
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

Task assignment, sequencing and path-planning

in robotic welding cells

Chantal Landry1, Wolfgang Welz2, René Henrion1, Dietmar Hömberg1,

Martin Skutella2

submitted: August 1, 2013

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: chantal.landry@wias-berlin.de

rene.henrion@wias-berlin.de
dietmar.hoemberg@wias-berlin.de

2 Institute of Mathematics
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
Germany
E-Mail: skutella@math.tu-berlin.de

welz@math.tu-berlin.de

No. 1825

Berlin 2013

2010 Mathematics Subject Classification. 49N90, 65D18, 90C27, 90C35, 90C90.

Key words and phrases. Discrete optimization, vehicle routing problem, optimal control problem, collision detection,
motion planning, cooperative robots.

This work has been supported by the DFG Research Center MATHEON – Mathematics for key technologies.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

1

ABSTRACT. A workcell composed of a workpiece and several welding robots is considered. We are
interested in minimizing the makespan in the workcell. Hence, one needs i) to assign tasks between
the robots, ii) to do the sequencing of the tasks for each robot and iii) to compute the fastest collision-
free paths between the tasks. Up to now, task assignment and path-planning were always handled
separately, the former being a typical Vehicle Routing Problem whereas the later is modelled using
an optimal control problem. In this paper, we present a complete algorithm which combines discrete
optimization techniques with collision detection and optimal control problems efficiently.

1. INTRODUCTION

Efficient production lines are essential to ensure the competitiveness of car manufacturers. These lines
are divided into workcells which are composed of a workpiece, several robots and some obstacles.
Typical obstacles are the conveyor belt which connects the cells to each other. In a cell, the robots
must perform several tasks on the workpiece without colliding with each other and with the obstacles.
For instance, four robots have to make 50 weld points on a car door.

To have efficient production lines, a manufacturer must minimize the time taken to complete all the
tasks in a workcell, i.e. the makespan of the workcell. For that purpose, one needs to assign tasks
between the robots, to decide the sequencing of the tasks of each robot and to find collision-free
trajectories between task locations for each robot. Up to now, the task assignment, the sequencing
and the path-planning were computed by hand. The goal of this paper is to present an algorithm which
minimizes the makespan in a cell composed of welding robots. We call this problem the Welding Cell
Problem (WCP).

The task assignment, the sequencing and the path-planning can not be handled separately. On one
hand, the task assignment and the sequencing depend on the traversal time between two tasks. This
time is obtained by computing the fastest collision-free trajectory between these two given tasks. On
the other hand, one needs to know between which tasks the robot motion-planning must be computed.

This paper is divided as follows. The Welding Cell Problem is presented in Section 2. Section 3 con-
tains the algorithm which solves (WCP). This algorithm is an iterative method which couples discrete
optimization with collision detection and optimal control problems. Details on path-planning are given
in Section 4, whereas the collision detection is presented in Section 5.

2. THE WELDING CELL PROBLEM

Let us consider a workcell composed of m tasks located at the points Pi, i = 1, . . . ,m, and K
robots, denoted by R1, . . . , RK . Each robot has its own characteristics (size, weight, welding tongue,
...). Consequently, a robot may not be able to perform all tasks.

For simplicity, let us assume that the robots are convex polyhedra whose center of gravity is initially
located at the points Sk, k = 1, . . . , K . Let V be a set containing the initial position of the robots, Sk,
k = 1, . . . , K , and the task locations, Pi, i = 1, . . . ,m. An arc of V is defined as a pair of points of
the form (Vj, V`), where Vj, V` ∈ V . With each robot Rk, a set of arcs Ak of V is associated. An arc
(Vj, V`) belongs to Ak if and only if the robot Rk can move from Vj to V`. Since a task location Vj

may not be reached by some robots, a set of arcs must be defined for each robot.

With each arc (Vj, V`) in Ak, a weight tkj,` is associated. This weight is the time used by robot Rk to
travel from Vj to V`. In graph theory, the tuple G = (V,A1, . . . , AK) is called a directed weighted
graph, see e.g. [9]. Therefore, (WCP) can be mathematically represented as a graph.

2

We associate with the graph G a Boolean function c which indicates if a collision occurs between two
moving robots. The function c is defined as follows

c : {1, . . . , K} × V × V × {1, . . . , K} × V × V → {0, 1}

(k, Vj, V`, k
′, V ′j , V

′
`) 7→

{
0, if no collision,
1, otherwise.

