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Abstract

According to the Helmholtz decomposition, the irrotational parts of the momentum bal-
ance equations of the incompressible Navier-Stokes equations are balanced by the pres-
sure gradient. Unfortunately, nearly all mixed methods for incompressible flows violate this
fundamental property, resulting in the well-known numerical instability of poor mass con-
servation. The origin of this problem is the lack of L2-orthogonality between discretely
divergence-free velocities and irrotational vector fields. In order to cure this, a new vari-
ational crime using divergence-free velocity reconstructions is proposed. Applying lowest
order Raviart-Thomas velocity reconstructions to the nonconforming Crouzeix-Raviart ele-
ment allows to construct a cheap flow discretization for general 2d and 3d simplex meshes
that possesses the same advantageous robustness properties like divergence-free flow
solvers. In the Stokes case, optimal a-priori error estimates for the velocity gradients and
the pressure are derived. Moreover, the discrete velocity is independent of the continuous
pressure. Several detailed linear and nonlinear numerical examples illustrate the theoreti-
cal findings.

1. Introduction
In the last forty years mixed finite elements for the incompressible Navier-
Stokes equations have seen a great success in mathematical fluid dynam-
ics [30, 8, 43, 18, 33, 16]. The theory of mixed finite elements is elegant and
compact, and it delivers rather simple recipes for the construction of con-
vergent numerical schemes with easily predictable convergence rates and
other distinctive properties. Obviously, the great flexibility of mixed finite el-
ements is mainly indebted to the relaxation of the divergence constraint [8,
31]. However, there is a price to pay for this relaxation. This price can be
observed most easily from the typical a-priori mixed finite element estimate
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for the incompressible Stokes equations

−ν∆u+∇p = f , x ∈ Ω,

−∇ · u = 0, x ∈ Ω, (1)

u = 0, x ∈ ∂Ω

that reads as

‖u− uh‖1,h ≤ C1h
k|u|k+1 +

C2

ν
hk|p|k, (2)

emplyoing finite elements of polynomial order k for the discrete veloci-
ties and finite elements of order k − 1 for the discrete pressure [8, 30,
43]. Here, the price consists in the error term C2

ν
hk|p|k, which is classi-

cal for exterior, i.e., non-divergence-free, mixed methods in the sense of
Ref. [30], but links the discrete velocity uh in a disadvantageous man-
ner with the continuous pressure p. This price, which by the way can
be avoided completely by divergence-free mixed methods like the classical
Scott-Vogelius element[49, 48, 41, 51] or more recent divergence-free dis-
cretization approaches[11, 12, 50, 20, 21, 22], is well-known in the finite ele-
ment community as poor mass conservation [36, 35]. In mixed finite elements
it is traditionally tried to get around with poor mass conservation by stabi-
lization techniques like grad-div stabilization[23, 43, 40, 39, 34, 27, 5, 10, 38]
or by variable transformations reducing the complexity of the continuous
pressure[26, 47]. An interesting, alternative approach in the Stokes case was
proposed in [28], employing a (discrete) Helmholtz decomposition of the ex-
terior forcing. But these techniques always seem to mitigate this problem
only, are restricted to special cases and never solve it completely[25, 32]. But
although poor mass conservation has accompanied the development of mixed
methods for incompressible flows for several decades, surprisingly only in re-
cent years research on poor mass conservation began to receive a broader at-
tention and a better understanding of it started [40, 39, 9, 35, 36, 25, 10, 37].

Nowadays, it is clear that poor mass conservation is resonsible for sev-
eral different kinds of non-physical behaviour that is shown by (exterior)
mixed methods for incompressible flows. As a nice example, the observa-
tions by Dorok et al. are mentioned here, which are already several years
old [17]. There, the authors show that in a heated cavity flow a change
of the absolute values of some inhomogeneous Dirichlet boundary condi-
tions for the temperature changes the discrete velocity field, although in
the continuous counterpart only the difference between the different tem-
peratures matters. The reason for this strange behavior of exterior mixed
methods roots in a (discrete) violation of a fundamental invariance property
of the (continuous) incompressible Navier-Stokes equations (with homoge-
neous Dirichlet boundary conditions). Changing the exterior forcing by
f → f +∇ψ, changes the Navier-Stokes solution by (u, p) → (u, p+ψ), i.e.,
the velocity does not change and the additional forcing is balanced by the
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pressure gradient. In Dorok et al. [17], it is nicely explained that in their
heated cavity problem a change of the absolute temperature level induces
an additional irrotational buoyancy term that is is treated in a non-physical
way by exterior mixed methods. Continuing this discussion, one should
note that there is an important special case of the fundamental invariance
property of incompressible flows above, where exterior mixed methods can
collapse dramatically. This special case occurs, whenever the forcing f is
completely irrotational, i.e., f ≡ ∇ψ. In such cases, the forcing does not
excite any motion in a fluid, but exterior mixed methods usually suffer from
large spurious velocity oscillations, which have been observed in the past
by several works [28, 17, 24, 35, 10]. Another example of non-physical poor
mass conservation is visible, when the Coriolis force is added to the in-
compressible Navier-Stokes equations. Since the Coriolis force 2Ω× u may
have a large irrotational part in the sense of the Helmholtz decomposition
in some physical situations (e.g., in two dimensions, the Coriolis force is
always irrotational [14] !), it excites spurious velocity oscillations [14, 13],
since discretely divergence-free velocity fields in exterior mixed methods are
not orthogonal to this irrotational forcing in the L2 scalar product. A very
similar, well-known example is the rotational form of the incompressible
Navier-Stokes equations [34], where the nonlinear term (u · ∇)u is replaced
by ω × u with ω = ∇× u. Here, exterior mixed methods deliver different,
usually remarkably worse discrete velocity fields compared to discretizations
employing the nonlinear term (u · ∇)u, although the corresponding contin-
uous velocity fields are the same [34, 4]. In the numerical section of this
contribution, it will be shown how an inappropriate treatment of the (large)
irrotational part of the nonlinear term ω×u is responsible for poor accuray
in simulations.

Therefore, it has recently been pointed out that poor mass conservation is
maybe a misleading term, and could be described probably better by a kind
of poor momentum balance, resulting from a lack of L2-orthogonality be-
tween irrotational and discretely-divergence-free vector fields [37]. Following
these ideas, in this contribution the significance of the continuous Helmholtz
decomposition in discretizations of incompressible fluids is emphasized, and
a new kind of variational crime is introduced, in order to cure the lack
of L2-orthogonality between irrotational and discretely divergence-free vec-
tor fields. Thereby, a simple, cheap and robust lowest-order discretization
for the incompressible Navier-Stokes will be constructed on regular simplex
grids in two and three space dimensions, which is based on the classical non-
conforming Crouzeix-Raviart element [15, 3, 1]. Here, the variational crime
consists in replacing discretely divergence-free vector fields by divergence-
free lowest-order Raviart-Thomas [42, 8, 19] velocity reconstructions, wher-
ever L2 scalar products occur in the momentum balance equations. The
motivation behind this discretization approach will be explained in detail
in the next section. Last but not least, it should be noted that the up-to-
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now rare use of divergence-free Navier-Stokes discretizations in practice is
probably mainly indebted to their expensive costs even on coarse meshes
and too severe constraints on the used triangulations. Therefore, the vari-
ational crime proposed in this contribution could be a viable resort out of
this dilemma.

