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Abstract 

The estimation problem for a Lipschitz regression at a point is stud-
ied. The exact limiting performance of the Bahadur risk is found in the 
minimax sense, the asymptotics being presented in the explicit form in 
terms of the Chernoff function. 

1 Introduction 
Consider a nonparametric regression model with observations 

Yin= f (~)+~in, i = ... , -1, 0, 1, ... ; n = 1, 2,.... (1) 

The regression function f(t), t E R1 , belongs a priori to a class of the Lipschitz 
functions, i.e. f E ~(L), 

where L is a given positive. For each n the random variables ~in are i.i.d. with 
a known probability density p(x). Our goal is to estimate the value f(O) of the 
regression function at the origin from the observations Yin in (1 ). Let Jn be 
an estimator, i.e. an arbitrary function of the observation Yin in (1 ). We want 
to find an estimator which minimizes the probability P1 (lfn - f(O)I > c) for 
a fixed positive c. Here 'pf = PJn) denotes the probability of the observations 
Yin corresponding to the true regression f. Further on we omit the superscript 
n for the sake of brevity. 

vVe follow Bahadur(1960,1967) whose approach is modified in the spirit of 
the minimax theory (see Ibragimov and Khasminskii, 1981, Ch.l). Introduce 
the minimax Bahadur-type risk by 

(2) 

Assumption 1 The density p( x) is such that the function 

H(x) = - logp(x) 

is strictly convex and finite for any x, x E R1 . 



Define the following function 

G( e, s) =log [1-: p'(x - B) p'-'(x +e) dx] , () E R1 , 0 ::; s ::; 1, 

and introduce the logarithm of the Chernoff function (see Chernoff, 1952, Siev-
ers, 1978) 

S( ()) = min G( (), s ), 
O~s9 

(3) 

Under Assumption 1 the function G( (), s) is strictly convex in s, and G( B, 0) = 
G( (), 1) = 0 which implies that the definition (3) is correct and S( ()) is negative 
for any B =J 0. Note that S(()) and G((), s) are symmetric in e. It is easy to 
show that in the case of the symmetric density when p( x) = p( -x) the infimum 
in (3) attains at s = 1/2 and S(()) = G((), 1/2) =log J jp(x - ()) p(x + ()) dx. 

The main result o~ this paper is in the explicit representation of the limiting 
performance of f3n ( c): 

lim /3n( c) = min L
2 re 0( e, s) dB. ( 4) 

n-+oo O~s~l Jo 
Example 1. If ein are (0, o-2 )-Gaussian, then G((), s) = 2s(s -1)()2 /o-2 and 

S(()) = .,....() 2 /(2a2 ). In this case 

') . r 3 

Jimf3n(c) = 2 Jo G((), 1/2) dB= - 3~0"2 . 

This coincides with Korostelev, 1993. 

In parallel to (1) consider a location parameter model with a sample of 
i.i.d. observations X1 , ... , Xn corresponding to the density p(x -0), BE R1 . 

Let {Jn = Bn(Xi, ... , Xn) be an arbitrary estimator of the location parameter 
(). 

Introduce the minimax Bahadur-type risk 

r n ( c) = ip.f sup .!_log Pa ( IBn - 0 I > c) , 
an aeR1 n 

c > 0, (5) 

where Pa = PJn) is the probability of X1 , ••. , Xn. 
Let B~ be the Pitman estimator of 0 corresponding to the loss function . 

I(IO~ - BI > c) where I(·) denotes the indicator function. Under Assumption 1 
this estimator can be defined as the unique solution of the equation 

n 

L [H(Xi - B~ - c) - H(Xi - ()~ + c)] = 0. 
i=l 

The Pitman estimator of the location parameter is minimax and 

lim rn( c) = lim !_log Po (IO~I > c) = S( c) 
n-+oo n-+oo n 

2 

(6) 



(see Chernoff,1952, Lehmann, 1959, Sievers,1978, Ibragimov and Khasminskii, 
1981, Rubin and Rukhin, 1983). 

An estimator 8~ which attains this limiting constant is called asymptotically 
efficient in the sense of Bahadur. 

The efficiency in the sense of Bahadur is tightly linked with the theory of 
large deviations in estimation and hypothesis testing. It worthy mentioning 
that the maximum likelihood estimators were studied intensively from this 
point of view both for the moderate deviations (Ibragimov and Radavichyus, 
1981, Radavichyus, 1983) and for the large deviations (Borovkov and Mogul-
skii, 1992). But the maximum likelihood estimator is not, generally speaking 1 

efficient in the sense of Bahadur. 
In Section 2 we give a direct proof of the lower bound in (6). Then we 

extend it to the case of Lipschitz regression. The asymptotics in (6) is well-
known (see Sievers, 1978) and our proof of the lower bound serves to illustrate 
the main idea which is similar in the parametric and nonparametric case. 
Section 3 presents the construction of an efficient estimator for the Lipschitz 
regression at a point. Some technical results are postponed to Section 4. 

