have to treat the cells close to the
boundary 0f) with care so that cells intersecting 0€) are sorted out for each £ > 0 fixed.
We set . := int (Useze(A+Y)) with Z :={X € Z*| (A +Y) C Q}. Hence Q. denotes
(the interior of) the union of all microscopic cells (A + Y) strictly contained in 2. For
bounded domains € with Lipschitz boundary I', we have by [Hanll, Eq. (2.3)] that

vol(Q2\Q.) — 0. (3.1)

3.2 Folding and periodic unfolding operators

Two-scale convergence is suited to describe convergences on different scales, namely the
macroscopic scale, represented by x € §2, and the microscopic scale for y € ). Therefore
the notion of a suitable embedding of the function space L?(Q) into the two-scale space
L*(R? x Y) is desirable in order to find a “natural” definition of two-scale convergence.
Here, we call such a mapping periodic unfolding operator. Vice versa, for any two-scale



function U defined on €2 X Y we seek a one-scale dependent u® defined on 2, and we call a
corresponding mapping from the two-scale space L2(R? x V) into L2(Q2) folding operator.

Following [CDG02, CDG08, MiT07|, the periodic unfolding operator T : L*(Q) —
L*(RY x ) is defined via

(T-u)(z, y) = u™(Ne(z) +ey), (3.2)

where u™ € L*(RY) is obtained from u by extension with 0 outside of 2. By definition,
we have immediately the product rule

we LX), ve I}Q) = T(w)=(Tu)(Tv)e 'R xY).  (3.3)

Moreover, we obtain (see [Dam05, p. 121]) the crucial identity

/u dz = T.udrdy forall u € L*(Q). (3.4)
Q RéxY

With [Qx V). := {(2,y) € R x YV | No(z) + ey € Q} we have supp(ZZ u) C [Q x V., i.e.
in general the support of a two-scale function 7 u is not contained in €2 x ). For a proper
definition of the reverse operation taking care of the overhanging supports, we follow
the construction of the folding operator in [MiT07|, which involves the characteristic
functions 1o and 1. := 7. 1g of Q and [Q x Y)]., respectively. The folding operator
F.: L2(R? x V) — L%(Q) is defined via

(F.U) ) = (][ GV (2 ds) (3.5)

Q

We will use several properties of 7; and F, see e.g. [MiT07, Prop. 2.1]:

Proposition 3.1. For all € > 0 we have the following properties:
(a) || T ul| r2raxy) = lullr2@) and supp(Z:u) C [ x V. for all u € L*(R).
(b) || F-Ull 2y < ||U||L2(Rd><y for all U € L*(R? x ).
(C) fEO,]; = Zsz(Q)
(d) Fe is the adjoint of Tz, i.e. F. = T..

The following result states in which sense the periodic unfolding operator 7. is com-
patible with differentiation and composition of functions.

Theorem 3.2 (Properties of 7;).
(a) Foru e H'(Q) we have T.u € L*(R%; HY(Y)) and T.(eVu) = V,(T: u).
(b) For f € F(Q, L,Cy) and u € L*(Q) we have T.[f(u)] = T2 f(T: u).

Proof. For part (a), we refer to [Dam05, Thm. 5.1|. Part (b) follows from (3.2), i.e

I { ) +ey, uNo(z) +ey)),  if (z,y) € [Q x V],
c if( z,y) € (R x V\[Q x V.
= f(N(2) + ey, u(No(z) + ey)™)™ = T2 f(Tou) (2, ). O
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3.3 Weak and strong two-scale convergence

We are now in the position to give the definition of weak and strong two-scale convergence
following again [MiT07]. The notion of two-scale convergence was first introduced in
[Ngu89| and coincides for bounded sequences with Definition 3.3(a), here below, and a
more detailed comparison of the different definitions is given in [MiT07, Sec. 2.3|. Since
the construction of the periodic unfolding operator was quite technical, the definition of
weak and strong two-scale convergence can now be stated easily:

Definition 3.3 (Weak and strong two-scale convergence). For (uf). a sequence in L*(£2)
(a) we say that v weakly two-scale converges to U in L*(Q x V) and we write “u® AN
in L2(Q x V)7, if T.u® — U™ weakly in L*(R? x Y);
(b) we say that u® strongly two-scale converges to U in L*(Q x Y) and we write “u® N
in L2(Q x V)7, if T u® — U strongly in L*(R? x V).

Note that the weak and strong convergence is asked to occur in L?(R? x )) and not
in L?(Q x )). Otherwise a slightly different notion of convergence is generated, see e.g.
[IMiT07, Ex. 2.3]. The unfolding operator 7, : L*(Q) — L*(R¢ x ) is defined for the class
of Lebesgue-integrable functions, where boundary values play no role, so that in particular
L*(RY x V) = L2(R? x Y). In view of the T.-property of recovered periodicity (1.7), we
carefully distinguish the spaces H'(Y) and H'(Y) = H],(Y'), where the latter one is a
closed subspace of H'(Y'). We now collect various properties of two-scale convergence.

Proposition 3.4. For all € > 0, we have the following properties:
(a) u® 2T in L*(QxY) = ||u|l12e is bounded for all e > 0.
(b) v 25U in LX(QxY) and vf 2.V in L*(QxY) = (v, 0%)12¢0) — (U, V)12(0x)-
(¢c) For allU € L*(Q x Y) there exists a sequence (uf).o so that u® .U in L2 (Qx)).
(for example u® = F. U*)
(d) v — win Q) = u® 2w in LA(Q x ).
(e) u® 2T in L*(QxY) = u® —uin L*(Q), where u(z) = fy Ux,y)dy.
We refer to [MiT07, Prop. 2.4] for a proof of (a)—(d) and to [Dam05, Thm. 3.3] for (e). The

following theorem states the fundamental results for two-scale convergence, in particular
parts (b) and (c) are crucial for the proofs of Theorem 4.1 and Theorem 5.1. We define

Hyy () = {u € H' (V)] fyuly) dy = 0}
Theorem 3.5 (Compactness). Let (u®). be a sequence of functions.

(a) If uf € L*(Q) and ||u||120) < C, then there exists U € L*(Q2xY) and a subsequence
& of e such that it holds v 25U in L2(Q x ).

(b) Ifus € H'(Q) and ||uf|| 2 +l| VUl 2 < C, then there exists U € L*(Q; H'(Y))
and a subsequence €' of € such that u¥ 25U & &'V 25 V,U in L*(Q2 x V).

(c) If v € H'(Q) and ||[u||pqy < C, then there exists u € H'(Q), a two-scale
function U, € L*(Q; HL(Y)), and a subsequence €' of € such that u¥ — u in
HY(Q) and Vue' 25 Vu+ YV, Uy in L2(Q x ).