The contribution is organized as follows. The new finite element method
based on Raviart-Thomas velocity reconstructions for the nonconforming
Crouzeix-Raviart element will be presented in Section 3. In Section 4, a-
priori error estimates for the incompressible Stokes equations are derived.
Especially, the estimates for the discrete velocity are completely indepen-
dent of the continuous pressure, like in divergence-free methods [35]. In
Section 5, detailed numerical examples show the robustness and acuracy of
the proposed scheme. Here, the emphasis is on avoiding poor mass conser-
vation in the left hand side of the momentum balance equations, which is
the harder problem to solve. Especially, it will be demonstrated that the
rotational form of the incompressible Navier-Stokes equations can be safely
used, if appropriate velocity reconstructions are applied.

2. Continuous Setting, Some Mathematical Background and the

Helmholtz Decomposition

As a model problem, we investigate the steady incompressible Navier-
Stokes equations with homogeneous Dirichlet boundary conditions that read
as

−ν∆u+ (u · ∇)u+∇p = f , x ∈ Ω,

−∇ · u = 0, x ∈ Ω, (3)

u = 0, x ∈ ∂Ω.

These equations are posed in a polyhedral, simply-connected domain Ω ⊂ R
d

with d ∈ {2, 3}, and it is searched for the velocity field u and the pressure
p. Introducing X = H1

0 (Ω)
d and Q = L2

0(Ω), a weak formulation of this
problem is given by [46]: search for (u, p) ∈ X ×Q such that for all (v, q) ∈
X ×Q holds

a(u,v) + c(u,u,v) + b(v, p) = l(v),

b(u, q) = 0.
(4)

Here, a : X × X → R, and b : X × Q → R are continuous bilinear forms,
c : X × X × X :→ R is a continuous trilinear form, and l : X → R is a
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continuous linear form. All these forms are given by

a(u,v) := ν

∫

Ω

∇u : ∇vdx ,

b(u, q) := −
∫

Ω

q∇ · udx ,

c(a,u,v) :=

∫

Ω

((a · ∇)u) · vdx ,

l(v) :=

∫

Ω

f · vdx .

(5)

Introducing the space of weakly differentiable, divergence-free functions

V := {v ∈ X : ∇ · v = 0}, (6)

one can also formulate the saddle point problem (4) as an elliptic one for
the velocity alone, i.e., we search for u ∈ V such that

a(u,v) + c(u,u,v) = l(v) (7)

holds for all v ∈ V . This elliptic problem defines the velocity solution
completely [46]. Introducing the orthogonal complement of V with respect
to the scalar product (∇u,∇v) by

V ⊥ := {v ∈ X : ∀w ∈ V : a(v, w) = 0}, (8)

one obtains an additional set of equations solving for the pressure: for all
v ∈ V ⊥ holds

b(v, p) = l(v)− c(u,u,v). (9)

2.1. The Helmholtz Decomposition

In the following, the two equations (7) and (9) will be regarded as two
different momentum balance equations that are, loosely speaking, a momen-
tum balance (7) for the divergence-free forces and a momentum balance (9)
for the irrotational forces. In order to justify these terms, the reader is
reminded that irrotational and divergence-free vector fields are orthogonal
to each other with respect to the L2 scalar product, assuming appropriate
boundary conditions and an appropriate regularity. This is true, since for an
irrotational force field ∇ψ and a divergence-free flow field w with ∇ ·w = 0
and w · n = 0 for all x ∈ ∂Ω holds

∫

Ω

∇ψ ·wdx =

∫

Ω

∇ · (ψw) dx −
∫

Ω

ψ∇ ·wdx

=

∫

∂Ω

ψw · ndS

= 0.

(10)
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Moreover, according to the Helmholtz decomposition [30] every vector field
f ∈ L2(Ω)d can be decomposed into a divergence-free part w, with ∇·w = 0
and an irrotational part ∇ψ, such that f = ∇ψ +w holds. Besides that, w
and ∇ψ are orthogonal to each other in the L2 scalar product. The potential
ψ of the irrotational part ∇ψ can be determined uniquely by solving: search
for ψ ∈ H1(Ω) such that

∫

Ω

∇ψ · ∇χdx =

∫

Ω

f · ∇χdx ,
∫

Ω

ψdx = 0

(11)

holds for all χ ∈ H1(Ω), i.e., for the potential ψ homogeneous Neumann
boundary conditions are assumed. Then, the divergence-free part w of f is
obtained by

w = f −∇ψ. (12)

The mapping P : L2(Ω)d → L2(Ω)d defined by f → w will be called the
Helmholtz projector P in the following [45]. Assuming that for x ∈ ∂Ω
holds f · n = 0, one obtains also w · n = 0 due to f = w + ∇ψ, and the
homogeneous Neumann boundary conditions ∇ψ · n = 0.

2.2. Divergence-free Momentum Balance

The Helmholtz projector P will now be applied to the ’divergence-free’
momentum balance (7). Here, it holds for all v ∈ V

∫

Ω

ν∇u : ∇vdx +

∫

Ω

((u · ∇)u) · vdx =

∫

Ω

f · vdx . (13)

Avoiding technical difficulties, we assume that f ∈ L2(Ω)d and u ∈ L∞(Ω)d

hold. Then, especially (u · ∇)u ∈ L2(Ω)d holds. Since divergence-free vec-
tor fields v and irrotational vector fields ∇ψ are orthogonal in the L2 scalar
product, (13) can be replaced by: search for u ∈ such that

∫

Ω

ν∇u : ∇vdx +

∫

Ω

P ((u · ∇)u) · vdx =

∫

Ω

P(f) · vdx (14)

holds for all v ∈ V .

