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ABSTRACT. We prove that, in every dimension, Lipschitz nonlocal minimal surfaces are smooth. Also,
we extend to the nonlocal setting a famous theorem of De Giorgi [5] stating that the validity of Bern-
stein’s theorem in dimension n + 1 is a consequence of the nonexistence of n-dimensional singular
minimal cones in IRn.

1. INTRODUCTION

Given n > 1 and s ∈ (0, 1), we investigate the regularity of nonlocal s-minimal surfaces in IRn+1. To
begin, we recall the notion of s-perimeter and s-minimal surface, as introduced in [3].

Given two disjoint measurable setsF,G ⊆ IRn+1 we consider the s-interaction between them defined
by

L(F,G) :=

∫∫
F×G

dX dY

|X − Y |n+1+s
.

Given a measurable set E and a bounded set Ω ⊂ IRn+1, the “s-perimeter” of the set E inside Ω is
defined as

Pers(E,Ω) := L(E ∩ Ω, IRn+1) + L(E \ Ω,Ω \ E).

We say that E is a “s-minimal surface” in Ω if Pers(E,Ω) < +∞ and for any measurable set F ⊆
IRn+1 with F \ Ω = E \ Ω we have that

Pers(E,Ω) 6 Pers(F,Ω).

If E is a s-minimal surface in any ball, we simply say that E is a s-minimal surface. Namely, s-
minimal surfaces are local minimizers of the s-perimeter functional. The “s-mean curvature” of E at a
point X ∈ ∂E is defined by

(1.1) I[E](X) :=

∫
IRn+1

χE(Y )− χEc(Y )

|X − Y |n+1+s
dY,

where Ec := IRn+1 \ E. We remark that if ∂E is C2 in a neighborhood of X , then I[E](X) is well-
defined in the principal value sense. On the other hand, while a priori a s-minimal surface E may not
be smooth, it is shown in [3] that it satisfies the equation I[E](X) = 0 for any X ∈ ∂E in a suitable
viscosity sense (in particular, it satisfies the equation in the classical sense at every point where ∂E
is C2).

With this notation, s-minimal surfaces have vanishing s-mean curvature, and the analogy with the
classical perimeter case is evident. To make the analogy even stronger, we recall that, as s↗ 1, the s-
perimeter converges to the classical perimeter, with good geometric and functional analytic properties,
see [1,4].

From the results in [2,3,6] it is known that boundaries of s-minimal surfaces are C∞ with the possible
exception of a closed singular set of Hausdorff dimension at most n− 3.

The first result of this paper shows that Lipschitz s-minimal surfaces are smooth. Notice that, in the
classical case, this result is a consequence of the De Giorgi-Nash Theorem on the Hölder regularity of
solutions to uniformly elliptic equations in divergence form. However, in this nonlocal setting it does not
seem possible to use the regularity theory for nonlocal equations to deduce this result and we need to
employ geometric arguments instead.

Theorem 1.1. Let n > 1 and E be a s-minimal surface in B1 ⊂ IRn+1. Suppose that ∂E ∩ B1 is
locally Lipschitz. Then ∂E ∩B1 is C∞.

We say that a s-minimal surface E is a “s-minimal graph” if it can be written as a global graph in some
direction (that is, up to a rotation, E = {(x, τ) ∈ IRn × IR : τ < u(x)} for some function u :
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IRn → IR), and it is a “s-minimal cone” if it is a cone (that is, up to a translation, E = tE for any
t > 0). A variant of the techniques used in the proof of Theorem 1.1 allows us to show that the validity
of Bernstein’s theorem in dimension n + 1 is a consequence of the nonexistence of n-dimensional
singular s-minimal cones in IRn, thus extending to the fractional case a famous result of De Giorgi for
minimal surfaces [5]:

Theorem 1.2. Let E = {(x, τ) ∈ IRn × IR : τ < u(x)} be a s-minimal graph, and assume there
there are no singular s-minimal cones in dimension n (that is, if C ⊂ IRn is a s-minimal cone, then C
is a half-space). Then u is an affine function (thus E is a half-space).

The above result combined with the nonexistence of s-minimal cones in dimension n 6 2 (see [6])
implies the following:

Corollary 1.3. Let E = {(x, τ) ∈ IRn × IR : τ < u(x)} be a s-minimal graph, and assume that
n ∈ {1, 2}. Then u is an affine function.

