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Abstract

Let A be a densely defined symmetric operator and let {Ã′, Ã} be an ordered pair of
proper extensions of A such that their resolvent difference is of trace class. We study the
perturbation determinant ∆ eA′/ eA(·) of the singular pair {Ã′, Ã} by using the boundary

triplet approach. We show that under additional mild assumptions on {Ã′, Ã} the pertur-
bation determinant ∆ eA′/ eA(·) is a ratio of two ordinary determinants involving Weyl function
and boundary operators. In particular, if the deficiency indices of A are finite, then

∆ eA′/ eA(z) =
det(B′ −M(z))
det(B −M(z))

, z ∈ ρ(Ã),

where M(·) is the Weyl function and B′ and B the boundary operators corresponding to
Ã′ and Ã with respect to a chosen boundary triplet Π. The results are applied to ordinary
differential operators and to second order elliptic operators.

1 Introduction

The perturbation determinant was introduced by Krein [39] and, independently, by Kuroda in
[45]. It is an important tool in studying the spectral shift functions and trace formulas for pairs of
self-adjoint operators [9, 10, 39, 42, 43] and non-selfadjoint operators [44] as well. It was also
used to analyze certain other properties of non-selfadjoint operators as the completeness of the
root vectors, estimates for resolvents of operators with discrete spectrum, etc, cf. [40, 41]. Dur-
ing three last decades the perturbation determinants attract certain attention in connection with
spectral shift functions and (higher order) trace formulas for self-adjoint and dissipative opera-
tors (see [3, 4, 6, 24, 58, 59, 60, 61, 62, 63, 64, 65]). Applications of perturbation determinants to
Schrödinger operators (especially in connection with Jost-Pais formulas) have intensively been
studied in [23, 24, 25, 26, 27, 28, 29, 30] and [46, 47, 48].

The following definition goes back to M.G. Krein [42, 44] (see also [31, 69]).

Definition 1.1. An ordered pair {H ′, H} of densely defined closed operators defined on a
separable Hilbert space H is put to the class D if

(i) ρ(H ′) ∩ ρ(H) 6= ∅,

(ii) dom (H ′) = dom (H),

(iii) (H ′ −H)(H − z)−1 ∈ S1(H) for z ∈ ρ(H).
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If {H ′, H} ∈ D, then the scalar-valued function ∆H′/H(·)

∆H′/H(z) := det(I + (H ′ −H)(H − z)−1), z ∈ ρ(H), (1.1)

is called the perturbation determinant of the pair {H ′, H}.

Clearly, ∆H′/H(·) is a holomorphic function. The properties of perturbation determinants are
summarized in [12, 31, 69] (see also Appendix). In what follows pairs {H ′, H} satisfying con-
ditions (i) and (ii) are called regular. However, non-regular pairs are typical for boundary value
problems of differential operators. In the sequel a pair {Ã′, Ã} of operators is called singular if
condition (i) is satisfied and both operators Ã′ and Ã are proper extensions of a densely defined
symmetric operatorA. In this case condition (ii) is always violated: dom (Ã′) = dom (Ã) if and
only if Ã′ = Ã.

In what follows we consider only singular pairs {H ′, H} satisfying

Rξ(H
′, H) := (H ′ − ξ)−1 − (H − ξ)−1 ∈ S1(H), ξ ∈ ρ(H ′) ∩ ρ(H), (1.2)

and denote by D̃ the class of such pairs. For the pair {H ′, H} ∈ D̃ using the Cayley transform
instead of (1.1) a family of perturbation determinants depending on parameter ξ ∈ ρ(H ′) ∩
ρ(H) is introduced by

∆̃H′/H(ξ, z) := det
(
(H ′ − z)(H ′ − ξ)−1(H − ξ)(H − z)−1

)
(1.3)

= det
(
I + (ξ − z)Rξ(H

′, H)(H − ξ)(H − z)−1
)
, z ∈ ρ(H),

see [43, 12, 69]. Notice that ∆̃H′/H(ξ, ξ) = 1. Moreover, if {H ′, H} ∈ D, then {H ′, H} ∈ D̃

and the following representation holds [69, Chapter 8.1.3]

∆̃H′,H(ξ, z) =
∆H′,H(z)

∆H′,H(ξ)
, z, ξ ∈ ρ(H ′) ∩ ρ(H), (1.4)

i.e. for any fixed ξ the determinants ∆̃H′,H(ξ, ·) and ∆H′,H(·) coincide up to a multiplicative
constant c(ξ) := (∆H′,H(ξ))−1 ∈ C. However, definition (1.3) has a few drawbacks. The main
of them is that, in fact, it is not suitable for applications to boundary value problems. A different
approach to the (symmetrized) perturbation determinants for singular perturbations has been
proposed by Gesztesy and Zinchenko [30]. It is based on the use of positive-type operators
and its applicability requires that one of the square root domains of H and H ′ contains the
other instead of condition (ii) of Definition 1.1. Note also that our definition of singular pairs is in
accordance with the notion of singularly perturbed operators from [38].

Our aim is to extend Krein’s theory of perturbation determinants to the case of singular pairs and
apply it to boundary value problems. Our approach substantially uses the machinery of bound-
ary triplets and the corresponding Weyl functions (see Section 2 for precise definitions). This
new approach to extension theory of symmetric operators has been appeared and elaborated
during the last three decades (see [15, 17, 18, 32, 50, 54, 53, 16] and references therein).

In what follows A denotes a closed densely defined symmetric operator in H with equal defi-
ciency indices n+(A) = n−(A) ≤ ∞.
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Recall that a triplet Π = {H,Γ0,Γ1}, where H is an auxiliary separable Hilbert space and
Γ0,Γ1 : dom (A∗)→ H are linear mappings, is called a boundary triplet for A∗ if the äbstract
Green’s identity"

(A∗f, g)− (f, A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (A∗), (1.5)

holds and the mapping Γ := (Γ0,Γ1)> : dom (A∗)→ H⊕H is surjective.

A boundary triplet Π = {H,Γ0,Γ1} for A∗ always exists, though it is not unique. Its role in
extension theory is similar to that of a coordinate system in analytic geometry. It leads to a
natural parameterization of the set Ext A of proper extensions Ã of A (A ⊂ Ã ⊂ A∗) by
means of the set C̃(H) of linear relations (multi-valued operators) in H, see [15, 18, 32] for
details. In this paper we mostly consider boundary relations Θ being the graph gr (B) of a
closed linear operator B inH (B ∈ C(H)). In this case the extension Ã is given by

Ã := AB := A∗ � ker(Γ1 −BΓ0), (1.6)

where B is called the boundary operator of the extension Ã with respect to Π.

The main analytical tool in this approach is the abstract Weyl function M(·) (see Definition
2.4) introduced and studied in [18, 22] which is holomorphic on the resolvent set ρ(A0) of
A0 := A∗ � ker(Γ0) = A∗0. Its role in the theory of boundary triplets is similar to that of
the classical Weyl-Titchmarsh function in the theory of scalar Sturm-Liouville operators (see
[13, 18, 54]). For instance,

ρ(AB) ∩ ρ(A0) = {z ∈ ρ(A0) : 0 ∈ ρ(B −M(z))}. (1.7)

Within the framework of boundary triplets approach our definition of the perturbation determi-
nant of a pair {Ã′, Ã} ⊂ Ext A reads as follows.

Definition 1.2. Let Π = {H,Γ0,Γ1} be a boundary triplet forA∗ andM(·) the corresponding
Weyl function. We put the ordered pair {Ã′, Ã} of proper extensions of A to the class DΠ if Ã′

and Ã admit representations (1.6) with boundary operators B′ and B, respectively, satisfying
the following conditions:

(i) 0 ∈ ρ(B′ −M(z)) ∩ ρ(B −M(z)) for some z ∈ C,

(ii) dom (B′) = dom (B),

(iii) (B′ −B)(B −M(z))−1 ∈ S1(H) for {z ∈ C : 0 ∈ ρ(B −M(z))}.

If {Ã′, Ã} ∈ DΠ, then the scalar-valued function

∆ΠeA′/ eA(z) := det
(
IH +

(
B′ −B

)(
B −M(z)

)−1
)
, 0 ∈ ρ(B −M(z)), (1.8)

is called the perturbation determinant of the pair {Ã′, Ã} with respect to Π.
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Note that, according to (1.7) the condition (i) is equivalent to ρ(AB)∩ ρ(A′B)∩ ρ(A0) 6= ∅ and
condition (iii) is valid for z ∈ ρ(A0) ∩ ρ(AB).

We show that the implication {Ã′, Ã} ∈ D̃ =⇒ {Ã′, Ã} ∈ DΠ holds whenever

ρ(Ã′) ∩ ρ(Ã) ∩ C+ 6= ∅ and (ρ(Ã) ∪ σc(Ã)) ∩ C− 6= ∅, (1.9)

where σc(·) is the continuous spectrum of an operator (see below). Clearly, both conditions (1.9)
are satisfied if ρ(Ã′)∩ ρ(Ã)∩R 6= ∅. Moreover, under assumptions (1.9) on the pair {Ã′, Ã}
a boundary triplet Π for A∗ can be chosen to be regular, i.e. such that the parameterization
Ã′ := AB′ and Ã := AB (cf. (1.6)) holds with bounded boundary operators B′ and B. The
latter remains true without the second condition in (1.9) whenever n±(A) = n <∞.
Comparing definitions (1.8) and (1.1) we see that the class D is transformed into the class DΠ

by means of the "transformation"

H ←→ B and z ←→M(z). (1.10)

These correspondences appears natural if one allows A to be non-densely defined. In fact, the
boundary triplet approach allows an extension to such symmetric operators. For instance, let
A = 0 with dom (A) = {0}. For this trivial non-densely defined symmetric operator there is
an appropriate boundary triplet Π such that the corresponding Weyl function is M(z) = zIH
and AB′ = B′, AB = B (see [20]). Hence, ∆ΠeA′/ eA(·) given by (1.8) coincides with (1.1).

It follows from the Krein type formula (see (2.7) below) that the inclusion {Ã′, Ã} ∈ DΠ implies

{Ã′, Ã} ∈ D̃, i.e., it implies condition (1.2) with H ′ and H replaced by Ã′ and Ã, respectively.

Thus, definition (1.3) can also be applied to the pair {Ã′, Ã} ∈ DΠ ⊆ D̃. We show (see
Theorem 4.1) that in this case the perturbation determinants ∆̃ eA′, eA(ξ, ·) and ∆ΠeA′, eA(·) are
connected by

∆̃ eA′, eA(ξ, z) =
∆ΠeA′, eA(z)

∆ΠeA′, eA(ξ)
, z, ξ ∈ ρ(Ã) ∩ ρ(A0). (1.11)

In other words, for any fixed ξ these determinants coincide up to a multiplicative constant
c(ξ) = (∆ΠeA′, eA(ξ))−1. Clearly, representation (1.11) is similar to representation (1.4) and is
in accordance with the correspondence principle (1.10).

To demonstrate the advantage of our approach we note that definition (1.8) allows one to ex-
press ∆ΠeA′/ eA(·) as a ratio of two ordinary determinants involving only boundary operators and

the corresponding Weyl function. Firstly, we consider the case of the operator A with finite defi-
ciency indices n±(A) = n <∞. In this case, as an immediate consequence of (1.8) one gets
that

∆ΠeA′/ eA(z) :=
det(B′ −M(z))

det(B −M(z))
, z ∈ ρ(Ã′) ∩ ρ(Ã). (1.12)

For instance, letA := Amin be the minimal symmetric operator generated inL2(R+) by Sturm-
Liouville differential expression L = −D2 + q, q = q ∈ L1

loc[0,∞). Assuming the limit point
case at infinity, one can choose a boundary triplet Π = {H,Γ0,Γ1} for A∗ as follows (see
Section 7.2)

H = C, Γ0f = f(0), Γ1f = f ′(0), f ∈ dom (A∗).
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Let also Lj := Ahj , j ∈ {1, 2}, be a proper extension of A given by (cf. (1.6))

dom (Ahj) = {y ∈ dom (A∗) : y′(0) = hjy(0)}, j ∈ {1, 2}.

Then according to (1.12) the perturbation determinant ∆Π
L2/L1

(·) is

∆Π
L2/L1

(z) =
h2 −m(z)

h1 −m(z)
,

where m(·) is the Weyl function (of the Dirichlet realization) corresponding to the boundary
triplet Π. A similar representation for perturbation determinants is valid for two realizations of
the Sturm-Liouville operator with a matrix-valued potential as well as of Dirac type operators
(see Sections 7.1, 7.2, and 7.3).

Secondary, we consider the case of an operator A with infinite deficiency indices n±(A) =
∞. To obtain an analog of formula (1.12) in this case we slightly strength the assumption
Rξ(Ã

′, Ã) ∈ S1(H) (cf. (1.2)). Namely, let us assume that for some self-adjoint operator
A0 = A∗0 ∈ Ext A the conditions

(Ã′ − ξ)−1 − (A0 − ξ)−1 ∈ S1(H)

(Ã− ξ)−1 − (A0 − ξ)−1 ∈ S1(H)
, ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0), (1.13)

are satisfied. Further, let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ such that A0 :=

A∗ � ker(Γ0), Ã′ = AB′ , and Ã = AB with B′, B ∈ C(H). From (1.13) it follows that
(B′ − µ)−1, (B − µ)−1 ∈ S1(H) for some µ ∈ ρ(B′) ∩ ρ(B) ∩ R. Moreover, denoting by
M(·) the Weyl function of Π we get

∆ΠeA′/ eA(z) = ∆B′/B(µ)
det(I − (µ−B′)−1(µ−M(z)))

det(I − (µ−B)−1(µ−M(z)))
(1.14)

for z ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0), where ∆B′/B(·) is given in accordance with (1.1).

Formula (1.14) can be applied to boundary value problems for partial differential equations. For
instance, consider the symmetric Schrödinger operator in domain Ω ⊂ R2 with smooth compact
boundary ∂Ω,

A := −∆ + q(x) = −
(
∂2

∂x2
1

+
∂2

∂x2
2

)
+ q(x), q = q ∈ C∞(Ω). (1.15)

Furthermore, consider Robin-type realizations of the expressionA,

Â σj := Amax � dom ( Â σj),

dom ( Â σj) := {f ∈ H2(Ω) : G1f = σG0f}, j ∈ {1, 2},
(1.16)

and denote by A0 the Dirichlet realization of A given by dom (A0) = {f ∈ H2(Ω) : G0f =
0}. Here G0 and G1 are trace operators, G0u := γ0u := u|∂Ω and G1u := γ0

(
∂u/∂ν

)
, u ∈

dom (Amax). It is known that A0 = A∗0 and the realization Â σj is closed whenever σj ∈
C2(∂Ω) and self-adjoint if σ is real.
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Denote by σ̂ j the multiplication operator induced by σj in L2(∂Ω). Assuming that 0 ∈
ρ( Âσ1 )∩ρ( Âσ2 )∩ρ(A0), we indicate a boundary triplet Π forAmax such that { Â σj , A0} ∈
DΠ and the corresponding perturbation determinants ∆ΠbA σj /A0

(·) and ∆ΠbA σ2/Aσ1

(·) are given

by
∆ΠbA σj /A0

(z) = detL2(∂Ω)

(
I − (Λ0,0(z)− Λ0,0(0))( σ̂ j − Λ0,0(0))−1

)
, (1.17)

j ∈ {1, 2}, and

∆ΠbA σ2/Aσ1

(z) =
detL2(∂Ω) (I − (Λ0,0(z)− Λ0,0(0))( σ̂ 2 − Λ0,0(0))−1)

detL2(∂Ω) (I − (Λ0,0(z)− Λ0,0(0))( σ̂ 1 − Λ0,0(0))−1)
, (1.18)

z ∈ ρ( Â σ1) ∩ ρ( Â σ2) ∩ ρ(A0), respectively. Here Λ0,0(·) is the Dirichlet to Neumann map
restricted to H0(∂Ω) := L2(∂Ω) (see Section 6.3 for details).

The paper is organized as follows. In Section 2 we give a brief introduction into the bound-
ary triplet approach. In Section 3 we introduce a concept of jointly almost solvable extensions
{Ãj}Nj=1 ⊂ Ext A and discuss their properties. It is proved in Theorem 3.5 that under assump-

tion (1.9) on Ã there is a boundary triplet Π for A∗ which is regular for the pair {Ã′, Ã} and, in

particular, the implication {Ã′, Ã} ∈ D̃ =⇒ {Ã′, Ã} ∈ DΠ holds. In Section 4 we prove the
main results on connection between two definitions (1.3) and (1.8) of determinants. In particu-
lar, we prove representation (1.11) for ∆̃H′/H(ξ, ·) (Theorem 4.2) and formula (1.14). It is also

shown here that if {Ã′, Ã} ∈ DΠ and {Ã′, Ã} ∈ DΠ′ , then the perturbation determinants
∆ΠeA′, eA(·) and ∆Π′eA′, eA(·) corresponding to the triplets Π and Π′ coincide up to a multiplicative
constant.

Certain properties of the perturbation determinant ∆ΠeA′/ eA(·) are discussed in Section 5. In Sec-

tion 6 we show that under certain additional assumptions the determinant d(·) := ∆ΠeA/ eA∗(·) is

an annihilation function (in the sense of [67]) for a m-dissipative operator Ã. We also indicate
conditions guaranteeing that d(·) is the minimal annihilation function. Finally, in Section 7 the
abstract theory is applied to some ordinary differential operators as well as to elliptic operators
on domains with compact boundary. In particular, formulas (1.17) and (1.18) are established
there. To make the paper self-contained an appendix is added.