2.3. A Fundamental Invariance Property of the Incompressible Navier-Stokes
Equations

Changing f → f +∇ψ in (14) yields: for all v ∈ V holds
∫

Ω

ν∇u : ∇vdx +

∫

Ω

P ((u · ∇)u) · vdx =

∫

Ω

P(f +∇ψ) · vdx

=

∫

Ω

P(f) · v,
(15)
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i.e., the solution u does not change assuming homogeneous Dirichlet bound-
ary conditions, since then P(∇ψ) = 0 holds. Moreover, refering to the
’irrotational’ momentum balance (9), one obtains for all v ∈ V ⊥

−
∫

Ω

p∇ · vdx =

∫

Ω

(f +∇ψ) · vdx −
∫

Ω

((u · ∇)u) · vdx

= −
∫

Ω

ψ∇ · vdx +

∫

Ω

f · vdx −
∫

Ω

((u · ∇)u) · vdx ,
(16)

and f → f + ∇ψ ⇒ p → p + ψ holds. Altogether, one concludes that
changing the right side by f → f + ∇ψ yields a change of the solution
by (u, p) → (u, p + ψ), i.e., the additional irrotational forcing is balanced
completely by the pressure gradient. In the special case of an irrotational
forcing ∇ψ, one obtains due to 0 = f → f + ∇ψ = ∇ψ the same velocity
solution as for f ≡ 0, i.e., (u, p) = (0, ψ).

2.4. Consequences for Mixed Finite Elements for the Incompressible Navier-
Stokes Equations

Regarding again the classical a-priori estimate (2) for exterior mixed
finite element methods for the incompressible Stokes equations, one under-
stands that the pressure part C2

ν
hk|p|k of the error term is indeed equivalent

to the fact that exterior mixed methods do not fulfill the invariance prop-
erty f → f +∇ψ ⇒ (u, p) → (u, p + ψ) in a discrete sense, since otherwise
the discrete velocity could not be affected by a change of the continuous
pressure.

Moreover, the lack of robustness of exterior mixed finite elements for
the incompressible Navier-Stokes equations can be understood by looking
at (14). In exterior mixed finite element methods it is not allowed to replace
the terms

∫

Ω

f · vhdx

and
∫

Ω

((uh · ∇)uh) · vhdx

by
∫

Ω

P(f) · vhdx

and
∫

Ω

P ((uh · ∇)uh) · vhdx ,

since in exterior methods discretely divergence-free vector fields vh are not
divergence-free, in general. Therefore, exterior mixed methods suffer from
a non-physical treatment of irrotational forces. Although in the continuous
setting divergence-free and irrotational forces are balanced separately, in
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exterior mixed methods this strict separation breaks down and irrotational
forces excite spurious discrete velocities.

In the following, we will describe an obvious resort out of this problem,
using a variational crime. Assuming it was possible to replace discretely
divergence-free vector fields by divergence-free ones through some kind of
velocity reconstruction π

RT
h

vh, one could discretize the terms above as

∫

Ω

f · πRT
h vhdx

(

=

∫

Ω

P(f) · πRT
h vhdx

)

and
∫

Ω

((uh · ∇)uh) · πRT
h vhdx

(

=

∫

Ω

P ((uh · ∇)uh) · πRT
h vhdx

)

,

leading to a more robust discrete momentum balance. In the following, this
approach is applied to the classical nonconforming Crouzeix-Raviart element
[15], using the lowest-order divergence-free Raviart-Thomas element [42] as
velocity reconstruction.

3. A Modified Crouzeix-Raviart Element for the Incompressible

Navier-Stokes Equations

3.1. Some Notation

In the following, we will denote by Th, h > 0 a family of regular finite
element triangulations. For all T ∈ Th, xT will abbreviate the barycenter
of the simplexes T . The set of all simplex faces, i.e., edges of triangles for
d = 2 and faces of tetrahedra for d = 3, will be denoted by F̄h, and Fh

will denote the set of interior faces. For any F ∈ F̄h, xF will stand for the
barycenter of the face. For every face F ∈ F̄h, we prescribe a face normal
vector nF . The orientations of these normal vectors for the interior faces
F ∈ Fh are arbitrary, but fixed. The orientations of nF for boundary faces
F ∈ F̄h \ Fh point outward of the domain Ω. For every simplex T ∈ T̄h, FT

will denote the set of faces of this simplex, and correspondingly, nT,F will
denote the outer normal of the simplex T ∈ Th at its face F . If an interior
face F ∈ Fh belongs to the simplices T1 ∈ Th and T2 ∈ Th with T1 6= T2,
then T1|T2 := F will denote the face between them. Assuming now that a
piecewise polynomial function φ ∈ L∞(Ω) is given, then for every interior
face F = T1|T2 ∈ Fh the face jump for all x ∈ F is defined by

[φ](x) :=



 lim
y→x

y∈T1

φ(y)nT1,F + lim
y→x

y∈T2

φ(y)nT2,F



 · nF .
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Now, the space of Crouzeix-Raviart [15] velocity trial functions is given by

Xh := {vh ∈ L2(Ω)d : vh|T ∈ P d
1 for all T ∈ Th,

[vh](xF ) = 0 for all F ∈ Fh, (17)

vh(xF ) = 0 for all F ∈ F̄h \ Fh}.

Remark 1. Generally, a function vh ∈ Vh is discontinuous at element faces
F ∈ Fh. Continuity is prescribed only at the face barycenters. Therefore,
we have Vh 6⊂ H(div ; Ω) [16] and discretely divergence-free function in Xh

usually do not have a divergence in L2 and are therefore not divergence-free.

Like in Discontinuous Galerkin methods [16], we introduce the broken
gradient ∇h : Xh → L2(Ω)d×d, the broken divergence ∇h · (·) : Xh → L2(Ω),
and the broken rotation ∇h × (·) : Xh → L2(Ω)d such that for all T ∈ Th
hold the relations

(∇hvh)|T := ∇(vh|T ),

(∇h · vh)|T := ∇ · (vh|T ),

(∇h × vh)|T := ∇× (vh|T ).

Using the broken gradient, the space Xh will be equipped with the norm

‖vh‖1,h :=

(∫

Ω

∇hvh : ∇hvhdx

) 1

2

. (18)

The pressure trial functions are searched for in the space

Qh := {qh ∈ L2
0(Ω) : qh|T ∈ P0 for allT ∈ Th}. (19)

Further, we introduce the space of lowest order Raviart-Thomas finite ele-
ments [42] by

RTh := {vh ∈ L2(Ω)d : vh|T (x) = aT +
bT

d
(x− xT ), for all T ∈ Th with

aT ∈ R
d, bT ∈ R,

[vh · nF ](xF ) = 0 for all F ∈ Fh,

vh(xF ) · nF = 0 for all F ∈ F̄h \ Fh}.
(20)

Remark 2. For a given simplex T , and a given face F ∈ FT , the value
(

aT + bT
d
(x− xT )

)

· nF is constant for all x ∈ F . Since [vh · nF ](xF ) = 0

holds for vh ∈ RTh, we conclude that the face jumps [vh · nF ](x) vanish
for all x ∈ F . From the continuity of the normal components of vh, one
concludes that RTh ⊂ H(div ; Ω) holds [16].

Remark 3. It holds RTh 6⊂ Vh, since the tangential components of functions
in RTh need not to be continuous at face barycenters.
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3.2. Some Interpolation and Projection Operators

The usual Crouzeix-Raviart interpolation operator π
CR
h

: X → Xh is
defined by

(πCR
h v)(xF ) =

{

1

|F |
∫

F
vds, if F ∈ Fh,

0, if F ∈ F̄h \ Fh.