Proof. For the proof of (a), we refer to [Ngu89|, alternatively one can apply Prop. 3.1(a)
and Banach’s selection principle. Items (b) and (c) are shown in e.g. [All92, Prop. 1.14]
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or [Dam05, Thm. 5.2, Thm.5.4]. For other scalings such as €7 with 0 < v < oo, we refer
to [PeB08, Thm. 3.4|. O

We finish this subsection by stating two results, needed in the proof of Theorem 4.1,
concerning the multiplication and composition of sequences in L?(2 x ))).

Lemma 3.6 (Multiplication and composition of sequences in L?(2 x )))). Let € > 0.

(a) Let (U?). C L*(QxY) with U — U in L*(QxY) and (M?). C L>=(22x ) such that
| M?|| oo oxyy < C for some constant C' > 0 and M*(x,y) — M(z,y) for almost
every (z,y) € Q x Y. Then M°U® — MU in L*(Q x V).

(b) Let f¢ € F(Q,L,Cy), F € F(Qx Y, L,Cy) and keep t € (0,T) fized. If for all vectors
AeR™itis fo(t, A) =, F(t, A) in L*(Q x Y), then for all U € L*(RY x V) we have
T. f5(t,U) — F*(t,U) in L*(R? x Y).

Proof. Ad (a): Extracting from (U¢). a pointwise convergent subsequence, we find that
MeU® — MU pointwise a.e. in ) x ) for this subsequence. Moreover, since |MU®| <
C|U?| a.e. in © x Y by assumption, the sequence (CU®). serves as an L*-convergent
majorant. Thus, Pratt’s theorem, see |[Els02, Thm. 5.1 p. 260|, a variant of the dominated
convergence theorem, yields the strong L?—convergence of the subsequence. Arguing by
contradiction for a different subsequence and by the uniqueness of the limit we conclude
the convergence of the whole sequence.

Ad (b): For shorter notation we omit indicating the ¢-dependence of the functions.
We approximate U € L?*(R? x )) with a sequence of integrable step functions U, =
S 1y, - Aj, where A; € R™ and Q x Y € U, Ui. Hence U, — U™ in L*(R? x
V) and it follows by assumption that 72 f<(U,) = Y21, 1y, - T2 f5(A;) =% " 1y, -
F*(A;) = F*(U,,) in LP(R? x V). Exploiting moreover (2.5.L), we obtain || Z; f¢(U) —
F*(U)||r2maxy) — 0 by introducing suitable nils, i.e. 7. f¢(U) — F*(U) = [I: f*(U) —
L [S(U + [T f(Un) = F(Un)] + [F(Un) — FU)]. 0

3.4 Gradient folding and two-scale convergence of Sobolev func-
tions

Even for smooth functions U : 2 x ) — R the folded function F. U is only piecewise
constant in z, hence V(F.U) cannot be determined in the classical sense. Therefore we
now define a so-called gradient folding operator G., which assigns to each differentiable
two-scale function U € H'(Q x )) a one-scale function v¢ € H*(Q2). The definition of
the above mentioned gradient folding operator G. follows [Hanl11| for v = 1. There, the
operator G, is constructed via 7. and various projections, but then it is shown that G, is
uniquely characterized by solving a linear elliptic PDE, see [Hanll, Prop. 2.11| based on
[Vis04, Thm. 6.1] and [MiT07, Prop. 2.10].

Definition 3.7 (Gradient folding). The gradient folding operator G. : L*(Q; H(Y)) —
HY(Q) maps a two-scale function U € L*(Q; HY(Y)) to u® := G. U, where u® € H'(Q) is

the unique weak solution of the elliptic problem

/ (W~ FoU) -+ (Vu' — FV,UIY) - eVipdr =0 for all o € H(Q).  (3.6)
Q
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While F. : L}(R? x V) — L3(Q), we have G. : L*(Q; H'())) — H'(Q2). Thus the
domains of the two operators differ not only with respect to the regularity of the admissible
functions, but also with respect to the underlying domains for the space variable x, i.e. z €
R? versus x € 2. However, since both operators require L?-regularity in = only, extending
U € L*Q; HY(Y)) by 0 outside of Q yields U™ € L*(R%; H'())). Thus, F. U™ indeed is
well-defined in (3.6). In particular, F. U™ and F.[V,U]*™ € L*(2) can be understood as
linear operators acting on U and moved, as inhomogeneities for the determination of u°,
to the right-hand side of (3.6). Thus for € > 0 fixed, the Lax-Milgram lemma yields the
existence of a unique weak solution u® € H'(), so that the gradient folding operator G.
is indeed well-defined. Since (3.6) implies || G. U||r2(q) + €||V(Ge U)||L2() < C, Theorem
3.5(b) supplies the existence of a weakly two-scale convergent subsequence. However, for
given U € L*(Q; H'(Y)) the gradient folding operator guarantees even strong two-scale
convergence. Since (G.U). C HY(Q) recovers any function U € L*(Q; H'())) via strong
two-scale convergence, G. is also called recovery operator in [Hanll, pp. 10-12].

Proposition 3.8 (Recovery property of G., |Hanll, Prop. 2.11]). For all two-scale func-
tions U € L2(Q; HY(Y)), we have G.U U & eV[G.U] = V,U in L*(Q x V).

Later on, in the proof of Theorem 4.1, it will be essential to interchange differentiation
and folding of two-scale functions U € L*(92; H'())). However, convenient commutation
relations, such as F.(V,U™) = eV(F.U) or G.(V,U) = eV(G. U), cannot be expected,
since F.U ¢ H'(Q) and V,U ¢ L*(Q; H(Y)). Instead, we establish a kind of commu-
tation between F.(V,U®) and eV (G. U). More precisely, the following result shows that
F. U and G. U are comparable in the sense that their difference vanishes.

Theorem 3.9 (Comparison of . and G.). For all U € L*(Q; H'(Y)) we have
| F-U™ =G, U||L2(Q) + | Fe(V,U)™ — eV (G U)HB(Q) — 0 fore — 0.
Proof. Recalling the abbreviation H = L?(2), we have

| FeUS = G Ul + [| Fo(VyU)™ = eVI(GU)llu
<[ FUS=Ullg + U= G- Ul + | Fo(VyU)* =V Ulla + [[VyU=eV(G:U) | u,

which converges to 0 by Proposition 3.4(d) for the terms involving F. and by Proposition
3.8 for the terms involving G.. !

4 Homogenization of the degenerating equation

In this section we consider reaction-diffusion systems with nonlinear reactions and a dif-
fusion term degenerating for ¢ — 0,

vi = div(e?DVe®) + f(vF) in Qrp,
= (2D°Vo®) -7 on I'r, (4.1.P,)
v5(0) = v§ in Q.