In the forthcoming paper we apply our results to trace formulas. A preliminary version of the
paper has been published as a preprint [52].

Notation. Let H andH be separable Hilbert spaces. The set of bounded linear operators from
H1 to H2 is denoted by [H1,H2]; [H] := [H,H]. By Sp(H), p ∈ (0,∞], we denote the
Schatten-v.Neumann ideals of compact operators on H; in particular, S∞(H) denotes the ideal
of compact operators in H.

By dom (T ), ran (T ) and σ(T ) we denote the domain, range and spectrum of the operator T ,
respectively. The symbols σp(·), σc(·) and σr(·) stand for the point, continuous and residual
spectrum of a linear operator. Recall that z ∈ σc(H) if ker(H− z) = {0} and ran (H− z) 6=
ran (H − z) = H; z ∈ σr(H) if ker(H − z) = {0} and ran (H − z) 6= H.
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2 Preliminaries

2.1 Linear relations

A linear relation Θ inH is a closed linear subspace ofH⊕H. The set of all linear relations inH
is denoted by C̃(H). Denote also by C(H) the set of all closed linear (not necessarily densely
defined) operators in H. Identifying each operator T ∈ C(H) with its graph gr (T ) we regard
C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes clear from Proposition 2.3. However, its
role in the operator theory is substantially motivated by the following circumstances: in contrast
to C(H), the set C̃(H) is closed with respect to taking inverse and adjoint relations Θ−1 and
Θ∗. The latter are given by: Θ−1 = {{g, f} : {f, g} ∈ Θ} and

Θ∗ =

{(
k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.

2.2 Boundary triplets and proper extensions

Let A be a densely defined closed symmetric operator in H with equal deficiency indices
n±(A) = dim (N±i), Nz := ker(A∗ − z), z ∈ C±.

Definition 2.1.

(i) A closed extension Ã of A is called a proper extension if A ⊆ Ã ⊆ A∗;

(ii) Two proper extensions Ã′, Ã are called disjoint if dom (Ã′) ∩ dom (Ã) = dom (A) and
transversal if in addition dom (Ã′) + dom (Ã) = dom (A∗).

Denote by Ã ∈ Ext A, the set of proper extensions of A completed by non-proper extensions
A and A∗. Any self-adjoint or maximal dissipative (accumulative) extension is proper.

Definition 2.2 ([33]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space and
Γ0,Γ1 : dom (A∗)→ H are linear mappings, is called a boundary triplet for A∗ if the äbstract
Green’s identity"

(A∗f, g)− (f, A∗g) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ dom (A∗), (2.1)

holds and the mapping Γ := (Γ0,Γ1)> : dom (A∗)→ H⊕H is surjective.

A boundary triplet Π = {H,Γ0,Γ1} for A∗ always exists whenever n+(A) = n−(A). Note
also that n±(A) = dim (H) and ker(Γ0) ∩ ker(Γ1) = dom (A).

With any boundary triplet Π one associates two canonical self-adjoint extensions Aj := A∗ �
ker(Γj), j ∈ {0, 1}. Conversely, for any extension A0 = A∗0 ∈ Ext A there exists a (non-
unique) boundary triplet Π = {H,Γ0,Γ1} for A∗ such that A0 := A∗ � ker(Γ0).
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Using the concept of boundary triplets one can parameterize all proper extensions of A in the
following way.

Proposition 2.3 ([18, 50]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the map-
ping

Ext A 3 Ã→ Γdom (Ã) = {{Γ0f,Γ1f} : f ∈ dom (Ã)} =: Θ ∈ C̃(H) (2.2)

establishes a bijective correspondence between the sets Ext A and C̃(H). We write Ã = AΘ

if Ã corresponds to Θ by (2.2). Moreover, the following holds:

(i) A∗Θ = AΘ∗ , in particular, A∗Θ = AΘ if and only if Θ∗ = Θ.

(ii) AΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).

(iii) AΘ is m-dissipative (m-accumulative) if and only if so is Θ.

(iv) The extensions AΘ and A0 are disjoint (transversal) if and only if Θ ∈ C(H) (Θ ∈ [H]).
In this case (2.2) takes the form

AΘ := Agr (Θ) = A∗ � ker(Γ1 −ΘΓ0). (2.3)

In particular, Aj := A∗ � ker(Γj) = AΘj , j ∈ {0, 1}, where Θ0 := {0} × H and Θ1 :=

H × {0} = gr (O) where O denotes the zero operator in H. Note also that C̃(H) contains
the trivial linear relations {0} × {0} and H × H parameterizing the extensions A and A∗,
respectively, for any boundary triplet Π.

2.3 Weyl functions and spectra of proper extensions

It is well known that Weyl functions are an important tool in the direct and inverse spectral
theory of singular Sturm-Liouville operators. In [17, 18, 22] the concept of Weyl function was
generalized to the case of an arbitrary symmetric operator A with n+(A) = n−(A) ≤ ∞.
Following [18] we briefly recall basic facts on Weyl functions and γ-fields associated with a
boundary triplet Π.

Definition 2.4 ([17, 18, 22]). Let Π = {H,Γ0,Γ1} be a boundary triplet forA∗ andA0 = A∗ �
ker(Γ0). The operator valued functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H]
defined by

γ(z) :=
(
Γ0 � Nz

)−1
and M(z) := Γ1γ(z), z ∈ ρ(A0), (2.4)

are called the γ-field and the Weyl function, respectively, corresponding to the boundary triplet
Π.

Clearly, the Weyl function can equivalently be defined by

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(A0).
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The γ-field γ(·) and the Weyl function M(·) in (2.4) are well defined. Moreover, both γ(·) and
M(·) are holomorphic on ρ(A0) and the following relations

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(A0), (2.5)

and
M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(A0), (2.6)

hold. Identity (2.6) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e.
M(·) is [H]-valued holomorphic function on C\R satisfying

M(z) = M(z)∗ and
Im (M(z))

Im (z)
≥ 0, z ∈ C+ ∪ C−.

It follows also from (2.6) that 0 ∈ ρ(Im (M(z))) for all z ∈ C\R.

One easily verifies that if Π = {H,Γ0,Γ1} is a boundary triplet for A∗, then Π> =
{H,−Γ1,Γ0} is also a boundary triplet for A∗ which is called the transposed one. A straight-
forward computation shows that

M>(z) = −M(z)−1 and γ>(z) = −γ(z)M(z)−1, z ∈ C±.

Proposition 2.5 ([17, 18]). Let A be a simple closed densely defined symmetric operator in H

and let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) the corresponding Weyl function.
Assume that Θ ∈ C̃(H) and z ∈ ρ(A0). Then the following holds:

(i) z ∈ ρ(AΘ) if and only if 0 ∈ ρ(Θ−M(z));

(ii) z ∈ στ (AΘ) if and only if 0 ∈ στ (Θ−M(z)), τ = p, c, r. Moreover, dim (ker(AΘ−z)) =
dim (ker(Θ−M(z))).

2.4 Krein-type formula for resolvents and comparability

Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) and γ(·) the corresponding Weyl
function and γ-field, respectively. For any proper (not necessarily self-adjoint) extension ÃΘ ∈
Ext A with non-empty resolvent set ρ(ÃΘ) the following Krein-type formula holds (cf. [17, 18,
21, 22])

(AΘ − z)−1 − (A0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(A0) ∩ ρ(AΘ). (2.7)

Formula (2.7) extends the known Krein formula for canonical resolvents to the case of any
AΘ ∈ Ext A with ρ(AΘ) 6= ∅. Moreover, due to relations (2.2), (2.3) and (2.4) formula (2.7)
is connected with the boundary triplet Π. Emphasize, that this connection makes it possible to
apply the Krein-type formula (2.7) to boundary value problems. The following result is deduced
from formula (2.7).

Proposition 2.6 ([18, Theorem 2]). Let Π = {H,Γ0,Γ1} be a boundary triplet forA∗, Θ′,Θ ∈
C̃(H) and ρ(AΘ′) ∩ ρ(AΘ) 6= ∅. If ρ(Θ′) ∩ ρ(Θ) 6= ∅, then for any Neumann-Schatten ideal
Sp, p ∈ (0,∞], the following holds:
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(i) The inclusion

(AΘ′ − z)−1 − (AΘ − z)−1 ∈ Sp(H), z ∈ ρ(AΘ′) ∩ ρ(AΘ), (2.8)

is equivalent to the inclusion(
Θ′ − ζ

)−1 −
(
Θ− ζ

)−1 ∈ Sp(H), ζ ∈ ρ(Θ′) ∩ ρ(Θ). (2.9)

In particular, (AΘ − z)−1 − (A0 − z)−1 ∈ Sp(H) for z ∈ ρ(AΘ) ∩ ρ(A0) if and only if(
Θ− ζ

)−1 ∈ Sp(H) for ζ ∈ ρ(Θ).

(ii) If B′, B ∈ C(H) and dom (B′) = dom (B), then the implication

B′ −B ∈ Sp(H) =⇒ (AB′−z)−1−(AB−z)−1 ∈ Sp(H), z ∈ ρ(AΘ′)∩ρ(AΘ), (2.10)

holds. Moreover, if B′, B ∈ [H], then (2.8) is equivalent to B′ −B ∈ Sp(H).

(iii) The extensions AΘ′ and AΘ are transversal if and only if 0 ∈
ρ
((

Θ′ − ζ
)−1 −

(
Θ− ζ

)−1
)

for some ζ ∈ ρ(Θ′) ∩ ρ(Θ).

2.5 Determinants

Following [31] let us briefly recall some basic facts on infinite determinants.

Definition 2.7. Let T be a trace class operator, i.e. T ∈ S1(H), and let {λj(T )}∞j=1 be its
eigenvalues counted with respect to their algebraic multiplicities. The determinant det(I + T )
is defined by det(I + T ) := Π∞j=1

(
1 + λj(T )

)
.

The determinants have the following interesting properties.

Proposition 2.8 ([31, Section 4.1]). Let T1 ∈ [H1,H2] and T2 ∈ [H2,H1].

(i) If T1T2 ∈ S1(H2) and T2T1 ∈ S1(H1), then

detH2(I + T1T2) = detH1(I + T2T1). (2.11)

(ii) IfH := H1 = H2 and T1, T2 ∈ S1(H), then

det[(I + T1)(I + T2)] = det(I + T1) · det(I + T2). (2.12)

(iii) If T ∈ S1(H), then det(I + T ∗) = det(I + T ).

In the sequel we will also need a slightly improved version of the property(i).

Lemma 2.9. Let K be a bounded operator. Further, let C be linear operator such that
dom (C) ⊇ ran (K). If KC ∈ S1(H) and CK ∈ S1(H), then

det(I +KC) = det(I + CK). (2.13)

The proof is left to the reader.
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3 Almost solvable extensions and class DΠ

3.1 Almost solvable extensions and class DΠ

Assume that {Ã′, Ã} ⊂ Ext A and the resolvent difference is trace class,

(Ã′ − ξ)−1 − (Ã− ξ)−1 ∈ S1(H), ξ ∈ ρ(Ã′) ∩ ρ(Ã), (3.1)

i.e. {Ã′, Ã} ∈ D̃. Here we show that under additional (not too restrictive) assumptions on

the operator Ã there exists a boundary triplet Π such that the implication {Ã′, Ã} ∈ D̃ =⇒
{Ã′, Ã} ∈ DΠ holds. Moreover, we show that the boundary operators B′ and B in Definition
1.2 can be chosen to be bounded. This naturally leads to a concept of "jointly almost solvable
extensions".

Definition 3.1.

(i) An extension Ã ∈ Ext A is called almost solvable if there exists a self-adjoint extension Â
of A such that Â and Ã are transversal, see Definition 2.1(ii).

(ii) The family {Ãj}Nj=1 ⊂ Ext A, 2 ≤ N ≤ ∞, is called jointly almost solvable if there exists

a self-adjoint extension Â ∈ Ext A such that Â is transversal to each Ãj, j ∈ {1, . . . , N}.

The class of almost solvable extensions of A was introduced and investigated in [22] (see also
[19, 20, 21]).

Definition 3.2. Let {Ãj}Nj=1 ⊂ Ext A. A boundary triplet Π = {H,Γ0,Γ1} for A∗ will be

called regular for {Ãj}Nj=1 if there exist operators Bj ∈ [H], j ∈ {1, . . . , N}, such that

Ãj = ABj := A∗ � ker(Γ1 −BjΓ0), j ∈ {1, . . . , N}.

Proposition 3.3. Let {Ãj}Nj=1 ⊂ Ext A. The family {Ãj}Nj=1 is jointly almost solvable if and
only if there exists a boundary triplet Π = {H,Γ0,Γ1} for A∗ which is regular for the family
{Ãj}Nj=1.

Proof. The proof follows immediately by combining Proposition 2.3(iv) with [21, Proposition
7.1].

Proposition 3.4 ([19],[20]). Let Ã ∈ Ext A such that z1 ∈ ρ(Ã). If there is z2 ∈ ρ(Ã)∪σc(Ã)

such that Im (z1)Im (z2) < 0, then Ã is almost solvable. In particular, Ã is almost solvable if
ρ(Ã) ∩ R 6= ∅.

Proof. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) the corresponding Weyl func-
tion. Let for definiteness z1 ∈ C+, hence z2 ∈ (ρ(Ã)∪ρc(Ã))∩C−. Without loss of generality
we can assume that M(z1) = iI . Further, let Θ ∈ C̃(H) be a boundary relation of Ã with re-
spect to Π, i.e. Ã = AΘ. By Proposition 2.5, 0 ∈ ρ(Θ−M(z1)) and either 0 ∈ ρ(Θ−M(z2))
or 0 ∈ σc(Θ−M(z2)). We set

X := I + (M(z1)−M(z1))(Θ−M(z1))−1 = I + 2i(Θ− i)−1 (3.2)
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and

Y := I + (M(z1)−M(z2))(Θ−M(z1))−1 = I + (iI −M(z2))(Θ− i)−1.

The assumption 0 ∈ ρ(Θ − M(z2)) ∪ 0 ∈ σc(Θ − M(z2)) yields ker(W ) = {0} and
ran (W ) = H. A straightforward computation shows that

X = T1 + T2 (3.3)

where
T1 := (M(z2) + i)(M(z2)− i)−1 and T2 := 2i(iI −M(z2))−1Y. (3.4)

Since z2 ∈ C−, the imaginary part of M(z2) is strictly negative, ImM(z2) < −εI. Hence
T1 is a strict contraction, ‖T1‖ < 1. Further, since ker(Y ) = {0} and ran (Y ) = H we get
ker(T2) = {0} and ran (T2) = H. Hence the polar decomposition T2 = U |T2| holds with the
unitary U . We set U(ϕ) := eiϕU , ϕ ∈ (0, 2π). Clearly,

X − U(ϕ) = T1 + U(|T2| − eϕ) = (I + T1(|T2| − eiϕ)−1U∗)U(|T2| − eiϕ).

If ϕ ∈ (π
2
, 3π

2
), then ‖(|T2| − eiϕ)−1‖ ≤ 1. Hence ‖T1(|T2| − eiϕ)−1U∗‖ ≤ ‖T1‖ < 1

and 0 ∈ ρ(X − U(ϕ)). Further, since H is separable, the point spectrum σp(U) is at most
countable, hence

{e−iϕ : ϕ ∈ (π
2
, 3π

2
)}
⋂

(σc(U) ∪ ρ(U)) 6= ∅.

Choose any ϕ ∈ (π
2
, 3π

2
) such that e−iϕ ∈ σc(U) ∪ ρ(U). Then 1 ∈ σc(U(ϕ)) ∪ ρ(U(ϕ))

and the operator B̂ := −iI + 2i(U(ϕ)− I)−1 is self-adjoint and

U(ϕ) = ( B̂ + i)( B̂ − i)−1 = I + 2i( B̂ − i)−1. (3.5)

Since 0 ∈ ρ(X −U(ϕ)), one has 0 ∈ ρ
(

(Θ− i))−1 − ( B̂ − i)−1
)

. By Proposition 2.6(iii),

the extensions A bB = A∗bB and Ã are transversal, i.e. Ã is almost solvable.

Emphasize however, that the sufficient conditions of Theorem 3.5 are not necessary. It might
even happen that n+(A) = n−(A) <∞ and Ã is almost solvable although (ρ(Ã)∪σc(Ã))∩
C± = ∅. Such extensions can easily be found forA = A+⊕A− whereA± are simple symmet-
ric operators with deficiency indices n+(A+) = n−(A−) = 1 and n−(A+) = n+(A−) = 0.

Theorem 3.5. LetA be a densely defined closed symmetric operator and let {Ãj}Nj=1 ⊂ Ext A

and Ã =: ÃN+1 ∈ Ext A. Let also
⋂N+1
j=1 ρ(Ãj) 6= ∅ and

(Ã− z1)−1 − (Ãj − z1)−1 ∈ S∞(H), z1 ∈
N+1⋂
j=1

ρ(Ãj), j ∈ {1, . . . , N}. (3.6)

If there is z2 ∈ ρ(Ã)∪σc(Ã1) such that Im (z1)Im (z2) < 0, then the family {Ã, Ã1, . . . , ÃN}
is jointly almost solvable.