The Raviart-Thomas interpolation operator πRT
h

: X ∪Xh → RTh is defined
by

nF · (πRT
h v)(xF ) =

{

1

|F |
∫

F
v · nF ds, if F ∈ Fh,

0, if F ∈ F̄h \ Fh.

In the following the Raviart-Thomas interpolation will also be applied to
matrices. Then, it has to be understood as interpolation row by row. The
L2-projection πh : Q → Qh onto the discrete pressure space is defined for
any p ∈ Q by: for all qh ∈ Q holds

∫

Ω

qh πh p dx =

∫

Ω

qhp dx .

Lemma 1 (Commutative diagram property). For all v ∈ X, one obtains

∇ · πRT
h v = πh (∇ · v) ,

∇h · πCR
h v = πh (∇ · v) .

Especially, divergence-free vector fields are interpolated onto discrete vector
fields, whose divergence, or respectively its broken divergence, vanishes.

Proof. This follows directly from the Gauss theorem and from the definitions
of the Crouzeix-Raviart and Raviart-Thomas interpolation operators.

Lemma 2. For all v ∈ X ∪Xh it holds

‖v − π
RT
h v‖0 ≤ Ch‖v‖1,h,

where C does only depend on the maximum angle in Th.

Proof. See [2].

In the following, also some classical interpolation estimates are used:

Lemma 3. For all v ∈ X ∩H2(Ω)d and for all q ∈ L2(Ω) ∩H1(Ω) hold

‖v − π
CR
h v‖1,h ≤ Ch|v|2,

‖q − πh q‖0 ≤ Ch|q|1,

where C does only depend on the mesh regularity.
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3.3. The Mixed Finite Element Scheme

Introducing the discrete bilinear forms ah : Xh × Xh → R and bh :
Xh ×Qh → R, and the discrete linear form lh : Xh → R, with

ah(uh,vh) := ν

∫

Ω

∇huh : ∇hvhdx ,

bh(uh, qh) :=

∫

Ω

qh∇h · uhdx ,

lh(vh) :=

∫

Ω

f · πRT
h vh,

(21)

the discrete incompressible Stokes problem is given by: find (uh, ph) ∈ Xh×
Qh such that the equations

ah(uh,vh) + bh(vh, ph) = lh(vh),

bh(uh, qh) = 0
(22)

hold for all (vh, qh) ∈ Xh ×Qh.

Remark 4. The difference of the modified scheme (22) w.r.t. to the classi-
cal discretization of the problem [15] concerns only the discretization of the
right hand side. By committing a variational crime, discretely divergence-
free vector fields vh are mapped to divergence-free vector fields. In the case
of the incompressible Navier-Stokes equations, or the incompressible Stokes
equations with Coriolis force, also the left hand side has to be modified. As
an example, the discretization of the incompressible Navier-Stokes equations
in rotational form is presented in the numerical section of this contribution.

Like the continuous incompressible Stokes equations, also the discretiza-
tion (22) can equivalently be formulated as an elliptic problem [46, 30].
Therefore, the space of discretely divergence-free functions is introduced

Vh := {vh ∈ Xh : bh(vh, qh) = 0 for all qh ∈ Qh}. (23)

The discrete elliptic problem reads: search for uh ∈ Vh such that the equa-
tions

ah(uh,vh) = lh(vh) (24)

hold for all vh ∈ Vh.

Lemma 4. • For all h > 0 and all vh ∈ Xh holds

ah(vh,vh) ≥ ν‖vh‖21,h.

• There is a β̃ > 0 not depending on h such that for all h > 0 holds

inf
qh∈Qh\{0}

sup
vh∈Xh\{0}

bh(vh, qh)

‖vh‖1,h‖qh‖0
≥ β̃.

Proof. The first statement follows directly from the definitions. For the
proof of the second statement, see [3].
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4. Error Estimates

In this section, a-priori finite element error estimates for the modified
Crouzeix-Raviart discretization of the incompressible Stokes equations (22)
are presented. The analysis is based on the elegant estimates of the consis-
tency error in [2] that apply the Raviart-Thomas interpolation to the best
advantage and avoid the use of a trace inequality. But due to the velocity
reconstruction, the new estimate for the velocity error is completely inde-
pendent of the continuous pressure. First, a technical lemma is proven that
actually delivers the most difficult part of the estimates.

Lemma 5. For all v ∈ X ∩H2(Ω) and for all w ∈ X +Xh it holds

∣

∣

∣

∣

∫

Ω

{

∇hv : ∇hw +∆v · πdiv
h w

}

dx

∣

∣

∣

∣

≤ Ch |v|
2
‖w‖1,h. (25)

Proof. First, ∆v ·w is added to the left hand side and one obtains by the
triangle inequality

∣

∣

∣

∣

∫

Ω

{

∇hv : ∇hw +∆v · πdiv
h w

}

dx

∣

∣

∣

∣

≤ A+B,

with

A :=

∣

∣

∣

∣

∫

Ω

{∇hv : ∇hw +∆v ·w} dx
∣

∣

∣

∣

,

B :=

∣

∣

∣

∣

∫

Ω

{

∆v ·
(

π
div
h w −w

)}

dx

∣

∣

∣

∣

.

For the second term B, one directly obtains

B ≤ ‖∆v‖0 ‖πdiv
h w −w‖0,

which can be estimated as

B ≤ Ch |v|2 ‖w‖1,h.

For the first term one obtains

A =

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

(∇v · n) ·wds

∣

∣

∣

∣

∣

∣

.

Following [2], one observes that
(

ΠRT
h ∇v

)

· n is constant on each face and
continuous across the interelement boundaries. Therefore, it is easy to see
that

∑

T∈Th

∫

∂T

((

ΠRT
h ∇v

)

· n
)

·wds = 0

12



holds for all w ∈ X +Xh. Subtracting this term, we get

A =

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

∂T

((

∇v −ΠRT
h ∇v

)

· n
)

·wds

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∇ ·
((

∇v −ΠRT
h ∇v

)

·w
)

dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

T∈Th

(∫

T

(

∇ ·
(

∇v −ΠRT
h ∇v

))

·w +
(

∇v −ΠRT
h ∇v

)

: ∇w

)

dx

∣

∣

∣

∣

∣

∣

≤ A1 +A2,

with

A1 :=

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

∇ ·
(

∇v −ΠRT
h ∇v

))

·wdx

∣

∣

∣

∣

∣

∣

,

A2 :=

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

∇v −ΠRT
h ∇v

)

: ∇wdx

∣

∣

∣

∣

∣

∣

.

For the second term, one obtains by classical interpolation estimates

|A2| ≤ Ch |v|2 ‖w‖1,h.