Hereabove, “no collision” means that no collision occurs between robot Rk moving from Vj to V` and
robot Rk′ moving from V ′j to V ′` at the same time.

Let us define now the tour, T k, of robot Rk. The tour T k is a sequence of nodes in V whose first
and last nodes are the initial position of the robot. More precisely, if nk is the number of nodes in T k

and V k
j denotes the jth node in the sequence, then the tour T k is the sequence T k = (V k

j)nk
j=1 that

satisfies

1 V k
1 = V k

nk
= Sk,

2 V k
j ∈ {P1, . . . , Pm} for j ∈ {2, . . . , nk − 1},

3 (V k
j , V

k
j+1) ∈ Ak, for j = 1, . . . , nk − 1.

With each tour, we associate the total traversal time, τ k, which is defined as the sum of the traversal
time of each arc:

τ k =

nk−1∑
j=1

tkj,j+1.

Two tours T k and T k′
are said collision-free if and only if c(k, V k

j , V
k
j+1, k

′, V k′

` , V k′

`+1) = 0 holds for

all pairs of arcs (V k
j , V

k
j+1) and (V k′

` , V k′

`+1), j = 1, . . . , nk − 1 and ` = 1, . . . , nk′ − 1, such that
the arcs are travelled by the robots at the same time.

Eventually, let L denote an upper bound of the time needed to complete the job in the welding cell.
On the basis of these definitions, the Welding Cell Problem (WCP) can be formulated as follows:
(WCP): Find tours T k, k = 1, . . . , K , and their corresponding traversal times tkj,j+1, j ∈ {1, . . . , nk−
1}, such that:

1 every task is visited once:

∩K
k=1T

k = ∅ and ∪K
k=1 T

k = V ;

2 the tours are pairwise collision-free: for all k, k′ ∈ {1, . . . , K}, k 6= k′, we have

c(k, V k
j , V

k
j+1, k

′, V k′

` , V k′

`+1) = 0,

∀j ∈ {1, . . . , nk − 1}, ∀` ∈ {1, . . . , nk′ − 1} such that the arcs (V k
j , V

k
j+1) and (V k′

` , V k′

`+1)
are travelled simultaneously;

3 the traversal times tkj,j+1, j ∈ {1, . . . , nk − 1} and k = 1, . . . , K , are minimized
4 the total traversal times τ k, k = 1, . . . , K , are upper bounded by L:

τ k =

nk−1∑
j=1

tkj,j+1 ≤ L, ∀k ∈ {1, . . . , K}.

So far (WCP) is just a feasibility problem to find tours T k, k = 1, . . . , K , with makespan less than
L. This can, however, be easily extended to an optimization problem by giving every tour a cost and
then finding a solution where the sum of the tour costs is minimized. Thus, the tours T k, which are
solutions of (WCP), are in the following called the optimal tours of (WCP). In a second step, binary
search over L can be used to identify the minimal possible makespan.

3

On one hand, the tour T k indicates that the tasks performed by robot Rk are located at V k
j , j =

1, . . . , nk−1. On the other hand, the sequence of points in T k gives the sequencing: robotRk starts
from its initial position Sk and moves to V k

1 . Once the task is performed at V k
1 , the robot moves to V k

2

and so on until the robot reaches the last task location V k
nk−1. After performing the last task, the robot

goes back to its initial position Sk.

The path-planning is obtained when the minimized traversal times tkj,j+1, j = 1, . . . , nk − 1, are
computed. Indeed, the path-planning of robot Rk between the points V k

j and V k
j+1 is such that the

path is travelled as fast as possible and without collision with the obstacles present in the workcell.
Details on the computation of the path-planning are given in Section 4.

The second condition in (WCP) ensures that no collision occurs between the robots, whereas the
collision avoidance between a robot and the obstacles is guaranteed when the traversal times tkj,j+1

are computed.

Eventually, note that the Boolean function c in (WCP) is a priori not known. At the beginning, no
information on collisions between the robots exists. This function has to be determined during the
resolution of (WCP). Details on the collision detection are given in Section 5.

The definition of (WCP) serves as a general basis for a whole set of problems. It is possible to add
additional constraints to closer model the needs of the actual welding requirements, e.g. an order in
which the points are processed or additional angle constraints for the welding tongues.