Relying on the fruits of Section 2.2, we rigorously derive a homogenization result for
e — 0in (4.1.P.), stating the existence of a uniquely determined effective equation given
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by (4.4.Pg) below. In Section 4.3, we prove that the weak solutions of (4.1.P.) converge
in the two-scale sense to the weak solution of (4.4.Py).
We will assume that D® ~» D and f¢ ~» F'in a suitable manner, specified in assumption

(4.9.A._9) in Section 4.1. In view of the convergences v° 2NV and eV ﬂvyv in
L*(©2 x V), see Theorem 3.5(b), we formally expect a result of the following type:

Jovi-pda = Jo—DFeVt eV + f5(v°) - pda forall p € X,
l l fore — 0 (4.2)
Vi-®dedy = —-DV,V:V, o+ F(V) -ddxdy forall d € X.
Qxy Qxy Yy Y

To deduce the convergence of the weak forms (4.2), we have to cope with the fact that (v°).
converges a priori only weakly in the two-scale sense and therefore the passage f€(v°) ~
F(V) is not straight forward, because f¢ and F are in general nonlinear. If we had
the strong two-scale convergence of the sequence of solutions (v°)., then f(v%) ~ F(V)
would follow easily. For the special case of f¢ being the gradient of a A-convex potential
¢, a rigorous convergence result of the type (4.2) was deduced in [HIM94, Prop. 12| via
methods of convex analysis. In contrast to this, our approach to verify convergence (4.2)
(in Theorem 4.1), indeed is to show that the sequence of solutions (v¥). C H'(0,7; H'())
converges even strongly in the two-scale sense to some limit V € H'(0,T; L*(Q; HY(Y))),
more precisely:

uniformly for all ¢t € [0,7] : v°(¢) 2, V(t)in L*(2 x ),

b, maxocicr | 7 07(8) — V(D) ooy — 0. 30)
pointwise for all t € [0,T] : eVes(t) 2>V, V(t) in L2(Q x V) (43b)
and eVo© =5V, V in L0, T; L2(Q x V),

v 2NV, in L2(0, T; LA x V), (4.3¢)

where V € H*(0,T; L*(2; H'()))) is the unique weak solution of the effective equation

V, = div, (DV,V)+ F(V) inQp x Y,

V(0,2,y) = Vil(w,y) inQx Y. (4.4.Po)

The proof of convergence (4.2), in particular of the strong two-scale convergence results in
(4.3a)—(4.3b), relies on a clever choice of test functions, suitable for the weak formulations
of the e- and the limit problem, i.e. (4.1.P.) and (4.4.Py), respectively. For the latter,
suitable test functions must belong to L?*(Q2; H'(Y)), in particular they have to be Y-
periodic. The most direct candidate (Z: v*(¢)). for t € [0,7] fixed, supplies the required
convergence but is incompatible with Y-periodicity, since 7. v¢(t) € L*(R? H*(Y')), only,
and H'(Y) = H,.(Y) & H'(Y). But the T.-property (1.7) guarantees the recovery of
Y -periodicity for the limit, which thus is compatible with the space of test functions of
the limit problem. This is an essential observation for the proof of the strong two-scale
convergence (4.3a).

In Section 4.1, we state the assumptions on the given data, which are needed to rigor-
ously carry out the limit passage in (4.2). Based on these assumptions, we expound the
existence of unique weak solutions v° to (4.1.P.) and V to (4.4.Py), independently of the
limit passage. From the uniform boundedness of the solutions (v°)., by Theorem 3.5(b),
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we conclude that there exists a two-scale function V such that v° 2V and e Vs 2% vyf/,
up to subsequences, and it is not known a-priori that V' solves (4.4.Py). In Theorem 4.1,

Section 4.3, it is shown that v° 2—S>V, where V' solves (4.4.Pj) and hence that V= V,
which makes the passage to the limit in (4.2) rigorous. The abstract strategy of the proof
is presented in Section 4.2.

4.1 Assumptions and a priori bounds

Adjusted to the structure of problem (4.1.P.), respectively (4.4.Py), we introduce the
following function spaces so that the definitions and results from Section 2 are immediately
applicable. Recalling (2.2), we set for ¢ > 0

X. := X equipped with the norm |[|v||x. := ||v||g + &|| Vv x- (4.5)

Since for ¢ > 0 fixed, both norms, || - ||x and || - ||x., are equivalent, we have that
X = X, C H. Thus X. C H is dense and continuously embedded and we obtain that
X. C H C X! is an evolution triple. Moreover we define

X:=L*Q;HY(Y)) and H:=L*(Qx ), (4.6)

which again yields an evolution triple X C H C X*. Throughout Section 4, we impose
the following assumptions on the given data:

Data specification for the e-problem (4.1.P.):
Ve>0: D e M(Q,u,Dy), ff€F(Q,L,Cp), and

30 >0 || div(E@DVeg) | + il < C. (47.Ac)
Data specification for the limit problem (4.4.P):
DeM(Q XYV, u,Dy), FEFQ x Y, L,Cp), and (4.8.4,)

div, (DV,Vy), Vp € H.

Convergence of data:

T.D(x,y) — D*(z,y) for a.a. (x,y) € R x Y,
Felt, - A)ZF(t,-, -, A) in H, for all (t, A) € [0,T] x R™, (4.9.A. o)

2s .
vg— Vo in HL

By (4.7.A.), relying on Theorem 2.1 and Proposition 2.2, we have the existence of a
unique weak solution v € H'(0,7; X.) N H*(0,T; X*) of (4.1.P.). The additional regu-
larity assumptions in (4.7.A.), i.e. div(?D*V5) uniformly bounded in H, as well as their
analogies in (4.8.A), ensure improved time-regularity for the solutions via Proposition
2.2, see (4.10), respectively (4.11), below. On the one hand, this improved time-regularity
helps to overcome the technical difficulty that the operators 7; and F, from Section 3.2
are defined for integrable functions only. On the other hand, it allows us to find uniform
upper bounds pointwise and uniform in time, which will simplify the proof of Theorem
4.1:

[v¥[lor o,y + 0% 0,70 + V¥ B2 (0,7 x2) < Ce (4.10)
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To determine the constant C, we have used that, by (4.7.A.), the diffusion tensor D=,
resp. reaction term f¢, belong to the same class for all € > 0, namely M(€, u, D), resp.
F(Q, L, Cy). Therefore 5\2/[6)2_"; < D—\/"ﬁ" provides a uniform bound on v in (2.8) and (2.10)
for all € € (0,1). In view of the definition of X., we obtain the existence of a constant
Cy > 0, independent of ¢, such that (4.10) holds for all € € (0,1).

Analogously, for the limit problem (4.4.Py), we may apply Theorem 2.1 and Proposi-
tion 2.2 to obtain the existence of a unique weak solution V' € H'(0,T;X) N H?(0,T;X*)

of (4.4.Py). Again, estimates (2.8) and (2.10) imply

IV lerqome + 1V Iz 0.15%) + 1V 2200, 75%0) < s (4.11)

with Cj, from (4.10), since the given data belong to the same classes of diffusion tensors
and reaction terms, in particular with the same parameters (u, Do, L, Csyo).