For the first term, the commutative diagram property from Lemma 1 is
applied

∇ ·ΠRT
h (∇v) = Πh (∇ · (∇v)) = Πh (∆v) ,

and one obtains

A1 =

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(

∇ ·
(

∇v −ΠRT
h ∇v

))

·wdx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

(∆v −Πh(∆v)) ·wdx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

T∈Th

∫

T

∆v · (w −Πhw) dx

∣

∣

∣

∣

∣

∣

≤ Ch |v|2 ‖w‖1,h.

Now, the estimate of the consistency error is a corollary to Lemma 5.

13



Lemma 6. Assuming that for the solution of the continuous Stokes equa-
tions (4) holds (u, p) ∈ H2(Ω)d × H1(Ω). Then, the following estimate of
the consistency error

1

ν
sup

w∈V+Vh

|ah(u,w)− lh(w)|
‖w‖1,h

≤ Ch|u|2

holds.

Proof. Computing for all 0 6= w ∈ V + Vh, one obtains

1

ν
|ah(u,w)− lh(w)| = 1

ν

∣

∣

∣

∣

∫

Ω

{

ν∇hu : ∇hw − f · πdiv
h w

}

dx

∣

∣

∣

∣

=
1

ν

∣

∣

∣

∣

∫

Ω

{

ν∇hu : ∇hw + (ν∆u−∇p) · πdiv
h w

}

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

{

∇hu : ∇hw +∆u · πdiv
h w

}

dx

∣

∣

∣

∣

,

since the irrotational vector field ∇p is orthogonal in L2 to the divergence-
free vector field π

div
h

w. Now, Lemma 5 delivers the desired result.

From this estimate of the consistency error, one easily concludes the
main theorem of this contribution.

Theorem 1. Assuming that for the solution of the continuous Stokes equa-
tions (4) holds (u, p) ∈ H2(Ω)d×H1(Ω). Then, one obtains for the discrete
solution (uh, ph) of the scheme (22) the error estimates

‖u− uh‖1,h ≤ Ch |u|
2
,

‖p− ph‖0 ≤ C h (ν |u|
2
+ |p|1) .

(26)

Proof. i) The analysis is started from from (24), where the discrete problem
is formulated as an elliptic problem in the space of discretely divergence-free
functions Vh. One sets wh := uh − vh for an arbitrary vh ∈ Vh. Then, one
computes

ν‖wh‖21,h = ah(wh,wh)

= ah(uh − vh,wh)

= ah(u− vh,wh) + ah(uh,wh)− ah(u,wh)

= ah(u− vh,wh) + lh(wh)− ah(u,wh)

≤ ν‖u− vh‖1,h‖wh‖1,h + |ah(u,wh)− lh(wh)| .

Using the triangle inequality for ‖u − uh‖1,h = ‖(u − vh) − wh‖1,h, one
obtains Strang’s second lemma in the form

‖u− uh‖1,h ≤ 2 inf
vh∈Vh

‖u− vh‖1,h +
1

ν
sup

wh∈Vh

|ah(u,wh)− lh(wh)|
‖wh‖1,h

.

14



The first error term can be bounded in a classical way, noting that

inf
vh∈Vh

‖u− vh‖1,h ≤ ‖u− π
CR
h u‖1,h

holds due to Lemma 1. Therefore, classical interpolation theory [15] delivers

‖u− π
CR
h u‖1,h ≤ Ch|u|2.

Together with Lemma 6 the first error estimate is proven.
ii) For the pressure estimate it is noted first that

‖p− ph‖0 ≤ ‖p− πh p‖0 + ‖πh p− ph‖0

holds. Obviously, the first term is bounded by

‖p− ph‖0 ≤ Ch |p|
1
.

Due to the discrete inf-sup stability from Lemma 4 the second term can be
estimated by

‖πh p− ph‖0 ≤
1

β̃
sup

vh∈Vh

bh(vh, πh p− ph)

‖vh‖1,h
.

The term in the denominator of this expression can be split into two parts
by

bh(vh, πh p− ph) = bh(vh, πh p− p) + bh(vh, p− ph).

The first term can be estimated by

|bh(vh, πh p− p)| ≤
√
d ‖vh‖1,h‖p− πh p‖0 ≤ Ch |p|

1
· ‖vh‖1,h.

For the second term one computes

bh(vh, p− ph) = bh(vh, p) + ah(uh,vh)− lh(vh)

= ah(uh − u,vh)

+

∫

Ω

{

ν∇hu : ∇hvh − p∇h · vh − f · πdiv
h vh

}

dx

= ah(uh − u,vh)

+

∫

Ω

ν
{

∇hu : ∇hvh +∆u · πdiv
h vh

}

dx ,

since
∫

Ω

{

−p∇h · vh −∇p ·
(

π
div
h vh

)}

dx =

∫

Ω

{

−p∇h · vh + p∇ ·
(

π
div
h vh

)}

dx

=

∫

Ω

{−p∇h · vh + p∇h · vh} dx

= 0

15



holds. Therefore, one obtains the estimate

bh(vh, p− ph) ≤ Cνh |u|
2
‖vh‖1,h,

and one finally has the pressure error estimate

‖p− ph‖0 ≤ C

{

1

β̃
ν |u|

2
+

(

1 +
1

β̃

)

|p|
1

}

h.

Remark 5. The considerations above deliver optimal a-priori error esti-
mates for the discrete gradient norm of the velocity and the L2 norm of the
pressure. Numerically, it can be seen in the next section that also the L2

norm of the velocity seems to converge with optimal order on unstructured
triangle meshes. Unfortunately, proving an optimal error estimate for the L2

norm of the velocity by duality techniques needs superconvergence properties
of the Raviart-Thomas interpolation operator due to the velocity reconstruc-
tion with piecewise lowest-order Raviart-Thomas vector fields. This leads
to very restrictive mesh assumptions as investigated in [6], and seems to
be unavoidable in theory. In a personal communication, Joachim Schöberl
from the Vienna University of Technology advised the author to employ first
order Brezzi-Douglas-Marini elements for the velocity reconstruction. Then,
an optimal a-priori L2 error estimate for the velocity can be proven, but the
velocity reconstruction becomes more complicated.

5. Numerical Results

In the following, several examples are presented that illustrate the the-
oretical findings above. First, we start with some academic test problems
comparing the convergence behaviour of the classical Crouzeix-Raviart ele-
ment with the modified scheme.

5.1. The Best Case for the Classical Crouzeix-Raviart Element

The first example is a linear Stokes problem with kinematic viscosity
ν = 1 in the domain Ω = [0, 1]2. The velocity field is derived from the
stream function ξ = x2(1− x)2y2(1− y)2 delivering a polynomial u = rot ξ
of seventh order as velocity solution, see Fig. 2, left picture. This velocity
solution has homogeneous Dirichlet boundary conditions and lies in H1

0 (Ω)
2.