When n = 1 Corollary 1.3 is a particular case of the result in [6], but for n = 2 the result is new.

The paper is organized as follows. Some preliminary results on Lipschitz functions are collected in
Section 2, and a useful observation on the asymptotic behavior of the s-minimal cones at large scale
is given in Section 3. Then, the proofs of Theorems 1.1 and 1.2 are given in Sections 4 and 5, respec-
tively.

2. TECHNICAL LEMMATA ON LIPSCHITZ FUNCTIONS

This section contains some auxiliary results of elementary nature.

In the first lemma we show that Lipschitz functions whose gradient is almost constant in a suitably
large set need to be uniformly close to an affine hyperplane:

Lemma 2.1. Let M > 0 and ω ∈ IRn with |ω| 6M . Given ε > 0 there exists δ = δ(n, ε,M) > 0,
such that the following holds: if u : B1 → IR is a M -Lipschitz function satisfying∣∣∣{x ∈ B1 : |∇u(x)− ω| > δ}

∣∣∣ 6 δ,

then |u(x)− u(0)− ω · x| 6 ε for any x ∈ B1.

Proof. In this proof C will denote a generic constant depending only M , which may change from line
to line. Set w(x) := u(x) − ω · x. It is immediate to check that w is (2M)-Lipschitz and from our
assumptions on u we get∫

B1

|∇w(x)| dx =

∫
B1∩{|∇w|<δ}

|∇w(x)| dx+

∫
B1∩{|∇w|∈[δ,2M ]}

|∇w(x)| dx 6 Cδ.

Hence, by Hölder inequality,

‖∇w‖Ln+1(B1) 6 ‖∇w‖1/(n+1)

L1(B1) ‖∇w‖
n/(n+1)
L∞(B1) 6 Cδ1/(n+1),

and applying Sobolev inequality in W 1,n+1(B1) we deduce that there exists a constant ` ∈ IR such
that

‖w − `‖L∞(B1) 6 C‖∇w‖Ln+1(B1) 6 Cδ1/(n+1).

Since
‖w − w(0)‖L∞(B1) 6 ‖w − `‖L∞(B1) + |`− w(0)| 6 2‖w − `‖L∞(B1),

this concludes the proof with ε = Cδ1/(n+1). �
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In the next result we observe that if a Lipschitz function has local growth close to the maximal one at
many points, then it needs to be uniformly close to an affine map:

Proposition 2.2. Let M > 0. Then, for any ε > 0 there exists µ = µ(n, ε,M) ∈ (0,M) such that
the following holds: fix σ ∈ ∂B1, and let u : B1 → IR be a M -Lipschitz function satisfying

(2.2)
∣∣∣{x ∈ B1 : u(x+ tkσ)− u(x) > (M − µ) tk

}∣∣∣ > (1− µ) |B1|

for some sequence tk ↘ 0. Then |u(x)− u(0)−Mσ · x| 6 ε for all x ∈ B1.

Proof. Up to a rotation we can assume that σ = e1. Set

(2.3) Ak :=
{
x ∈ B1 : u(x+ tke1)− u(x) > (M − µ) tk

}
and

A? :=
+∞⋂
k=0

+∞⋃
j=k

Aj.

Notice that |Ak| > (1− µ) |B1| (thanks to (2.2)) and
m⋂
k=0

+∞⋃
j=k

Aj ⊇ Am.

Therefore, by monotone convergence,

(2.4) |A?| = lim
m↗∞

∣∣∣∣∣
m⋂
k=0

+∞⋃
j=k

Aj

∣∣∣∣∣ > lim
m↗∞

|Am| > (1− µ) |B1|.

Let D ⊂ B1 denote the set of differentiability points of u (recall that D has full measure). We claim
that

(2.5) sup
x∈A?∩D

|∇u(x)−Me1| < µ1/4.

For this, we take x ∈ A? ∩ D. By definition of A? there exists a subsequence jk ↗ ∞ such
that x ∈ Ajk , thus, by (2.3),

u(x+ tjke1)− u(x) > (M − µ) tjk .

Dividing by tjk > 0 and letting k ↗∞ we obtain (recall that tjk ↘ 0 as k ↗∞)

(2.6) ∂1u(x) > (M − µ).

As a consequence

M2 > |∇u(x)|2 > (M − µ)2 +
n∑
i=2

|∂iu(x)|2,

which gives
n∑
i=2

|∂iu(x)|2 6 2Mµ.