2 Lower Bounds 

Proposition 1 If Assumption 1 holds, then the following lower bound is true 
for any c > 0: 

rn(c) 2:: S(c). (7) 

Proof Let c be an arbitrary small positive. Consider the following two values 
of 8: 8 =±c. Note that 

sup Pe (IBn - BI > c - c) 2:: 
B 

> ~Pc(IOn-cl>c-c)+~P-c(IOn+cl>c-c)= 
1 ( ) [ dPc ( " ) dP_c ( " )] 
2,E 1f dP(1r) I IBn - cl > C - c + dP(;r) I IBn +cl > c - c 

where the probability p(;r) corresponds to some density 7r = 7r( x ); E(;r) is the 
t t . t p(1r) expec a 10n w.r. . . 

Let for 8 = c the minimal value of the right-hand side of (3) attain at 
s = a = a( c) which is unique under Assumption 1, 0 < a < 1, and satisfies 1-: p': p~-a (log P- - log P+) dx = 0 

3 



where 
P± = P±(x) = p(x ± c). 

Choose 
7r = exp (-S( c)) plX_ p~-a 

and note that under this choice 

Similarly, 

Denote by 

E(-;r) [log (P+(Xi))] = j 7r log P+ = 
7r(Xi) 7r 

= S(c) +a exp (-S(c)) j plX_ p~-a (logp_ - logp+) = 

= S(c). 

~ ( P±(Xi) ) ~± = ~ log 7r(Xi) - S(c) . 

Due to the LLN the random _event An = {I~+ I < en} n { 1~-1 ~ en} satisfies 

p(7i) (An) -t 1 as n -t oo. (8) 

The triangular inequality guarantees that 

Thus we finally have 

sup Pe (IBn - BI > c - e) ~ 
BER1 

> ~exp (nS( c)) E(") [exp(~+)! (IBn - cl > c - c) + 
+ exp(~_)J (IBn +cl > c - C)] 

> ~exp (n (S(c) - c)) p(") ({An, IBn - cl > c - c} U 

U {An, liln+cl > c-c}) 
1 > 2 exp ( n ( S ( c) - c)) P ( 1'i) (An) . 

It follows that for any en the inequality is true 

sup~ log Po (IBn - BI> c - c:) ~ (S(c) - e) +~log (~p(-;r) (An)). 
BER1 n n 2 

4 



Hence applying (8) we come to the inequality 

lim inf sup ]:__log Pe (IOn - BI > c - e) 2: S( c) - e 
n-+co BERl n 

and the inequality (7) follows. , 

Remark The density 7r in the proof of Proposition 1 which is the "least 
equidistant" from P+ and P- does not belong in general to the family p(· - B), 
B E R1 . The Gaussian case in Example 1 is an exception: here 7r( x) = p( x). 

Now we turn to the equality ( 4). As traditional in the minimax theory, we 
split this result into the two parts, starting with the lower bound 

liminf f3n(c) 2: min L
2 t G(B,s)dB. 

n-+co O~s9 Jo (9) 

Theorem 1 If Assumption 1 is satisfied then the lower bound (9) holds for 
the minimax Bahadur risk (2). 

Proof. Note that for any estimator Jn and for an arbitrary small e > 0 

where 

sup P1 (lfn - f(O)I > c- e) 2: 
f Ef.{L) . . . 

~ ~PI+ (\Jn - cl > c- £) + ~h (\Jn+ c\ > c - £) 

f ± = f±(t)= { ~c{l - L\tl/c) if ltl ~ c/ L 
otherwise 

Let the minimal value in s, 0 ~ s ~ 1, of the sum E~-oo G U+(i/n ), s) 
attain at s =an. Note that there are finitely many non-zero summands in this 
sum. Let Yin 's be independent and Yin have the density 

1ri(x) ==exp (-G (J+(i/n), an)) p0 n (x - f+(i/n)) pl-an (x - J_(i/n)). 