3. RESOLUTION ALGORITHM

To solve (WCP), one needs to know the value of all traversal times tkj,`, (Vj, V`) ∈ Ak and k =
1, . . . , K . However, the traversal times are the solution of an optimal control problem (see Section
4) and their computation is time consuming. Consequently, we consider first approximated traversal
times and compute the exact traversal times only as necessary.

The approximated times are the traversal times of approximated trajectories. The approximated trajec-
tories are obtained by putting a regular grid on the workcell. The nodes of the grid which are located
in or in the neighbourhood of an obstacle are removed from the set of nodes. The trajectory between
two given points is the shortest path connecting these two points and defined on the modified grid.
The shortest path is obtained by applying a Dijkstra-like algorithm in which the usage of nodes that
are very close to the obstacles are penalized. In addition to that, we also add the constraint that the
angles between two successive edges are minimized (see [9]). The resulting trajectory is a sequence
of segment lines which do not collide with the obstacles.

An example of an approximated trajectory is given in Figure 1. This figure shows a two dimensional
example which contains four obstacles (black quadrilaterals), five tasks located at Pi, i = 1, . . . , 5,
and 2 robots (black and grey squares). RobotR1 is initially located at S1 and robotR2 at S2. The exact
trajectory connecting S2 to P4 is shown in black, whereas the corresponding approximated trajectory
is in grey. The approximated trajectory is collision-free with obstacles, but no more the fastest one.

If the collision function c and the exact traversal times are known, then (WCP) becomes a variant of
the Vehicle Routing Problem (VRP) [15]. This problem can then be solved using Column Generation
techniques, see [14] for details. Because of this fact, we choose an iterative algorithm to solve (WCP).
The resolution algorithm loops on the following three steps until the optimal tours are found

1 Find tours T k, k = 1, . . . , K .
2 Update the traversal times of the arcs associated with the tours T k, k = 1, . . . , K .
3 Update the collision function c.

4

P1

P2

P3
P4

P5

S1

S2

FIGURE 1. The black curve is the exact trajectory of robot R2 which moves from S2

to P4. The corresponding approximated trajectory is the sequence of line segments
illustrated in grey.

P1

P2

P3
P4

P5

S1

S2

FIGURE 2. The tour T 1 based on the approximated trajectories is given by
(S1, P1, P3, P4, S1) and represented by the black bold line. The tour of robot R2 is
T 2 = (S2, P2, P5, S2) and depicted in grey. The dashed black, resp. grey, lines are
the approximated trajectories related to the arcs in A1, resp. A2, which do not belong
to the tour T 1, resp. T 2.

Let us apply this algorithm on the example depicted in Figure 1. At the beginning, all traversal times
are initialized with the approximated trajectories and the c function is identical to the null function.

By applying the resolution technique in [14], the tours T k are obtained for each robot Rk, k =
1, . . . , K . Note that these tours are obtained whereas the weights on the arcs are the approximated
traversal times. In Figure 2, the tours T 1 and T 2 based on the approximated trajectories are given for
the robots R1 and R2.

In a second time, the exact paths and the associated traversal times between the points V k
j and

V k
j+1, j = 0, . . . , nk − 1 belonging to the tour T k, k = 1, . . . , K , are computed by solving the

optimal control problem presented in Section 4. At this step of the resolution, the arcs defined by the
tours T k have the exact traversal times as weights. The exact trajectories for the tour T 1 and T 2 are
illustrated in Figure 3. In this figure, the arcs which do not belong to the tours are still associated with
the approximated trajectories (dashed segment lines).

5

The tour T k is such that no collision occurs between robot Rk and the obstacles. One needs now to
check if the tours are collision-free. For that purpose, we consider the robots pairwise and look if a
collision occurs between the robots. If so, we report the collision detection in the c function and look
for new tours.

In the computation of the new tours, the exact traversal times are kept and we compute the exact
trajectories only between the pair of points which were not considered in the tours up to now. For
instance, if the new tour T 1 is the sequence (S1, P1, P4, S1), then only the trajectory between P1 and
P4 is computed. The exact trajectories between S1 and P1, and between P4 and S1 were already
computed.