Due to the introduction of the velocity reconstruction into the discrete varia-
tional formulation, one may guess that this additional consistency error will
decrease the accuracy of the new modified Crouzeix-Raviart scheme com-
pared to the classical one. In order to quantify this reduction of accuracy,
we prescribe p = 0 as the pressure solution and compute the right hand side
by

f = −ν∆u+∇p.

16



Figure 1: Coarse grid Delaunay mesh for the numerical computations
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Figure 2: Left: velocity field u = rot
(

x2(1− x)2y2(1− y)2
)

, right: pressure p = x3+y3
−
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Figure 3: Problem 1: Comparison of the classical Crouzeix-Raviart element (red), and the
modified Crouzeix-Raviart scheme with velocity reconstruction (green). Left: discrete H1

velocity error norms, right: L2 velocity error norms. n denotes the number of degrees of
freedom
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the modified Crouzeix-Raviart scheme with velocity reconstruction (green). Plotted: L2

pressure error norms. n denotes the number of degrees of freedom

ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 1.9723240 · 10−2 6.8893961 · 10−4 5.1439364 · 10−3

1,665 9.8618544 · 10−3 1.8502989 · 10−4 2.7202521 · 10−3

6,466 4.8831874 · 10−3 4.5949125 · 10−5 1.2962826 · 10−3

25,700 2.4647824 · 10−3 1.1822667 · 10−5 6.2107982 · 10−4

102,414 1.2277389 · 10−3 2.9328399 · 10−6 3.0273344 · 10−4

Table 1: Problem 1: Numerical results for the classical Crouzeix-Raviart element

Since the continuous pressure p vanishes in Ω, the pressure part C2

ν
h|p|1 of

the error estimate (2) for the classical Crouzeix-Raviart element vanishes as
well, and we will obtain the best discrete velocity solution that the classical
Crouzeix-Raviart element is able to deliver. We compare the two schemes on
a sequence of unstructured isotropic Delaunay meshes that are constructed
by the mesh generator Triangle [44], see Fig. 1 for a picture of the coarsest
grid used in the numerical experiments. A comparison of the numerical re-
sults is given in Fig. 3 and Fig. 4. Here, the discrete H1 error norms and the
L2 error norms are plotted against the number of degrees of freedom n. Note
that for 2D problems holds 1√

n
∼ h, with h being the mesh size of the grid.

One can recognize that both methods seem to converge with asymptotically
optimal experimental orders of convergence in all three norms. From the
exact values of the numerical results in Tables 1 and 2 it is affirmed that
indeed the classical method performs better for this example. The veloc-
ity error norms of the classical method are about two times smaller than
the error norms of the modified scheme. The pressure error norms seem to
become closer and closer, as the mesh size decreases.

5.2. The Dependence on the Pressure

In the second numerical example, it will be demonstrated that the new
modified scheme is much more robust with respect to irrotational forces
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 2.9946608 · 10−2 1.2931374 · 10−3 6.9603779 · 10−3

1,665 1.5652884 · 10−2 3.7250738 · 10−4 3.3688954 · 10−3

6,466 7.8571074 · 10−3 9.3562095 · 10−5 1.4855866 · 10−3

25,700 3.9649366 · 10−3 2.3990350 · 10−5 7.0393677 · 10−4

102,414 1.9755105 · 10−3 5.9092147 · 10−6 3.4122439 · 10−4

Table 2: Problem 1: Numerical results for the modified Crouzeix-Raviart element
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Figure 5: Problem 2, ν = 1: Comparison of the classical Crouzeix-Raviart element (red),
and the modified Crouzeix-Raviart scheme with velocity reconstruction (green). Left:
discrete H1 velocity error norms, right: L2 velocity error norms. n denotes the number
of degrees of freedom
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Figure 6: Problem 2, ν = 1: Comparison of the classical Crouzeix-Raviart element (red),
and the modified Crouzeix-Raviart scheme with velocity reconstruction (green). Plotted:
L2 pressure error norms. n denotes the number of degrees of freedom

in the right side of the incompressible Stokes equations. In order to show
this, we modify the first example only slightly by prescribing an academic
pressure solution p = x3 + y3 − 1

2
, see Fig. 2, right picture. By prescribing

ν = 1 and ν = 10−3, two different numerical experiments are performed. For
ν = 1, the comparison of the numerical results for the classical Crouzeix-
Raviart element and the modified scheme can be found in Fig. 5, Fig. 6,
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Figure 7: Problem 2, ν = 10−3: Comparison of the classical Crouzeix-Raviart element
(red), and the modified Crouzeix-Raviart scheme with velocity reconstruction (green).
Left: discrete H1 velocity error norms, right: L2 velocity error norms. n denotes the
number of degrees of freedom
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Figure 8: Problem 2, ν = 10−3: Comparison of the classical Crouzeix-Raviart element
(red), and the modified Crouzeix-Raviart scheme with velocity reconstruction (green).
Plotted: L2 pressure error norms. n denotes the number of degrees of freedom

Tab. 3, and Tab. 4. It can be observed from the numerical experiments
that the classical Crouzeix-Raviart element is indeed not robust against
changes in the continuous pressure that has to be approximated. This illus-
trates that the classical Crouzeix-Raviart elements violates the fundamental
invariance f → f +∇ψ ⇒ (u, p) → (u, p+ψ) of the continuous incompress-
ible Stokes equations. On the other hand, the modified Crouzeix-Raviart is
robust against irrotational forces in the momentum equations and delivers
a pressure-independent discrete velocity solution. It is surprising that the
modified scheme delivers even for ν = 1 a slightly better velocity approxi-
mation than the classical scheme. Therefore, the reduced consistency of the
modified scheme due to the velocity reconstruction is compensated by the
fact that it has no pressure term in its a-priori error estimate for the discrete
velocity (see Theorem 1), contrary to the classical estimate (2). Moreover,
for ν = 10−3 the modified scheme is dramatically superior to the classical
one, see Fig. 7, Fig. 8, Tab. 5, and Fig. 6. Obviously, this gain of accu-
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 6.8484997 · 10−2 3.6952646 · 10−3 6.7005149 · 10−2

1,665 3.5804448 · 10−2 9.9304981 · 10−4 3.4325277 · 10−2

6,466 1.7765810 · 10−2 2.4660675 · 10−4 1.6574087 · 10−2

25,700 8.8641022 · 10−3 6.1130411 · 10−5 8.1046570 · 10−3

102,414 4.4328035 · 10−3 1.5315213 · 10−5 4.0349564 · 10−3

Table 3: Problem 2, ν = 1: Numerical results for the classical Crouzeix-Raviart element

ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 2.9946608 · 10−2 1.2931374 · 10−3 6.4124852 · 10−2

1,665 1.5652884 · 10−2 3.7250738 · 10−4 3.2820564 · 10−2

6,466 7.8571074 · 10−3 9.3562095 · 10−5 1.6195238 · 10−2

25,700 3.9649366 · 10−3 2.3990350 · 10−5 8.0054984 · 10−3

102,414 1.9755105 · 10−3 5.9092147 · 10−6 3.9995703 · 10−4

Table 4: Problem 2, ν = 1: Numerical results for the modified Crouzeix-Raviart element

racy can be made arbitarily large by using smaller and smaller kinematic
viscosities ν.

