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ZUSAMMENFASSUNG. We study a posteriori error estimates for convection-diffusion-reaction problems with possibly
dominating convection or reaction and inhomogeneous boundary conditions. For the conforming FEM discretisation with
streamline diffusion stabilisation (SDM), we derive reliable and efficient error estimators based on the reconstruction
of equilibrated fluxes in an admissible discrete subspace of H(div,Ω). Error estimators of this type have become
popular recently since they provide guaranteed error bounds without further unknown constants. The estimators can
be improved significantly by some postprocessing and divergence correction technique. For an extension of the energy
norm by a dual norm of the convection part of the differential operator, robustness of the error estimator with respect to
the coefficients of the problem is achieved.

Numerical benchmarks illustrate the good performance of the error estimators for singularly perturbed problems, in
particular with dominating convection.

1. INTRODUCTION

On some polygonal domain Ω ⊂ Rd (d = 2, 3) we consider the stationary convection-diffusion-reaction problem

−∇ · (K∇u) + β · ∇u+ µu = f in Ω,(1.1)

u = uD on ΓD and K
∂u

∂n
= g on ΓN .(1.2)

The Lipschitz boundary ∂Ω consists of a closed Dirichlet boundary ΓD with non-zero surface measure and data
uD , and a Neumann boundary ΓN = ∂Ω \ΓD with data g.K denotes the diffusion tensor, β some velocity field,
µ the reaction coefficient and f the source term. The exact prerequisites of the data are given in detail in Section 2.

We consider a posteriori error estimators for the error e := u− uh of some conforming first-order stabilised FEM
approximation uh measured in the energy norm. This notion of a posteriori error control in the energy norm induced
by the operator in computational PDE has been a vivid area of research for a long time. It has become increasingly
evident that the crucial task is the evaluation of computational bounds for the dual norm of some appropriate
(problem dependent) residual Res ∈ H−1(Ω) in the dual space of the standard first-order Sobolev space with
homogeneous boundary values. This in particular was elucidated by the unified approach of Carstensen, see
e.g. [CEHL12].

A posteriori error control reached a substantial maturity with the advent of efficient and generic evaluation tech-
niques for equilibrated flux reconstruction [DM99, LW04, BS08] and the error majorants by Repin [RS06, Rep08].
A crucial benefit of these type of estimators is that they allow for guaranteed error bounds without unknown con-
stants. This remedies a major shortcoming which has plagued a posteriori error control before. While equilibrated
flux estimators have been systematically analysed and compared for several standard second order model pro-
blems [CM10, CM13], there are only very few contributions [CFPV09, AABR13] for the problem at hand.

In [ESV10], an error estimator similar to the one derived in this work is presented. The main difference is the
choice of the discretisation (discontinuous Galerkin as opposed to conforming first-order FEM) and the resulting
implications for the equilibration terms. By using a more classical stabilised discretisation (which in particular is
commonly used in engineering applications), in our opinion the presentation of the error estimator in this paper
appears clearer and less cluttered with technical notation. We address some of the most accurate energy norm
error estimators which can be written as equilibrium error estimators. These are based on the design of some
q ∈ H(div,Ω) which satisfies

div q + f̂ = 0 in Ω and q · ν − g = 0 along ΓN

with some modified right-hand side f̂ ∈ L2(Ω). It turns out that additional terms that arise from the SDM stabili-
sation can be controlled properly. Moreover, we provide a thorough comparison of different flux designs for a set of
benchmark problems to illustrate their performance. We also demonstrate recent flux optimisation techniques, na-
mely some postprocessing on refined grids and some divergence correction which in certain situations can improve
the evaluated upper error bound significantly.

Classical error estimators for problem (1.1) were e.g. examined in [Ver05, Ver98] and numerical assessments were
provided in [PV00] and [Joh00]. In [Ver05], Verfürth introduced the notion of an extension of the energy norm
by some dual norm related to the convective part of the operator. This idea, which renders the error estimator
significantly more efficient and fully stable with respect to the coefficients of the problem even in the convection or
reaction dominated case, is also key in the derivations suggested in [ESV10] and [AABR13]. We adopt this notion
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of the so-called augmented norm for some numerical examples and illustrate the effect this modified norm has on
the efficiency of the error estimator.

Some of the numerical examples of Section 5 are chosen identically to these references to allow for a comparison
of different error estimators.

Here and throughout the paper, we employ the standard notation for Lebesgue and Sobolev spaces and their
norms. In particular, H1

D(Ω) := {v ∈ H1(Ω) | v|ΓD
= 0}.

In Section 2, some further notation and assumptions on the coefficients are set. Moreover, the finite element
method and the streamline diffusion stabilisation for convection dominated problems is introduced. By this, the
related modified residual ResSDM is defined. Section 3 contains the main results of this work and is dedicated to
the derivation of several equilibration error estimators. Some specific constructions of numerical fluxes and possible
improvements are described. Moreover, the treatment of inhomogeneous Dirichlet boundary data is examined.
Section 4 deals with the efficiency of the error estimators with focus on the convection-dominated case. Numerical
experiments in Section 5 illustrate the performance of the derived a posteriori error estimators based on a set of
benchmark problems.