We loop on the steps 1), 2) and 3) until the tours are pairwise collision-free. Eventually, one needs
to check if these collision-free tours are still optimal. Indeed, if the tours were computed first with
some approximated traversal times, then the tours with only exact traversal times may be not optimal
since we changed the values of some weights. Therefore, new tours are computed based on the exact
traversal times. If the new tours are identical to the previous one, we found the optimal solution.

The resolution algorithm can be summarized as follows

(i) Compute the approximated trajectories and the associated traversal time for all arcs in Ak,
k = 1, . . . , K .

(ii) Find the optimal tours Tk, k = 1, . . . , K , based on the graph G = (V,A1, . . . , AK) and the c
function.

(iii) Compute the exact trajectories for all arcs in Tk, k = 1, . . . , K , such that the exact trajectory
for these arcs is not computed yet.

(iv) If collisions between the tours are detected then
� Adapt the c function
� Go to (ii)

Else
� Find the optimal tours T̄k, k = 1, . . . , K , based on the graph (V,A1, . . . , AK) and the
c function

� If T̄k is identical to Tk for all k = 1, . . . , K , then
return, the optimal tours are found!

Else
Go to (iii)

Endif
Endif

The basic idea behind this approach is that in every iteration a relaxation of the original problem is
solved and then more of the original information is added. Since our problem contains only finitely
many arcs this algorithm will terminate after a finite number of steps. For a valid relaxation we have
to make sure that the approximated trajectories are always an underestimation of the actual traversal
time. Also, to guarantee that our algorithm finds the optimal solution of the original problem, we have
to ensure that an infeasible sub problem in step (ii) implies the infeasibility of the master problem and
that no feasible solution of the master is lost. The latter is only true, if we extend our (WCP) definition
a little bit and also allow waiting in our tours, where the robot stays in the current node for some period
in time. Fortunately, this idea can be easily incorporated in our approach without changing any of the
described algorithms.

With this algorithm, only 19 exact trajectories among all the arcs in the graph G are computed for the
two dimensional examples of Figures 1-3. In the next sections, details on the steps (iii) and (iv) of the
algorithm are given.

6

P1

P2

P3
P4

P5

S1

S2

FIGURE 3. The tours T 1 = (S1, P1, P3, P4, S1) and T 2 = (S2, P2, P5, S2) with ex-
act trajectories. The dashed lines are approximated trajectories which were not con-
sidered in a tour yet.

4. PATH-PLANNING ALGORITHM

In this section, we present a method to compute the path-planning of a robot that moves between two
given task locations.

Let us consider a robot composed of p links which are connected by revolute joints. Let q = (q1, . . . , qp)
denote the vector of joint angles at the joints of the robot. Moreover, let the vector v = (v1, . . . , vm)
contain the joint angle velocities and let u = (u1, . . . , um) describe the torques applied at the center
of gravity of each link. The robot is asked to move as fast as possible from a given position to a desire
location. Its motion is given in the Lagrangian form as follows

q
′
(t) = v(t)

M(q(t)) v
′
(t) = G(q(t), v(t)) + F (q(t), u(t)),(1)

where M(q) is the symmetric and positive definite mass matrix, G(q, v) contains the generalized
Coriolis forces and F (q, u) is the vector of applied joint torques and gravity forces The function F is
linear in u.

The motion of the robot must follow (1), but also be collision-free with the obstacles present in the
workcell. For simplicity, let us assume that only one obstacle is present. To establish the collision
avoidance condition, the robot and the obstacle is approximated by a union of convex polyhedra. The
approximation is denoted by P for the robot, by Q for the obstacle and are given by P = ∪p

i=1Pi,
with Pi = {x ∈ R3|A(i)x ≤ b(i)} and Q = ∪q

j=1Qj , with Qj = {x ∈ R3|C(j)x ≤ d(j)}, where

A(i) ∈ Rpi×3, b(i) ∈ Rpi , C(j) ∈ Rqj×3, d(j) ∈ Rqj , and pi and qj are the number of faces in Pi

and Qj , respectively.

The robot P and the obstacle Q do not collide if and only if for each pair of polyhedra (Pi, Qj),
i = 1, . . . , p, j = 1, . . . , q, there exists a vector w(i,j) ∈ Rpi+qj such that: w(i,j) ≥ 0,

(2)

(
A(i)

C(j)

)T

w(i,j) = 0 and

(
b(i)

d(j)

)T

w(i,j) < 0.