Denote by p('rr) the joint distribution of Yin's. As in the proof of Proposition 
1 we obtain the inequality 

where 

sup ]:__log P1 (lfn - f(O)I > c - e) 2: 
fEf.(L) n 

> ~exp {.f
00 

GU+( i/n), an) - nc:} p(") {An} 

An== {l~+I <en} n {1~-1 <en} 

5 



with the random events defined by the following zero-mean random variables 
w.r.t. p(tr): 

To complete the proof it suffices to note that the sum~ L~-oo G U+(i/n), s") 
converges to f~00 G(J+(t),s)dt uniformly ins, 0:::; s:::; 1, which implies that 

00 

L G U+(i/n), an) jc/L ( ( Lltl) ) n ( 1 + o( 1)) min G c 1 - - , s dt = 
O~s9 -c/L C i=-oo 

2 lc = n(l + o(l)) min L G(B, s) dB 
O~s9 0 

where o( 1) ---+ 0 as n ---+ oo. ~ 

3 ;Efficient Estimator for Lipschitz regression 
The Pitman estimator B~ = B~(X1 , ••• , Xn) of the location parameter() which 
is efficient in the sense of Bahad~r can be defined as the center of the interval 

where ,\* = ,\* ( c) is chosen such that the length of this interval equals 2c. Thus 
in this case e~ might be called interval-median estimator. 

Now we extend this definition to the case of the Lipschitz regression. 
Put N = [cn/L] and define the log-likelihood function CN({)) of (2N + 1)-
dimensional argument {) = ( {) _N, ... rJo, ... {) N) by 

1 N 1 N 
CN({)) = - 2N + l il=N log p(Yin - {)i) = 2N + l il=N H(Yin - {)i)· 

Define a set Bo C R2N+i as "traces of the Lipschitz functions": 

Let 

and let 
b+(,\) = max {) 0 , 

'!9EB(,\) 

6 

b_(,\) = min {Jo. 
'!9EB(,\) 



This definition is correct since B(A) is a convex set (if it is non-empty). As 
in the case of location parameter, choose,\ = ,\* = ,\*(c) such that b+(.\*) -
b_ ( ,\*) = 2c, and define the interval-median estimator 

f~ = ~ [b+(,\.) + b_(.\.)]' 

Assumption 2 The function H(x) is continuously differentiable and 

. H'(x) 
hm H( ) = 0. x-+oo x 

Lemma 1 If Assumption 1 and 2 are fulfilled, then for an arbitrary large 
constant S0 > 0 there exists A= A(So) such that the following inequality holds 
for all n large enough 

sup P1 (If~ - f(O)I >A) ~ exp(-nSo). 
f EE(L) 

Denote by wN( 8, 19) the modulus of continuity 

where 8 is a fixed positive. 

{10) 

Lemma 2 Under the assumptions of Lemma 1 for any S0 > 0, Ao> 0 there 
exists Co = C0 (S0 , Ao) such that for all n large enough the inequality holds 

sup P1 ( WN( 8, 19) > 8Co) ~ exp(-nSo) 
f EE(L) 

uniformly in 19 such that j190 - f(O)I ~Ao. 

The proofs of these lemmas are postponed to the next section. 

(11) 

Theorem 2 If Assumptions 1 and 2 are satisfied then the following upper 
bound is true uniformly in f E ~(L): 

limsup ~logPJ(lf;-f(O)I > c) ~ min L
2 re G(B,s)dB. (12) 

n-oo n O~s~l Jo 

7 



Proof Take 50 = 1 + t J~ S(B) d() and choose A= A(S0 ) due to Lemma 1. 
Assume that f: > f ( 0) + c. This means that 

,\, - £ N ( f ( - ~) , · · · , f ( ~)) ~ 0. 

By definition, there exists a random point J = ( J _N, ... , JN) such that J E Bo, 
Jo= b+(,\*), and LN(J) = ,\* , i.e. 

(13) 

Unfortunately, the random point J cannot be substituted in this inequality by 
a deterministic one. For this reason we approximate J by a point from a finite 
set of deterministic points. Let the random event {If~ - f (0) I ::; A} hold. In 
this case J E B1 where 

B1 =Bon {19: l19o -/(O)I::; A+ c}. 

Let 8 be a small positive. Choose a finite set W W ( 8) of points 'ljJ(k) 

( 
(k) (k)) 7/J_N, ... , 7/JN , k = 1, ... , NI, such that 

For any 19 E B1 there exists 7/J(k) = 'ljJ(k) ( 19) E W satisfying 

and the cardinality cardW = M = M(8) is independent of n and f E 'E(L). 
The set W can be obtained from the discrete piecewise approximation of 

the Lipschitz functions 7/J(t) with 17/J(O) - /(O)I ::; A+ c. 
Since J E B1 , there exists {/; E W such that 

Hence 

i.e. 
{/;o - f (0) > 2c - 8. ( 14) 