2. SETTING

2.1. Notation and assumptions. We assume a piecewise domain Ω ⊂ Rd (d = 2, 3) and its regular partition
T into triangles (for d = 2) or tetrahedra (for d = 3) T ∈ T with faces E ∈ E and the set of vertices N ,
see [Cia78]. Any two elements of T share at most one common face (or two vertices in 3D) or one vertex and
all elements are shape regular, i.e., the ratio of the smallest circumscribed ball and the largest ball inscribed is
bounded by a constant which does not depend on the cell for any T ∈ T . The local mesh-size function reads
h := hT := diam(T ) on T ∈ T . The jump of v ∈ L2(Ω) along some face E ∈ E is denoted by [v]E
and the outer unit normal vector with regard to E is denoted by νE . The patch of some node z ∈ N or a face
E ∈ E is defined by ωz := T (z) := {T ∈ T | z ∈ T} or ωE := T (E) := {T ∈ T | E ∈ T},
respectively. We further define the subsets E(z) := {E ∈ E | z ∈ E} and N (T ) := {z ∈ N | z ∈ T}.
By E(ΓN ) := EN := {E ∈ E | |E ∩ ΓN | > 0} and N (ΓD) := {z ∈ N | z ∈ ΓD} we denote
the set of faces which lie on the Neumann boundary and the set of nodes on the Dirichlet boundary. In 2D, the
red-refinement red(T ) of a triangle T ∈ T results in a partition into four sub-triangles by connecting the face
mid-points mid(E(T )) by three new faces. A complete red-refinement red(T ) results from the red-refinement of
all elements T ∈ T . Moreover, define the (conforming) discrete space

Vh :=
{
v ∈ C(Ω) | ∀T ∈ T v|T ∈ P1(T ) and v = 0 on ΓD

}
⊂ V := H1

D(Ω)

where P1 is the space of polynomials of maximal degree one. We denote by ϕz ∈ Vh the nodal affine basis
function associated with node z ∈ Nh with support ωz , ϕz(z) = 1 and ϕ(z′) = 0 for all z′ ∈ Nh \ {z}.

The discrete Raviart-Thomas spaces of order k are defined on T ∈ Th by

RTk(T ) :=
{
v ∈ Pk+1(T,Rd) | ∃ a0, . . . , ad ∈ Pk(T ) s.t. ∀x ∈ T,

v(x) = (a1, . . . , ad) + a0x
}

while the broken Raviart-Thomas space of order 0 is defined by

RT−1(Th) :=
{
v ∈ L2

(
Ω,Rd

)
| ∀T ∈ Th v|T ∈ RT0(T )

}
.

For the data in (1.1) we assume that K ∈ L∞(Ω)d×d is a symmetric positive definite and piecewise constant
tensor. Moreover, we assume that β ∈ H(div,Ω) ∩ L∞(Ω), µ ∈ L∞(Ω) and µ − 1

2 div β ≥ 0 a.e. in Ω. By
cK,T we denote the smallest eigenvalue ofK and by cβ,µ,T the smallest value of µ− 1

2 div β on T ∈ Th. In case
that cβ,µ,T = 0, we suppose that ‖µ‖L∞(T ) =

∥∥ 1
2 div β

∥∥
L∞(T )

= 0. Additionally, the boundary data uD and g

are assumed to be sufficiently smooth where the Dirichlet data is approximated by uD,h :=
∑
z∈N (ΓD) uD(z)ϕz .

2.2. The continuous problem. We define the bilinear form according to problem (1.1)

a(u, v) :=
∫

Ω

K∇u · ∇v dx+
∫

Ω

(β · ∇u+ µu)v dx.



3

The induced energy (semi)norm |||v|||2 := a(v, v) can be written as

|||v|||2 :=
∑
T∈Th

|||v|||2T with |||v|||2T :=
∥∥∥K1/2∇v

∥∥∥2

T
+

∥∥∥∥∥
(
µ− 1

2
div β

)1/2

v

∥∥∥∥∥
2

T

and the weak formulation is given by: Find u ∈ uD,h + V such that

(2.1) a(u, v) =
∫

Ω

fv dx+
∫

ΓN

gv ds for all v ∈ V.

For the later analysis similar to [ESV10], we split the bilinear form a = aS + aA with

aS(u, v) :=
∫

Ω

K∇u · ∇v dx+
∫

Ω

(
µ− 1

2
div β

)
uv dx and(2.2)

aA(u, v) :=
∫

Ω

(
β · ∇u+

1
2

div βu
)
v dx.(2.3)

2.3. The discrete problem. The standard FEM discretisation of the weak formulation (2.1) reads: Find uh ∈
uD,h + Vh such that

(2.4) a(uh, v) =
∫

Ω

fv dx+
∫

ΓN

gv ds for all v ∈ Vh.

For the common case of dominant convection, the standard finite element method is not a stable discretisation. This
can be observed by the appearance of spurious oscillations in the solution. To circumvent this unphysical behaviour,
the stability of the discretisation is increased by the addition of some artificial diffusion to the standard weak form
of the problem. For this, as a simple and frequently employed stabilisation technique, we recall the streamline
diffusion method (SDM) which exhibits good stability properties and high-order accuracy. We refer to [EJ93, Joh90,
JNP84] for details on the SDM which is also called streamline-upwind Petrov-Galerkin method (SUPG) as in the
references [HB79, HMM86].

Instead of a test function v as in (2.4), we now use w = v + δβ · ∇v. The additional term accounts for the vector
field β. Several choices for the scaling δ are discussed in the literature. Usually, it is expressed as a function of
the local Péclet number Peh := 1/2 |β|hT /cK,T which depends on the local mesh size hT , and the problem
coefficients K and β, with

δT :=
hT

2 |β|
ζ(Peh) for any T ∈ T .

For our computations, we employ ζ(Peh) := max{0, 1− 1/(2Peh)} from [PV00], also see [EJ93].

With the SDM discretisation, the modified bilinear and linear forms for the system (2.4) are defined by

aSDM(uh, v) := a(uh, v) +
∑
T∈T

∫
T

(− div(K∇uh) + β · ∇uh + µuh) δβ · ∇v dx,(2.5)

`SDM(v) :=
∫

Ω

f(v + δβ · ∇v) dx+
∫

ΓN

gv ds.(2.6)

The stabilised variational problem reads: Find uh ∈ uD,h + Vh such that

(2.7) aSDM(uh, vh) = `SDM(vh) for all vh ∈ Vh.