12



Proof. We keep notations of Proposition 3.4. Let Π = {H,Γ0,Γ1} be a boundary triplet forA∗

and let Ãj := AΘj , Θj ∈ C̃(H). Similarly to (3.2) we set

Xj := I + (M(z1)−M(z1))(Θj −M(z1))−1 = I + 2i(Θj − i)−1, (3.7)

j ∈ {1, 2 . . . , N}. By Proposition 2.6(i), inclusion (3.6) is equivalent to

(Θ− i)−1 − (Θj − i)−1 ∈ S∞(H), j ∈ {1 . . . , N}.

Combining this relation with (3.2) and (3.7) yields Kj := Xj −X ∈ S∞(H), j ∈ {1 . . . , N}.
Moreover, using the polar decomposition T2 = U |T2|, formulas (3.3), (3.4), (3.7), and setting
T := U∗T1 + |T2|, one gets

Xj − U(ϕ) = Kj +X − U(ϕ) (3.8)

= Kj + T1 + U(|T2| − eiϕ) = U(U∗Kj + T − eiϕI), j ∈ {1, . . . , N}.

Since ‖T1‖ < 1, there is ε ∈ (0, 1) such that <(T ) ≥ −1 + ε and hence

Cl,ε := {z ∈ C : Re (z) < −1 + ε} ⊆ ρ(T ).

Since the half-plane Cl,ε belongs to the infinite component of ρ(T ) and U∗Kj ∈ S∞(H), the
spectrum of each operator T + U∗Kj within Cl,ε consists only of isolated eigenvalues of finite
multiplicities (cf. [31, Lemma I.5.2]). Hence,

{eiϕ : ϕ ∈ (π
2
, 3π

2
)}
⋂
Cl,ε \

(
N⋃
1

σp(U
∗Kj + T )

)
6= ∅.

Thus there is ϕ0 ∈ (π
2
, 3π

2
) such that eiϕ0 ∈

⋂N
j=1 ρ(U∗Kj + T ) and e−iϕ0 ∈ σc(U)∪ ρ(U).

Therefore, by (3.8), 0 ∈
⋂N

1 ρ(Xj − U(ϕ0)). Moreover, U(ϕ0) admits representation (3.5)

with B̂ := −iI + 2i(U(ϕ0) − I)−1 = B̂
∗
. Combining these relations with (3.7) yields

0 ∈
⋂N
j=1 ρ((Θj − i)−1 − ( B̂ − i)−1). One completes the proof by applying Proposition

2.6(iii).

Remark 3.6. (i) Proposition 3.4 and Theorem 3.5 remain valid if we replace the condition
z2 ∈ ρ(Ã) ∪ σc(Ã) by

dim ker(Ã− z2) = dim ker(Ã∗ − z̄2).

(ii) Different proofs of Proposition 3.4 can be found in [22, 19, 21]. The given proof does not
use Krein space theory and fits better to our exposition because of direct generalization for a
system of operators given in Theorem 3.5.

Corollary 3.7. Let A be a densely defined closed symmetric operator with finite deficiency
indices. Further, let {Ãj}Nj=1 ⊂ Ext A and

⋂N
j=1 ρ(Ãj) 6= ∅. Then {Ãj}Nj=1 is jointly almost

solvable.
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Proof. Let Ã = Ã∗ ∈ Ext A. Then there is non-real z1 ∈
⋂N
j=1 ρ(Ãj) such that

(Ãj − z1)−1 − (Ã− z1)−1 ∈ S∞(H), j ∈ {1, . . . , N}.

Moreover, there is z2 ∈ ρ(Ã) such that Im (z1)Im (z2) < 0. By Theorem 3.5, the family
{Ã, Ã1, . . . , ÃN} is jointly almost solvable. Hence {Ãj}Nj=1 is jointly almost solvable.

The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.8. Let Ã′, Ã ∈ Ext A and let condition (3.1) be satisfied. If there exists ξ′ ∈
ρ(Ã) ∪ σc(Ã) such that Im (ξ)Im (ξ′) < 0, then {Ã′, Ã} ∈ DΠ.

3.2 Almost solvable extensions and characteristic function

It is known several approaches to the definition of the characteristic function (CF) of an un-
bounded operator with non-empty resolvent set. The most relevant to our considerations def-
initions have been proposed in [66] and [19, 20]. In general, the CF might have some exotic
properties. However, it was shown in [19, 20, 22] that the CF of an almost solvable extension
of A takes values in [H] and has some nice properties similar to those of bounded operators
(cf. [14]). We will not present a strict definition of CF since in what follows we need only a
representation of CF by means of the Weyl function and boundary operator.

Proposition 3.9 ([19, Theorem 2]). Let A be a densely defined closed symmetric operator and
let Ã be an almost solvable extension of A. Let also Π = {H,Γ0,Γ1} be a boundary triplet
for A∗ which is regular for Ã, i.e. Ã = AB = A∗ � ker(Γ1 − BΓ0) and B ∈ [H]. Then the
characteristic function of the operator AB admits the representation

WΠeA (z) = I + 2i|BI |1/2
(
B∗ −M(z)

)−1|BI |1/2J, z ∈ ρ(Ã∗) ∩ ρ(A0), (3.9)

where BI = J |BI |, J = sign(BI), is the polar decomposition of BI := Im (B).

It follows from (3.9) that WΠeA (·) takes values in [H] and is J -contractive (J -expansive) in C+

(resp., in C−). If Ã = AB is m-dissipative, then, by Proposition 2.3(iii), B is m-dissipative,
J = I and WΠeA (·) is contractive in C+.

4 Main formulas for perturbation determinants

Here we establish a connection between our definition (1.8) of the perturbation determinant of
a pair {Ã′, Ã} ⊂ Ext A and the classical one given by formula (1.3). In particular we prove
representation (1.11) for ∆̃ eA′, eA(ξ, z) as well as formulas (1.12) and (1.14) mentioned in the
introduction.

Theorem 4.1. LetA be a densely defined closed symmetric operator and let Π = {H,Γ0,Γ1}
be a boundary triplet for A∗, M(·) the corresponding Weyl function. Further, let Ã′, Ã ∈ Ext A
and let Θ′,Θ ∈ C̃(H) be the corresponding boundary relations, i.e. Ã′ = AΘ′ and Ã = AΘ.

Assume also that {Ã′, Ã} ∈ D̃ and ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0). Then:
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(i) The linear relations Θ′ −M(ξ) and Θ−M(ξ) are boundedly invertible.

(ii) The following condition is satisfied

RM
ξ (Θ′,Θ) := (Θ′ −M(ξ))−1 − (Θ−M(ξ))−1 ∈ S1(H); (4.1)

(iii) For any ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(Ã) ∩ ρ(A0) the perturbation determinant
∆̃ eA′, eA(ξ, ·) admits the following representation

∆̃ eA′/ eA(ξ, z) = det
(
IH +RM

ξ (Θ′,Θ)×
[IH − (M(ξ)−M(z))(Θ−M(z))−1](M(ξ)−M(z))

)
.

(4.2)

Proof. (i) By Proposition 2.5, ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) if and only if 0 ∈ ρ(Θ′ −M(ξ)) ∩
ρ(Θ−M(ξ)). Hence the inverse relations (Θ′ −M(ξ))−1 and (Θ−M(ξ))−1 exist and are
bounded operators.

(ii) According to (2.7)

(Ã′ − ξ)−1 − (Ã− ξ)−1 = γ(ξ)RM
ξ (Θ′,Θ)γ(ξ)∗ (4.3)

where RM
ξ (Θ′,Θ) is given by (4.1). Since γ(ξ) and γ(ξ)∗ isomorphically mapH onto Nξ and

Nξ ontoH, respectively, the inclusion (3.1) yields (4.1).

(iii) According to (1.3) for any z ∈ ρ(Ã) \ {ξ}

∆̃ eA′/ eA(ξ, z) = det
(
I + (ξ − z)

(
(Ã′ − ξ)−1 − (Ã− ξ)−1

)
(Ã− ξ)(Ã− z)−1

)
.

Combining this formula with (4.3) and using the property (2.11) we get

∆̃ eA′/ eA(ξ, z) = det
(
I + (ξ − z)(Ã− ξ)(Ã− z)−1γ(ξ)RM

ξ (Θ′,Θ)γ(ξ)∗
)
. (4.4)

Next we transform the expression (Ã − ξ)(Ã − z)−1γ(ξ). Noting that Ã = AΘ and applying
the Krein type formula (2.7) we obtain

(Ã− ξ)(Ã− z)−1γ(ξ) =
(
I + (z − ξ)(Ã− z)−1

)
γ(ξ)

=
(
I + (z − ξ)(A0 − z)−1 + (z − ξ)γ(z)(Θ−M(z))−1γ(z)∗

)
γ(ξ)

=
(
I + (z − ξ)(A0 − z)−1)γ(ξ) + (z − ξ)γ(z)(Θ−M(z))−1γ(z

)∗
γ(ξ).

On the other hand, by (2.5), (I + (z − ξ)(A0 − z)−1)γ(ξ) = γ(z) Hence

(Ã− ξ)(Ã− z)−1γ(ξ) = (I + (z − ξ)(Ã− z)−1)γ(ξ)

= γ(z)
(
I + (z − ξ)(Θ−M(z))−1γ(z)∗γ(ξ)

)
.

Further, rewriting identity (2.6) in the form

(z − ξ)γ(z)∗γ(ξ)) = M(z)−M(ξ) = (z − ξ)γ(ξ)∗γ(z) (4.5)
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and combining it with the previous one we derive

(Ã− ξ)(Ã− z)−1γ(ξ) = γ(z)
(
I + (Θ−M(z))−1(M(z)−M(ξ))

)
.

Substituting this identity in (4.4) and applying property (2.11) we get

∆̃ eA′/ eA(ξ, z) = det (I+

[I + (Θ−M(z))−1(M(z)−M(ξ)]RM
ξ (Θ′,Θ)(ξ − z)γ(ξ)∗γ(z)

)
.

Finally, combining this identity with the second equality in (4.5) and taking property (2.11) into
account we arrive at (4.2).

Next we simplify representation (4.2) assuming that {Ã′, Ã} ∈ DΠ. In particular, we prove
representation (1.11) as well as establish a connection between two determinants for the pair
{Ã′, Ã} corresponding to different boundary triplets.

Theorem 4.2. Let A be a densely defined closed symmetric operator and let Ã′, Ã ∈ Ext A.
Assume also that {Ã′, Ã} ∈ DΠ for a boundary triplet Π = {H,Γ0,Γ1} for A∗. Then the
following holds:

(i) {Ã′, Ã} ∈ D̃ and the representation

∆̃ eA′/ eA(ξ, z) =
∆ΠeA′/ eA(z)

∆ΠeA′/ eA(ξ)
(4.6)

holds for ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(Ã) ∩ ρ(A0).

(ii) The perturbation determinant ∆ΠeA′/ eA(z) admits a holomorphic continuation from ρ(Ã) ∩
ρ(A0) to the domain ρ(Ã).

(iii) If Π′ = {H′,Γ′0,Γ′1} is another boundary triplet for A∗ such that {Ã′, Ã} ∈ DΠ′ , then for
any ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) ∩ ρ(A′0) the following identity holds

∆ΠeA′/ eA(z) = c ∆Π′eA′/ eA(z) with c = ∆ΠeA′/ eA(ξ)
(

∆Π′eA′/ eA(ξ)
)−1

, z ∈ ρ(Ã).

In particular, this identity is valid for some non-real ξ ∈ ρ(Ã′) ∩ ρ(Ã).

Proof. (i) If {Ã′, Ã} ∈ DΠ then, by Proposition 2.5(i), ρ(Ã′)∩ρ(Ã) 6= ∅, hence ρ(Ã′)∩ρ(Ã)∩
ρ(A0) 6= ∅. Moreover, since {Ã′, Ã} ∈ DΠ, Ã′ and Ã admit representations Ã′ = AB′ and
Ã = AB with B′, B ∈ C(H) and satisfying dom (B′) = dom (B). Combining the later
condition with condition (iii) of Definition 1.2 yields

RM
ξ (B′, B) = (B′ −M(ξ)−1 − (B −M(ξ))−1 (4.7)

= (B′ −M(ξ))−1(B −B′)(B −M(ξ)−1 ∈ S1(H)
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for ξ ∈ ρ(Ã′)∩ρ(Ã)∩ρ(A0). In turn combining this inclusion with the Krein type formula (2.7)

implies condition (3.1), meaning that {Ã′, Ã} ∈ D̃.

Further, by Theorem 4.1(iii), the perturbation determinant ∆̃ eA′/ eA(ξ, z) admits the representa-
tion

∆̃ eA′/ eA(ξ, z) = det
(
IH +RM

ξ (B′, B)(B −M(ξ))(B −M(z))−1(M(ξ)−M(z))
)

for ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(Ã) ∩ ρ(A0). Combining this relation with represen-
tation (4.7) for RM

ξ (B′, B) and using the cyclicity property (2.11) we obtain

∆̃ eA′/ eA(ξ, z)

= det(IH + (B −B′)(B −M(z))−1(M(ξ)−M(z))(B′ −M(ξ))−1).

On the other hand, one easily verifies by a straightforward computation that

IH + (B −B′)(B −M(z))−1(M(ξ)−M(z))(B′ −M(ξ))−1

= (IH + (B′ −B)(B −M(z))−1)(IH + (B −B′)(B′ −M(ξ))−1)

for ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(Ã) ∩ ρ(A0). By the multiplicative property (2.12) it
follows that

∆̃ eA′/ eA(ξ, z)

= det
(
IH + (B −B′)(B′ −M(ξ))−1)

)
det
(
IH + (B′ −B)(B −M(z))−1)

)
= ∆ΠeA/ eA′(ξ)∆ΠeA′/ eA(z), z ∈ ρ(Ã) ∩ ρ(A0).

Now (4.6) is implied by combining the later relation with the identity

∆ΠeA/ eA′(ξ) = (∆ΠeA′/ eA(ξ))−1, ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0).

(ii) Obviously, the generalized perturbation determinant ∆̃ eA′/ eA(ξ, z) is holomorphic in z ∈
ρ(Ã). If ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) is fixed, then it follows from (4.6) that ∆ΠeA′/ eA(·) admits a

holomorphic continuation to the domain ρ(Ã).

(iii) Let {Ã′, Ã} ∈ DΠ and {Ã′, Ã} ∈ DΠ′ . Then writing down representation (4.6) for both
boundary triplets Π and Π′, we arrive at the identity

∆ΠeA′/ eA(z) =
∆ΠeA′/ eA(ξ)

∆Π′eA′/ eA(ξ)
∆Π′eA′/ eA(z), z ∈ ρ(Ã) ∩ ρ(A0) ∩ ρ(A′0).

Taking into account (ii) one completes the proof.

Proposition 4.3. Let A be a densely defined closed symmetric operator in H, let Π =
{H,Γ0,Γ1} be a boundary triplet for A∗, and M(z) the corresponding Weyl function. Let
Ã = AΘ ∈ Ext A where Θ ∈ C̃(H). Then the following holds:
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(i) If {Ã, A0} ∈ D̃, then for ξ ∈ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(A0)

∆̃ eA/A0
(ξ, z) = det

(
IH + (Θ−M(ξ))−1(M(ξ)−M(z))

)
. (4.8)

Moreover, the spectrum of Θ is discrete, (Θ− µ)−1 ∈ S1(H), µ ∈ ρ(Θ), and

∆̃ eA/A0
(ξ, z) =

det(IH − (µ−Θ)−1(µ−M(z)))

det(IH − (µ−Θ)−1(µ−M(ξ)))
(4.9)

for ξ ∈ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(A0).

(ii) If {Ã′, A0} ∈ D̃ and {Ã, A0} ∈ D̃, then {Ã′, Ã} ∈ D̃ and

∆̃ eA′/ eA(ξ, z) = cξ
det (IH − (µ−Θ′)−1(µ−M(z)))

det (IH − (µ−Θ)−1(µ−M(z)))
(4.10)

for µ ∈ ρ(Θ′) ∩ ρ(Θ), ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(Ã) ∩ ρ(A0) where

cξ :=
det (IH − (µ−Θ)−1(µ−M(ξ)))

det (IH − (µ−Θ′)−1(µ−M(ξ)))
.

Proof. (i) The extension A0 is given by AΘ0 with Θ0 := {0} × H. Clearly, Θ0 −M(ξ) =
{0} × H and (Θ0 − M(ξ))−1 = 0. Therefore RM

ξ (Θ,Θ0) := (Θ − M(ξ))−1 − (Θ0 −
M(ξ))−1 = (Θ −M(ξ))−1. Substituting this expression in formula (4.2) we obtain (4.8). By
Proposition 2.6, Θ has discrete spectrum and (µ−Θ)−1 ∈ S1(H), µ ∈ ρ(Θ).

Let us prove (4.9). It is easily seen that for ξ ∈ ρ(Ã) ∩ ρ(A0) and µ ∈ ρ(Θ)

1

det (IH − (µ−Θ)−1(µ−M(ξ)))
= det

(
IH − (Θ−M(ξ))−1(µ−M(ξ))

)
.

Hence for any ξ ∈ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(A0) one has

det(IH − (µ−Θ)−1(µ−M(z)))

det(IH − (µ−Θ)−1(µ−M(ξ)))

= det
(
IH − (Θ−M(ξ))−1(µ−M(ξ))

)
det
(
IH − (µ−Θ)−1(µ−M(z))

)
.