This is a direct consequence of Farkas’s lemma. See [6] for more details.

The fastest trajectory of a robot is the solution of an optimal control problem where the system of
ordinary differential equations (ODE) are given by (1), see [3]. If an obstacle is present in the workcell,
the collision avoidance is guaranteed as soon as the vector w(i,j) of (2) is found at each time t and

7

for all pairs of polyhedra. However, to be written as state constraints, the strict inequality in (2) has to
be relaxed. Furthermore, since the robot moves, the matrices A(i) and the vectors b(i) evolve in time.
Their evolution depends explicitly on q(t). A complete formulation ofA(i)(q(t)) and b(i)(q(t)) is given
in [6].

Finally, the optimal control problem to find the fastest collision-free trajectory is given by:

(OCP): Find the traversal time tf , the state variables q, v : [0, tf] → Rp, and the controls u :
[0, tf] → Rp and w(i,j) : [0, tf] → Rpi+qj , i = 1, . . . , p, j = 1, . . . , q such that tf is minimized
subject to
i) the ordinary differential equations

q
′
(t) = v(t)

v
′
(t) = M(q(t))−1 (G(q(t), v(t)) + F (q(t), u(t))) ;

ii) the state constraints for i = 1, . . . , p, j = 1, . . . , q(
A(i)(q(t))
C(j)

)T

w(i,j)(t) = 0(
b(i)(q(t))
d(j)

)T

w(i,j)(t) ≤ −ε,(3)

iii) the boundary conditions R(q(0))− V0 = 0, v(0) = 0, R(q(tf))− Vf = 0 and v(tf) = 0; and
iv) the box constraints umin ≤ u ≤ umax and 0 ≤ w(i,j), i = 1, . . . , p, j = 1, . . . , q,

whereR(q) denotes the position of the barycentre of the last link of the robot and V0, Vf are the given
task locations. The vectors umin and umax are also given and the relaxation parameter ε is positive
and small.

(OCP) can be easily applied with several obstacles. It suffices to define control variables and to write
(3) for each obstacle. Depending on the number of state constraints (3), the problem is inherently
sparse since the artificial control variables w(i,j) do not enter the dynamics, the boundary conditions,
and the objective function of the problem, but only appear linearly in (3).

The optimal control problem (OCP) is solved with the package OC-ODE developed by Matthias Gerdts
[5]. The method involves first discretizing the control problem and transforming it into a finite-dimensional
nonlinear optimization problem. The control variables are approximated by B-splines of order 2 and
the ordinary differential equations are integrated with the classical Runge-Kutta method of order 4. The
resulting nonlinear optimization problem is then solved by a sequential quadratic programming method
[4, 7]. As in [12] we use an Armijo type line-search procedure for the augmented Lagrangian function
in our implementation. However, the resulting optimization problem contains a lot of constraints: at
each time step of the control grid and for all pairs of polyhedra (P (i), Q(j)), four state constraints
are defined (compare (3)). To reduce the number of constraints and variables, we add an active set
strategy based on the following observation: the state constraints are superfluous when the robot is
far from the obstacle or moves in the opposite direction. The active set strategy is fully detailed in [6].

5. COLLISION DETECTION

This section concerns the detection of collisions between two robots moving along a given path. There
exist two types of collision detection. The static collision detection checks if there is a collision between
two objects at each time step. The dynamic collision checking determines if for all configurations given
on a continuous path a collision occurs between the objects. As Cameron pointed out in [1], the static
detection is simple, but can miss a collision if the time discretization is too rough. On the other side,
taking small time steps is time consuming. For this reason, we choose to use a dynamic collision

8

method. We follow the method developed by Schwarzer, Saha and Latombe in [13]. This method is
based on the comparison of lower bounds of the distance between the robots with an upper bound
of the relative distance travelled by the points in the robots. The advantages of the method are its
simplicity, its exactness and the automatic adaptation of the sampling resolution.

Let us consider two robots, R1 and R2. Let us assume for simplicity that the robots are a convex
polyhedron. Each robot moves along a given path. This path was computed in (OCP). To solve (OCP),
a time discretization was used. Each robot has its own time discretization. Let (t1i)N1

i=1, resp. (t2i)N2
i=1,

denote the discretization of robot R1, resp. R2.