4.2 Abstract strategy for proving strong two-scale convergence

To highlight the general approach to the proof of the strong two-scale convergence result
(4.3a), we consider the two abstract systems

v = A% + f5(v°) and V,=AV +F(V) (4.12)

in the Hilbert spaces X C 'H and X C H, respectively. The operators A° and A are given
in terms of uniformly bounded and uniformly elliptic quadratic forms, namely

B.(v,w) = (—A%v,w) and BV, W)= (—AV,W).

We consider an unfolding operator 7. : H — H which also satisfies 7. : X — 32, where
X ; X'is a closed subspace. For the corresponding folding operators F. : H — H and
G. : X — X, we assume that 7.' = F. and that F. and G. are comparable in the sense of
Theorem 3.9.
We want to show that the solution v® converges to V', i.e. W — 0 in H or w® — 0 in
‘H, where
We . =T, v*—=V and w® :=v°—GqG.V.

For the proof we resort to working with W* instead of w*®, since this gives the desired two-
scale convergence more directly. In particular, to establish this convergence for (W¢)., we
derive a Gronwall estimate

——||W*||* < L||W* A€ 4.1
SR < LI + A (1.13)
where || - || stands for the norm in the Hilbert space H. From
1 d £ £ € 1 € £
&I = (W, W) = (T, W7) — (Vi ) (4.14)

we see that it is desirable to test the equations (4.12) with F. W¢ and W*#, respectively.
However this is not possible as we do neither have 7. W¢ € X nor W*¢ € X. Indeed
w® € X is an admissible test function for (4.12), but 7o w® ¢ X, due to T.v* € X 2 X.

Observe that B, : X x X — R, whereas B : X x X — R. To overcome this discrepancy
in the underlying spaces X and X, we replace B. with a quadratic form B, : X x X — R
with the same properties as B. and compensate their mismatch by an additional error
term. Thus, we obtain four different types of errors, namely
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1. A§ for the folding mismatch between F.V and G.V

2. A§ for the incompatibility of T v € X 2 X,

3. Aj for the approzimation error between B and B., and

4. Aj for the approxzimation error between f° and F.
More precisely, we test (4.12), with w® = (v° = F.V) + (F.V — G.V), transform the
equation from X to X using 7; and B, so that we obtain

((Zov%)y, W) = =B(To ", WF) + (T f5(Tev7), WF)) + (4.15)
where A7 = {((Zov%), W) + Bo(To 0", WF) — (72 f(Tev ) )
—(vpw) = Bt wt) o (fF(07),w).

We may additionally assume that B is well-defined on X as well. However, testing (4.12),
with We € X is not allowed, since equation (4.12), is valid in the subspace X, only.
Nevertheless, each of the expressions (V;, W<)), B(V,W?#), (F(V),W*)) is well-defined.
Therefore we test (4.12), with V' only, include the missing terms containing 7 v* and
compensate them by the incompatibility error term AS via

(Vi W) = =(Vi, V) + (Vi, e v”)) = B(V, V) = (F(V), V) + (Vi, T-0%))
= =BV, W?) + (F(V), W#)) — A3, (4.16)
where AS := —(V,, T.v%) — B(V, 7. 0v°) + (F(V), 7. v°)).

Since V' is a weak solution in X, the error Aj would vanish, if 7.v° € X, i.e. 7.0°

would be an admissible test function. In general this is not the case, but in analogy to

the Z.-property of recovered periodicity (1.7), we may assume that V' = w-lim._q7; v° is

compatible with the space X, despite the fact that 7; v® ¢ X. Thus, we have lim. o A§ = 0.
Inserting (4.15) & (4.16) into (4.14), we obtain

1d

S IWE I = =BT, W) + BV, W9) + (T2 f2(T0), W) — (R(V), W)
+AS + A
= —B. (W, W) + (T f(1- [7) = T- [°(V),W")) + A%, (4.17)

where A® := Zle A¢ collects also the approzimation errors of the given data, viz.
A =BV, W) =B (V.W?) and Aj:= (T f(V), W) — (F(V), W)

Exploiting the uniform ellipticity of B. and the global Lipschitz continuity of f¢,
equation (4.17) yields the Gronwall estimate (4.13). It is then left to show that the error
A°® vanishes for ¢ — 0. Together with the assumption W¢(0) — 0, one then obtains the
desired result We(t) — 0 for all £ > 0.

4.3 Main theorem on the strong two-scale convergence

In this section we prove the strong two-scale convergence of the slow diffusive variable v®,
which is the most critical ingredient for the homogenization of the degenerating equation
(4.1.P.) and the system of coupled equations (1.1.PP).
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Theorem 4.1 (Strong two-scale convergence of the slow diffusive variable). Let the as-
sumptions (4.7.A¢), (4.8.A0), and (4.9.A._0) hold true; then the weak solutions (v°). of
(4.1.P.) two-scale converge to the weak solution V of (4.4.Py) as stated in (4.3).

The proof goes along the abstract strategy explained in Section 4.2, where we set

H=H=L*Q), X=X=HY(Q), H=L*Qx)Y),
X = LX(Q: H'(Y)) € X = L2(Q; H'(Y)), (4.18)
A = div(e’D*Vov) and AV = div,(DV,V) forve X and V € X.

Integrating by parts and using the no-flux resp. periodic boundary conditions, the quadratic
forms read

B.(v,w) = (— div(e?D*Vv), w) x- x = / D*eVu : eVwdz,
Q

B(V, W):<(—divy(]D)VyV),W>)X*,X:/ DV,V : V,W dz dy.
QOxY

For technical reasons, we prove the convergence W¢(t) — 0 in L*(R¢ x )) for all
t € [0,7] and not in H = L*(Q2 x V). Here,

We(t) =T v°(t) — V(t) € X, (4.19)

by Theorem 3.2(a). To this end, we extend all functions V' € H, resp. V' € X, to the whole
R? with 0 outside of Q so that V* € L2(R? x ), resp. V** € L*(R% H'(Y)). Thereby
no regularity is lost, since in any case V' is only square-integrable with respect to = € ().

Before entering the details of the proof, let us now sketch its main steps:

Step 1. Extraction of weakly convergent subsequences: The a priori bound (4.10) allows
us to extract a weakly two-scale converging subsequence of (v°). with a limit V.
By improving the convergence from weak to strong in the subsequent steps, we are
able to show that V' equals the unique solution V' of (4.4.Py) and to conclude the
convergence of the whole sequence.

Step 2. Reformulation of (4.1.P.) and specification of the folding mismatch Aj: The
underlying domains of the e-problem (4.1.P.) and the effective one (4.4.Pg) are Q
and  x Y. To subtract their weak formulations, as in (4.14)—(4.16), we unfold the
e-problem to the common domain of integration R? x ) by using the folding and
unfolding operators from Sections 3.2 and 3.4. Inserting a suitable test function, we
arrive at the definition of the folding mismatch A§ as specified in (4.15).