A straightforward computation shows that

IH + (Θ−M(ξ))−1(M(ξ)−M(z))

=
(
IH − (Θ−M(ξ))−1(µ−M(ξ))

) (
IH − (µ−Θ)−1(µ−M(z))

)
for ξ ∈ ρ(Ã)∩ρ(A0) and z ∈ ρ(A0). Combining two last identities with relation (4.8) we arrive
at (4.9).

(ii) From {Ã′, A0} ∈ D̃ and {Ã, A0} ∈ D̃ we get that the spectra of Ã′ and Ã are discrete in

C±. Hence {Ã′, Ã} ∈ D̃ and

∆̃ eA′/ eA(ξ, z) = ∆̃ eA′/A0
(ξ, z)∆̃A0/ eA(ξ, z)
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for ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) and z ∈ ρ(A0) ∩ ρ(Ã). Combining this identity with (4.9) and
applying the known identity ∆̃A0/ eA(ξ, z) = (∆̃ eA/A0

(ξ, z))−1, ξ, z ∈ ρ(Ã)∩ρ(A0), (cf. (a.1)),
we arrive at (4.10).

Corollary 4.4. Assume the conditions of Proposition 4.3. Suppose in addition that Ã is disjoint
withA0, i.e. Ã = AB withB ∈ C(H). Then for ξ ∈ ρ(Ã)∩ρ(A0) the perturbation determinant
∆̃ eA/A0

(ξ, ·) is given by

∆̃ eA/A0
(ξ, z) = det

(
(B −M(z))(B −M(ξ))−1

)
. (4.11)

If, in addition, dimH <∞, then

∆̃ eA/A0
(ξ, z) =

det(B −M(z))

det(B −M(ξ))
. (4.12)

Remark 4.5. Combining the chain rule with formula (4.12) we arrive at formula (1.12) for
∆̃ eA′/ eA(ξ, ·). Note that formula (4.12) up to a constant was established in [7] for the first time.

Corollary 4.6. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) the corresponding
Weyl function, and Ã′ = AB′ , Ã = AB where B′, B ∈ C(H). If, in addition, {Ã′, Ã} ∈ DΠ,
then for any µ ∈ ρ(B′) ∩ ρ(B)

∆ΠeA′/ eA(z) = ∆B′/B(µ)
det (IH − (µ−B′)−1(µ−M(z)))

det (IH − (µ−B)−1(µ−M(z)))
, (4.13)

z ∈ ρ(Ã) ∩ ρ(A0). Here ∆B/B′(µ) is the classical perturbation determinant defined by (1.1).

Proof. Let us show that the inclusion {Ã′, Ã} ∈ DΠ yields (B′ − B)(B − µ)−1 ∈ S1(H),
µ ∈ ρ(B). Since (B′ −B)(B −M(ξ))−1 ∈ S1(H), by assumption, we get

(B′ −B)(B − µ)−1 = (B′ −B)(B −M(ξ))−1(B −M(ξ))(B − µ)−1 ∈ S1(H).

By Theorem 4.2(i) (see (4.6)), for any ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0)

∆ΠeA′/ eA(z) = ∆ΠeA′/ eA(ξ)∆̃ eA′/ eA(ξ, z), z ∈ ρ(Ã) ∩ ρ(A0).

Combining this identity with (4.10) yields

∆ΠeA′/ eA(z) = c′ξ
det (IH − (µ−B′)−1(µ−M(z)))

det (IH − (µ−B)−1(µ−M(z)))
, z ∈ ρ(Ã) ∩ ρ(A0), (4.14)

for µ ∈ ρ(B′) ∩ ρ(B), ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) where

c′ξ := ∆ΠeA′/ eA(ξ) cξ = ∆ΠeA′/ eA(ξ)
det (IH − (µ−B)−1(µ−M(ξ)))

det (IH − (µ−B′)−1(µ−M(ξ)))
.

To compute this constant recall that, by definition,

∆ΠeA′/ eA(ξ) = det(IH + (B′ −B)(B −M(ξ))−1).
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A straightforward computation shows that

[IH+ (B′−B)(B−M(ξ))−1] · [IH− (µ−M(ξ))(µ−B)−1] = (M(ξ)−B′)(µ−B)−1

and
[IH − (µ−M(ξ))(µ−B′)−1]−1 = (µ−B′)(M(ξ)−B′)−1.

Taking the product of these identities and applying the properties (2.11), (2.12), of the determi-
nants we finally get

c′ξ = det(IH + (B′ −B)(B − µ)−1) = ∆B′/B(µ).

Combining this relation with (4.14) we arrive at (4.13).

5 Properties of ∆Π
Ã′,Ã

(·)

Here we extend basic properties of the classical perturbation determinants (cf. Appendix) to the
determinants ∆ΠeA′/ eA(·) defined by Definition 1.2.

Proposition 5.1. Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) the corresponding
Weyl function and A1 := A∗ � ker(Γ1). Assume that Ã = AB , Ã′ = AB′ , Ã′′ = AB′′ with
B,B′, B′′ ∈ C(H).

(i) Let ρ(Ã′′) ∩ ρ(Ã′) ∩ ρ(Ã) 6= ∅. If {Ã′′, Ã′} ∈ DΠ and {Ã′, Ã} ∈ DΠ, then {Ã′′, Ã} ∈
DΠ and the multiplicative property holds

∆ΠeA′′/ eA′(z) ∆ΠeA′/ eA(z) = ∆ΠeA′′/ eA(z), z ∈ ρ(Ã′) ∩ ρ(Ã). (5.1)

(ii) If {Ã′, Ã} ∈ DΠ, then {Ã, Ã′} ∈ DΠ and

∆ΠeA′/ eA(z)∆ΠeA/ eA′(z) = 1, z ∈ ρ(Ã′) ∩ ρ(Ã). (5.2)

(iii) Let {Ã′, Ã} ∈ DΠ and let z0 be either a regular point or a normal eigenvalue of the

operators Ã′ and Ã of algebraic multiplicitiesmz0(Ã′) andmz0(Ã). Then ord
(

∆ΠeA′/ eA(z0)
)

=

mz0(Ã′)−mz0(Ã). In particular, ord
(

∆ΠeA′/ eA(z0)
)

= mz0(Ã′) for any z0 ∈ ρ(A0) ∩ ρ(Ã).

(iv) If {Ã′, Ã} ∈ DΠ, then for z ∈ ρ(Ã′) ∩ ρ(Ã) one has

1

∆ΠeA′/ eA(z)

d

dz
∆ΠeA′/ eA(z) = tr ((Ã− z)−1 − (Ã′ − z)−1). (5.3)

(v) If {Ã′, Ã} ∈ DΠ and {Ã′∗, Ã∗} ∈ DΠ, then

∆ΠeA′∗/ eA∗(z) = ∆ΠeA′/ eA(z), z ∈ ρ(Ã∗). (5.4)
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(vi) If {Ã′, Ã} ∈ DΠ, then for z ∈ ρ(Ã) and ζ ∈ ρ(Ã′) ∩ ρ(Ã)

∆ΠeA′/ eA(z)

∆ΠeA′/ eA(ζ)
= det(IH + (M(z)−M(ζ))(B −M(z))−1(B′ −B)(B′ −M(ζ))−1).

Proof. (i) If the condition ρ(Ã′′)∩ρ(Ã′)∩ρ(Ã) 6= ∅ is satisfied, then ρ(Ã′′)∩ρ(Ã′)∩ρ(Ã)∩
ρ(A0) 6= ∅. Hence, by Proposition 2.5(i) one has {z ∈ ρ(A0) : 0 ∈ ρ(B′′−M(z))∩ ρ(B′−
M(z)) ∩ ρ(B − M(z))} 6= ∅. To check Definition 1.2(iii) we note that due to the property
dom (B′′) = dom (B′) = dom (B)

(B′′ −B)(B −M(z))−1 = (B′′ −B′)(B −M(z))−1 + (B′ −B)(B −M(z))−1

for z ∈ ρ(Ã′) ∩ ρ(A0). By the assumption, (B′ −B)(B −M(z))−1 ∈ S1(H). It remains to
check that (B′′ −B′)(B −M(z))−1 ∈ S1(H) for z ∈ ρ(Ã) ∩ ρ(A0). Clearly,

(B′′ −B′)(B −M(z))−1 = (B′′ −B′)(B′ −M(z))−1

+ (B′′ −B′)(B′ −M(z))−1(B′ −B)((B −M(z))−1

for z ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0). Since (B′′ − B′)(B′ −M(z))−1 ∈ S1(H) for z ∈ ρ(Ã′) ∩
ρ(A0) and (B′ −B)(B −M(z))−1 ∈ S1(H) for z ∈ ρ(Ã)∩ ρ(A0), by the assumption, we
find (B′′−B)(B−M(z))−1 ∈ S1(H) for z ∈ ρ(Ã′)∩ρ(Ã)∩ρ(A0). Now the multiplicative
property (5.1) for z ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0) immediately follows from definition (1.8). Finally,
applying Theorem 4.2(ii) one extends identity (5.1) to the domain ρ(Ã′) ∩ ρ(Ã).

(ii) Clearly, conditions (i) and (ii) of Definition 1.2 are satisfied for the pairs {Ã, Ã′} and {Ã′, Ã},
simultaneously. Let us check condition (iii) of Definition 1.2. Since dom (B) = dom (B′), the
operator (B − M(z))(B′ − M(z))−1 is bounded. Combining this fact with the assumption
(B −B′)(B −M(z))−1 ∈ S1(H) and using the representation

(B −B′)(B′ −M(z))−1 = −(B′ −B)(B −M(z))−1(B −M(z))(B′ −M(z))−1

for z ∈ ρ(Ã′)∩ρ(Ã)∩ρ(A0) we get (B−B′)(B′−M(z))−1 ∈ S1(H) for z ∈ ρ(Ã′)∩ρ(A0).
To prove (5.2) it suffices to set Ã′′ = Ã in (5.1).

(iii) Combining formula (4.6) with Proposition A.1(iii) we get the statement.

(iv) Combining formula (4.6) with Proposition A.1(iv) it yields (5.3).

(v) If {Ã′, Ã} ∈ DΠ, then C(B −M(z))−1 ∈ S1(H) for z ∈ ρ(Ã) ∩ ρ(A0) where C :=
B′−B, dom (C) := dom (B′) = dom (B). SinceB′ andB are densely defined and closed,
the operators B′∗, B∗ and C∗ are well defined and (B∗ −M(z)∗)−1C∗ ∈ S1(H). Setting
C∗ := B′∗ − B∗, dom (C∗) = dom (B′∗) = dom (B∗) we get dom (C∗) ⊇ dom (C∗).
Moreover, we have

C∗(B∗ −M(z)∗)−1 = C∗(B
∗ −M(z)∗)−1 ∈ S1(H), z ∈ ρ(Ã) ∩ ρ(A0). (5.5)

Combining this relation with Lemma A.2 one gets

det(IH + (B∗ −M(z)∗)−1C∗) = det(IH + C∗(B
∗ −M(z)∗)−1) (5.6)
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for z ∈ ρ(Ã) ∩ ρ(A0). Since ((B′ − B)(B −M(z))−1)∗ = (B∗ −M(z)∗)−1C∗, applying
Proposition 2.8(iii) and using (5.5) and the identity M(z)∗ = M(z), z ∈ ρ(A0), we obtain

∆ΠeA′/ eA(z) = det(IH + (B∗ −M(z)∗)−1C∗) = ∆ΠeA′∗/ eA∗(z), (5.7)

for z ∈ ρ(Ã) ∩ ρ(A0). Replacing here z by z we arrive at (5.4).

(vi) This statement follows from (ii) and (iii).

6 Determinants and annihilation functions

Following [67] we briefly recall some basic concepts and facts on C0-contractions. Using di-
lation theory Foias and Nagy [67] have extended the Riesz-Dunford functional calculus for a
contraction T to the class H∞T (D) (see [67, Section 3.2] for precise definitions). If a contraction
T is completely non-unitary, then H∞T (D) = H∞(D) is just the Hardy class in the unit disc
D. The extended functional calculus makes it possible to introduce concepts of C0-contractions
and minimal annihilation function.

Definition 6.1 ([67]).

(i) A contraction T in H is put in the class C0· (C·0) if s− limn→∞ T
n = 0 s-(limn→∞ T

∗n =
0). It is set C00 := C·0 ∩ C0·.

(ii) It is said that a completely non-unitary operator T belongs to the class C0 if there exists a
function u(·) ∈ H∞(D) \ {0} such that u(T ) = 0. The function u(·) is called an annihilation
function for T .

(iii) An annihilation function u0(·) is called minimal if it is a divisor in H∞(D) of any other
annihilation function u(·) for T .

It is well known thatC0 ⊂ C00.Moreover, it is known [67, Proposition 3.4.4] that for any T ∈ C0

the minimal function exists and is denoted by mT (·). It is unique up to a multiplicative constant
and is always an inner function.

Any m-dissipative operator D in H is an infinitesimal operator of a contractive semigroup
UD(t) = exp(itD) and vise versa (see [67, Chapter 3])) where exp(itD), t ∈ R+, can
be defined by means of the Nagy-Foias calculus. The main properties of D are closely related
with the corresponding properties of its Cayley transform TD, the contraction given by

T := TD := (D − i)(D + i)−1 = I − 2i(D + i)−1.

For instance, s − limt→∞ exp(itD) = 0, i.e. the semigroup UD(·) is stable, if and only if
TD ∈ C0·, [67, Proposition 3.9.2]. Moreover, TD is completely non-unitary if and only if D is
completely non-selfadjoint.

For any function v(·) ∈ H∞(C+) and any completely non-selfadjoint m-dissipative operator
D we set v(D) := ṽ(TD) where

H∞(D) 3 ṽ(ζ) := v

(
i
1 + ζ

1− ζ

)
, ζ ∈ D.
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We say the m-dissipative operator D belongs to the class C0· (C·0, C0) if TD belongs to
C0· (resp. C·0, C0). In other words, D ∈ C0 if it is completely non-selfadjoint and v(D) =
ṽ(TD) = 0 with certain v(·) ∈ H∞(C+). Clearly, there always exists a minimal function
mD(·) ∈ H∞(C+) which is an inner function.

Here we demonstrate a role of perturbation determinants ∆ΠeA/ eA∗(·) in the Nagy-Foias theory

of annihilation functions of m-dissipative extensions Ã of a symmetric operator A with finite
deficiency indices. Recall that a point z ∈ C is called a point of regular type for A (in short z ∈
ρ̂ (A)), cf. [1, Section VIII.100], if there is a constant c > 0 such that ‖(A− z)f‖2 ≥ c‖f‖2,
f ∈ dom (A). Recall that an unbounded operator T ∈ C(H) with the compact resolvent is
called complete in H if the system of its root vectors is complete in H.

Proposition 6.2. LetA be a simple closed symmetric operator in H with finite deficiency indices
n := n±(A) < ∞ and Ã ∈ Ext A a maximal dissipative extension of A. Let also Π =

{H,Γ0,Γ1} be a boundary triplet for A∗ and Ã disjoint with A0, i.e. Ã = AB with B ∈ [H]. If
ρ̂ (A) = C, then the following holds:

(i) The resolvent of Ã is compact, i.e. the spectrum of Ã is discrete.

(ii) If ker(BI) = {0}, BI = Im (B), then Ã is completely non-selfadjoint operator with
discrete spectrum. In particular, R ⊂ ρ(Ã).

(iii) If Ã is completely non-selfadjoint, then Ã belongs to the class C0 and the perturbation
determinant d(·) := ∆ΠeA/ eA∗(·) is an inner function holomorphic in C+ ∪ R. Moreover, d(·) is

an annihilation function for Ã.

(iv) If Ã is completely non-selfadjoint and complete, then the annihilation function d(·) is
minimal for Ã if and only if the geometric multiplicity of any eigenvalue z of Ã is one, i.e.
dim (ker(Ã − z)) = 1 or, equivalently, dim (ker(B − M(z))) = 1. In particular, d(·) is
minimal if n±(A) = 1.

Proof. (i) According to [1, Section 105] z ∈ C belongs to σc(A), the continuous spectrum of
A, if z ∈ C \ ρ̂ (A) and ran (A − z) is not closed. Since n < ∞ and ρ̂ (A) = C, then,

by [1, Theorem 100.1], σc( Â ) = ∅ for any Â = Â
∗
∈ Ext A. Hence, the spectrum of any

Â = Â
∗
∈ Ext A is discrete, i.e. its resolvent is compact. By the Krein type formula (2.7), the

resolvent of any other extension Ã with ρ(Ã) 6= ∅ is compact too, i.e. Ã has discrete spectrum.

(ii) Let us show that Ã = AB is completely non-selfadjoint. By Proposition 2.3(iii), B is dissi-
pative, i.e. Im (B) ≥ 0. Since the spectrum of Ã is discrete, it suffices to show that Ã has no
real eigenvalues. It follows from the Green formula (2.1) that for any x ∈ R the following identity
holds

Im
(
(AB − x)f, f

)
= −i[(BΓ0f,Γ0f)H − (Γ0f,BΓ0f)H]

= 2(BIΓ0f,Γ0f)H = 2
∥∥∥√BIΓ0f

∥∥∥2

H
, f ∈ dom (A∗).
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Let f ∈ ker(AB − x). Since, by the assumption, ker(BI) = {0}, the above identity yields
Γ0f = 0 and Γ1f = BΓ0f = 0. Thus, f ∈ dom (A) and f ∈ ker(A− x). This contradicts
the simplicity of A. Thus, R ⊂ ρ(Ã)).