Let us classify the time steps (t1i)N1
i=1 and (t2i)N2

i=1 in an ascending order. Then the time is decomposed
on subintervals [tl, tu] of the form: [t1i , t

1
i+1], [t1i , t

2
j+1], [t2j , t

1
i+1] or [t2j , t

2
j+1]. We check on each such

subinterval if a collision between the robots occurs.

Let us consider the time subinterval [tl, tu]. The idea of Schwarzer, Saha and Latombe is to compare
upper bounds of the distance travelled by the points of the robots during [tl, tu] with a lower bound of
the distance between both robots. Let us define the following quantities

� η(t) is a non-trivial lower bound of the Euclidean distance between the robots at time t. The
relation η(t) ≤ δ, δ small and positive, means that the robots are colliding.

� λ1(ta, tb) is an upper bound on the length of the curves traced by all points in robotR1 between
ta and tb with ta, tb ∈ [tl, tu].

� λ2(ta, tb) is an upper bound on the length of the curves traced by all points in robotR2 between
ta and tb with ta, tb ∈ [tl, tu].

Schwarzer, Saha and Latombe’s method is based on the following sufficient condition:
Two polyhedra R1 and R2 do not collide at any time t ∈ [tl, tu] if

(4) λ1(tl, tu) + λ2(tl, tu) < η(tl) + η(tu).

The reverse of the above condition is not true. We cannot say anything about the collision-freeness
on [tl, tu] when the inequality is not satisfied. In that case, the idea is to bisect the time interval into
two subintervals [tl, tm] and [tm, tu] where tm = 1

2
(tl + tu). In a second time, we check if a collision

occurs at tm by computing η(tm). If η(tm) is positive, then the sufficient condition is applied on both
subintervals [tl, tm] and [tm, tu]. So, the core algorithm to determine if there is a collision betweenR1

and R2 on [tl, tu] is given by

Collision detection algorithm:
If η(tl) ≤ δ or η(tu) ≤ δ then

return collision
else

return Inequality(tl, tu)
end if

where Inequality (ta, tb) is a recursive function defined as

if λ1(ta, tb) + λ2(ta, tb) < η(ta) + η(tb) then
return no collision

else if η(1
2
(ta + tb)) ≤ δ then

return collision
else

return Inequality (ta,
1
2
(ta + tb)) or

9

Inequality (1
2
(ta + tb), tb)

end if

The collision is detected once the lower bound η is smaller than a given threshold δ > 0. Doing so,
we ensure that the polyhedra remain at a safety distance from each other.

One strength of this detection method is that the algorithm automatically decides whether a time
interval needs to be bisected further. Moreover, the method can never fail. To prove this fact, let us
observe first that λi(ta, tb) → 0 when |tb − ta| → 0, i = 1, 2. Then, let us distinguish the cases:

� If no collision occurs in [tl, tu], then there exists ηmin ≥ δ > 0 such that η(t) > ηmin,
∀t ∈ [tl, tu]. By bisecting, the length of the new time subintervals is always smaller. So, the
left-hand side of Inequality (4) becomes smaller with the bisection whereas the right-hand side
remains lower-bounded. Hence, Inequality (4) is satisfied.

� If the polyhedra collide, then there is a time subinterval [ta, tb] ⊆ [tl, tu] such that η(t) ≤ δ,
∀ t ∈ [ta, tb] since the motion of the polyhedra is continuous. Then, by bisecting, Inequality (4)
remains unsatisfied until the new middle of the time interval falls into [ta, tb].

Let us illustrate this argument with the example in Figure 4. The time interval [tl, tu] is repre-
sented. The time interval [ta, tb] when the collision occurs is in grey. The algorithm checks first
if the polyhedra collide at tl and tu. Second step of the algorithm establishes that Inequality (4)
is not satisfied. The first bisection is executed by computing t1 = 1

2
(tl + tu). No collision occurs

at t1 (η(t1) > δ). Inequality (4) is satisfied on [tl, t1] but not on [t1, tu]. Hence, the middle point
of [t1, tu] is: t2 = 1

2
(t1 + tu). At that time, η is greater than δ. The bisection is then executed

and we obtain the following subintervals [t1, t2] and [t2, tu]. Inequality is verified on [t2, tu] but
not on [t1, t2]. Next, let us compute t3 = 1

2
(t1 + t2) and check if η(t3) is bigger than δ. Let us

do so on until we reach t4 = 1
2
(t3 + t2). For that point, η(t4) is smaller than δ. The collision is

detected.