3. EQUILIBRATED ERROR ESTIMATORS

3.1. Residual and error identity. According to (2.1), we define the residual, for any v ∈ V and σh := K∇uh,

(3.1) Res(v) := a(u− uh, v) =
∫

Ω

f̂v dx+
∫

ΓN

gv ds−
∫

Ω

σh · ∇v dx

with f̂ := f − β · ∇uh − µuh.
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It is well-known [BC04] that for homogeneous Dirichlet data the dual norm of the residual

|||Res|||∗ := sup
v∈V
|||v|||=1

Res(v)

is an upper bound of the energy norm of the error, see Theorem 3.2 below for uD = 0. In case of inhomogeneous
Dirichlet data, v = u− uh is not a valid test function but it still holds an inequality of the form

|||u− uh|||2 ≤ |||Res|||2∗ + |||wD|||2 .

The term |||wD||| on the right-hand side is discussed in Subsection 3.3.

For the stabilised problem (2.7), we define the auxiliary residual

ResSDM(v) := `SDM(v)− aSDM(uh, v) = Res(v) +G(v)(3.2)

where

G(v) := δ

(∫
Ω

f̂β · ∇v dx
)
.

Note that for u ∈ H2(T ),ResSDM(v) = aSDM(u− uh, v) is satisfied.

3.2. Equilibration. For any free node z ∈ N , (2.7) shows

ResSDM(ϕz) =
∫

Ω

f̂ϕz dx+
∫

ΓN

gϕz ds−
∫

Ω

σh · ∇ϕz dx+G(ϕz) = 0.

This allows for the local design of equilibrated fluxes q ∈ H(div,Ω) in the ansatz

ResSDM(v) =
∫

Ω

(f̂ + div q)v dx+
∫

ΓN

(g − q · ν)v ds(3.3)

+
∫

Ω

(q − σh) · ∇v dx+G(v).

Three designs for appropriate numerical fluxes q after [DM99, BS08, LW04, CM12a] are given below. They are
equilibrated in the sense that

div q + f̂h = 0 in Ω and q · ν − gh = 0 along ΓN .(3.4)

Here, f̂h is some approximation of the extended source term f̂ such that
∫
T
f̂ − f̂h dx = 0 for T ∈ T and

gh approximates g such that
∫
E
g − gh dx = 0 for E ∈ EN . The approaches of Destuynder-Métivet or Braess

and Luce-Wohlmuth lead to different approximations f̂h and gh. However, the analysis for all designs leads to the
locally computable error estimator contributions on T ∈ T ,

ηR,T (q) := mT

∥∥∥f̂ − f̂h∥∥∥
T

+
∑

E∈EN∩E(T )

mE,N ‖g − gh‖E ,(3.5)

ηDF,T (q) :=
∥∥∥K−1/2(q − σh)

∥∥∥
T
,(3.6)

with the explicit constants m2
T := min{C2

Ph
2
T c
−1
K,T , c

−1
β,µ,T } and m2

E,N := |E| / |T | (m2
T +hT cK,T

−1/2mT )
where CP denotes the Poincaré constant. On triangles in 2D, CP = 1/j1,1 where j1,1 is the first positive root
of the first Bessel function J1, see [LS10]. In 3D, there is the Payne-Weinberger constant CP = 1/π for convex
domains, see [PW60, Beb03].

Theorem 3.1. For any q ∈ H(div,Ω) that satisfies (3.4) with
∫
T
f̂ − f̂h dx = 0 for all T ∈ T as well as∫

E
g − gh dx = 0 for all E ∈ EN , it holds

|||Res|||∗ ≤

(∑
T∈T

(ηR,T (q) + ηDF,T (q))2

)1/2

.(3.7)
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Beweis. It holds, for any v ∈ V ,

Res(v) =
∫

Ω

(f̂ + div q)v dx+
∫

ΓN

(g − q · ν)v ds+
∫

Ω

(q − σh) · ∇v dx

=
∫

Ω

(f̂ − f̂h)(v − vT ) dx+
∫

ΓN

(g − gh)v ds

+
∫

Ω

K−1/2(q − σh) ·K1/2∇v dx.

The arbitrary constant vT is set to vT :=
∫
T
v dx/ |T | or vT = 0 (whichever leads to the better estimate) and

vT |T = vT for all T ∈ T . Then, elementwise Cauchy and Poincaré inequalities on every T ∈ T show∫
Ω

(f̂ − f̂h)(v − vT ) dx ≤
∑
T∈T

mT

∥∥∥f̂ − f̂h∥∥∥
T
|||v|||T .

For gh with
∫
E

(g − gh) ds = 0 on all Neumann boundary faces E ∈ EN , it follows, for any constant vE ,∫
E

(g − gh)v ds =
∫
E

(g − gh)(v − vE) ds ≤ ‖g − gh‖L2(E) ‖v − vE‖L2(E) .

A trace identity for E and a neighbouring element T = conv{E,P} ∈ T with a vertex P opposite to E shows

‖v − vE‖2L2(E) =
|E|
|T |

∫
T

(v − vE)2 dx+
|E|

2 |T |

∫
T

(x− P ) · ∇((v − vE)2) dx.

Elementary calculations with∇((v − vE)2) = 2(v − vE)∇(v), |x− P | ≤ hT and Poincaré inequalities for the
choice vE :=

∫
T
v dx/ |T | (or vE = 0 without further estimation) lead to

‖v − vE‖2L2(E) ≤
|E|
|T |

(
m2
T |||v|||

2
T + hT ‖v − vE‖L2(T ) ‖∇v‖L2(T )

)
≤ |E|
|T |

(
m2
T + hT cK,T

−1/2mT

)
|||v|||2T = m2

E,N |||v|||
2
T .

The combination of the previous results and a Cauchy inequality in R|T | yield

Res(v) ≤
∑
T∈T

(ηR,T (q) + ηDF,T (q)) |||v|||T ≤

(∑
T∈T

(ηR,T (q) + ηDF,T (q))2

)1/2

|||v||| .

A division by |||v||| concludes the proof. �

Particular designs of q were e.g. suggested by Destuynder, Métivet [DM99], Braess [BS08], Luce and Wohl-
muth [LW04] and Vohralik [Voh07]. We provide the details of two designs and slight modifications due to the
presence of the stabilisation as in [AABR13]. Subsection 3.2.3 describes an alternative global minimisation based
on the Raviart-Thomas mixed FEM.