(iii) Since Ã is m-dissipative, the characteristic function W eA(·) := WΠeA (·) is given by (3.9)

with J = I . Further, since Ã is m-dissipative, the characteristic function W eA(·) is contractive

and holomorphic in C+. Moreover, since R ⊂ ρ(Ã), W eA(·) is holomorphic and unitary on R,
W ∗eA(x)W eA(x) = IH, i.e. W eA(·) is an inner matrix-valued function. By [67, Proposition VI.3.5],

T eA ∈ C· 0. Similarly, since the operator −Ã∗ is m-dissipative too, its characteristic function
W− eA∗(·) is also inner matrix-valued function in C+. Hence T− eA∗ = T ∗eA belongs to the class
C· 0 which is equivalent to the inclusion T eA ∈ C0 ·. Therefore T eA ∈ C· 0 ∩ C0 · = C00. Hence
the determinant d1(·) := det(W eA(·)) is an inner function in C+ holomorphic in C+ ∪ R+.

Since n±(A) = n < ∞, the contraction T eA = (Ã − i)(Ã + i)−1 has equal finite defect

numbers, i.e. dim
(

ran (I − T ∗eAT eA)
)

= dim
(

ran (I − T eAT ∗eA)
)
< ∞. By [67, Theorem

VI.5.2], T eA ∈ C0 and the determinant d1(·) = det(W eA(·)) defined on C+, is an annihilation

function for Ã: d1(Ã) = d̃1(T eA) = 0.

On the other hand, since n±(A) < ∞, {Ã, Ã∗} ∈ DΠ and the perturbation determinant
d(·) := ∆ΠeA/ eA∗(·) is well defined on ρ(Ã∗). Therefore combining (1.8) with (3.9) one gets

d(z) = det
(
(B −M(z))

(
B∗ −M(z)

)−1)
= det

(
I + 2iB

1/2
I

(
B∗ −M(z)

)−1
B

1/2
I

)
,

i.e. d(z) = det(W eA(z)) = d1(z), z ∈ ρ(Ã∗) ∩ ρ(A0). Thus, d(·) is an inner function in C+

and annihilates Ã, d(Ã) = 0.

(iv) Let {ej}nj=1 be a fixed orthonormal basis inH. Denote by Θ eA(·) the matrix representation of
the characteristic function W eA(·) with respect to the basis {ej}nj=1. By adj (Θ eA(·)) we denote
the adjugate matrix of Θ eA(·). Note that together with Θ eA(·) the matrix function adj (Θ eA(·)) is
holomorphic and contractive inC+, too (cf. the proof of [67, Proposition V.6.1]). By [67, Theorem
VI.5.2], the determinant d(·) := det(Θ eA(·)) = det(W eA(·)) of Θ eA(·) coincides with the mini-

mal annihilation function m eA(·) of Ã if and only if the entries of adj (Θ eA(·)) have no common
non-trivial inner divisor in the algebra H∞(C+).

On the other hand, by (iii), T eA ∈ C0. Therefore the operator T eA, hence Ã, is complete if
and only if the determinant d(·) is a Blaschke product (see [57, Section 4.5]). Therefore it
follows from the identity adj (Θ eA(·)) · Θ eA(·) = d(·)In that each common divisor ϕ(·) of the
entries of adj (Θ eA(·)) has to be a divisor of d(·). Therefore ϕ(·) always contains a Blaschke
factor, i.e., it admits the representation ϕ(·) = ϕ1(·)bm0

z0
(·) where bm0

z0
(·) is a Blaschke factor

bm0
z0

(z) := (eiα0(z − z0)/(z − z0))
m0 , m0 ≥ 1, z0 ∈ C+, cf. [37]. Clearly, the latter happens

if and only if adj (Θ eA(z0)) = On := 0 · In. However, adj (Θ eA(z0)) = On if and only if
rank (Θ eA(z0)) ≤ n− 2, i.e. dim (ker(Θ eA(z0))) = dim (ker(W eA(z0))) ≥ 2.

Further, by Proposition 2.5(ii), dim ker(Ã − z) = dim ker
(
B −M(z)

)
for any z ∈ ρ(A0).

Let us show that

dim (ker(W eA(z0))) = dim (ker(B −M(z0))), z0 ∈ C+. (6.1)
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Indeed, setting T1 := 2i(B∗ − M(z0))−1B
1/2
I one immediately gets ker(T1) = {0} by

ker(BI) = {0}. Further, we note that WAB(z0)h0 = 0 if and only if h0 ∈ ker(I +B
1/2
I T1). If

h0 ∈ ker(I+B
1/2
I T1), then T1h0 ∈ ker(I+T1B

1/2
I ) which yields dim (ker(I+B

1/2
I T1)) ≤

dim (ker(I+T1B
1/2
I )). Conversely, if h1 ∈ ker(I+T1B

1/2
I ), thenB1/2

I h1 ∈ ker(I+B
1/2
I T1)

which proves the relation dim (ker(I + T1B
1/2
I )) ≤ dim (ker(I +B

1/2
I T1)). Hence

dim (ker(W eA(z0)) = dim (ker(I +B
1/2
I T1)) = dim (ker(I + T1B

1/2
I )).

Combining this relation with the identity I+T1B
1/2
I = (B∗−M(z0))−1(B−M(z0)) we arrive

at (6.1). Thus, d(·) = ∆ΠeA/ eA∗(·) is a minimal annihilation function if and only if dim (ker(B −
M(z))) = 1 for z ∈ σ(Ã) which yields dim (ker(Ã− z)) = 1.

7 Examples

7.1 Sturm-Liouville operators on a finite interval

Consider in L2([0, b],Cn) the matrix Sturm-Liouville differential expression

(Af)(x) := − d2

dx2
f(x) +Q(x)f(x), f = col {f1, . . . , fn}, (7.1)

with n×n-matrix potentialQ(·) = Q(·)∗ ∈ L2([0, b],Cn×n). It is well known that the maximal
operator Amax associated in L2([0, b],Cn) with the differential expression (7.1) is given by

(A∗f)(x) := (A[f ])(x), f ∈ dom (A∗) = W 2,2((0, b),Cn). (7.2)

The minimal operator A = Amin is a closed symmetric operator given by

(Af)(x) := (A[f ])(x), f ∈ dom (A) = W 2,2
0 ((0, b),Cn) (7.3)

Notice that Amax = A∗. Due to the regularity property (7.2) for dom (A∗) the mappings

Γ0f :=

(
f(b)
f(0)

)
, Γ1f :=

(
−f ′(b)
f ′(0)

)
, f ∈ W 2,2((0, b),Cn), (7.4)

are well defined. Moreover, one easily checks that Π = {C2n,Γ0,Γ1} forms a boundary triplet
for A∗. Notice that A0 := A∗ � ker(Γ0) and A1 := A∗ � ker(Γ1) correspond to the Dirichlet
and Neumann boundary conditions, respectively.

Let us introduce the n× n matrix solutions C(z, x) and S(z, x)

A[C(z, x)] = zC(z, x), C(z, 0) = In, C ′(z, 0) = On

A[S(z, x)] = zS(z, x), S(z, 0) = On, S ′(z, 0) = In.
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Any fz ∈ ker(A∗ − z) admits the representation fz(x) = C(z, x)ξ + S(z, x)η for some
ξ, η ∈ Cn. Hence

Γ0fz =

(
C(z, b) S(z, b)
In 0n

)(
ξ
η

)
and Γ1fz =

(
−C ′(z, b) −S ′(z, b)

0n In

)(
ξ
η

)
.

Combining these relations with Definition 2.4 we find that the Weyl functionM(·) corresponding
to the triplet Π is

M(z) =

(
−C ′(z, b) −S ′(z, b)

0n In

)(
0n In

S(z, b)−1 −S(z, b)−1C(z, b)

)
=

(
−S ′(z, b)S(z, b)−1 −C ′(z, b) + S ′(z, b)S(z, b)−1C(z, b)

S(z, b)−1 −S(z, b)−1C(z, b)

)
=

(
−S ′(z, b)S(z, b)−1 S∗(z̄, b)−1

S(z, b)−1 −S(z, b)−1C(z, b)

)
, z ∈ C±.

(7.5)

If Q ≡ 0, then the Weyl function M(·) = M0(·) takes the form

M0(z) = − 1

sin(
√
zb)

(√
z cos(

√
zb)In −In

−In cos(
√
zb)In

)
. (7.6)

Let B′ =

(
B′11 B′12

B′21 B′22

)
, B =

(
B11 B12

B21 B22

)
, where B′ij , Bij ∈ Cn×n, i, j ∈ {1, 2}. Define

proper extensions Ã′ := AB′ and Ã := AB with the boundary operators B′ and B, respec-
tively (cf. (2.3)). Using (7.4) one defines Ã′ and Ã explicitly in terms of boundary conditions. For
instance,

dom (Ã) =

{
f ∈ W 2,2(0, b) :

−f ′(b) = B11f(b) +B12f(0)
f ′(0) = B21f(b) +B22f(0)

}
. (7.7)

Notice that {Ã′, Ã} ∈ DΠ. Since n±(A) = 2n <∞, we get (cf. (1.12))

∆ΠeA′/ eA(z) =
det(B′ −M(z))

det(B −M(z))
, z ∈ ρ(Ã) ∩ ρ(A0). (7.8)

Combining this formula with (4.6) we arrive at the following representation

∆̃ eA′/ eA(ξ, z) =
det(B′ −M(z))

det(B −M(z))

det(B −M(ξ))

det(B′ −M(ξ))

for z ∈ ρ(Ã) ∩ ρ(A0) and ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0).

If Ã′ = AB′ and Ã = A0, then we obtain from (4.12) that

∆̃ eA′/A0
(ξ, z) =

det(B′ −M(z))

det(B′ −M(ξ))
, z ∈ ρ(A0), ξ ∈ ρ(Ã′) ∩ ρ(A0).

Proposition 7.1. Let A be the minimal Sturm-Liouville operator on [0, b] defined by (7.3) and
let B ∈ C2n×2n, BI := Im (B) ≥ 0, and kerBI = {0}. Let also AB = A∗ � dom (AB),
dom (AB) := ker(Γ1 −BΓ0). Then the following holds:
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(i) A is simple and ρ̂ (A) = C.

(ii) AB is a m-dissipative and completely non-selfadjoint operator with discrete spectrum such
that R ⊆ ρ(AB). Moreover, the operator AB is complete.

(iii) AB is of the C0–class. Moreover, the perturbation determinant d(·) = ∆Π
AB/A

∗
B

(·) is an

annihilation function for AB , that is, d(AB) = 0.

(iv) The annihilation function d(·) is minimal if and only if dim (ker (B −M(z))) = 1 for any
z ∈ σ(AB) ∩ C+ = σp(AB).

Proof. (i) It follows immediately from the Cauchy uniqueness theorem.

(ii) The first claim follows from Proposition 6.2(i) and (ii). Further, it is well known that the resol-
vent of A0 is of trace class. It follows from Proposition 2.6(i) that the resolvent of AB is also of
trace class. Since, in addition, AB is m-dissipative, it follows from [31, Theorem V.6.1]) that AB
is complete.

(iii) and (iv) These statements follow from Proposition 6.2(iii) and (iv).

7.2 Matrix Sturm-Liouville operators on R+

Let us consider in L2(R+,Cn) the matrix Sturm-Liouville differential expression (7.1) with
n × n matrix potential Q(·) = Q(·)∗ ∈ L1(R+,Cn×n) ∩ L∞(R+,Cn×n). Denote by
A = Amin and Amax the corresponding minimal and maximal operators, respectively, asso-
ciated in L2(R+,Cn) with expression (7.1). Clearly, A is symmetric. Notice that the deficiency
indices are n±(A) = n. It is known (see, for instance, [56, Section 5.17.4]) that A∗ = Amax.
The latter means that dom (A∗) = W 2,2(R+,Cn). A∗ is given by the differential expression
(7.1) on the domain dom (A∗). Therefore the trace mappings Γ0,Γ1 : dom (A∗)→ Cn,

Γ0f = f(0), Γ1f = f ′(0), f = col {f1, . . . , fn},

are well defined and the Green identity (2.1) holds. Moreover, one easily proves that Π =
{Cn,Γ0,Γ1} is a boundary triplet forA∗. Hence the minimal operatorA = Amin is a restriction
of A∗ to the domain dom (A) = ker Γ0 ∩ ker Γ1,

dom (A) = W 2,2
0 (R+,Cn) := {f ∈ W 2,2(R+,Cn) : f ′(0) = f(0) = 0}.

Due to our assumption onQ the Weyl matrix solution Ψ(z, x) coincides with Jost matrix function
F (z, ·), being the solution of the integral equation

F (z, x) = ei
√
zxIn −

∫ ∞
x

1√
z

sin
(√

z(x− t)
)
Q(t)F (z, t)dt, z ∈ C \ {0}, (7.9)

where Im (
√
z) ≥ 0. The Weyl n× n matrix function is given by

M(z) = F ′(z, 0)F (z, 0)−1, z ∈ C±.
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Let Ã′ and Ã be proper extensions of A disjoint with A0 := A∗ � ker(Γ0). By Proposition
2.3, Ã′ = AB′ and Ã = AB with some operators B′, B ∈ [Cn], i.e. dom (Ã′) = {f ∈
dom (A∗) : f ′(0) = B′f(0)} and dom (Ã) = {f ∈ dom (A∗) : f ′(0) = Bf(0)}. Thus,
the boundary triplet Π is regular for the pair {Ã′, Ã}. Moreover, since n±(A) = n < ∞,
condition (3.1) is satisfied and

∆ΠeA′/ eA(z) =
det
(
B′ −M(z)

)
det
(
B −M(z)

) =
det
(
B′F (z, 0)− F ′(z, 0)

)
det
(
BF (z, 0)− F ′(z, 0)

) , (7.10)

for z ∈ ρ(Ã) ∩ ρ(A0). Using (4.6) we find the representation

∆̃ eA′/ eA(ξ, z) =
det
(
B′F (z, 0)− F ′(z, 0)

)
det
(
BF (z, 0)− F ′(z, 0)

) det
(
BF (ξ, 0)− F ′(ξ, 0)

)
det
(
B′F (ξ, 0)− F ′(ξ, 0)

)
for z ∈ ρ(Ã) ∩ ρ(A0) and ξ ∈ ρ(Ã′) ∩ ρ(Ã) ∩ ρ(A0). In particular, if Q ≡ 0, then M(z) =
M0(z) := i

√
zIn and

∆ΠeA′/ eA(z) =
det
(
B′ −M0(z)

)
det
(
B −M0(z)

) =
det
(
B′ − i

√
z
)

det
(
B − i

√
z
) , z ∈ ρ(Ã) ∩ ρ(A0).

If Ã = A0, then {Ã′, A0} 6∈ DΠ. However, according to (4.12) for any ξ, z ∈ ρ(Ã) ∩ ρ(A0)

the generalized perturbation determinant ∆̃ eA′/A0
(ξ, ·) is

∆̃ eA′/A0
(ξ, z) =

det
(
B′F (z, 0)− F ′(z, 0)

)
det
(
F (z, 0))

) det
(
F (ξ, 0)

)
det
(
B′F (ξ, 0)− F ′(ξ, 0)

) .
7.3 Dirac type operators on a finite interval

Consider in L2([0, 1],Cn) the first order differential expression

(A[f ])(x) := −iB−1 d

dx
f(x) +Q(x)f(x), f = col {f1, . . . , fn}, (7.11)

with a potential matrix Q(·) = Q(·)∗ ∈ L2([0, 1],Cn×n). Here B is n × n self-adjoint non-
singular diagonal matrix with not necessarily different eigenvalues,

B = diag (b1, . . . , bn) = B∗ ∈ Cn×n. (7.12)

Denote byP−(P+) the ortho-projection onto the eigenvectors ofB corresponding to its negative
(resp. positive) eigenvalues. We put κ := dimP− ∈ {0, 1..., n}. If n = 2m and B =
(−Im, Im), thenA is equivalent to the Dirac expression.

The minimal operator A = Amin associated in L2
(
[0, 1],Cn

)
with the differential expression

A is given by

(Af)(x) := (A[f ])(x),

dom (A) = W 1,2
0

(
[0, 1],Cn

)
:= {f ∈ W 1,2

(
[0, 1],Cn

)
: f(0) = f(1) = 0}.
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Clearly, A is a closed symmetric operator with n±(A) = n. Moreover, the maximal operator
Amax = A∗ is given by

(A∗f)(x) := (A[f ])(x), dom (A∗) = W 1,2([0, 1],Cn). (7.13)

Due to the regularity property (7.13) of the domain dom (A∗) the mappings

√
2Γ0f = −iB−1

(
f(0)− f(1)

)
,
√

2Γ1f = f(0) + f(1), f ∈ dom (A∗), (7.14)

are well defined. Moreover, one easily checks that the triplet Π = {Cn,Γ0,Γ1} forms a bound-
ary triplet for A∗.

Let Φ(·, z) be the (fundamental) n× n matrix solution of the Cauchy problem

−iB−1 d

dx
Φ(x, z) +Q(x)Φ(x, z) = zΦ(x, z), Φ(0, z) = In, z ∈ C. (7.15)

Clearly, Γ0Φ = −iB−1 (In − Φ(1, z)) and Γ1Φ = In + Φ(1, z). By Definition 2.4, the corre-
sponding Weyl function is

M(z) = i (I + Φ(1, z)) (I − Φ(1, z))−1B. (7.16)

Denote byAC,D a restriction of the operator Amax to the domain

dom (AC,D) = {f ∈ W 1,2([0, 1],Cn) : Cf(0) +Df(1) = 0}, (7.17)

and assume the condition rank (C D) = n, i.e. ker(CC∗ +DD∗) = {0}.