Step 3. Specification of the incompatibility error A5: We derive equation (4.16) and the
exact form of the error term A induced by the incompatibility of 7; v, see (1.7).
The error terms A] and A§ look in principle as in Section 4.2, but are a little more
involved owing to the precise definition of the folding and unfolding operators.

Step 4. Preparation of the Gronwall estimate and the approzimation errors A5 and Aj:
As in (4.13) & (4.17), we subtract the reformulated weak formulations of (4.1.P.)
and (4.4.Py), derived in Step 2-3, and we precise the error terms A5 and Aj, which
contain the approximation errors D¢ ~» D and f¢ ~» F.

Step 5. Estimation of W€ via Gronwall’s lemma as in (4.13).
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Step 6. Control of the error terms A; and the strong two-scale convergence (4.3a).
Step 7. Derivation of the remaining convergences (4.3b)—(4.3c).

Proof of Theorem 4.1. Step 1: FExtraction of weakly convergent subsequences. The
uniform bound (4.10) implies ||v*||c1om:m) + VO ||m1 o,y < C. Using the Arzela-
Ascoli theorem together with Theorem 3.5(b), we find a subsequence €’ of £ and a limit
V e CY([0,T); H) N H'(0, T; X) such that
Viel0,T]: o7 () Z5V(t) and Vo (t) 22V, V(1) in H. (4.20)

For the subsequent steps we resort to working with the above extracted subsequence,
labeling it by € again for notational simplicity.

Step 2: Reformulation of (4.1.P.) and specification of the folding mismatch Aj. Let
t € [0,T] be arbitrary but fixed and let all upcoming equations hold for all ¢t € [0, 7], if
not stated otherwise. The weak formulation of (4.1.P.) reads

/ vp - pdr = / —DeVo® : eV + f7(v°) - pda forall p € X,. (4.21)
Q QO

Let V € H'(0,T;X)N H?(0, T;X*) be the unique weak solution of (4.4.Py) and we choose
the test function ¢* = v®* — G.V € X,, according to Definition 3.7. Using the identity
F. 1. = id|2(q) and adding £ F. V and £ F.(V,V), we obtain

/vf CFT.v*=V)de = / D" eV B [1.(eV©) -V, V]
Q

Q
FFE(0°) - Fu(Tv V) da + AS (4.22)

with the folding mismatch error
. / FOF) - (FoV=Go V) =5 - (V= G. V) — eDVs : [Fu(V,V)—eV(G. V)] da.
Q

Since 7. is a linear and bounded operator, it commutes with differentiation, i.e. 7_(v§) =
(7:v°);. Exploiting F." = T¢, as well as T.[DcVv®] = T.D° T.(eVv®), T[f¢(v°)] =
7. f°(7:v°) and T.(eVv®) = V(7 v°) (Theorem 3.2 and (3.3)), we arrive at

/(zve)t-we dedy = /Teff(zve)Wf—Tevay(?;ve) LV, Wedrdy + A5

Rdxy Ridxy
(4.23)

Hence, the reformulation of (4.1.P.) is completed, and (4.15) is established with

B.(V, W) = /R ; T.DFV,V : V,W dz dy.

Step 3: Specification of the incompatibility error A5.  Next we consider the weak
formulation of the effective equation (4.4.Py)

/ Vi ®dedy = / -DV,V :V, o+ F(V)-®dedy forall ® € X. (4.24)
Qxy Qxy
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We aim to derive (4.16), but we observe a discrepancy in the domains of integration in
(4.23) and (4.24). Therefore we reformulate (4.24) by extending all the functions by 0
outside of €2, i.e.

/ V;ex . @d![’ dy _ / _Dexvyvex . qu) + Fex(vex) . @d![’ dy
RIxY RiIxY

for all ® € L*(R% H*(Y)). (4.25)

Although ® = 7.v° is not admissible in (4.25) because of the Z.-property (1.7), each
integral expression in (4.25), considered on its own, is well-defined for ® = 7; v°. Because
of this, we test (4.25) with & = V* only and then add and subtract the missing terms
V- Tovf + DV, V  V (To0°) — F(V) - 0° at the cost of creating the error A§:

—/ l/f’X-Wad:de:/ V;eX-VeXd:)sdy—/ V& - Tovtdaedy

R xY RIxYy RIxYy

= / D=V, VeV, VE 4+ FE(VE) . VS daedy — / Ve Tt dae dy
RixYy

RidxYy

= / D=V, VeV, We — FVS) - Wedr dy + A3, (4.26)
Ridxy
where the incompatibility error is given by
Af = / D=V, V(T2 0°) + FE(VE) - Tov® = V- Tov® de dy.
RidxYy

Thus (4.16) is established.

Step 4: Preparation of the Gronwall estimate and the approximation errors A5 and
Aj. For applying Gronwall’s lemma at the end of Step 5, we now prepare the estimate
(4.13). We begin by adding (4.23) and (4.26), as suggested in (4.14) & (4.17),

1d ex <
§EHWEH%2(WX;}) :/ Wf~W€dxdy: / (’ng":)t-V(/'e—V;e -Wedx dy
RIxY RIxY

- / — LDV (T0f) : VW + T2 f5(Tov?) - Weda dy + AS
Rdxy
+ / D™V, VeV, W — F(V) . Wedady + A5, (4.27)
RIxYy

Rewriting the gradient terms via
—1T.D°V, (7. v°) : V,W* + D™V, V™.V, W*
=-7.D°V,W*: vV ,W*+ (D™ - 7. D°)V, V™ : V,W*,
equation (4.27) takes the form

1d, .
LU .

- / — LDEV, W VW + T (Tl - W — F(V) - We da dy
Ridxy
FAS AL AL (4.28)

where  Af := / (D™ — 7. D)V, V= : V,Wedz dy.
RIxYy
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Analogously we rearrange the reaction terms in (4.28) via

,]; fe(/]; ,Us) CWE — Fox(vex) W
= [T f(T0”) = T (V)] WEH [T f2(V) = F(VE)] - W, (4.29)

Moreover we define the approximation error Aj for f° via
4
A = / [7: (V) — F(V™)] - Wedaedy and  A® = Z As.
Rixy i=1

Hence, A®(t) depends implicitly on ¢ via the functions f°, F' and the solutions v®, V.
Step 5: Estimating W€ in terms of A® via Gronwall’s lemma. Using (4.29), the
ellipticity of D and the global Lipschitz continuity of f€ in (4.28) yield for all ¢t € [0, T]

1d
§E||W€(t>“%2(]l§d><y) (4.30)
= [ STV IR WA + T T 0)- T V) W) dedy
R xYy
+ AS(t)

< —plIVyWE O L2 @ary) + LW Ol L2 gary) + A1) < LW ) |[72@any) + A%().