5.3. Hagen-Poiseuille Flow

In the third numerical example, a nonlinear Navier-Stokes problem will
be investigated. We will study a case, where the right hand side of the
momentum equations is zero, i.e., f ≡ 0. Therefore, the flow is completely
driven by boundary conditions. The example serves to illustrate the sig-
nificance of a correct treatment of irrotational forces in the left hand side
of the momentum equations. As a guiding example, we will investigate
the incompressible Navier-Stokes equations in rotational form [34], i.e., we

ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 6.6020271 · 101 3.6549659 · 100 6.6934810 · 10−2

1,665 3.4249307 · 101 9.5981712 · 10−1 3.4142423 · 10−2

6,466 1.7113970 · 101 2.4181699 · 10−1 1.6525201 · 10−2

25,700 8.5255475 · 100 6.0181574 · 10−2 8.0833147 · 10−3

102,414 4.2607646 · 100 1.5037126 · 10−2 4.0236664 · 10−3

Table 5: Problem 2, ν = 10−3: Numerical results for the classical Crouzeix-Raviart
element
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 2.9946608 · 10−2 1.2931374 · 10−3 6.3745979 · 10−2

1,665 1.5652884 · 10−2 3.7250738 · 10−4 3.2647205 · 10−2

6,466 7.8571074 · 10−3 9.3562095 · 10−5 1.6126958 · 10−2

25,700 3.9649366 · 10−3 2.3990350 · 10−5 7.9744892 · 10−3

102,414 1.9755105 · 10−3 5.9092147 · 10−6 3.9849879 · 10−4

Table 6: Problem 2, ν = 10−3: Numerical results for the modified Crouzeix-Raviart
element
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Figure 9: Problem 3 (linear), ν = 10−2: Comparison of the classical Crouzeix-Raviart
element (red), and the modified Crouzeix-Raviart scheme with velocity reconstruction
(green). Left: discrete H1 velocity error norms, right: L2 velocity error norms. n denotes
the number of degrees of freedom
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Figure 10: Problem 3 (linear): Comparison of the classical Crouzeix-Raviart element (red),
and the modified Crouzeix-Raviart scheme with velocity reconstruction (green). Plotted:
L2 pressure error norms. n denotes the number of degrees of freedom

discretize

−ν∆u+ (∇× u)× u+∇P = f ,

−∇ · u = 0.
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Figure 11: Problem 3 (nonlinear), ν = 10−2: Comparison of the classical Crouzeix-Raviart
element (red), and the modified Crouzeix-Raviart scheme with velocity reconstruction
(green). Left: discrete H1 velocity error norms, right: L2 velocity error norms. n denotes
the number of degrees of freedom
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Figure 12: Problem 3 (nonlinear), ν = 10−2: Comparison of the classical Crouzeix-Raviart
element (red), and the modified Crouzeix-Raviart scheme with velocity reconstruction
(green). Plotted: L2 pressure error norms. n denotes the number of degrees of freedom

The rotational form is one of several possibilities for the formulation of the
continuous incompressible Navier-Stokes equations. It is based on the vector
identity

(u · ∇)u ≡ (∇× u)× u+
1

2
∇
(

u2
)

.

In the rotational form of the incompressible Navier-Stokes equations the
irrotational term 1

2
∇

(

u2
)

is absorbed into the so-called Bernoulli pressure
P = p+ 1

2
∇
(

u2
)

. Discretizing the incompressible Navier-Stokes equations in
rotational form is not very popular in CFD, because it is known to deliver
inaccurate results [34], even for very simple flow problems. On the other
hand, it is also known that grad-div stabilization greatly improves robust-
ness and accuracy of discretizations based on the rotational form. Moreover,
divergence-free flow solvers deliver the same discrete velocity solution, in-
dependent of the fact, whether the rotational or the convection form of the
Navier-Stokes equations is employed [4]. Therefore, we investigate the clas-
sical Hagen-Poiseuille flow in a two-dimensional channel. We investigate the
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problem for a moderate kinematic viscosity ν = 10−2 and want to approxi-
mate the quadratic velocity field

(

u

v

)

= 4.0y(1− y)

(

1
0

)

.

The kinematic pressure is given by p = 8ν
(

1

2
− x

)

. Correspondingly, the
Bernoulli pressure is P = p + 1

2
u2 − 4

15
. In our numerical experiments on

Hagen-Poiseuille flow, we always prescribe simple inhomogeneous Dirichlet
boundary conditions for the velocity, i.e., we compute boundary integrals

1

|F |

∫

F

u dS

and assign these face averages to the corresponding velocity degrees of free-
dom. For this problem, the nonlinear term (u · ∇)u vanishes, i.e., it is a
stable solution of the incompressible Stokes and the incompressible Navier-
Stokes equations at the same time, as long as the kinematic viscosity ν is
large enough. Now, Hagen-Poiseuille flow is an interesting numerical Bench-
mark for the Crouzeix-Raviart element due to two reasons. First, neither
the velocity solution, nor the kinematic and the Bernoulli pressure are in
the trial spaces of the Crouzeix-Raviart element. Therefore, the Crouzeix-
Raviart element can only approximate this simple flow problem. Second,
the nonlinear term in rotational form is interesting for this problem, since
it holds (u · ∇)u ≡ 0. Therefore, the nonlinear term

(∇× u)× u = (u · ∇)u− 1

2
∇
(

u2
)

= −1

2
∇

(

u2
)

is completely irrotational in the case of Hagen-Poisseuille flow. A numerical
approximation (∇h × uh)×uh is therefore expected to have at least a large
irrotational part in the sense of the Helmholtz decomposition in L2, and
a discretization using velocity reconstructions is expected to deliver more
accurate results.

In order to obtain some kind of reference solution, we investigate first the
behaviour of the Crouzeix-Raviart element in the case of the linear Stokes
problem. The numerical results in this situation are presented in Fig. 9,
Fig. 10, and Tab. 7. It is not surprising that in the linear Stokes problem, the
classical Crouzeix-Raviart element and the modified scheme deliver exactly
the same results. Since the left hand side for the Stokes case is identical
for both schemes, only the right hand side could differ. But due to f ≡ 0

both discrete right hand sides vanish and are identical, too. All three error
norms seem to converge with an asyptotically optimal experimental order
of convergence.