The operator Ã := AC,D is naturally associated with boundary value problem

−iB−1 d

dx
y(x, z) +Q(x)y(x, z) = zy(x, z), Cy(0) +Dy(1) = 0. (7.18)

Consider also an operator Ã′ := AC′,D′ given by (7.17)–(7.18) with matrices C ′, D′ ∈ Cn×n
in place of C and D. Suppose also that rank (C ′ D′) = n.

Proposition 7.2. Assume that 0 ∈ ρ(C+D)∩ρ(C ′+D′). Then the perturbation determinant
∆ΠeA′/ eA(·) is given by

∆ΠeA′/ eA(z) =
det
(
C +D

)
det
(
C ′ +D′

) det
(
C ′ +D′Φ(1, z)

)
det
(
C +DΦ(1, z)

) . (7.19)

Proof. It is easily seen that with respect to the boundary triplet Π the operators Ã and Ã′ admit
representations Ã = AT = A∗ � ker(Γ1 − TΓ0) and Ã′ = AT ′ = A∗ � ker(Γ1 − T ′Γ0)
with the boundary operators T and T ′ given by

T := i(C +D)−1(D − C)B and T ′ := i(C ′ +D′)−1(D′ − C ′)B. (7.20)
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Combining (7.16) with (7.20) one easily checks that

det
(
T −M(z)

)
=

(−2i)n det(C +D)−1 det
(
(I − Φ(1, z))−1B

)
det
(
C +DΦ(1, z)

)
.

(7.21)

Combining this relation with a similar relation for the determinant det
(
T ′ −M(·)

)
and using

∆ΠeA′/ eA(z) = det
(
T ′ −M(z)

)(
det
(
T −M(z)

))−1
,

cf. (1.12), one proves (7.19).

Remark 7.3. Recall that det
(
C +DΦ(1, z)

)
is called the characteristic determinant of the

operatorAC,D (cf. [5]) and [55]. Thus, formula (7.19) shows that up to a multiplicative constant
the perturbation determinant ∆̃ΠeA′/ eA(·) is a ratio of the two characteristic determinants.

Proposition 7.4. Let A be the minimal operator associated in L2
(
[0, 1],Cn

)
with the differen-

tial expression A (7.11) and let Ã := AC,D ∈ Ext A be its proper extension given by (7.17).
Then:

(i) A is simple and ρ̂ (A) = C.

(ii) The operator Ã = AC,D is m-dissipative if and only if

K := DBD∗ − CBC∗ ≥ 0. (7.22)

If, in addition, kerK = {0}, then Ã = AC,D is completely non-selfadjoint operator with dis-

crete spectrum and R ⊂ ρ(Ã).

(iii) Ã ∈ C0 if (7.22) is satisfied and kerK = {0}. Moreover, the perturbation determinant
d(·) = ∆ΠeA/ eA∗(·)

d(z) = ∆ΠeA/ eA∗(z) =
det(C∗ +D∗)

det(C +D)

det
(
C +DΦ(1, z)

)
det
(
D∗ +B−1Φ(1, z)BC∗

) . (7.23)

is an annihilation function for Ã, d(Ã) = 0.

(iv) The operator AC,D is complete provided that it is m-dissipative and

det(CP+ +DP−) 6= 0. (7.24)

In this case the perturbation determinant d(·) is the minimal annihilation function if and only if
dim ker

(
C +DΦ(1, z)

)
= 1 for z ∈ σ(AC,D) ∩ C+ = σp(AC,D).

Proof. (i) The statement immediately follows from the Cauchy uniqueness theorem.

(ii) We confine ourselves to the case 0 ∈ ρ(C+D). Then the corresponding boundary operator
T is given by (7.20). By the straightforward computation

−i(T − T ∗) = 2(C +D)−1K(C∗ +D∗)−1. (7.25)
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Hence the dissipativity of T is equivalent to (7.22). In turn, by Proposition 2.3(iii), the m-
dissipativity of AT = AC,D is equivalent to (7.22).

Further, by (7.25), the condition kerK = {0} yields ker(TI) = {0}. Since TI ≥ 0 and
ker(TI) = {0}, then, by Proposition 6.2(ii), AT is completely non-selfadjoint operator with
discrete spectrum and R ⊂ ρ(AT ).

(iii) Let us find the matrices C∗, D∗ parameterizing the operator A∗C,D by means of (7.17).
Without loss of generality we can assume that C + D = In. Otherwise we replace C and D
in (7.17) by (C + D)−1C and (C + D)−1D, respectively. By (7.20) the boundary operator is
T = i(D − C)B. Setting

C∗ = BD∗B−1, D∗ = BC∗B−1, C∗ +D∗ = Im, (7.26)

one easily gets T∗ = i(D∗ − C∗)B = −iB(D∗ − C∗) = T ∗. Hence AC∗,D∗ = (AC,D)∗. It
follows from (7.16) and (7.20) that

det(T ∗ −M(z)) = (−2i)n
(
det(I − Φ(1, z))

)−1
det(C∗ +D∗Φ(1, z))

= (−2i)n
(
det(I − Φ(1, z))

)−1
det
(
B(I − C∗)B−1 +BC∗B−1Φ(1, z)

)
= (−2i)n

(
det(I − Φ(1, z))

)−1
det
(
D∗ + C∗B−1Φ(1, z)B

)
Combining (7.26) with (7.21) we arrive at (7.23).

(iv) According to [55, Corollary 4.3] conditions (7.22), (7.24) imply the completeness of the
operatorAC,D. It remains to apply Proposition 6.2(iv) and note that due to (7.21) dim (ker(T −
M(z))) = dim ker

(
C +DΦ(1, z)

)
.

Remark 7.5. If Q = 0, then the corresponding Weyl function (7.16) is

M(z) = diag
(
−b1 cot(2−1b1z), . . . ,−bn cot(2−1bnz)

)
.

The annihilation function (7.23) is det
(
C +DΦ(1, z)

)
(det

(
D∗ + C∗Φ(1, z)

)
)−1.

7.4 Second order elliptic operators in domains with compact boundary

7.4.1 Basic facts on elliptic operators

Consider the second-order formally symmetric elliptic operator with smooth real coefficients in
a domain Ω ⊂ Rn with smooth compact boundary ∂Ω,

A := −
n∑

j,k=1

∂

∂xj
ajk(x)

∂

∂xk
+ q(x), ajk = ajk, q = q ∈ C∞(Ω). (7.27)

Recall that ellipticity ofA means that its (principle) symbol a0(x, ξ) satisfies

a0(x, ξ) :=
n∑

j,k=1

ajk(x)ξjξk 6= 0, (x, ξ) ∈ Ω× (Rn \ {0}). (7.28)
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Here basically following [34] and [51] we present some known facts on operators (7.27)-(7.28),
needed for computing the perturbation determinants.

Let A = Amin be the minimal elliptic operator associated in L2(Ω) with expression (7.27). Due
to Green’s identity the operator A is symmetric in L2(Ω). Any proper extension Ã ∈ Ext A
of A is called a realization of A. Clearly, any realization Ã of A is closable. We equip
dom (Amax) with the corresponding graph norm. It is known (cf. [8, 49]) that for bounded do-
main Ω dom (Amin), equipped with the graph norm, coincides with the Sobolev space H2

0 (Ω)
algebraically and topologically, dom (Amin) = H2

0 (Ω). However, in contrast to the case of
ordinary differential operators, dom (Amax) 6= H2(Ω) while

H2(Ω)  dom (Amax)  H2
loc (Ω).

Since the symbol a0(x, ξ) is real the operatorA is properly elliptic (see [49]).

Hypothesis 7.6. A is uniformly elliptic and its leading coefficients ajk(·) are bounded and
uniformly continuous in Ω with all their derivatives. Further, let q ∈ L∞(Ω) ∩ C∞(Ω).

In particular, assuming Hypothesis 7.6 we have dom (Amin) = H2
0 (Ω) even for unbounded

domains. Notice that for bounded Ω any elliptic differential expressionA with C(Ω)-coefficients
is automatically uniformly elliptic in Ω.

Denote by ∂
∂ν

the conormal derivative:

∂

∂ν
=

n∑
j,k=1

ajk(x) cos(n, xj)
∂

∂xk
(7.29)

and set

G0u := γ0u := u|∂Ω, G1u := γ0

(
∂u

∂ν

)
=

(
∂u

∂ν

)∣∣∣∣
∂Ω

, u ∈ dom (Amax).

We define the Dirichlet and Neumann realizations Â G0 and Â G1 by setting

Â Gj := Amax � dom ( Â Gj),

dom ( Â Gj) := {u ∈ H2(Ω) |Gju = 0}, j ∈ {0, 1}.
(7.30)

It is well known that under Hypothesis 7.6 the realization Â Gj is self-adjoint in H0(Ω) :=

L2(Ω), i.e. Â Gj = Â
∗
Gj

, j ∈ {0, 1}.
To apply Proposition 4.3 and Corollary 4.6 we need a boundary triplet for A∗. Note, that the
classical Green’s formula reeds now as follows

(Au, v)− (u,Av) =

∫
∂Ω

(
∂u

∂ν
· v − u · ∂v

∂ν

)
ds (7.31)

=

∫
∂Ω

(
G1u ·G0v −G0u ·G1v

)
ds, u, v ∈ H2(Ω).
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Proposition 7.7 ([34]). Let the Hypothesis 7.6 be satisfied and let 0 ∈ ρ
(
ÂG0

)
. Then for any

s ∈ R the operator G0 isomorphically maps the set

Zs
A(Ω) := {u ∈ Hs(Ω) : Amaxu = 0} onto Hs−1/2(∂Ω).

Definition 7.8 ([34, 68]). Assume Hypothesis 7.6.

(i) Let z ∈ ρ(ÂG0) and ϕ ∈ Hs−1/2(∂Ω), s ∈ R. Then one defines P (z)ϕ to be the unique
u ∈ Zs

A−zIL2(Ω)
(Ω) satisfying G0u = ϕ.

(ii) The Poincare-Steklov operator Λ(z) is defined by

Λ(z) : Hs−1/2(∂Ω)→ Hs−3/2(∂Ω), Λ(z)ϕ = G1P (z)ϕ. (7.32)

To be precise we denote the operator Λ(·) : Hs(∂Ω) → Hs−1(∂Ω) by Λs(·). Notice that
Λs(z) ∈ [Hs(∂Ω), Hs−1(∂Ω)].

Further, let ∆∂Ω be the Laplace-Beltrami operator in L2(∂Ω). Since −∆∂Ω ≥ 0, the operator
(−∆∂Ω + I)−s/2 isomorphically maps L2(∂Ω) onto Hs(∂Ω), s ∈ R.

Notice that the classical Green formula (7.31) cannot be extended to u, v ∈ dom (A∗) since the
traces G0u and G1u belong to the spaces H−1/2(∂Ω) and H−3/2(∂Ω), respectively (see[49,
35]). A construction of a boundary triplet for A∗ as well as the respective regularization of
the Green formula (7.31) goes back to the classical papers by Vishik [68] and Grubb [34]. An
adaptation of this construction to the case of boundary triplets in the sense of Definition 2.2 was
done in [51]. First we recall a result from [51] that modifies and completes [34, Theorem 3.1.2 ]

Proposition 7.9 ([51, Proposition 5.1]). Let the Hypothesis 7.6 be satisfied and let 0 ∈ ρ
(
ÂG0

)
.

Then the following statements are valid:

(i) The totality Π = {H,Γ0,Γ1}, whereH := L2(∂Ω) and

Γ0u := (−∆∂Ω + I)−1/4G0u,

Γ1u := (−∆∂Ω + I)1/4(G1 − Λ− 1
2
(0)G0)u,

u ∈ dom (Amax), (7.33)

forms a boundary triplet for A∗. In particular, the Green formula

(A∗u, v)L2(Ω) − (u,A∗v)L2(Ω) = (Γ1u,Γ0v)L2(∂Ω) − (Γ0u,Γ1v)L2(∂Ω), (7.34)

u, v ∈ dom (A∗), holds and A0 := A∗ � ker(Γ0) = Â G0 .

(ii) The operator valued function Λ− 1
2
(z)− Λ− 1

2
(0) has the regularity property

Λ− 1
2
(z)− Λ− 1

2
(0) : H−1/2(∂Ω)→ H1/2(∂Ω), z ∈ ρ

(
Â G0

)
. (7.35)

Moreover, Λ− 1
2
(z)− Λ− 1

2
(0) ∈ [H−1/2(∂Ω), H1/2(∂Ω)] for any z ∈ ρ

(
Â G0

)
.
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(iii) The corresponding Weyl function is given by

M(z) = (−∆∂Ω + I)1/4
(
Λ− 1

2
(z)− Λ− 1

2
(0)
)
(−∆∂Ω + I)1/4, z ∈ C±. (7.36)

In contrast to the mapping Γ = {Γ0,Γ1} : dom (Amax)→ L2(∂Ω)× L2(∂Ω), the mapping

G = {G0, G1} : dom (Amax)→ H−1/2(∂Ω)×H−3/2(∂Ω) (7.37)

is not surjective. The following statement describes the range ran (G).

Corollary 7.10. Let the assumptions of Proposition (7.9) be satisfied. Then for any pair
{h0, h1} ∈ H−1/2(∂Ω) × H−3/2(∂Ω) the system Gjf = hj, j ∈ {0, 1}, has a solution
f ∈ dom (Amax) if and only if

h1 − Λ− 1
2
(0)h0 ∈ H1/2(∂Ω). (7.38)

Proof. If (7.38) is satisfied, then it follows from Proposition (7.9)(i) and the surjectivity of Γ =
{Γ0,Γ1} : dom (Amax)→ L2(∂Ω)× L2(∂Ω) that the system{

Γ0f = (−∆∂Ω + I)−1/4h0

Γ1f = (−∆∂Ω + I)1/4
(
h1 − Λ− 1

2
(0)h0

)
has a (non-unique) solution f ∈ dom (Amax). According to definition (7.33), f also satisfies
the system Gjf = hj , j ∈ {0, 1}.
Conversely, let f ∈ dom (Amax) satisfy Gjf = hj , j ∈ {0, 1}. Then,

h1 − Λ− 1
2
(0)h0 = G1f − Λ− 1

2
(0)G0f = (−∆∂Ω + I)−1/4Γ1f ∈ H1/2(∂Ω)

which proves (7.38).

For any operator K : H−1/2(∂Ω) −→ H−3/2(∂Ω) we set

ÂK := Amax � dom ( ÂK),

dom ( ÂK) := {f ∈ dom (Amax) : G1f = KG0f}.
(7.39)

Obviously it holds dom (A) ⊆ dom ( ÂK) ⊆ dom (A∗) = dom (Amax) but in general the
operator ÂK is not closed. That is the reason why ÂK is in general not a proper extension of
A, cf. Definition 2.1. In the following we denote the set of all not necessarily closed extensions of
A with domain between dom (A) and dom (A∗) by ẼxtA. Obviously one has Ext A ⊂ ẼxtA.

Lemma 7.11. Assume the Hypothesis 7.6. Let Ã ∈ ẼxtA and let G be the mapping given by
(7.37). Then the following three statements are equivalent:

(i) Ã admits the representation (7.39), i.e. Ã = ÂK .

(ii) Gdom (Ã) is a graph of an operator K : H−1/2(∂Ω) −→ H−3/2(∂Ω), i.e.

Gdom (Ã) = gr (K). (7.40)
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(iii) Ã and A0 = Â G0 are disjoint.

Combining Proposition 2.3 with Proposition 7.9 this yields the parameterization of realizations
Ã = ÂK by means of boundary operators (see (2.3)). However in contrast to the parame-
terization (2.3), parameterization (7.39) is not bijective: two different K1 and K2 may corre-
spond to the same Ã, i.e. it might happen that Ã = ÂK1 = ÂK2 . Moreover, an operator
K : H−1/2(∂Ω) −→ H−3/2(∂Ω) in (7.39) is not arbitrary, i.e. not each such K can satisfy
(7.40). Next we describe those operators K admitting representations (7.40).

Lemma 7.12. Let Hypothesis 7.6 be satisfied and 0 ∈ ρ
(
ÂG0

)
let K : H−1/2(∂Ω) −→

H−3/2(∂Ω). There is a not necessarily closed extension Ã ∈ ẼxtA such that (7.40) is valid if
and only if the regularity condition

ran (K − Λ− 1
2
(0)) ⊆ H1/2(∂Ω) (7.41)

is satisfied. Moreover, Ã is disjoint with A0 and Ã = ÂK .

Proof. Let K : H−1/2(∂Ω) −→ H−3/2(∂Ω) be a linear operator such that (7.41) is satisfied
and let {h0, h1} ∈ gr (K). Since h1 = Kh0 one has h1−Λ− 1

2
(0)h0 = Kh0−Λ− 1

2
(0)h0 ∈

H1/2(∂Ω). By Corollary 7.10, there is f ∈ dom (Amax) such that hj = Gjf , j ∈ {0, 1}.
Setting Ã := Amax � dom (Ã),

dom (Ã) := {f ∈ dom (Amax) : Gf = {h0, h1} ∈ gr (K)},

we define a generalized proper extension ofA such that gr (K) = Gdom (Ã). By Lemma 7.11
Ã is disjoint with A0 and according to (7.39) Ã = ÂK .