Put Ao= A+ 2c and choose C0 = C0 (S0 , Ao) in accordance with Lemma 2. 
The inequalities (10) and (11) guarantee that uniformly in f E 'E(L) for all n 

8 



large enough we have 

P1 (!; > f (0) + c) :::; 
< P1 (!: > f(O) + c; If~ - f(O) I :::; A; wN( 8, 'l/J(k)) :::; 8C0) + 

+(NI+ 1) exp(-nSo) :::; 
< I: 

k: l1/i~k) _ f(O)l>2c-8 

P1 { LN ( 1/J~k,. ·.,if;};>) - LN (1 ( -~) , ... , I ( ~)) ~ 8Co} + 
+ (M + 1) exp(-nS0 ). (15) 

For each summand in the latter sum the following inequality holds (Wentzell, 
Ch.3, 1990, Freidlin and Wentzell, Sec.5.1, 1983): 

~log P1 { LN ( 1/J~k, .. . , if;};>) - LN (1 ( - ~) , ... , I ( ~)) ~ 8Co} ~ 
:::; ~ min t G (~ ('l/J}k) - J(i/n)) ,s) + h 

n O~s9 i=-N 2 
(16) 

where h is an arbitrary positive; n and 1/ 8 q,re large enough. Some comments 
are pert.inent concerning the inequality (16). The probability in the left-hand· 
side is close to P1 (Ef:-N 17in :::; o) with the random variables 17in = H(~n -
<P~k)) - H(~n - J(i/n)) = H(~in - ('lfJt> - J(i/n))) - H(~in) satisfying 

log E f [exp( S1Jin)] = G G ( 1/Jf kl - l(i /n)) , s) . 
Let maxo~s9 [us - Ef:-N G (! ( 'lfJfk) - J(i/n)), s)] be the Legendre trans-
form of the latter sum in s. Its value at the origin u = 0 is equal to 

~:{! [- itN G G (1/JV) -l(i/n)) ,s)] = 

- oT}~1 JN G G ( 1/;}kl - l(i/n)) 's). 

This quantity governs the log-asymptotics of the probability P1 c=~N 1Jin ~ 0) 

as indicated in (16). · 
Since 'lfJ6k) - f(O) > 2c - 8 we have for any i with Iii :::; N 

H 1/J fk) - I ( ~)) > ~ ( 1/J~ k) - I ( 0) - 11/J i k) - 1/J~ k) I - I I ( i / n) - I ( 0) I) ~ 

> ~ (2c - 8 - (Lli/nl + 8) - Lli/nl) = 

= c - 8 - Lli/nl. 

9 



The function G(B, s) is decreasing in B for each s. Hence 

1 N ( l ( k i ) ) le/ L lim - L G - ~f ) - !(-) , s ~ G(c - 8 - Lltl, s) dt = 
n-+oo n i=-N 2 n -e/L 

2 rc-o = L lo G(B, s) dB. (17) 

The number of summands in the right-hand side of (15) does not increase with 
n; 8 and h are arbitrary small. Therefore (15)-(17) imply the inequality 

lim sup~ log P1 (!~ > f(O) + c) ~ 
n-+OO n 

2 le · min L G(B, s) dB 
O~s9 O 

uniformly in f E ~( L) . The similar inequality can be obtained for the prob-
ability P1 (!~ < f (0) - c) following the same lines. , 

4 Proof of Lemmas 
Proof of Lemma 1. To prove this lemma we verify that with probability 
exponentially close to 1 the function £N( iJ) is smaller than some constant ,,\0 
on the cube 

Ko= {iJ: liJi - f(O)I ~ 2c} 

and the minimal values of this function over the cubes I<± = { {) : l73i - f (0) =t= 
Ai I ~ 2c} exceed 2,,\0 for A1 large enough. It means that ,,\*( c) ~ ,,\0 and 
lb±(,,\*) - f(O)I ~Ai+ 2c which implies the lemma with A= Ai+ 3c. To do 
this, we first check the values of £N( 73) along the diagonal{) _N = ... = {) N = B 
at the point B = f(O) and B = f(O) ±Ai. Then we use convexity of H(x) to 
show that the oscillation of £N( iJ) on the cubes I<0 and I<± is finite. 