Also (2.6) and the fact that ∂1u(x) 6M imply that

−µ 6 ∂1u(x)−M 6 0,

hence |∂1u(x)−M | 6 µ. We conclude that

|∇u(x)−Me1|2 = |∂1u(x)−M |2 +
n∑
i=2

|∂iu(x)|2 6 µ2 + 2Mµ <
√
µ

provided µ is sufficiently small, proving (2.5).
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By (2.4) and (2.5) we deduce that∣∣∣{x ∈ B1 : |∇u(x)−Me1| > µ1/4
}∣∣∣ 6 |B1 \ A?| 6 µ |B1| 6 µ1/4.

Hence, if µ is small enough, we can apply Lemma 2.1 with δ = µ1/4 to obtain the desired result. �

3. A REMARK ON FLAT BLOW-DOWNS

First of all, we recall here the notion of blow-up and blow-down of a s-minimal surface E, which will be
used in the proofs of Theorems 1.1 and 1.2.

Assume that 0 ∈ ∂E, define the family of sets Er := E/r, and let E0 (resp. E∞) be a cluster point
with respect to the L1

loc-convergence for Er as r ↘ 0 (resp. r ↗∞).

With this notation, E0 is called a “blow-up” of E (at 0), while E∞ is called a “blow-down”. By [3,
Theorem 9.2] we know that both E0 and E∞ are s-minimal cones passing through the origin.

In the proof of Theorem 1.2 we will use the following observation:

Lemma 3.1. If E∞ is a half-space, then E = E∞.

Proof. Up to a rotation we can assume that E∞ = {(x, τ) ∈ IRn × IR : τ 6 0}. Let rk ↗ ∞ be
a sequence such that Erk → E∞, and let ε0 be the universal flatness parameter in [3, Theorem 6.1].
By the uniform density estimates for s-minimal surfaces (see [3, Theorem 4.1]), we have that (∂Erk)∩
B1 → (∂E∞) ∩ B1 in the Hausdorff distance as rk ↗ ∞. Hence, for rk sufficiently large Erk ∩
B1 lies in an ε0-neighborhood of E∞, and [3, Theorem 6.1] yields that (∂Erk) ∩ B1/2 is a C1,α-
graph parameterized by a function urk : B1 → IR, with ‖urk‖C1,α(B1/2) 6 C for some universal
constants α ∈ (0, 1) and C > 0.

Scaling back, we deduce that (∂E) ∩ Brk/2 coincides with the graph of a function u which satisfies
u(x) = rkurk(x/rk) and u(0) = 0 (since 0 ∈ ∂E). Hence

rαk [∇u]Cα(Brk/2) = [∇urk ]Cα(B1/2) 6 C,

and by letting rk ↗ ∞ we see that∇u is constant. Thus u is a linear function, which implies that E
is a half-space. Since 0 ∈ ∂E it is immediate to check that E = Er for all r > 0, therefore (by letting
r ↗∞) E = E∞ as desired. �

4. PROOF OF THEOREM 1.1

The idea of the proof is that, in some cases, nonlocal equations give a measure theoretic estimate on
the separation of approximate solutions which in turn is helpful to control the pointwise fluctuations of
the solution.

By [3, Theorem 6.1] and [2, Theorem 5], there exists ε0 > 0 such that, if Br(X) ⊂ B1 and (∂E) ∩
Br(X) lies in a slab of height 2ε0r, then (∂E) ∩ Br/2(X) is C∞. Hence we only need to show
that, for any X ∈ B1, there exists a radius r < 1 − |X| such that (∂E) ∩ Br(X) lies in a slab of
height 2ε0r.

So, we fix X0 ∈ B1, we suppose (up to a change of coordinates) that ∂E is a Lipschitz graph in the
en+1-direction in a neighborhood of X , and we assume by contradiction that, for any r > 0 small,
(∂E) ∩Br(X0) is never trapped inside a slab of height 2ε0r.

After translating the system of coordinate we can assume thatX0 = 0, and we consider a blow-upE0

of E (recall the notation of blow-ups presented in Section 3). By [3, Theorem 9.2] we know that E0 is
a Lipschitz s-minimal cone passing through the origin, and, by uniform density estimates for s-minimal
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surfaces (see [3, Theorem 4.1]), it is immediate to check that (∂E0) ∩ BR is never trapped inside a
slab of height 2ε0R for any R > 0.