3.2.1. Equilibration after Destuynder, Métivet and Braess. The design inspired by Destuynder, Métivet [DM99]
and Braess [BS08] solves local problems on node patches. For every z ∈ N , the design involves the piecewise
constant function f̂z ∈ P0(T (z)) and gz ∈ P0(E(z) ∩ EN ) defined by

f̂z|T := |T |−1

(∫
T

f̂ϕz dx+ δT

∫
T

f̂β · ∇ϕz dx
)

for T ∈ T (z),

gz|E := |E|−1

(∫
E

gϕz ds

)
for E ∈ E(z) ∩ EN .

Then, qz ∈ RT−1(T (z)) is the solution of the local minimisation problem

qz = argmin
τz∈RT−1(T (z))

{∥∥∥K−1/2τz

∥∥∥
L2(ωz)

| div τz + f̂z = 0, τz · ν = 0 along ∂ωz \ ∂Ω,

τz · ν = gz −
1
d
σh · ν along ∂ωz ∩ ΓN , and [τz · ν] = −1

d
[σh · ν] for all E ∈ E(z) \ EN

}
.



6

The existence of qz for z ∈ N \ N (ΓD) follows fromResSDM(ϕz) = 0 and the complementary condition∫
ωz

div qz dx =
∑

E∈E(z)\EN

∫
E

[qz · ν] ds+
∫

ΓN∩∂ωz

qz · ν ds

=
∑

E∈E(z)\EN

∫
E

ϕz[σh · ν] ds+
∫

ΓN∩∂ωz

qz · ν ds

= −
∫
ωz

σh · ∇ϕz dx+
∫

ΓN∩∂ωz

(qz + σh) · ν ds

= ResSDM(ϕz)−
∫
ωz

f̂ϕz dx−G(ϕz)

+
∫

ΓN∩∂ωz

(qz + ϕzσh) · ν − gϕz ds

= −
∫
ωz

f̂ϕz dx−G(ϕz) +
∫

ΓN∩∂ωz

(qz + 1/d σh) · ν − gϕz ds.

Hence, qz must satisfy∫
ωz

div qz + f̂ϕz dx+
∫

ΓN∩∂ωz

(gϕz − 1/d σh · ν)− qz · ν ds+G(ϕz) = 0

which is ensured with the constraints above. This condition can be found also in [AABR13, formula (32)]. The sum
of all local solutions leads to qB := σh+

∑
z∈N qz ∈ RT0(T ) with qz ·ν = gE =

∫
E
g ds/ |E| for allE ∈ EN

and

−div qB|T =
∑

z∈N (T )

div qz = f̂T =
∫
T

f̂ dx/ |T | for all T ∈ T .

Note that the local contributions of
∫
T
f̂β · ∇ϕz dx in qB sum up to∑

z∈N (T )

∫
T

f̂β · ∇ϕz dx =
∫
T

f̂β · ∇
∑

z∈N (T )

ϕz dx = 0.

Theorem 3.1 with f̂h = f̂T for the piecewise integral mean of f̂ , and gh = gEN
for the facewise integral mean of

g, yields

|||Res|||∗ ≤

(∑
T∈T

(ηR,T (qB) + ηDF,T (qB))2

)1/2

=: ηB .

3.2.2. Equilibration after Luce and Wohlmuth. The Luce-Wohlmuth design after [LW04] employs the dual trian-
gulation T ?. It connects the element centers mid(T ) with adjacent nodes and face midpoints (and also edge
midpoints in 3D) and so divides every element T ∈ T into (d+ 1)! subelements of equal area |T | /(d+ 1)!. The
nodal basis functions of nodes z ∈ N ∗ in the dual mesh are denoted by ϕ∗z and their patch is denoted by ω∗z .

The further design employs an interpolation f? ∈ P0(T ?) of f and g? ∈ P0(E?) from [CM12b] defined by

f?|T∩ω?
z

:= (d+ 1)
∫
T

f̂ϕz dx/ |T | for z ∈ N and T ∈ T (z)

and

g?|E∩∂ω?
z

:= d

∫
E

gϕz dx/ |E| for z ∈ N and E ∈ E(z) ∩ EN .

An approximation of the integral in G is given by

γ?|T∩ω?
z

:= (d+ 1)δT
∫
T

f̂β · ∇ϕz dx/ |T | for z ∈ N and T ∈ T (z).

Locally, the Luce-Wohlmuth equilibrator reads

q̂LW|ω?
z

:= argmin
τh∈Q(T ?(z))

∥∥∥K−1/2(σh − τh)
∥∥∥
L2(ω?

z )
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0

ABBILDUNG 1. Schematic view of the divergence correction τ ∈ RT0(T ?(T )) on some element T ∈ T .

with

Q(T ?(z)) :=
{
τh ∈ RT0(T ?(z)) | f? + div τh + γ∗ = 0 in ω?z ,

g? − τh · ν = 0 along ∂ω?z ∩ ΓN & τh · ν = σh · ν along ∂ω?z \ ∂Ω
}
.

The well-posedness of this minimisation for z ∈ N \ N (ΓD) follows from ResSDM(ϕz) = 0 and the comple-
mentary condition∫

ω∗z

div qLW dx =
∫
ω∗z

σh · ν ds = −
∫
ωz

f̂ϕz dx−
∫
∂ωz∩ΓN

gϕz ds−G(ϕz)

= −
∫
ω?

z

(f? + γ?) dx−
∫
∂ωz∩ΓN

g? ds.

By continuity of σh along ∂ω?z , this well defines qLW ∈ H(div,Ω) with div qLW+f?+γ? = 0 and qLW·ν−g? =
0 along ΓN .

To determine a Raviart-Thomas function qLW ∈ RT0(T ?) with div qLW + f? ≡ 0, it is possible to add a
(nonunique) correction τ ∈ RT0(T ?) with div τ |T? + γ∗ = 0 for all T ? ∈ T ?(T ), τ |T · νT = 0 and∫
T

div τ dx = 0 for all T ∈ T , since
∑
z∈N (T )∇ϕz = 0 and hence∫

T

γ∗ dx = (d+ 1)
∑

z∈N (T )

δT

∫
T

f̂β · ∇ϕz dx = 0.