Suppose without loss of generality that H(x) > 0 (otherwise a constant 
can be added to H without any influence on J;). We can also assume without 
loss of generality that E~in = 0. Note that for Iii ~ N the mean values of 
H(Yin - f(O)) are bounded uniformly in f E ~(L), i.e. 

sup E1 H(Yin - f(O)) ~ µi < +oo. 
f eI:;(L) 

The same is true for the variance: 

sup Var f H(Yin - f (0)) ~ o-6 < +oo. 
f El;(L) 

10 



Applying the Chernoff bound, we have for a fixed small z that for each f E 
~(L) 

P1 (£N(J(O), ... , f (0)) > A1) == 

P1 ( 2Nl+ 1 ,f N H(Y;n - J(O)) > .\1) :S 

< P1 (tN [H(Y;n - J(O)) - E1 H(Y;n - J(O))] > (2N + 1 )(.\1 - µ1)) < 

< exp (-(2N + l)z(.A1 - µi) + (2N + l)a~z2 ) ~ 
< exp(-4nSo). 

Here the obvious relations are used for z small enough 

where~ is the zero-mean random variable 

N 

~ == I: [H(Yin - J(O)) - E1 H(Yin - J(O))] 
i=-N 

with the finite moment generating function E1 (exp(z0) in a neighborhood of 
the origin z = 0. If we take 

4n 
A1 == z(2N + 1) ~o + aoz + µi 

in the latter expression, we arrive at 

sup P1 (£N(J(O), ... , J(O)) > Ai) ~ exp(-4nSo). (18) 
]E'E(L) 

Since H(x) is convex, the following inequalities are true for any f E ~(L), any 
Iii ~ N, and Ai large enough : 

E1 [H(Yin - J(O) - Ai))~ H (J(i/n) - J(O) - Ai)~ H(c - Ai)· 

This implies that µ 1( Ai) --+ oo as Ai --+ oo where 

and µ1(Ai) ~ H(c - Ai)> 8.A1 for A1 large enough uniformly in J E ~(L). 
On the other hand, Assumption 2 guarantees that for any B fixed 

lim H(x + B) - H(x) == O. 
x-oo H(x) ( 19) 

11 



Indeed, assume for the definiteness that x -+ +oo. Since H'( x) is monotone 
we have for () < 0 and large x that 

H(x + B) - H(x) = ()H'(x) < 8H1(x) 
H(x) H(x) - H(x) 

where x + () < x < x, and Assumption 2 applies directly. If () > 0, one has 
H(x+B)-H(x) BH'(x) 

H(x) H(x+B)-BH'(x) 

< eH'(x + B) (l _ 8H1(x + B))-i 
- H(x+B) H(x+B) ' 

and (19) follows. This equality yields the relation 

1. Var1 H(Y"in - f(O) - Ai) O 
Im 2 = 

Ai~00 (EJ H(Y"in - J(O) - A1)) 
(20) 

uniformly in f E "'fi(L) and Iii :::; N. Again, applying the Chernoff bound, we 
obtain from (20) that 

sup P1 (.cN(f(O) + A1, ... , f(O) +Ai):::; ~µ1(Ai)) :::; exp(-4nSo) 
fEE(L) . 2 

if A 1 = A 1 ( 50 ) is large .enough. Thus .C N ( fJ) is greater than 4)q at the cent er · 
of the cube I<+ with probability exponentially close to 1. The same is true at 
the center of the cube I<_. Finally, the equality (19) and convexity of H(x) 
entail the following property: for any fixed d > 0 and for any x E R 1 

max IH(x + u) - H(x)I:::; ho+ H(x) 
lul~d 

(21) 

with some constant ho = ho( d). The inequality (21) implies that the random 
function .CN( fJ) satisfies 

5 
~t~ L N ( f)) :::; ho ( C) + 4 L N ( f ( 0), ... , f ( 0)) 

with Prprobability 1. This together with (18) gives us the following inequality: 

sup P1 (ma~ .CN( fJ) > ho( c) + ~A1) :::; exp(-4nSo). 
J EE(L) '19EKo 4 

Applying (21) once again, we get Pralmost surely that 

min .CN( fJ) > ~.CN(f (O) +Ai, ... , f(O) +Ai) - h0( c) 
'19EK+ - 4 

and 
sup P1 ( mi]l LN( fJ) :::; ~µ f (Ai)) :::; exp( -4nS0 ) 

f EE(L) '19EK+ 4 
if A1 is large enough. The analogous inequality for the cube J{_ proves the 
lemma. 

12 



4.1 Proof of Le1nma 2 

Assumption 2 guarantees that IH'(x)I ~ h1 + H(x) with some constant h1 for 
any x E R1 . Thus, one gets that wN( 8,i)) ~ 8 ( h1 + LN( 19)) and 

sup P1 ( WN( 8, 19') > 8Co) ~ sup P1 (h1 + LN( 19') > Co) ~ exp(-4nS0 ) 
fEE(L) JEE(L) 

if C0 is large enough. 
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