Applying Gronwall’s lemma we obtain, for all ¢t € [0, 7], the estimate
t
€ L € €
WA sy < (IO By +2 | A7) )

T
< T ([W(0) sy + 2 /0 A%(s)ds). (4.31)

Step 6: Controlling the error terms A5 and the strong convergence (4.3a). To show
that the right-hand side in (4.31) vanishes as ¢ — 0, we provide an e-independent and
integrable majorant for each AS : [0,7] — [0,00) and show further that A$(¢) — 0 for all
t€[0,7T] as e — 0.

For the folding mismatch error A] we apply Holder’s inequality, the assumptions on
the given data (4.7.A.), and the uniform bound (4.10) so that we arrive at

AT = ‘ /Q —v; (1) - (Fe V(1) =G V(1) = D7eVor(t) : (F[V, V()] —eVI[G. V(1)])

+ () - (F V()= G V() de dy
< CG) (1 F V) =G VOl + | F[Vy V()] =eVIG V(D] 1)

By the a priori estimate (4.11) we find the uniform L>®-majorant |Aj(t)| < C(C}). More-

over, Theorem 3.9 guarantees the pointwise convergence Aj(¢) =290 for all ¢.

For the incompatibility error A5(¢) the uniform bounds (4.10)-(4.11) provide an L>—
majorant, whereas the pointwise convergence follows form the 7.-property of recovered
periodicity (1.7), since V (t) € X obtained in (4.20) is an admissible test function for the
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weak solution V. Indeed, we have
B5(0)= [ DIV O (T )+ P V) - Tl ) - V() T () dedy
RdxYy
=0, / DV, V() - V, V() + FE(8, V() - V() — V() - V() da dy
Rdxy
=0,
since V' solves (4.24).

With the same arguments we obtain L>*-majorants for the approximation errors A§
and Aj. Moreover, Lemma 3.6(a&b) and (4.9.A._¢)1 2 yield

AS(H)] = / (Dox-sz)vyvm(t);vywe(t)dxdy‘
R xYy
< 20, )|(D™ — T. D)V, V(1) | 2y — 0 and
201=| [T v - v W ddy
RixYy

< 2G| L F2(t, V(1)) — F(t, V()| 2y — 0 for all ¢ € [0, 7).

Since the dominated convergence yields f0T|A€(t)|dt =29 0 and (4.9.A._g); implies
ex —0
WO T2 @areyy = I T2 05 — V™[22 gaxyy == 0, we conclude maxeo 7] [|[W* ()| n2(rixy)

=% 0 and the strong convergence of the subsequence extracted in (4.20) is established.
With the usual arguments, by considering another, different subsequence and since

V € CO([0, T); H) is the unique weak solution of (4.4.Py), we conclude that We(t) 20 in
H uniformly for all ¢ € [0, 7], even for the whole sequence. Hence, (4.3a) is proved.

Step 7: Proof of the remaining convergence results (4.3b)—(4.3c). Let t € [0,7] be
arbitrary but fixed. From (4.30) we obtain

U W) gy < /R TV VW) dedy

< / —WE ) - We(t) + [T2 2, T (1) — 22 f2 (8, V()] - WE(t) do dy + A%(2)
Rdxy
< 2C|[WE ()| L2maxyy + LIWE () |72 gary) + A%(t) — 0, (4.32)

where we have used ||W7(1)|| 2@axy) < ||vf(8)[[z + [[Vi(t)||u < 205, (4.3a) and A%(t) — 0
pointwise for all ¢t € [0,7]. Integrating (4.32) over (0,7) yields V,W* — 0 strongly in
L*(0,T; L*(RY x Y)) and hence (4.3b).

It remains to prove vy 2V, in H = L*(0,T;H). By the a priori bound (4.10) we
know that v; is bounded in the Hilbert space H, and hence has a weakly convergent
subsequence with limit U. Choosing ® € C°([0,T]; H), the definition of the weak time
derivative gives

(U, @) < (T.(0), @) = (T 0)s, D) = —(T 0%, @) = —(V, Bo)u = (Vi, D).

Since ® was arbitrary we conclude U = V; and (4.3¢) is established. Thus, the proof of
Theorem 4.1 is complete. ]
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5 Homogenization of the coupled system

In this section we consider the system of two coupled reaction-diffusion systems (5.1.P¢P),
where the coupling arises via the reaction term f€ = (ff, f5), whereas the diffusion tensor
D® has block structure. We write (1.1.P:”) shortly in the form

w; = (D*Vw®) + f5(w®) in Qp,
0 = (D*Vw) -7 on I'p, (5.1.PP)
we(0) = w§ in Q.

We are looking for solutions w® := (u®, v%) : Qp — R™*™2 of (5.1.P2), where the diffusion
tensor D° : 0 — Rmitmalxd)x(imitma]xd) j5 assumed to have the form

. D3 (= 0 . R
D*(z) = ( 1(§ ) 52]1)5(15)) with D], D5 € M(€, i, Dyo). (5.2)

Hence the component v* diffuses much slower than the “classically” diffusing one u°.

The main result of this section is Theorem 5.1, which states that w® converges (for
e — 0) to a limit W that decomposes into a one-scale function v and a two-scale function
V, ie W(t,x,y) = (u(t,z),V(t,z,y)). We prove that W solves the coupled effective
system

_({ div(DegVu) fer(WV)
Wt = (dlvy(ngyV)) ‘l‘ (FQ(W)) n QT X y7 (5 3 Pcp)
0 = (DegVu) - on I'r, o
W(O) — WO in Q,

where the effective diffusion tensor Deg and the effective u-reaction f.g only depend on the
macroscopic variable x € ), while the diffusion tensor D, and the V-reaction F» depend
on the two-scale variables (x,y) € Q x Y, see (5.5.A¢) and (5.6)-(5.8) below.