Now, up to a standard “dimension reduction argument” (see [3, Theorem 10.3]) we can “remove” all the
singular points of ∂E0 except the origin and we end up1 with the following situation: E0 is a Lipschitz
cone passing through the origin,

(4.7) (∂E0) ∩B1 does not lie in a slab of height ε0,

and ∂E0 is a Lipschitz graph in the en+1-direction which is smooth outside the origin, that is

E0 =
{
X = (x, τ) ∈ IRn × IR : τ < u(x)

}
,

(4.8) u(0) = 0, u ∈ C2(IRn \ {0}), |∇u(x)| 6M for any x 6= 0.

To be precise, the dimension reduction argument in [3] gives that u ∈ C1,α(IRn \ {0}), and by [2,
Theorem 1] we obtain that u ∈ C∞(IRn \ {0}). Of course we can take M > 0 to be the smallest
possible (i.e., M is the optimal Lipschitz constant of u).

Take µ0 := µ(n, ε0/2,M) as in Proposition 2.2. Then it follows from (4.7) that (2.2) cannot hold true.
Hence, for any σ ∈ ∂B1 there exists tσ > 0 such that

(4.9)
∣∣∣{x ∈ B1 : u(x+ tσ)− u(x) < (M − µ0) t

}∣∣∣ > µ0 |B1|

for all t ∈ (0, tσ). Now we take w0 ∈ C∞(IR, [0, 1]), with w0(t) = 0 for any t ∈ (−∞, 1/4] ∪
[3/4,+∞) and w0(t) = 1 for any t ∈ [2/5, 3/5]. We set w(x) = w0(|x|) and we observe that

(4.10) w(x) = 1 for any x ∈ B3/5 \B2/5.

Our goal is to show that there exists a constant ϑ > 0 such that

(4.11) u(x+ tσ) 6 u(x) +Mt− ϑtw(x) ∀x ∈ B1, t ∈ (0, tσ), σ ∈ ∂B1.

Before proving (4.11) we observe that, once (4.11) is established, we easily reach a contradiction and
complete the proof of Theorem 1.1. Indeed, letting t↘ 0 in (4.11) and using (4.10) we deduce that

∇u(x) · σ 6M − ϑw(x) = M − ϑ ∀x ∈ B3/5 \B2/5, σ ∈ ∂B1,

hence
|∇u(x)| 6M − ϑ ∀x ∈ B3/5 \B2/5

by the arbitrariness of σ. Since∇u is homogeneous of degree zero it follows that |∇u(x)| 6M − ϑ
for any x 6= 0, which contradicts our assumption that M was the optimal Lipschitz constant of u. So,
it only remains to prove (4.11).

For this we consider the surfaces

F := {(x, τ) ∈ IRn × IR : τ < u(x+ tσ)}
and Gϑ,α := {(x, τ) ∈ IRn × IR : τ < u(x) + (M − ϑw(x))t+ α}.

Notice that (4.11) is equivalent to

(4.12) F ⊆ Gϑ,0.

To prove (4.12) we first observe that

u(x+ tσ) 6 u(x) +Mt 6 u(x) + (M − ϑw(x))t+Mt

provided ϑ 6 M , thus F ⊆ Gϑ,α for any α > Mt. Now we reduce α till we find a critical α0 for
which Gϑ,α0 touches F from above. We claim that

(4.13) α0 6 0.

1We notice that, since ∂E0 is a Lipschitz graph, one can perform the dimension reduction argument without changing
system of coordinates. Therefore, after a finite number of blow-ups, we still end up with a Lipschitz graph.
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Suppose by contradiction that α0 > 0. Since u is M -Lipschitz we have that

u(x+ tσ) 6 u(x) +Mt < u(x) +Mt+ α0.

which implies that Gϑ,α0 and F can only touch at a some point X0 = (x0, t0) ∈ IRn × IR with
x0 ∈ supp(w) ⊂ B3/4 \ B1/4. Hence, it is easy to see (by compactness) that a contact point
X0 = (x0, t0) exists, and since x0 ∈ B3/4 \ B1/4 we have that both sets are uniformly C2 near X0,
so the s-mean curvature operators I[F ] and I[Gϑ,α0 ] (recall (1.1)) may be computed at X0 in the
classical sense.