For the nonlinear problem, we discretize the nonlinear term in rotational
form for the classical Crouzeix-Raviart element in the standard way as

∫

Ω

((∇h × uh)× uh) · vhdx .
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 5.0124012 · 10−1 2.8307955 · 10−2 3.1851622 · 10−3

1,665 2.5310639 · 10−1 7.4014036 · 10−3 1.5315692 · 10−3

6,466 1.2789337 · 10−1 1.8743517 · 10−3 7.2983392 · 10−4

25,700 6.4169631 · 10−2 4.7225534 · 10−4 3.5844523 · 10−4

102,414 3.1992647 · 10−2 1.1693987 · 10−4 1.7674005 · 10−4

Table 7: Problem 3 (linear): Numerical results for the classical and the modified Crouzeix-
Raviart element

For the modified Crouzeix-Raviart scheme we use two velocity reconstruc-
tions

∫

Ω

(

(∇h × uh)× π
RT
h (uh)

)

· πRT
h (vh)dx .

The velocity reconstruction of the test function vh makes the discrete non-
linear term robust with respect to irrotational forces, and the velocity re-
construction of uh makes the discrete nonlinear term antisymmetric.

The numerical results for the nonlinear Hagen-Poiseuille problem are pre-
sented in Fig. 11 and Fig. 12, Tab. 8, and Tab. 9. The nonlinear iteration was
solved by up to 38 Picard iterations, until the nonlinear residuum measured
in a discrete l1-norm was smaller than 10−13. The nonlinear iteration was
started with the solution of the linear Stokes problem. Again, all the three
error norms seem to have an asymptotically optimal experimental order of
convergence, but the velocity error of the modified scheme is about one or-
der smaller than the velocity error of the classical Crouzeix-Raviart element.
The classical Crouzeix-Raviart element suffers from a significant loss of ac-
curacy, when comparing the numerical results for the Stokes problem and
the Navier-Stokes problem. Obviously, the (almost completely) irrotational
term (∇h × uh)×uh perturbs the momentum balance in a disadvantageous
manner. On the other hand, the discrete velocity for the modified scheme
does not change much, when solving the nonlinear problem instead of the
linear one. This is due to the sophisticated discretization of the nonlinear
term in the modified scheme, where (∇h × uh)× π

RT
h

(uh) is almost irrota-
tional in the sense of the Helmholtz decomposition in L2. But obviously it
cannot expected that this term is completely irrotational, since it is only a
discrete approximation of (∇× u)× u.

Last but not least, some results are reported, if ν = 10−3 is chosen.
Then, the nonlinear Picard iteration does converge only beginning with the
fourth refinement level. Again, up to 38 Picard iteration were needed to de-
crease the nonlinear residuum down to 10−13. The corresponding numerical
results are reported in Tab. 10, and Tab. 11. This time the velocity error of
the modified Crouzeix-Raviart is about 2 orders of magnitude smaller, meet-
ing the expectation that the velocity error of the classical Crouzeix-Raviart
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 3.5464232 · 100 1.8260081 · 10−1 9.9976663 · 10−2

1,665 1.8452666 · 100 5.1646526 · 10−2 3.7245478 · 10−2

6,466 9.7851623 · 10−1 1.4768490 · 10−2 1.3621778 · 10−2

25,700 4.9794575 · 10−1 3.8231564 · 10−3 5.3326950 · 10−3

102,414 2.4952718 · 10−1 9.5480858 · 10−4 2.4258945 · 10−3

Table 8: Problem 3 (nonlinear), ν = 10−2: Numerical results for the classical Crouzeix-
Raviart element

ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
446 5.4269363 · 10−1 2.9717691 · 10−2 3.8422682 · 10−2

1,665 2.5488774 · 10−1 7.1959470 · 10−3 1.8516677 · 10−2

6,466 1.2814866 · 10−1 1.8240090 · 10−3 9.3384590 · 10−3

25,700 6.4205284 · 10−2 4.5868013 · 10−4 1.1388098 · 10−3

102,414 3.2000515 · 10−2 1.1388098 · 10−4 2.3234214 · 10−3

Table 9: Problem 3 (nonlinear), ν = 10−2: Numerical results for the modified Crouzeix-
Raviart element

element should scale with 1

ν
as in the linear case.

5.4. Driven Cavity Flow

In the last example, we will again look at a flow that is completely driven
by boundary conditions, i.e., where f ≡ 0 holds. Such an example is the
driven cavity problem in a square domain Ω = [0, 1]2 with Reynolds number
100, i.e., with ν = 10−2. In this case, the nonlinear term in rotational form
(∇× u)×u has definitely an important divergence-free part in the sense of
the Helmholtz decomposition. On the other hand, it is expected that this
term also has an irrotational part that could spoil the numerical accuracy
of the classical Crouzeix-Raviart element. Since there is not an exact solu-
tion available, only the convergence behaviour of a specific functional of the
solution is used for measuring and comparing the quality of the two differ-
ent numerical discretization schemes. As a functional the L2 norm of the
velocity field is chosen, since this value is easy to compute. The computed

ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
25,700 4.8965197 · 100 3.8107763 · 10−2 2.2691657 · 10−2

102,414 2.4652387 · 100 1.0523624 · 10−2 6.6753413 · 10−3

Table 10: Problem 3 (nonlinear), ν = 10−3: Numerical results for the classical Crouzeix-
Raviart element
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ndofs ‖u− uh‖1,h ‖u− uh‖0 ‖p− ph‖0
25,700 6.8734350 · 10−2 4.8073915 · 10−4 4.6283131 · 10−3

102,414 4.0890676 · 10−2 1.3855210 · 10−4 2.3179468 · 10−3

Table 11: Problem 3 (nonlinear), ν = 10−3: Numerical results for the modified Crouzeix-
Raviart element

Figure 13: Problem 4 (nonlinear): Velocity field (left) and stream lines (right) of the
driven cavity problem at Re = 100
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Figure 14: Problem 4, ν = 10−2: L2 norm of the driven cavity velocity solution. n denotes
the number of degrees of freedom

flow solution in Fig. 13 seems to compare well to typical results obtained by
several authors, e.g., [29]. Also, the the computed L2 norm of the numerical
solution (≈ 0.262) compares well to the value obtained with a finite volume
solver, and both numbers coincide in the first three leading decimal dig-
its. Obviously, the convergence behaviour of the modified Crouzeix-Raviart
scheme performs better than the classical scheme, see Tab. 12 and Tab. 13.
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ndofs ‖uh‖0
6,466 2.3400054 · 10−1

25,700 2.5521782 · 10−1

102,414 2.6060792 · 10−1

409,132 2.6200594 · 10−1

Table 12: Problem 4 (nonlinear), ν = 10−2: Numerical results for the classical Crouzeix-
Raviart element

ndofs ‖uh‖0
6,466 2.5669241 · 10−1

25,700 2.6105730 · 10−1

102,414 2.6215868 · 10−1

409,132 2.6238548 · 10−1

Table 13: Problem 4 (nonlinear), ν = 10−2: Numerical results for the classical Crouzeix-
Raviart element
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