The final equilibrator reads qLW := q̂LW + τ and leads to the error estimator ηLW given below.

Remark 3.1. The actual implementation in 2D computes τ ∈ RT0(T ?(T )) locally on every T ∈ T with τ ·νT =
0 along ∂T by a clockwise algorithm as illustrated in Figure 1. The choice of the interior fluxes is unique up to
an additional constant which, for simplicity, is chosen such that τ · νE = 0 on the first face. Certainly, this is not
optimal and leaves room for further improvement.

Theorem 3.1 with f̂h = f? and gh = g? yields the error estimator

|||Res|||∗ ≤

(∑
T∈T

(ηR,T (qLW) + ηDF,T (qLW))2

)1/2

=: ηLW.

3.2.3. Global minimisation. A global minimisation computes

qMFEM = argmin
q∈RT0(T )

div q+ bfh=0
q·ν−gh=0 along ΓN

∥∥∥K−1/2(σh − q)
∥∥∥
L2(Ω)

for the piecewise integral mean f̂h = f̂T of f and the facewise integral mean gh = gEN
of g.

Theorem 3.1 leads to the error estimator

|||Res|||∗ ≤

(∑
T∈T

(ηR,T (qMFEM) + ηDF,T (qMFEM))2

)1/2

=: ηMFEM.
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The nomenclature of this estimator stems from the fact that qMFEM is also the Raviart-Thomas mixed FEM solution
of the problem

−div(K∇w) = f̂ in Ω, w = uh along ΓD and K∇w · ν = g along ΓN .

3.2.4. Postprocessing of the numerical flux in 2D. The postprocessing from [CM12a] leads to improved efficiency
of the error estimator. The main idea of this postprocessing is to replace q by q+Curl v for some discrete function
v ∈ H1(Ω) such that

∥∥K−1/2(σh − q − Curl v)
∥∥ ≤ ∥∥K−1/2(σh − q)

∥∥. This is done by some preconditioned
CG (PCG) scheme with initial value zero for the minimiser of

argmin
v∈P1( bT )∩C(Ω)

Curl v·ν=0 along ΓN

∥∥∥K−1/2(σh − q − Curl v)
∥∥∥(3.8)

on some triangulation T̂ . Since on T̂ = T and for q = qMFEM an improvement of q is only possible if v is designed
in a larger approximation space than P1(T ) ∩C(Ω), see [CM12a]. For ηB, this is performed with j = 1 or j = 2
red refinements T̂ := redj(T ) of T . For the Luce-Wohlmuth equilibrator error estimator, we employ T̂ := T ?.
The number of red-refinements and the number of PCG iterations is denoted in the label of the postprocessed
error estimators. For instance, ηBr(1) employs T̂ := red(T ) and performs one PCG iteration, ηBrr(3) employs

T̂ := red2(T ) and performs three PCG iteration and ηLW(∞) employs T̂ := T ? and computes the optimal
v ∈ P1(T ?) ∩ C(Ω) in (3.8).

A second postprocessing step improves the divergence of the equilibrator q. After every red-refinement the three
new interior fluxes in any triangle are modified such that div q + f̂red(T ) = 0 for the piecewise integral mean

f̂red(T ) of f with respect to the red-refined triangulation. Since the normal fluxes on the old faces of T remain
unchanged, this is a very cheap step that reduces the oscillation contribution ηR,T (q). If this step is performed,
another ”m” is included in the label, e.g. ηBmrr(3) instead of ηBrr(3).

A similar strategy in 3D is possible but one has to replace the red-refinement by a proper 3D refinement and the
ansatz functions for the postprocessing have now three components, i.e., v ∈ H1(Ω)3.

3.3. Inhomogeneous Dirichlet boundary conditions. This subsection employs the construction from [BCD04]
to allow guaranteed upper error bounds also in presence of inhomogeneous Dirichlet boundary data uD .

Theorem 3.2. For uD ∈ H1(ΓD) ∩ H2(E(ΓD)) there exists wD ∈ H1(Ω) with wD = u − uD along ΓD .
Then

|||u− uh|||2 ≤ |||Res|||2∗ + |||wD|||2

where

|||wD|||2 ≤
∑

E∈E(ΓD)

m2
E,D

∥∥∂2uD/∂s
2
∥∥2

L2(E)

with
mE,D := CD,1(E)h3/2

E λmax(K,T )1/2 + CD,2(E)h5/2
E ‖µ− div β/2‖1/2L∞(E) .

Beweis. Let w denote the solution of the problem

−∇(K∇w) + β · ∇w + µw = 0 in Ω,

w = u− uD on ΓD and K
∂w

∂n
= 0 on ΓN .

The orthogonality a(w, v) = 0 for all v ∈ V leads to the Pythagoras theorem

|||u− uh|||2 = |||u− uh − w|||2 + |||w|||2 .
It remains to show |||u− uh − w||| ≤ |||Res|||∗ which follows from testingRes(v) with the admissible test function
v = u− uh − w.

Any otherwD ∈ H1(Ω) withwD = u−uD along ΓD leads tow−wD ∈ V and, again with a(w,w−wD) = 0,
this yields

|||wD|||2 = |||wD − w|||2 + |||w|||2 ≥ |||w|||2 .
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The design from [BCD04] leads to such a wD that allows the asserted estimate. �

Remark 3.2. In 2D, the constant CD,1(E) in (3.2) was calculated in [CM13]. The constant CD,2(E) in (3.2)
can be estimated in a similar fashion, see [Mer13] for details. For triangulations into right isosceles triangles, the
constants are bounded by CD,1 ≤ 0.4980 and CD,2 ≤ 0.0654.

4. EFFICIENCY

This sections deals with the efficiency of the derived error estimators with respect to an augmented norm due to
[Ver05] in the convection-dominated case.