Since F and G0,α0 are s-minimal surfaces, we have that

(4.14) I[F ](X0) = 0 = I[G0,α0 ](X0).

Also, since Gϑ,α0 is a C2-diffeomorphism of G0,α0 of size ϑt, and Gϑ,α0 is uniformly C2 in a neigh-
borhood of X0, we have that

(4.15)
∣∣I[Gϑ,α0 ](X0)

∣∣ 6 Cϑt,

for some universal constant C > 0. Furthermore, since F ⊆ Gϑ,α0 we have that

(4.16) χGϑ,α0
− χGcϑ,α0

− χF + χF c = 2χGϑ,α0
\F .

Now we define

Z :=
{
x ∈ B1 : u(x+ tσ)− u(x) < (M − µ0) t

}
⊂ IRn

and

W :=
{

(x, τ) ∈ IRn × IR : x ∈ Z and u(x+ tσ) < τ < u(x+ tσ) + µ0t/2
}
⊂ IRn+1.

We remark that |Z| > µ0 |B1| thanks to (4.9), therefore |W | > µ2
0 t |B1|/2. (Notice that, by abuse

of notation, we are using | · | to denote both the Lebesgue measure in IRn and IRn+1.)

We claim that

(4.17) (Gϑ,α0 \ F ) ⊇ W

provided ϑ is sufficiently small. Indeed, let (x, τ) ∈ W . Then x ∈ Z and u(x + tσ) < τ <
u(x+ tσ) + µ0t/2. This says that (x, τ) 6∈ F and

τ < u(x+ tσ) +
µ0t

2
< u(x) + (M − µ0) t+

µ0t

2
6 u(x) +Mt− ϑt 6 u(x) +Mt− ϑw(x)t

provided ϑ ∈ (0, µ0/4). This shows that (x, τ) ∈ Gϑ,α0 proving (4.17).

Since by construction Z ⊆ B1 ⊂ IRn and u is M -Lipschitz with u(0) = 0, we deduce that W ⊂
B1 × [−1− 2M, 1 + 2M ], which implies that

sup
Y ∈W
|X0 − Y | 6 CM

for some CM > 0, and (by (4.17)) that∣∣(Gϑ,α0 \ F ) ∩W
∣∣ = |W | > µ2

0 t |B1|
2

.
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From this, (1.1), and (4.16), we conclude that

I[Gϑ,α0 ](X0)− I[F ](X0) =

∫
IRn+1

2χGϑ,α0
\F (Y )

|X0 − Y |n+1+s
dy

>
∫
W

2χGϑ,α0
\F (Y )

|X0 − Y |n+1+s
dy

> 2C−n−1−s
M

∫
W

χGϑ,α0
\F (Y ) dy

= 2C−n−1−s
M |W |

> C−n−1−s
M µ2

0 t |B1|.
Hence, combining (4.14) and (4.15) we get

(4.18) Cϑt > I[Gϑ,α0 ](X0) = I[Gϑ,α0 ](X0)− I[F ](X0) > C−n−1−s
M µ2

0 t |B1|,
which is a contradiction if ϑ is sufficiently small. This contradiction proves (4.13), that in turn im-
plies (4.12) and so (4.11). This concludes the proof of Theorem 1.1.

5. PROOF OF THEOREM 1.2

Let E∞ be a blow-down of E, that is a cluster point for Er := E/r as r ↗ ∞. In this way we get a
s-minimal cone, and the assumption that no singular s-minimal cones exist in dimension n combined
with a standard dimension reduction argument implies that E∞ can only be singular at the origin.

Also, because ∂E was a graph, E∞ is an hypograph in IRn+1, that is

(5.19) (x, τ) ∈ E∞ =⇒ (x, τ − t) ∈ E∞ ∀ t > 0.

Now we show thatE∞ is in fact a graph (and not only an hypograph). For this, suppose by contradiction
that there exists τ∞ > 0 such that ∂E∞ touches ∂E∞ + τ∞en+1 at some point. Then, by the
strong maximum principle2 we get E∞ = E∞ + τ∞en+1, from which (iterating this equality) we get
E∞ = E∞ + kτ∞en+1 for any k ∈ N. This fact combined with (5.19) implies that

E∞ = C × IR,
where C is a s-minimal cone in IRn. Hence it follows by our assumption that C is a half-space, and
Lemma 3.1 gives that E = C × IR which is in contradiction with the fact that E was a graph.