Schwarzer, Saha and Latombe establish in [13] an upper bound λ1, λ2 for any kind of robots. The
function η is defined as a non-trivial lower bound of the real distance between two polyhedra. A two-
phase approach is considered which consists of a broad phase and a narrow phase. In the broad
phase, the polyhedra are approximated by a simple bounding volume such as an axis-aligned box or
a sphere and η is defined as the distance between the bounding volumes. As long as the bounding
volumes are disjoint, the broad phase is applied. Once the bounding volumes overlap, the narrow
phase is used. This phase computes the exact distance between the polyhedra. Thus the two-phase
approach allows a minimal cost in the computation of η since the exact distance is determined only
when the polyhedra are close to each other. Note that if the robots would have a more complex
geometry, then a hierarchy of bounding volumes would be defined such as in [2, 8].

For the narrow phase, we use Lin and Canny’s algorithm [10, 11]. This algorithm determines the
closest pair of features between the polyhedra, where the features of a polyhedron are its vertices, its
edges and its faces located on its boundary. We choose to follow Lin and Canny’s algorithm since the
approach is fast, easy to implement and perfectly suited when polyhedra move slightly between two
time steps.

t1 t2t3 t4tl tu

ta tb

FIGURE 4. Convergence of the collision detection algorithm when a collision occurs.

10

6. CONCLUSION AND PERSPECTIVES

The Welding Cell Problem was presented. This problem involves minimizing the makespan of a work-
cell composed of several welding robots and tasks. The makespan is minimized when the tasks are
optimally assigned between the robots, and the motion between the tasks is as fast as possible and
collision-free. For that purpose, techniques from discrete optimization were efficiently combined with
effective algorithms to solve optimal control problems and to detect collisions.

The formulation and the resolution of (WCP) are independent of the dimension of the workcell. In
this article, we have presented numerical results in 2 dimensions. The application of (WCP) to a real
welding cell is underway.

REFERENCES

[1] S. Cameron. A study of the clash detection problem in robotics. In Int. Conf. Robotics & Automation, pages 488–493,
1985.

[2] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-collide: An interactive and exact collision detection system
for large-scaled environments. In Symposium on Interactive 3D Graphics, pages 189–196. ACM Siggraph, April 1995.

[3] M. Diehl, H. G. Bock, H. Diedam, and P. B. Wieber. Fast Direct Multiple Shooting Algorithms for Optimal Robot Control,
pages 65–94. Springer, 2005.

[4] M. Gerdts. Optimal Control of Ordinary Differential Equations and Differential-Algebraic Equations. PhD thesis, Univer-
sität Bayreuth, 2006.

[5] M. Gerdts. OC-ODE, Optimal Control of Ordinary-Differential Equations, Software User Manual, April 2010.
[6] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry. Path planning and collision avoidance for robots. Numerical Algebra,

Control and Optimization, 2(3):437 – 463, 2012.
[7] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM

Rev., 47:99–131, 2005.
[8] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid interference detection. In ACM

SIGGRAPH, editor, Computer Graphics Proceedings, Annual Conference Series, 1996.
[9] R. Gould. Graph theory. Benjamin/Cummings Pub. Co., 1988.
[10] M. C. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis, Department of Electrical Engineering

and Computer Science, University of California, Berkeley, 1993.
[11] M. C. Lin and J. F. Canny. A fast algorithm for incremental distance calculation. Robotics and Automation, 1991.

Proceedings., 1991 IEEE International Conference on, page 1008, 1991.
[12] K. Schittkowski. On the convergence of a sequential quadratic programming method with an augmented Lagrangian

line search function. Mathematische Operationsforschung und Statistik, 14:197–216, 1983.
[13] F. Schwarzer, M. Saha, and J. Latombe. Adaptive dynamic collision checking for single and multiple articulated robots

in complex environments. IEEE Tr. on Robotics, 21:338–353, 2005.
[14] M. Skutella and W. Welz. Route planning for robot systems. In B. Hu, K. Morasch, St. Pickl, and M. Siegle, editors,

Operations Research Proceedings 2010, pages 307–312. Springer, 2011.
[15] P. Toth and D. Vigo. The vehicle routing problem. pages 1–26. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA, 2001.