4.1. Augmented norm estimates. In [Ver05] the dual norm of some convection dependent term was added to
the energy error norm to allow for robust error estimates. A similar approach was employed in the context of
discontinuous Galerkin methods in [ESV10] where this norm was coined augmented norm, also see [AABR13].
The following ideas are based on the same technique. However, since we use a classic conforming FEM, the
formulations of the augmented norm and of the error estimators simplify somewhat.

We introduce the augmented energy norm for all v ∈ V defined by

(4.1) |||v|||⊕ := |||v|||+ sup
ϕ∈V
|||ϕ|||=1

aA(v, ϕ).

Theorem 4.1. With the discrete approximation uh ∈ Vh and the error estimator of Theorem 3.1, it holds

(4.2) |||u− uh|||⊕ ≤ 3η.

Beweis. With the splitting (2.2) we deduce

|||u− uh|||⊕ = |||u− uh|||+ sup
v∈V
|||v|||=1

aA(u− uh, v)(4.3)

= |||u− uh|||+ sup
v∈V
|||v|||=1

(a(u− uh, v)− aS(u− uh, v)) .(4.4)

The second term in the supremum can be bounded by

aS(u− uh, v) =
∫

Ω

K∇(u− uh) · ∇v dx+
∫

Ω

(µ− 1
2

div β)(u− uh)v dx

≤ |||u− uh||| |||v||| .

This yields
sup
v∈V
|||v|||=1

aS(u− uh, v) ≤ |||u− uh||| .

It thus follows
|||u− uh|||⊕ ≤ 2 |||u− uh|||+ sup

v∈V
|||v|||=1

a(u− uh, v)

which completes the proof. �

Remark 4.1. It was recently shown in [JN13] that, under certain hypotheses, some residual estimator is robust in
the induced energy norm of the SDM stabilised FEM.

4.2. Equivalence to standard residual-based error estimators. All equilibration designs above are known to be
efficient in the sense

ηDF,T (q)2 . h2
T c
−1
K,T

∥∥∥f̂∥∥∥2

L2(T )
+

∑
E∈E(T )

hEc
−1
K,ωE

‖[σh · νE ]E‖2L2(E) ,(4.5)

see e.g. [AABR13, BS08] for (an upper bound of) ηB , or [LW04] for ηLW or [CFPV09] for a similar result also in
3D. For completeness, the efficiency for ηB is proven below.
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Theorem 4.2 (Efficiency of ηB). For the equilibrated quantity q = qB from Section 3.2.1, it holds

ηDF,T (q)2 . h2
T c
−1
K,T

∥∥∥f̂∥∥∥2

L2(T )
+

∑
E∈E(T )

hEc
−1
K,ωE

‖[σh · νE ]E‖2L2(E) .

Beweis. The remainder r := qB − σh =
∑
z∈N qz ∈ RT−1(T (z)) satisfies ηDF,T (q) =

∥∥K−1/2r
∥∥
L2(T )

,

div r = −f̂T , [r · νE ] = −[σh · νE ] on all interior faces E ∈ E , and r · νE = gEn − σh · νE on E ∈ EN .

The constraints for the design of qB from Section 3.2.1 and the reference [BS08, Lemma 3] (for gT = f̂z|T and
gF = −1/d[σh · νF ] or gF = gz − 1/dσh · νF for F ∈ EN ) show∥∥∥K−1/2qz

∥∥∥
L2(T )

.
∑

T∈T (z)

hT

∥∥∥f̂z|T∥∥∥
L2(T )

+
∑

E∈E(z)

h
1/2
T ‖[σh · νE ]‖L2(E) .

Elementary calculations show ∥∥∥f̂z|T∥∥∥
L2(T )

.
∥∥∥f̂∥∥∥2

L2(T )
for all T ∈ T ,

‖gz|E − 1/d σh · νE‖L2(E) . ‖g − σh · ν‖
2
L2(E) for all E ∈ EN .

Here, the additional terms due to the stabilisation are hidden by the estimate∥∥∥∥ δT|T |
∫
T

f̂β · ∇ϕz
∥∥∥∥2

L2(T )

=
δ2
T

|T |

(∫
T

f̂β · ∇ϕz
)2

.
∥∥∥f̂∥∥∥2

L2(T )
.

Together with a triangle inequality, this results in∥∥∥K−1/2r
∥∥∥
L2(T )

≤
∑

z∈N (T )

∥∥∥K−1/2qz

∥∥∥
L2(T )

.
∑

z∈N (T )

c−1
K,ωT

( ∑
T∈T (z)

hT

∥∥∥f̂∥∥∥
L2(T )

+
∑

E∈E(z)

h
1/2
E ‖[σh · νE ]‖L2(E)

)
.

Further considerations involving finite overlap constants and local eigenvalue quotients, e.g. cK,T vs. cK,ωT
,

conclude the proof.

�

The terms on the right-hand side of (4.5) are in fact the contributions of a residual-based error estimator as in
[Ver05] for the convection-dominated case µ = 0. In this reference, this estimator was shown to exhibit robust
efficiency only with respect to the augmented norm |||u− uh|||⊕. Thus, the equilibration error estimators in the
present designs are also efficient independently of the coefficients in the augmented norm |||u− uh|||⊕ due to
equivalence with the residual error estimator. However, this cannot be expected for the efficiency with respect to
the energy norm |||u− uh|||. Moreover, in the reaction dominated case, ηDF,T (q) is, in this form, not robust with
respect to |||u− uh||| in the preasymptotic range. The problems arise from the suboptimal estimate∫

Ω

K−1/2(q − σh) ·K1/2∇v dx ≤
∥∥∥K−1/2(q − σh)

∥∥∥
L2(Ω)

|||v|||

in the proof of Theorem 3.1. However, [CFPV09] shows a possible remedy for these difficulties.