Conversely, assume that Gdom (Ã) = gr (K) for some Ã ∈ Ext A. Then by Lemma 7.11(ii)
for any {h0, h1} ∈ gr (K) there is f ∈ dom (Ã), such that Gf = {h0, h1}. By Corollary
7.10 one has h1 − Λ− 1

2
(0)h0 ∈ H1/2(∂Ω). Hence Kh0 − Λ− 1

2
(0)h0 ∈ H1/2(∂Ω) for any

h0 ∈ dom (K) and condition (7.41) is satisfied.

Note that any K : H−1/2(∂Ω) −→ H−3/2(∂Ω) defines realization ÂK by (7.39). However if
K does not satisfy regularity condition (7.41), one has only inclusion Gdom ( ÂK) ⊆ gr (K)
instead of equality (7.40). In this case according to Lemma 7.12 alongside the operator K we
consider its restriction K ′ : H−1/2(∂Ω) −→ H−3/2(∂Ω) given by

K ′ := K � dom (K ′),

dom (K ′) := {h ∈ dom (K) : Kh− Λ− 1
2
(0)h ∈ H1/2(∂Ω)} ⊆ dom (K).

(7.42)

Clearly, gr (K ′) = Gdom ( ÂK), i.e. ÂK = ÂK′ . For instance, consider the zero operator
O : H−1/2(∂Ω) −→ H−3/2(∂Ω). Then Â O = Â G1 . However, O′ := O � dom (O′),

dom (O′) := {f ∈ H−1/2(∂Ω) : −Λ− 1
2
(0)f ∈ H1/2(∂Ω)} = H3/2(∂Ω). (7.43)

Hence Â G1 = Â O′ and dom ( Â G1) = {f ∈ H2(Ω) : G1f = 0}.

Next we describe certain properties of realizations ÂK by means of boundary operators with
respect to the boundary triplet Π given in Proposition 7.9.
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Proposition 7.13 ([51, Proposition 3.8]). Assume the conditions of Proposition 7.9. Let K :
H−1/2(∂Ω) −→ H−3/2(∂Ω) and let Π = {L2(∂Ω),Γ0, Γ1} be the boundary triplet for A∗

given by (7.33). Then the following holds:

(i) ÂK = ABK , where ABK := A∗ � ker(Γ1 −BKΓ1) and

BK := (−∆∂Ω + I)1/4(K ′ − Λ− 1
2
(0))(−∆∂Ω + I)1/4 : L2(∂Ω) −→ L2(∂Ω). (7.44)

(ii) The operator ÂK is closed (and necessarily disjoint with A0 = Â G0) if and only if the
operator K ′ − Λ− 1

2
(0) : H−1/2(∂Ω) −→ H1/2(∂Ω) is closed.

(iii) Let ÂK be not closed (but necessary closable). Its closure is disjoint with A0 if and only if
the operator K ′ − Λ− 1

2
(0) : H−1/2(∂Ω) −→ H1/2(∂Ω) is closable.

(iv) If z ∈ ρ(A0), then z ∈ ρ( ÂK) if and only if the operatorK ′−Λ− 1
2
(z) maps dom (K ′) ⊂

H−1/2(∂Ω) onto H1/2(∂Ω) and its kernel is trivial.

Proof. (i) Since ÂK = ÂK′ , we get from (7.42) that

G1f − Λ− 1
2
(0)G0f = (K ′ − Λ− 1

2
(0))G0f, f ∈ dom ( ÂK).

Combining this relation with definition (7.33) it yields

Γ1f = (−∆∂Ω + I)1/4(K ′ − Λ− 1
2
(0))(−∆∂Ω + I)1/4(−∆∂Ω + I)−1/4G0f

= (−∆∂Ω + I)1/4(K ′ − Λ− 1
2
(0))(−∆∂Ω + I)1/4Γ0f, f ∈ dom ( ÂK).

Hence, if f ∈ dom ( ÂK), then f ∈ ker(Γ1 −BKΓ0). Therefore ÂK ⊆ ABK .

Conversely, if f ∈ dom (ABK ) = ker(Γ1 − BKΓ0), then combining (7.33) and (7.42) yields

G1f = K ′G0f . Hence dom (ABK ) ⊆ dom ( ÂK) and ÂK = ABK .

(ii) ÂK is closed and disjoint with A0 if and only if BK is closed. In turn, BK is closed if and
only if K ′ − Λ− 1

2
(0) : H−1/2(∂Ω) −→ H1/2(∂Ω) is closed.

(iii) The closure of ÂK is disjoint with A0 if and only if BK is closable. In turn, BK is closable
simultaneously with K ′ − Λ− 1

2
(0).

(iv) By Proposition 2.5, z ∈ ρ( ÂK) if and only if 0 ∈ ρ(BK −M(z)) where M(·) is the Weyl
function given by (7.36). Combining (7.44) and (7.36) yields

BK −M(z) = (−∆∂Ω + I)1/4(K ′ − Λ− 1
4
(z))(−∆∂Ω + I)1/4. (7.45)

However, 0 ∈ ρ(BK −M(z)) if and only if the operator K ′ − Λ− 1
2
(z) : H−1/2(∂Ω) −→

H1/2(∂Ω) has a bounded inverse.
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7.4.2 Perturbation determinants

To state the next result we recall the following definition.

Definition 7.14. Let Sp(H) = {T ∈ S∞(H) : sj(T ) = O(j−1/p), as j → ∞}, p >
0, where sj(T ), j ∈ N, denote the singular values of T (i.e., the eigenvalues of (T ∗T )1/2

decreasingly ordered counting multiplicity).

It is known that Sp(H) is a two-sided (non-closed) ideal in [H]. Clearly, Sp1 ⊂ Sp2 if p1 > p2.
An important property of the classes Sp(H) needed in the sequel is

Sp1 · Sp2 ⊂ Sp, where p−1 = p−1
1 + p−1

2 . (7.46)

Theorem 7.15 ([51, Theorem 4.13]). Assume the Hypothesis 7.6. Let A0 := Â G0 and 0 ∈
ρ
(
A0

)
. Further, let K : H−1/2(∂Ω) −→ H−3/2(∂Ω) be an operator satisfying dom (K) ⊆

L2(∂Ω) and ran (K) ⊆ L2(∂Ω). Then

( ÂK − z)−1 − (A0 − z)−1 ∈ S 2n−2
3

(L2(Ω)), z ∈ ρ( ÂK) ∩ ρ(A0). (7.47)

For n = 2 the resolvent difference in (7.47) is of trace class operator.

Lemma 7.16. Let X, X0, and Y be Banach spaces and let X : X −→ Y be a closed
operator with bounded inverse. Assume that X0 is a dense subset of X and the embedding
J : X0 −→ X is continuous. If dom (X) ⊆ JX0, then the operator X0 := XJ : X0 −→ Y,
dom (X0) := {f ∈ X0 : Jf ∈ dom (X)} is well defined, closed, and has a bounded inverse.
Moreover, X−1 = JX−1

0 .

Proof. The first statement is well known since X is closed and J is bounded. The second
statement immediately follows from ran (X) = ran (X0) = Y.

In what follows we apply Lemma 7.16 with X := H−1/2(∂Ω), X0 := H0(∂Ω), Y :=
H1/2(∂Ω) and Y′ := H−3/2(∂Ω). Denote by J the embedding operator,

J : H0(∂Ω) = L2(∂Ω) −→ H−1/2(∂Ω), Jf = f. (7.48)

Let K : H−1/2(∂Ω) −→ H−3/2(∂Ω). Since dom (K) ⊆ JL2(∂Ω), we can set

K0 := KJ : H0(∂Ω) −→ H−3/2(∂Ω),

dom (K0) := {f ∈ H0(∂Ω) : Jf ∈ dom (K)}.

Clearly, Λ0(z) = Λ− 1
2
(z)J , dom (Λ0(z)) := JH0(∂Ω), and

K ′0 := K0 � dom (K ′0),

dom (K ′0) := {f ∈ dom (K0) : (K0 − Λ0(0))f ∈ H1/2(∂Ω)}.
(7.49)

Clearly, K ′0 = K ′J : H0(∂Ω) −→ H−3/2(∂Ω).

Now we are in position to state the first main result of this section.
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Proposition 7.17. Let the assumptions of Theorem 7.15 be satisfied and let Π = {H,Γ0,Γ1}
be the boundary triplet given by Proposition 7.9 (cf. (7.33)). If 0 ∈ ρ(A0) ∩ ρ( ÂK), then the
following holds:

(i) For any z ∈ ρ( ÂK) ∩ ρ(A0) the operator K ′ − Λ− 1
2
(z) : H−1/2(∂Ω) −→ H1/2(∂Ω) is

boundedly invertible and

(K ′ − Λ− 1
2
(z))−1 ∈ S 2n−2

3
(H1/2(∂Ω), H−1/2(∂Ω)). (7.50)

In particular, if n = 2 then

(K ′ − Λ− 1
2
(z))−1 ∈ S1(H1/2(∂Ω), H−1/2(∂Ω)). (7.51)

(ii) Let n = 2. Then the transposed boundary triplet Π> = {H,−Γ1,Γ0} is regular for the
pair { ÂK , A0}, and the perturbation determinant ∆Π>bAK/ bA 0

(·) is

∆Π>bAK / bA 0
(z) = det

H−
1
2

(
I −

(
K ′ − Λ− 1

2
(0)
)−1(

Λ− 1
2
(z)− Λ− 1

2
(0)
))

= det
H

1
2

(
I −

(
Λ− 1

2
(z)− Λ− 1

2
(0)
)(
K ′ − Λ− 1

2
(0)
)−1
)
.

(7.52)

(iii) Let n = 2. Then (Λ0(z)−Λ0(0))(K ′0−Λ0(0))−1 ∈ S1(H1/2(∂Ω)) and the perturbation
determinant ∆Π>bAK/A0

(·) admits the representation

∆Π>bAK /A0
(z) = det

H
1
2

(
I − (Λ0(z)− Λ0(0))(K ′0 − Λ0(0))−1

)
. (7.53)

Proof. (i) Combining Proposition 2.5(i) with Proposition 7.13(i) this yields 0 ∈ ρ(BK −M(z))

for any z ∈ ρ( ÂK) ∩ ρ(A0) where BK is given by (7.44). In turn, combining Proposition 2.6
with Theorem 7.15 implies (BK − M(z))−1 ∈ S 2n−2

3
(H0(∂Ω)). It follows with account of

(7.45) that

(I −∆∂Ω)−1/4(K ′ − Λ− 1
2
(z))−1(I −∆∂Ω)−1/4

= (BK −M(z))−1 ∈ S 2n−2
3

(H0(∂Ω)).

Since (I −∆∂Ω)−1/4 isomorphically maps Hs(∂Ω) onto Hs+1/2(∂Ω) for s ∈ R we arrive at
(7.50). Further, for n = 2 inclusion (7.50) implies

(K ′ − Λ− 1
2
(z))−1 ∈ S 2

3
(H1/2(∂Ω), H−1/2(∂Ω)) ⊂ S1(H1/2(∂Ω), H−1/2(∂Ω)).

This proves the last statement.

(ii) Since n = 2 one has ( ÂK−z)−1−(A0−z)−1 ∈ S1(L2(Ω)) by Theorem 7.15. Further, by
Proposition 7.13(i), the condition 0 ∈ ρ(A0)∩ ρ( ÂK) is equivalent to 0 ∈ ρ(BK −M(0)) =
ρ(BK). By Definition 3.2 one easily checks that the boundary triplet Π> = {H,−Γ1,Γ0} is
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regular for the pair { ÂK , A0}, hence { ÂK , A0} ∈ DΠ> , and the perturbation determinant
∆Π>bAK/A0

(·) is given by (1.8). Inserting in this expression formulas (7.36) and (7.44) we get

∆Π>bAK/A0
(z) = detL2(∂Ω)(I −B−1

K M(z)) =

detH0

(
I − (I −∆∂Ω)−1/4(K ′ − Λ− 1

2
(0))−1(Λ− 1

2
(z)− Λ− 1

2
(0))(I −∆∂Ω)1/4

)
for z ∈ ρ( ÂK) ∩ ρ(A0). Further, according to Proposition 7.9(ii), Λ− 1

2
(z) −

Λ− 1
2
(0) ∈ [H−1/2(∂Ω), H1/2(∂Ω)]. Combining this inclusion with (7.51) we get T2(z) ∈

S1(H0(∂Ω), H−1/2(∂Ω)) where

T2(z) := (K ′ − Λ− 1
2
(0))−1(Λ− 1

2
(z)− Λ− 1

2
(0))(I −∆∂Ω)1/4, z ∈ ρ( ÂK) ∩ ρ(A0).

Noting that T1 = (I −∆∂Ω)−1/4 isomorphically maps H−1/2(∂Ω) onto H0(∂Ω) we see that
T2(z)T1 is well defined and T2(z)T1 ∈ S1(H−1/2(∂Ω)). Moreover, due to the inclusion (7.51),
T1T2(z) ∈ S1(H0(∂Ω)). Taking both last inclusions into account and applying property (2.11)
we arrive at the equality

∆Π>bAK/A0
(z) = detL2(∂Ω)

(
I − T1T2(z)

)
= detH−1/2(∂Ω)

(
I − T2(z)T1

)
coinciding with the first identity in (7.52). The second identity in (7.52) is implied by combining
the first one with the property (2.11). Note that the applicability of (2.11) is possible due to
inclusion (7.51) and Proposition 7.9(ii).

(iii) By Lemma 7.16, the operator (K ′0 − Λ0(0))−1 : H1/2(∂Ω) −→ L2(∂Ω) is bounded and

(K ′ − Λ− 1
2
(0))−1 = J(K ′0 − Λ0(0))−1. z ∈ ρ( ÂK) ∩ ρ(A0). (7.54)

Combining this formula with (7.51) we get J(K ′0 − Λ0(0))−1 ∈ S1(H1/2(∂Ω)). Therefore
inserting (7.54) into the second formula in (7.52) we get

∆Π>bAK/A0
(z) = detH1/2

(
I −

(
Λ− 1

2
(z)− Λ− 1

2
(0)
)
J (K ′0 − Λ0(0))

−1
)
.

To arrive at (7.53) it remains to note that Λ− 1
2
(z)J = Λ0(z).

Combining the chain rule (5.1) with Proposition 7.17 one arrives at the following statement.

Corollary 7.18. Assume the conditions of Proposition 7.17. Further, let Kj : H−1/2(∂Ω) −→
H−3/2(∂Ω) satisfy dom (Kj) ⊆ L2(∂Ω) and ran (Kj) ⊆ L2(∂Ω), j ∈ {1, 2}. Assume also

that 0 ∈ ρ(A0) ∩ ρ( ÂK1) ∩ ρ( ÂK2). Then the boundary triplet Π> = {H,−Γ1,Γ0} for
Amax is regular for the family { ÂK1 , ÂK2 , A0}, and the perturbation determinant ∆Π>bA 2/ bA 1

(·)
where Â j := ÂKj is

∆Π>bA 2/ bA 1
(z) =

det
H−

1
2

(
I −

(
K ′2 − Λ− 1

2
(0)
)−1(

Λ− 1
2
(z)− Λ− 1

2
(0)
))

det
H−

1
2

(
I −

(
K ′1 − Λ− 1

2
(0)
)−1(

Λ− 1
2
(z)− Λ− 1

2
(0)
)) , (7.55)

z ∈ ρ( ÂK1) ∩ ρ( ÂK2) ∩ ρ(A0).
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Our next goal is to show that under additional restrictions on K the perturbation determinant
∆Π>bAK/A0

(·) can be computed in L2(∂Ω). To this end we introduce the operator-valued function

Λ0,0(·) : H0(∂Ω) −→ H0(∂Ω) by setting

Λ0,0(z) := Λ0(z) � dom (Λ0,0(z)),

dom (Λ0,0(z)) := {f ∈ dom (Λ0(z)) : Λ0(z)f ∈ H0(∂Ω)}.
(7.56)

Lemma 7.19. Let 0 ∈ ρ( Â G0). Then

dom (Λ0,0(z)) = H1(∂Ω), z ∈ ρ( Â G0), (7.57)

and, for any z ∈ ρ( Â G0)∩ρ( Â G1) the operator (Λ0,0(z))−1 exits and satisfies (Λ0,0(z))−1 ∈
S1(H0(∂Ω)). Moreover, if 0 ∈ ρ( Â G0) ∩ ρ( Â G1), then the operator Λ0,0(0) is self-adjoint,
has discrete spectrum, and (Λ0,0(0))−1 ∈ S1(H0(∂Ω)).

Proof. It follows from Definition 7.8 that dom (Λ0,0(·)) ⊇ H1(∂Ω). Let us prove the equality

(7.57). Since both realizations Â G0 and Â G1 are self-adjoint, ρ( Â G0) ∩ ρ( Â G1) ⊃ C±.
Let z ∈ ρ( Â G0) ∩ ρ( Â G1). Then dom (Λ1(z)) = H1(∂Ω) and Λ1 isomorphically maps
H1(∂Ω) onto H0(∂Ω) (see [34, Theorem 5.2]). Since Λ0,0(z)h = Λ1(z)h for h ∈ H1(∂Ω)
we conclude that dom (Λ0,0(z)) = H1(∂Ω) and ran (Λ0,0(z)) = H0(∂Ω).