5.1 Notation and existence for the coupled and effective systems

Following the notations (2.2) and (4.5)—(4.6), we define the function spaces

X, =XxX, X:=XxX, H:=HxH, and H:=HxH (5.4)

and we obtain the two evolution triples X, C H C X. and X C H € X . In the spirit of
Section 4.1, we impose the following assumptions on the data of (5.1.P%)-(5.3.P;"):

(4.7.A.) holds for D5 in (5.2), f© := (ff, f{), and w§ = (ug, vg)

satisfies || div(Ds V) [ + || div(e2DEVVE) | + ||k s < C: (5.5.A.)
(4.8.A0) holds for Dy : © x Y — Romxadxmixd) ; _ 1 9 55
Fi= (F, F): [0,T] x Q x Y x Rm+m _ Rmitme and Wy 030
(4.9.A._) holds for D5 ~ Dy, ff~ F;, i = 1,2, and w§~ W,. (5.5.A. )

The effective diffusion tensor Des and the effective reaction term fog of the classical
equation (5.3.P")s are given as follows. The function-to-function map feg : [0,7] X © x
R™ x L*(Y;R™) — R™ is defined as

fer(t,x,u, Z) ::/)}Fl(t,x,y,u,Z(y))dy. (5.6)
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The effective diffusion tensor Dyg : Q — R xd)x(mixd) g given componentwise via the
classical homogenization formula, see e.g. |BLP78, Eq.(2.20)|, [All92, Eq.(2.6)-(2.7)],
[ILNW02, Eq. (46)-(47)],

d
Des () i1 = / D1 (2, y)ijm + ZD1($7 Yijrr = Oy, 2(Y)ma Ay, (5.7)
y

r=1

for i,k = 1,...,mq, j,l = 1,...,d, where the so-called correctors z;; € HL ()) solve the
local problem in the weak sense:

d
div, (]D)l(at, Y)ijki + ZDl(x,y)ijkr . 8yr,z(y)kl> =0 in )Y for a.a. x € Q. (5.8)

r=1

It is easy to check that fer € F(Q, L, C) and Doy again satisfies Doy € M(€2, 1, %), see
e.g. [CiD99, Thm. 13.4| or [MuT97, Thm. 2|, since D; in particular H-converges to Deg.

For given 7" > 0 and all ¢ € (0,1), Theorem 2.1 and Proposition 2.2 yield the
existence of unique weak solutions w® € H'(0,7;X.) N H*(0,T;X.) of (5.1.P®) and
W e H'(0,T;X) N H*(0,T;X) of (5.3.P%) with

3G, 200wl merxonmorxy T IWlaergomers) < G (5.9)

Note that this improved time-regularity is valid in the weighted space X, i.e. [|w®|% =
el 0y + VU Nz ) + €21 VV 720

5.2 Convergence of the coupled system

Finally we present the convergence result for the coupled system involving the concentra-
tions u(t,z) € R™ for the classical diffusive species and the concentrations v(t, z) € R™
for the slow diffusive species.

Theorem 5.1. Let the assumptions (5.5.A.), (5.5.A¢) and (5.5.A._) be satisfied. The
sequence of weak solutions w® = (uf,v°) € HY(0,T;X.) N H*>(0,T;X.) of (5.1.P%) con-
verges to the weak solution (u,V) € H'(0,T;X)NH?(0,T:X) of (5.3.P) in the following
sense: There exists a function U € L*(0,T; L*(Q; HL,(Y))) such that

u® —u in HY(0,T; X), ve(t) 2—S>V(t) in H for all t € [0,T],
Vue 25 Vu+ VU in L2(0, Ty H), eVoe(t) 2 V,V(t) in L2(0,T; H), (5.10)
us — uy in HY(0,T: X*), v 25V, in L2(0, T H).

Moreover, one can prove Vi 25 Vu + V,U in L*(0,T;H) in a similar manner as
eVue(t) >, V,V(t) in L*(0,T;H) is proved, by defining another gradient folding operator
G.: X x X — X, cf. [Han11, MiT07].

The proof relies heavily on Theorem 4.1 and the well-known techniques from the
classical theory of non-degenerating two-scale homogenization. In order to give a rigorous
derivation of (5.3.P("), it is essential to know that v® converges strongly in the two-scale
sense, otherwise one cannot pass to the limit with the term f{(u®,v). Hence, we want to
use the improved time-regularity (Proposition 2.2) for v* in order to apply Theorem 4.1.
Therefore we need in particular u; € X C X*, which is satisfied for ui € H C X7 as
stated in (5.9).
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Proof of Theorem 5.1. Let w® be the weak solution of (5.1.P{") satisfying (5.9). Ap-
plying Banach’s selection principle yields the existence of a function v € H(0,7; X) N
H?(0,T; X*) such that u* — w in H'(0,7; X) and u{ — u; in H'(0,T; X*) hold true, up
to a subsequence. Moreover, Theorem 3.5(c) yields U € L?(0,T; L*(Q; HL ()))) such that
Vs 2 Vu+V,U in L*(0,T;H), up to a subsequence. In particular, the compact embed-
dings X C H and H*(0,T;X) C C*([0,T]; X), for o € (0, 3), together with Proposition
3.4(d) yield

Ve [0,T]: wu(t)—u(t) in H = u(t)>u(t) inH. (5.11)

Testing (5.1.P%) with functions of the kind (¢,0) € X, or (0,¢) € X., we can consider
the first, or “classical”, equation (5.1.PZ"), separated from the degenerating second one
(5.1.PP),.

Step 1: Convergence of the slow diffusive variable v¢. In view of the notation from
Section 4, we set ¢°(t,x, A) := f5(t,z,us(t,x), A), F(t,x,y, A) := Fp(t, z,y,u(t, x), A) for
A€ R™ and H := L%(R? x Y) for brevity. Then Lemma 3.6(b) with U(z, y) = u(z) and
the strong convergence (5.11) give

1 7:[g°(A)] - FCX(A)HCO([O,T};]EI)
< | T f3(Tew, A) = Ic f5(u, A)Hcﬂ([oﬂ;]ﬁ) + 1 72 f3(u, A) — Fy*(u, A)Hcﬂ([oﬂ;]ﬁ)
SL|Tw - UHCO([O,T];EI) + | 7 f3(u, A) — F5*(u, A)HCO([O,T];[FH) — 0, (5.12)

which implies ¢°(t, -, A) iFeX(t, -+, A) in H for all (¢, A) € [0,7] x R™. Thus we can
apply Theorem 4.1 to the degenerating equation v; = div(e*D5Vv®) + ¢°(v°) in Qr and
we obtain v°(t) 2, V(t) in H for all ¢ € [0, 7], where V solves

V, = div,(D,V,V) + F(V) in Qp x Y (5.13)

with F'(V) = Fy(u, V). The convergences eVv* >, V,V and v; 2V, in L*(0,T;H) follow
from (4.3). Hence (5.10) is shown, up to a subsequence, and it is left to prove that the
limit W = (u, V'), in particular u, solves (5.3.Pg").

Step 2: “Classical” homogenization. We begin with considering the convergence of the
reaction term f§. Arguing as in (5.12) gives

I (u,0%)] = Fa(u, V)l oo,y
< LT w®, Tov®) — (w, V)l ooy + 1 T2 f1(w, V) = Fa(w, V)l oo iy — 0- - (5.14)

From (5.14) and Proposition 3.4(e), we infer f{(u®,v®) — feg(u,V) in L*(0,T; H). We
derive (5.3.P¢"), by exploiting the convergences in (5.10), up to subsequences so far, and
by choosing two different test functions, one after another.