5. NUMERICAL EXPERIMENTS

In this section, we present several numerical examples which illustrate the performance of the a posteriori error
estimators of Section 3. Three convection dominated problems and one singularly perturbed problem are used as
benchmarks. The numerical solution of (1.1) on the unit square Ω = (0, 1)2 is obtained with conforming first order
FEM and SDM. All examples exhibit typical boundary layers and possibly large initial oscillations which are both
resolved by the adaptive algorithm. The chosen test cases can also be found in [Joh00, PV00, ESV10, Ste05] and
enable a comparison of the results.
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ABBILDUNG 2. Example 1 with K = 10−4I2. Error in energy norm, augmented norm and oscillations for uniform and adaptive refinement
versus number of degrees of freedom [top]. Efficiency indices of different error estimators with regard to energy norm and augmented norm
(labelled with aug) for adaptively refined meshes after ηR [center]. Efficiency indices of different error estimators with regard to energy norm
and augmented norm for uniformly refined meshes [bottom]. Error estimators ηxyz are labelled xyz.

The bulk marking algorithm (also known as Dörfler or greedy marking) based on the element-wise refinement
indicator ηR [Ver05] is employed in all experiments to avoid a biased refinement. It is defined on each T ∈ T for
the exact solution u ∈ V and the numerical approximation uh ∈ Vh by

η2
R(T ) := α2

T

∥∥∥f̂∥∥∥2

L2(T )
+

∑
E∈E(T )

αT,E ‖[K∇uh · νE ]E‖2L2(E)

with

αT := min{hTK−1/2, 1} and αT,E := K−1/2 min{hEK−1/2, 1}.
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ABBILDUNG 3. Example 2 with K = 10−4I2. Error in energy norm, augmented norm and oscillations for uniform and adaptive refinement
versus number of degrees of freedom [top]. Efficiency indices of different error estimators with regard to energy norm and augmented norm
(labelled with aug) for adaptively refined meshes after ηR [center]. Efficiency indices of different error estimators with regard to energy norm
and augmented norm for uniformly refined meshes [bottom]. Error estimators ηxyz are labelled xyz.

Alternatively, a local version of the equilibration estimator ηB is used. Then, η2
B(T ) := ηR,T (qB)2 + ηDF,T (qB)2

replaces η2
R(T ). Naturally, any other error equilbration estimator yields refinement indicators in the same fashion.

For some bulk parameter 0 < Θ ≤ 1, the refinement algorithm finds the smallest set of elementsM ⊂ T such
that

Θ
∑
T∈T

η(T ) ≤
∑
T∈M

η(T ).

To determine M, all refinement indicators η(T ) are sorted in descending order. Then, elements are added to
the refinement set, starting from the largest error contribution, until the inequality is valid. The resulting M is
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the smallest set of elements for refinement. Different marking strategies are possible and can lead to differently
adapted meshes, see [PV00] for a study of several algorithms. The mesh is refined at least for the elements in τ
with possible additional refinements to re-establish conformity of the mesh. For the numerical results in this section,
we employ Θ = 0.5.

The efficiency indices for some error estimator η are computed by the quotient η/ |||e||| or η/ |||e|||⊕, respectively.

Example 1. We consider (1.1) for the scalar diffusion value K = 10−4I2, β = (2, 3)T and µ = 2. The right-
hand-side is chosen such that the solution reads

u(x, y) = 16x(1− x)y(1− y)

×

(
1
2

+ atan

(
2√
A

(
1
16
−
(
x− 1

2

)2

−
(
y − 1

2

)2
))

/π

)
.

In this and example 2, we employ some upper bound of the augmented norm (4.1) suggested in [ESV10]. Since β
is constant, it holds, for all v, w ∈ V ,

aA(v, w) =
∫

Ω

(β · ∇v +
1
2

div βv)w dx ≤ K−1/2 ‖v‖L2(Ω)

and thus
|||v|||⊕ ≤ |||v|||+ c

−1/2
K,Ω ‖β‖L∞(Ω) ‖v‖L2(Ω) .

Note that since this represents an upper bound of the norm, the error estimators could actually become smaller
than this approximation in certain cases, i.e., efficiency indices smaller than 1 could occur in principle.

We observe in Figure 2[top] that the oscillations are quite large and their decay rate is the same as for the aug-
mented norm of the error |||e|||⊕. Hence, the oscillations are not of higher order. Asymptotically, the augmented
norm |||e|||⊕ converges to the energy norm |||e|||. This is due to the faster convergence of ‖v‖L2(Ω). We observe
that adaptive refinement is clearly superior to uniform refinement and leads to optimal convergence rates. The
refinement indicators after ηB result in a qualitatively similar error decay as refinement with ηR. This supports the
observations from former experiments for Poisson problems in [CM10] that ηR provides cheap and sufficient refi-
nement indicators for adaptive mesh generation. However, guaranteed bounds are usually not available or overly
pessimistic. This justifies the computationally more involved estimators presented here. For the augmented norm,
the efficiency indices in Figure 2[center] are constantly at a very good level between 1.5 and 3.5. They differ only
marginally for the error estimators B, LW and MFEM and their postprocessings. Due to the high oscillations, the
divergence correction significantly reduces the overestimation by a factor 1/5 even on the finest mesh. The effi-
ciency indices then are in the range 1.3-2.2. In the energy norm, the efficiency indices commence with typically
large values at about 100 which decrease monotonically with refinement.

The error estimators show large differences. LW exhibits the largest overestimation which is improved by Braess
and MFEM and the best results are achieved for Braess with postprocessing and divergence correction. For uniform
mesh refinement, the efficiency indices depicted in Figure 2[bottom] are worse overall and their decay is slower.

Remark 5.1. Opposite to the experience with unstabilised first-order FEM for elliptic problems, in this and the
following experiments the more involved design of Luce and Wohlmuth is in fact inferior to the approach of Braess
possibly due to the modifications required to cope with the stabilisation terms (see Remark 3.1). The postprocessing
for the latter seems to remedy this effect but the single PCG iteration in ηLW(1) seems not to be sufficient. We thus
recommend to use the simpler design of Braess for the discussed problem setting.