Next let x0 = x̄0 ∈ ρ( Â G0) \ ρ( Â G1). We can assume without loss of generality that
x0 = 0. Otherwise we replace the expression A by A − x0I . Then, by Proposition 7.9(ii),
the difference T (z) := Λ− 1

2
(·) − Λ− 1

2
(0) : H−1/2(∂Ω) → H1/2(∂Ω) is bounded. Hence

the operator Λ0,0(·) − Λ0,0(0) being a closable restriction of T (·) on H0(∂Ω) is bounded on

H0(∂Ω). Hence dom (Λ0,0(0)) = dom (Λ0,0(z)) = H1(∂Ω) for z ∈ ρ( Â G0). Further,

since ran (Λ0,0(z))−1) = H1(∂Ω) for z ∈ ρ( Â G0) ∩ ρ( Â G1), we have (Λ0,0(z))−1 ∈
S1(H0(∂Ω)).

Clearly, for any x0 = x̄0 ∈ ρ( Â G0) the operator Λ0,0(x0) is symmetric. If, in addition, x0 ∈
ρ( Â G1), then the operator Λ0,0(x0) is self-adjoint since ran (Λ0,0(x0)) = H0(∂Ω). If 0 ∈
ρ( Â G0) \ ρ( Â G1), then the self-adjointness of Λ0,0(0) is implied by the self-adjointness of

Λ0,0(x0) with x0 = x̄0 ∈ ρ( Â G0) ∩ ρ( Â G1) and the boundedness of Λ0,0(x0)− Λ0,0(0) on
H0(∂Ω).

Further, since the boundary ∂Ω is compact, the spectrum of Λ0,0(0) is discrete. Moreover,

since by (7.57), ran (Λ0,0(z))−1) = H1(∂Ω)) for ρ( Â G0)∩ρ( Â G1), we have (Λ0,0(z))−1 ∈
S1(H0(∂Ω)).

Now we prove the main result of the section. Namely, we show that under additional assumptions
on K determinant (7.53) can be computed in L2(∂Ω).

Theorem 7.20. Assume the Hypothesis 7.6. Let K : H−1/2(∂Ω) −→ H−3/2(∂Ω) be an
operator satisfying dom (K) ⊆ L2(∂Ω) and ran (K) ⊆ L2(∂Ω). Let also that 0 ∈ ρ( ÂG0 )∩
ρ( ÂG1 ) ∩ ρ( ÂK) and let

K̂0 := KJ : H0(∂Ω) −→ H0(∂Ω), dom (K) = Jdom (K̂0), (7.58)
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where J is the embedding operator given by (7.48). If K̂0 is relatively compact with respect to
Λ0,0(0), then(

Λ0,0(z)− Λ0,0(0))( K̂0 − Λ0,0(0)
)−1 ∈ S 1

2
(H0(∂Ω)) ⊂ S1(H0(∂Ω)), (7.59)

z ∈ ρ( ÂK) ∩ ρ( Â G0), and the perturbation determinant ∆Π>bAK/A0
(·) given by (7.52) admits

the representation

∆Π>bAK/A0
(z) = detL2(∂Ω)

(
I −

(
Λ0,0(z)− Λ0,0(0))( K̂0 − Λ0,0(0)

)−1
)
, (7.60)

for z ∈ ρ( ÂK)∩ ρ( Â G0). In particular, representation (7.60) holds whenever K̂0 is bounded,
i.e. K̂0 ∈ [H0(∂Ω)].

Proof. We prove the theorem in two steps.

1. Let us prove the inclusion (7.59). According to (7.35), Λ0(z) − Λ0(0) : H0(∂Ω) −→
H1/2(∂Ω). Hence

Λ0(z)− Λ0(0) ∈ S2(H0(∂Ω)), z ∈ ρ(A0). (7.61)

Further, by (7.48), J∗ continuously embeds H1/2(∂Ω) into H0(∂Ω). Therefore

J∗(Λ0(z)− Λ0(0))h = (Λ0,0(z)− Λ0,0(0))h, h ∈ H1(∂Ω). (7.62)

Combining relations (7.62) and (7.61), using the inclusion J∗ ∈ S2(H1/2, H0) and taking into
account property (7.46) of the ideals Sp we obtain

Λ0,0(z)− Λ0,0(0) ∈ S1(H0(∂Ω)), z ∈ ρ(A0). (7.63)

By the assumption, dom (K0) ⊆ H0(∂Ω). Hence and from definitions (7.42), (7.49), one
gets dom (K ′0) ⊂ H0(∂Ω). Moreover, since ran (K) ⊆ H0(∂Ω), by the assumption, and,
by (7.42), K0h − Λ0(0)h ∈ H1/2(∂Ω) for h ∈ dom (K ′0), one has Λ0(0)h ∈ H0(∂Ω)
for h ∈ dom (K ′0). Therefore, by (7.56), Λ0(0)h = Λ0,0(0)h for h ∈ dom (K ′0) and
dom (K ′0) ⊂ dom (Λ0,0(0)). Combining this inclusion with Lemma 7.19, yields dom (K ′0) ⊂
H1(∂Ω), hence (7.49) takes the form

dom (K ′0) := {h ∈ dom (K0) ∩H1(∂Ω) : K0h− Λ0,0(0)h ∈ H1/2(∂Ω)}.

Besides, since J∗ (continuously) embeds H1/2(∂Ω) into H0(∂Ω), we get

J∗(K ′0 − Λ0(0))h = (K̂0 − Λ0,0(0))h, h ∈ dom (K ′0). (7.64)

Clearly, ÂK = ÂK0 . Therefore, by Proposition 7.13(iv) the condition 0 ∈ ρ(ÂK0) with account
of dom (K ′0) ⊂ H0(∂Ω), yields ran (K ′0 − Λ0(0)) = ran (K ′ − Λ− 1

2
(0)) = H1/2(∂Ω).

Combining this relation with (7.64) shows that ran (K̂0 − Λ0,0(0))(⊃ H1/2(∂Ω)) is dense in

H0(∂Ω). Let us show that 0 ∈ ρ(K̂0 − Λ0,0(0)).
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First, by Lemma 7.19, the operator Λ0,0(0) is self-adjoint and its spectrum is discrete. In par-

ticular, Λ0,0(0) is a Fredholm operator with zero index. Next, since K̂0 is Λ0,0(0)-compact,

dom (K̂0 − Λ0,0(0)) = dom (Λ0,0(0)) = H1(∂Ω) and K̂0 − Λ0,0(0) is also Fredholm op-
erator with zero index [36, Theorem 4.5.26] (in fact, it has discrete spectrum too). Therefore
the range ran (K̂0 − Λ0,0(0)) is closed and being dense in H0(∂Ω), coincides with H0(∂Ω).

Since ind(K̂0 − Λ0,0(0)) = 0, the latter is equivalent to 0 ∈ ρ(K̂0 − Λ0,0(0)).

Further, due to the assumption 0 ∈ ρ( ÂG1 ), Λ0,0(0) is invertible and (Λ0,0(0))−1 ∈
S1(H0(∂Ω)). Therefore the operator

(
I− K̂ 0(Λ0,0(0))−1

)−1
exists, is bounded onH0(∂Ω),

and (
K̂0 − Λ0,0(0)

)−1
= − (Λ0,0(0))−1

(
I − K̂0(Λ0,0(0))−1

)−1

∈ S1(H0(∂Ω)).

Combining this relation with (7.63) and applying (7.46) we arrive at (7.59).

2. In this step we prove (7.60). Since ran (K) ⊆ L2(∂Ω), the operator K0 = KJ :
H0(∂Ω) −→ H−3/2(∂Ω) satisfies ran (K0) ⊆ L2(∂Ω). However, we distinguish between
K0 and K̂0 defined by (7.58). Note that, by Proposition 7.13(iv), the condition 0 ∈ ρ(ÂK0) =

ρ(ÂK) also implies ker(K ′0 − Λ0(0)) = ker(K ′ − Λ− 1
2
(0)) = {0}, i.e. the inverse

(K ′0 − Λ0(0))−1 : H1/2(∂Ω) −→ H0(∂Ω) exists. Combining Lemma 7.16 with (7.64) yields

(K̂0 − Λ0,0(0))−1J∗ = (K ′0 − Λ0(0))−1. (7.65)

Inserting (7.65) into (7.53) we obtain

∆Π>bAK /A0
(z) = det

H
1
2 (∂Ω)

(
I − (Λ0(z)− Λ0(0))( K̂0 − Λ0,0(0))−1J∗

)
.

Using (7.59) and applying the cyclicity property (see (2.11)) we get

∆Π>bAK /A0
(z) = detH0(∂Ω)

(
I − J∗(Λ0(z)− Λ0(0))( K̂ 0 − Λ0,0(0))−1

)
,

z ∈ ρ( ÂK) ∩ ρ(A0). Combining this identity with (7.62) we arrive at (7.60).

Remark 7.21. Note that though the assumption 0 ∈ ρ( ÂK ) implies ker(K ′0 − Λ0(0)) =

{0}, we cannot conclude from (7.64) that ker( K̂0 − Λ0,0(0)) = {0} Indeed, the inclusion
J∗(K ′0 − Λ0(0)) ⊂ K̂0 − Λ0,0(0) is always strict since the range ran (J∗) = H1/2(∂Ω) is
only dense in H0(∂Ω) in opposite to ran (K̂0 − Λ0,0(0)) = H0(∂Ω).

Corollary 7.22. Assume the Hypothesis 7.6. Let Kj : H−1/2(∂Ω) −→ H−3/2(∂Ω) be an
operator satisfying dom (Kj) ⊆ L2(∂Ω) and ran (Kj) ⊆ L2(∂Ω), j ∈ {1, 2}. Further, let

0 ∈ ρ( ÂG0 ) ∩ ρ( ÂG1 ) ∩ ρ( ÂKj), and

K̂j,0 := KjJ : H0(∂Ω) −→ H0(∂Ω), dom (Kj) = Jdom ( K̂j,0 ), j ∈ {1, 2}.

If the operator K̂j,0 is relatively compact with respect to Λ0,0(0), then the perturbation deter-
minant ∆Π>bA 2/ bA 1

(·) given by (7.55) admits the representation

∆Π>bAK2
/ bAK1

(z) =
detL2

(
I −

(
Λ0,0(z)− Λ0,0(0))( K̂2,0 − Λ0,0(0)

)−1
)

detL2

(
I −

(
Λ0,0(z)− Λ0,0(0))( K̂1,0 − Λ0,0(0)

)−1
) ,
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for z ∈ ρ( ÂK2 ) ∩ ρ( ÂK1 ) ∩ ρ( ÂG0 ).

Proof. The proof follows from Corollary 7.18 and Proposition 7.20.

Consider Robin-type realizations

Â σ := Amax � dom ( Â σ),

dom ( Â σ) := {f ∈ H2(Ω) : G1f = σG0f}.
(7.66)

It follows from the classical a priory estimate (see [2, Theorem 15.2]) that the realization Â σ

is closed whenever σ ∈ C2(∂Ω). Moreover, in this case ρ( Â σ) 6= ∅ and Â σ is self-adjoint
whenever σ is real.

Let σ̂ denote the multiplication operator induced by σ in L2(∂Ω).

Corollary 7.23. Assume the conditions of Theorem 7.20. Let σ ∈ C2(∂Ω) 0 ∈ ρ( Âσ ) ∩
ρ( ÂG0 ) ∩ ρ( ÂG1 ), and let Π = {H,Γ0,Γ1} be the boundary triplet, given in Theorem 7.9.
Then the transposed boundary triplet Π> = {H,−Γ1,Γ0} is regular for the pair { Â σ, A0}
and for z ∈ ρ( Â σ) ∩ ρ(A0) the perturbation determinant ∆Π>bAσ /A0

(·) is

∆Π>bAσ /A0
(z) = detL2(∂Ω)

(
I − (Λ0,0(z)− Λ0,0(0))( σ̂ − Λ0,0(0))−1

)
.

Proof. Setting K = σ̂ and noting that σ ∈ C2(Ω) we easily get from (7.66)

dom
(
K − Λ−1/2(0)

)
= dom (K) = dom ( σ̂ ) ⊂ ran (G0) = H3/2(∂Ω).

Since Λ3/2(0) is a restriction of Λ−1/2(0), then according to (7.32) ran
(
Λ−1/2(0) �

H3/2(∂Ω)
)
⊂ H1/2(∂Ω). Further, the assumption σ ∈ C2(∂Ω) yields ran

(
K �

H3/2(∂Ω)
)
⊂ H3/2(∂Ω). Combining these inclusions we arrive at the regularity property

ran
(
K − Λ−1/2(0)

)
⊂ H1/2(∂Ω) (see (7.41)).

Hence K ′ = K (see definition (7.42)) and dom ( ÂK) = dom ( Â σ). Since
dom (K), ran (K) ⊂ H3/2(∂Ω), then, by (7.58), K̂0 = K = σ̂. Finally, since K̂0 = σ̂ ∈
[H0(∂Ω)], one completes the proof by applying Proposition 7.20.

Appendix

Following [69, Section 8.1] and [11, 31]. we summarize some basic properties of the perturba-
tion determinants ∆H′/H(·) and ∆̃H′,H(ξ, z).

A point z0 ∈ σp(T ) is called a normal eigenvalue of T if it is isolated and its algebraic multiplicity
mz0(T ) is finite. An isolated eigenvalue z0 ∈ σp(T ) is called normal if the Riesz projection
Pz0 := − 1

2πi

∫
|z−λ0|=δ RT (z)dz is finite dimensional. In this case mz0 = dim (Pz0). We also

set mz0(T ) := 0 if z0 ∈ ρ(T ).
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Further, if the function f(·) is analytic in a punctured neighborhood of z0 ∈ C and z0 is not an
essential singularity of it, then the order ord (f(z0)) of f(·) at z0 ∈ C is the integer k ∈ Z
in the representation f(z) = (z − z0)kg(z) where g(z) is analytic at z0 and g(z0) 6= 0, [31,
Chapter IV.3].

Proposition A.1.

(i) If {H ′′, H ′} ∈ D̃ and {H ′, H} ∈ D̃, then

∆̃H′′/H′(ξ, z)∆̃H′/H(ξ, z) = ∆̃H′′/H(ξ, z), z ∈ ρ(H ′) ∩ ρ(H).

In particular, if {H ′′, H ′} ∈ D and {H ′, H} ∈ D

∆H′′/H′(z)∆H′/H(z) = ∆H′′/H(z), z ∈ ρ(H ′) ∩ ρ(H).

(ii) If {H ′, H} ∈ D̃, then {H,H ′} ∈ D̃ and

∆̃H′/H(ξ, z)∆̃H/H′(ξ, z) = 1, z ∈ ρ(H ′) ∩ ρ(H). (a.1)

In particular, if {H ′, H} ∈ D, then {H,H ′} ∈ D and

∆H′/H(z)∆H/H′(z) = 1, z ∈ ρ(H ′) ∩ ρ(H).

(iii) Let {H ′, H} ∈ D̃. If z is either a regular or a normal eigenvalue for H ′ and H with
algebraic multiplicities mz(H

′) and mz(H), respectively, then ord (∆̃H′/H(ξ, z)) =
mz(H

′) − mz(H). If in addition {H ′, H} ∈ D, then ord (∆H′/H(z)) = mz(H
′) −

mz(H).

(iv) If {H ′, H} ∈ D̃, then

1

∆̃H′/H(ξ, z)

d

dz
∆̃H′/H(ξ, z) = tr ((H − z)−1 − (H ′ − z)−1), (a.2)

ξ, z ∈ ρ(H ′) ∩ ρ(H). In particular, if {H ′, H} ∈ D, then

1

∆H′/H(z)

d

dz
∆H′/H(z) = tr ((H − z)−1 − (H ′ − z)−1),

ξ, z ∈ ρ(H ′) ∩ ρ(H).

(v) If {H ′, H} ∈ D̃, then {H ′∗, H∗} ∈ D̃ and ∆̃H′∗/H∗(ξ, z) = ∆̃H′/H(ξ, z) for
z ∈ ρ(H∗). In particular, if {H ′, H} ∈ D and {H ′∗, H∗} ∈ D, then ∆H′∗/H∗(z) =

∆H′/H(z) for z ∈ ρ(H∗).

(vi) If {H ′, H} ∈ D̃, then the following identity holds

∆̃H′/H(ξ, z)

∆̃H′/H(ξ, ζ)
= ∆̃H′/H(ζ, z), z ∈ ρ(H), ζ ∈ ρ(H ′) ∩ ρ(H).
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In particular, if {H ′, H} ∈ D, then

∆H′/H(z)

∆H′/H(ζ)
= det

(
I + (z − ζ)(H ′ − ζ)−1V (H − z)−1

)
,

for z ∈ ρ(H) and ζ ∈ ρ(H ′) ∩ ρ(H).

The proof of second part of point (v) is not obvious and is based on the following lemma.

Lemma A.2. Let T be a densely defined closed operator such that 0 ∈ ρ(T ). Further, let C
be a linear operator such that dom (C) ⊇ ran (T ). If T−1C ∈ S1(H) and CT−1 ∈ S1(H),
then

det(I + T−1C) = det(I + CT−1). (a.3)

Notice that Lemma A.2 generalizes the following known property of determinants:
det(I + T ) = det(I + T ∗).
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