(1) For ¢ € X, we clearly have Ve 2 Ve in H. Testing (5.1.P®) with (p,0) € X,
and using formula (3.4) gives

/uf-gpdzz/—]DiVue:Vg0+ff(u€,ve)-g0d:v

Q Q

= [uedo= [ SIDITE)TVo s+ [ ) s
Q R xYy Q

=9, u - pdr = / — (/ Dy [Vu + V,U] dy) Vo + fer(u,V)-pde  (5.15)
Q Q y
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a.e. in (0,7"). For the passage ﬂ, we have applied Lemma 3.6(a) to each component of
(7- D7) 7.(Vu®) : T.(Vp). The strong formulation of (5.15) then reads

uy = div (/ Dy [Vu + V,U] dy) + fer(u, V) in Qp, (5.16)
Yy

where [}, D1[Vu + V,Uldy = DegVu with Deg from (5.7) will be deduced in part (3)

below. Note that (5.16) already resembles the structure of (5.3.P¢"),.

(2) Secondly we test (5.1.P¢P) with (¢°,0) € X, for ¢°(x) := ep1(7)p2(%), where ¢ €
(

C>=(Q) and ¢, € C=(Y). Notice that V¢ (z) = eV (2)@2(£) +¢1(2) Vypa(Z) as well as

(02(2), Vepa(2)) Z(pa, Vypa) in X since T[p(2)] = ¢(y). Thus (5, V) 2(0, 01V,02)
in X and we proceed as in (5.15), which gives

z
€

0= / Dy [Vu + V,U] : 91V o dzdy.
QxYy

Applying the fundamental lemma in the calculus of variations twice and using integration
by parts once, we arrive at the local problem

div,(D;[Vu+V,U]) =0 in Qp x Y, (5.17)

which is an elliptic PDE on ) and Q7 may be considered as a set of parameters. With
the three equations (5.13), (5.16), and (5.17), the functions u, U, and V are uniquely
determined (in the sense of weak solutions).

(3) In order to derive (5.7)-(5.8), we use the ansatz of separation of variables U;(x,y) =
Vu;(x) - z(y) = Zzzl Oy ui(x) - zip(y) for 2z € HE(Y), i = 1,..omy, k = 1,...,d (cf.
[ILNWO02, Eq. (48)]). Let us assume we can write DegVu in the form

DotV (z) = /y Dz, ) [Vu(z) + V,U(z, )] dy. (5.18)

Inserting V, Ui(x,y) = Vu;(z) - 9,,2i(y), j = 1,....d, in (5.17)-(5.18) yields (5.7)-(5.8).
Since the limit W solves (5.3.P;") uniquely, the whole sequence converges in (5.10)
and the identity in (5.18) is justified. O

5.3 Discussion of the assumptions

For given D € M(2 x Y, u, D) and F € F(Q x Y, L,C,,), the natural choice for data
satisfying (4.7.A.)-(4.9.A._0) is to set,

D = F.D™ and fo(t,-, A) == F. F*(¢,-,-, A) for all (¢, A) € [0,T] x R™. (5.19)

Clearly D° € M(Q, pu, Do) and f¢ € F(Q,L,Cy). It remains to verify (4.9.A._) for
the choice (5.19). Proposition 3.4(c) implies directly f(¢,-, A) 2, F(t,-,-,A) in H for all
(t,A) € [0,T] x R™. The pointwise convergence 7. D° — D™ a.e. in R? x ) is proved in
the following result.

Proposition 5.2. For D € L>®(Q x V), we have T F.D*(x,y) — D*(z,y) for a.a.
(r,y) e REx Y.
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Proof. Recalling the notations introduced in Section 3.1, we set A, := Qa X Y and
B, :={z € R|(M.(x) +eY) N Q = 0} x Y. Let Nacgiam(v)(I') denote the 2ediam(Y)-
neighborhood of the boundary I', then we set N, := Nogiam(y)(I') X YV and it holds
A.NB.=0and A.UN.UB, =R? x ).

Let an arbitrary point (z,y) € R? x J be given. Then there exists £y > 0 such that
(x,y) ¢ N, for all ¢ < gy, see (3.1). Therefore it holds either (1) (z,y) € A. or (2)
(x,y) € B..

Ad (1). For (z,y) € A., the Lebesgue-Besicovitch differentiation theorem, cf. [EvG92,
Thm. 1 p. 43|, yields

(T.DF) (2, y) = (T. F. D)z, y) = ][ L DEw) T D)

Ad (2). If (z,y) € B., then (7:D°)(x,y) = 0 = D™(2,y) and the proof is finished. O

The choice of the initial values v§ and V} is more involved, cf. (2.12), and is elaborated
in the following proposition.

Proposition 5.3. For arbitrary G € H given, let Vi be the unique weak solution of
div,(DV,V5) = Vo =G in Q x ). (5.20)

Then there exists a sequence of functions (v§). bounded in X. such that v§ 2, Vo in X and
div(e’D°Vvf) — v5 = F. G in Q. (5.21)

Recalling (4.18), we have in particular that AV} and A®v§ are uniformly bounded in
H and H, respectively. Hence choosing Vi and v§ as in (5.20) and (5.21), respectively, the
assumption (4.9.A._) is satisfied. An obvious choice for G € H is G = F(V}).

Proof. It is well-known in the literature, cf. [All92, PeB08, Hanll, MeM10]|, that the

2w

sequence (v§). of solutions of (5.21) are uniformly bounded in X, and that v§ — V} in X
where Vj solves (5.20). The strong two-scale convergence follows from the estimate (cf.
[Hanll, Thm.4.1 & Rem. 5.1|)

min{p, 1}| 7: v5 — ‘/OCXH%Z(Rd;Hl(Y))

< [ TDV(T g V) V(T — V) + (T — V) dedy
RIxYy
-/ { TDV,(T00) : V(T vf) + (Toof)? + DV, Ve« VU + (V)2
d ~ ~~ 7 ~- 2
Ry =T, F. G T of = Gex.ygx

— LDV (Tvg) : V V5™ = LDV, V5™ : Vy (o) — 2T - V5™
+ (T.DF — D™V, V™ : vyx/OCX} da dy

ﬂ) / 2Gex ) Vbex _ Q]Dexvy‘/oex . vy‘/oex _ 2(‘/0ex)2 ‘l‘ 0 dl’ dy — 0 D
R4 xY
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Remark 5.4 (Connection to [Eck05]). We assume that the solution of (4.4.P) is smooth,
ie. Ve CHQ x DY), and we set [V]*(x) := V(z,Z). Then one can easily show that
lv° = [Vl 2@ = [|v° = Fe V|2 + O(V€) and hence

ex ex ex —0
[0° = [VIFllz2) < 1 T 0" = V| 2gasy) + [V = T Fo V| 2ay) + O(Ve) = 0,

by Theorem 4.1 and Proposition 3.4(c). Under suitable smoothness assumptions, our
method reproduces the convergence rates in [Eck05], see [Reill].
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