Example 2. We consider problem (1.1) with diffusion K = 10−4I2, β = (1, 0)T and µ = 1. The right-hand
side is chosen such that the solution is given by

u(x, y) =
1
2
x(1− x)y(y − 1)(1− tanh(10− 20x)).

The comments for experiment 1 in the previous section also hold for the results pictured in Figure 3. We observe the
same order for the tested error estimators with efficiency indices in the range 1.3-4 in Figure 3[center]. Again, the
large oscillations substantially contribute to the error in the augmented norm as seen in Figure 3[top]. Since they
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ABBILDUNG 4. Example 3 with K = 10−4I2. Error in energy norm and oscillations for uniform and adaptive refinement versus number of
degrees of freedom [top]. Efficiency indices of different error estimators with regard to energy norm for adaptively refined meshes after ηR

[center]. Efficiency indices of different error estimators with regard to energy norm for uniformly refined meshes [bottom]. Error estimators ηxyz

are labelled xyz.

converge with the same rate as the overall error, they are not of higher order. The best estimation is obtained for
the Braess estimator with postprocessing and divergence corrections. Altogether, the advantages of adaptive mesh
refinement versus uniform mesh refinement can be observed but are not as pronounced as in the first example.

Example 3. We consider a singularly perturbed problem similar to [Ste05] with K = 10−4I2, β = (0, 0)T and
µ = 1 which results in strong boundary layers. The right-hand side is chosen such that the solution reads

u(x, y) = δ(x)δ(y) + sin(πx) sin(πy)
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ABBILDUNG 5. Example 4 with K = 10−2I2. Error in energy norm and oscillations for uniform and adaptive refinement versus number of
degrees of freedom [top]. Efficiency indices of different error estimators with regard to energy norm for adaptively refined meshes after ηR

[center]. Efficiency indices of different error estimators with regard to energy norm for uniformly refined meshes [bottom]. Error estimators ηxyz

are labelled xyz.

where

δ(z) := 1− α(z) + α(1− z)
1 + α(1)

and α(z) := e
− 1√

2K
z
.

The solution exhibits very large oscillations. The error does not show any reduction with uniform refinement and
the oscillations are reduced with a low rate, see Figure 4[top]. In contrast to that, adaptive refinement with either
ηR or ηB performs considerably better with the expected reduction rate after a pre-asymptotic phase. For a large
number of degrees of freedom, the efficiency indices are in the range 1.03-1.7 as illustrated in Figure 4[center].
Due to the large oscillations, the error estimator ηBmrr(3) with the divergence correction leads to substantially better
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efficiency indices. Thus, the error estimators are nearly exact. This is comparable to the results for the Poisson
model problem, see [CM12a]. Although the uniform refinement does not reduce the energy error, the efficiency in-
dices decrease in accordance to the oscillations. The error convergence rates for uniform refinements are identical
to the oscillation reduction rate, see Figure 4[bottom].

Example 4. We consider (1.1) for the diffusion K = 10−2I2, β = (2, 3)T and µ = 1. The right-hand-side is
chosen such that the solution reads

u(x, y) = xy2 − y2α(2(x− 1))− xα(3(y − 1)) + α(2(x− 1) + 3(y − 1))

with

α(v) := exp(v/K).

The oscillations in this example are of higher order as depicted in Figure 5[top]. As with the Poisson model problem,
asymptotically the error estimators become nearly exact with efficiency indices in the range 1.03-1.7 on meshes
with more than 300 degrees of freedom with refinement based on ηR or ηB , see Figure 5[center]. The suggested
postprocessing shows a large effect on the efficiency while the divergence correction only has a small influence
due to the small oscillations. For uniform mesh refinement there is a long pre-asymptotic phase.
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[CFPV09] Ibrahim Cheddadi, Radek Fučík, Mariana I. Prieto, and Martin Vohralík. Guaranteed and robust a posteriori error estimates for

singularly perturbed reaction-diffusion problems. M2AN Math. Model. Numer. Anal., 43(5):867–888, 2009.
[Cia78] Philippe G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, 1978. Studies in

Mathematics and its Applications, Vol. 4.
[CM10] Carsten Carstensen and Christian Merdon. Estimator competition for Poisson problems. J. Comp. Math., 28(3):309–330 (electronic),

2010.
[CM12a] Carsten Carstensen and Christian Merdon. Effective postprocessing for equilibration a posteriori error estimators. Numer. Math,

2012.
[CM12b] Carsten Carstensen and Christian Merdon. Refined fully explicit a posteriori residual-based error control (submitted). 2012+.
[CM13] C. Carstensen and C. Merdon. Computational survey on a posteriori error estimators for nonconforming finite element methods for

the Poisson problem. J. Comput. Appl. Math., 249:74–94, 2013.
[DM99] Philippe Destuynder and Brigitte Métivet. Explicit error bounds in a conforming finite element method. Math. Comp., 68(228):1379–

1396, 1999.
[EJ93] Kenneth Eriksson and Claes Johnson. Adaptive streamline diffusion finite element methods for stationary convection-diffusion pro-

blems. Math. Comp., 60(201):167–188, S1–S2, 1993.
[ESV10] Alexandre Ern, Annette F. Stephansen, and Martin Vohralík. Guaranteed and robust discontinuous Galerkin a posteriori error esti-

mates for convection-diffusion-reaction problems. J. Comput. Appl. Math., 234(1):114–130, 2010.
[HB79] T. J. R. Hughes and A. Brooks. A multidimensional upwind scheme with no crosswind diffusion. In Finite element methods for

convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), volume 34 of AMD, pages
19–35. Amer. Soc. Mech. Engrs. (ASME), New York, 1979.

[HMM86] Thomas J. R. Hughes, Michel Mallet, and Akira Mizukami. A new finite element formulation for computational fluid dynamics. II.
Beyond SUPG. Comput. Methods Appl. Mech. Engrg., 54(3):341–355, 1986.

[JN13] Volker John and Julia Novo. A robust SUPG norm a posteriori error estimator for stationary convectionâĂŞdiffusion equations. Math.
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