Hence we have shown that ∂E∞ and ∂E∞ + τen+1 never touch for any τ > 0, which implies that
∂E∞ is the graph of a function u∞ : IRn → IR. In addition, since E∞ is smooth outside the origin,
we can compute |∇u∞(x)| at any point x 6= 0 (though, in principle, it can be infinite at points with
vertical tangent hyperplanes).

Now, as in the proof of Theorem 1.1, we consider a bump functionw0 ∈ C∞(IR, [0, 1]), withw0(t) =
0 for any t ∈ (−∞, 1/4]∪ [3/4,+∞) and w0(t) = 1 for any t ∈ [2/5, 3/5], and we define w(x) =
w0(|x|). Then, we fix σ ∈ ∂B1 and consider the family of sets

Ft :=
{

(x, τ) : τ 6 u∞
(
x+ tϑw(x)σ

)
− t
}
,

2A simple and direct way to see the strong maximum principle is to use thatE∞ andE∞+τ∞en+1 are smooth cones
outside the origin. So, if they touch, we can find a contact point X0 6= 0, and by computing the operator I defined in (1.1)
at X0 for both surfaces, since both E∞ and E∞ + τ∞en+1 are s-minimal and E∞ ⊂ E∞ + τ∞en+1 we get

0 = I[E∞ + τ∞en+1](X0)− I[E∞](X0) =
∫
IRn+1

2χE∞+τ∞en+1\E∞(Y )
|X0 − Y |n+1+s

dy,

which implies that E∞ = E∞ + τ∞en+1, as desired.
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where t ∈ [0, 1] and ϑ > 0. By compactness we see that, if ϑ is sufficiently small, then F1 ⊆ E∞.
Let t0 ∈ [0, 1] be the smallest t for which Ft ⊆ E∞, and assume by contradiction that t0 > 0.
Since E∞ is a graph, we see that Ft0 can only touch E∞ from below at some point X0 = (x0, t0)
with x0 ∈ supp(w) ⊂ B3/4 \ B1/4. Hence, it is easy to see (by compactness) that a contact point
X0 = (x0, t0) exists, and since x0 ∈ B3/4 \B1/4 we have that both sets are smooth near X0.

Therefore we can easily adapt the arguments provided in (4.14)–(4.18) as follows: First, by the s-
minimality ofE∞ we have that I[E∞](X0) = 0 = I[F0](X0). Also, since Ft0 is aC2-diffeomorphism
of F0 of size ϑt0 and F0 is uniformly C2 in a neighborhood of X0, we have that

(5.20)
∣∣I[Ft0 ](X0)

∣∣ 6 Cϑt0.

On the other hand, since the graph of u∞ is uniformly Lipschitz in a nontrivial fraction of points (just
pick a point where the tangent space to ∂E∞ is not vertical and consider a small neighborhood of this
point) we see that ∂Ft0 and ∂E∞ lie at distance > ct0 on a nontrivial fraction of points, therefore∣∣(E∞ \ Ft0) ∩B1

∣∣ > c0t0

for some c0 > 0. Hence, arguing as in the proof of Theorem 1.1 we get∣∣I[Ft0 ](X0)
∣∣ =

∣∣I[Ft0 ](X0)− I[E∞](X0)
∣∣ > c′t0

for some c′ > 0, which is in contradiction with (5.20) if ϑ was chosen sufficiently small.

This proves that t0 = 0, which implies that Ft ⊆ E∞ for any t ∈ (0, 1), or equivalently

u∞(x+ tϑw(x)σ)− u∞(x)

t
6 1 ∀ t ∈ (0, 1).

Hence, letting t↘ 0 we obtain

ϑw(x)∇u∞(x) · σ 6 1 ∀x ∈ IRn \ {0}, σ ∈ ∂B1,

which combined with the fact that w = 1 in B3/5 \B2/5 and σ ∈ ∂B1 is arbitrary implies

|∇u∞(x)| 6 1/ϑ ∀x ∈ B3/5 \B2/5.

Since u∞ is 1-homogeneous we deduce that u∞ is globally Lipschitz. So by Theorem 1.1 it is smooth
also at the origin, hence (being a cone) E∞ a half-space. Using again Lemma 3.1 we deduce that E
is a half-space as well, concluding the proof of Theorem 1.2.
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