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ABSTRACT. In this article we present a noise reduction method (msPOAS) for multi-shell diffusion-
weighted magnetic resonance data. To our knowledge, this is the first smoothing method which allows
simultaneous smoothing of all g-shells. It is applied directly to the diffusion weighted data and conse-
quently allows subsequent analysis by any model. Due to its adaptivity, the procedure avoids blurring of
the inherent structures and preserves discontinuities. MsPOAS extends the recently developed position-
orientation adaptive smoothing (POAS) procedure to multi-shell experiments. At the same time it consid-
erably simplifies and accelerates the calculations. The behavior of the algorithm msPOAS is evaluated on
diffusion-weighted data measured on a single shell and on multiple shells.

1. INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI) is a versatile tool for in-vivo imaging of anisotropic
tissue structure, especially, but not exclusively in the human brain, see Mori|[2007] orlJones|[2010] for an
introduction. The diffusion-weighted contrast enables various types of analysis to characterize the brain
structure for the normal brain, for a broad range of conditions affecting the brain, or for developmental
studies [Johansen-Berg and Behrens| 2009]. This is often done by assigning a local anisotropy measure
or by determining the main diffusion direction to produce fiber tracks.

DMRI data consists of a series of 3D image volumes acquired by applying diffusion weighting magnetic
field gradients in various directions. Depending on the experiment varying gradient strengths or diffusion
time, which determine the b-value of the measurement, are used [Callaghan [1991]. The diffusion profile
obtained from the diffusion images reveals information on the intra-voxel structure, see, e.g., Mitra and
Sen|[1992]. This explains the broad interest in dMRI as it enables measuring tissue properties that exist
at the micron level, whereas the voxel size of a dMRI measurement is only at millimeter level. A wide
range of models for the diffusion profile have been developed, such as the diffusion tensor model (DTI)
in [Basser et al.L|1994alb], tensor mixture models [Behrens et al., [2003} |Assaf and Basser, |2005} Tabelow
et al, 2012], the orientation distribution function [Tuch, 2004] and higher order tensor models [Ozarslan
and Marecil 2003, [Liu et al., 2003], to name only a small selection. Some models like DTl can be evalu-
ated based on measurements on a single g-shell, i.e., for a single b-value, others like Diffusion Kurtosis
Imaging [Jensen et al.l 2005, Tabesh et al., 2011], or methods to estimate the full Diffusion Propagator
or its radial part [Ozarslan et al., 2006, |Aganj et al., 2010, |Cheng et al., 2010, Descoteaux et al., [2011]
require multi-shell data. It is now generally accepted that models beyond the diffusion tensor should
be used to explore white matter microstructure [Jones et al., [2012]. In this context models that require
multi-shell dMRI data acquisitions are becoming increasingly popular.

As all imaging modalities dMRI suffers from noise. Due to the signal attenuation the signal-to-noise ra-
tio inherently decreases with increasing b-value for the diffusion weighted images. Thus, noise hampers
modeling for dMRI data in general, but for multi-shell data in particular. Furthermore, high spatial res-
olution is believed to improve resolution of complex fiber bundles [Heidemann et al., 2010, |[Zhan et al.,
2012, |Kleinnijenhuis et al., 2012, [Kamali et al., 2013|. As the increase in spatial resolution also reduces
the signal-to-noise this further deteriorates of the image quality. In order to reduce noise in dMRI data
a number of different approaches have been developed starting from Gaussian filtering [Westin et al.,
1999|, smoothing procedures in tensor space for DTI [Fletcher, 2004], denoising algorithms based on
the partial differential equations [Ding et al., 2005, [Parker et al., 2000} |Duits and Franken| 2011], and
many others.

Recently, we developed a position-orientation adaptive smoothing (POAS) algorithm [Becker et al.; 2012]
based on the Propagation-Separation approach [Polzehl and Spokoinyl, 2006, Becker and Mathe, [2013].
The method directly smoothes diffusion weighted images measured on a single g-shell: It is applied to
the dMRI data prior to any modeling. Hence, it does not introduce a model-specific bias into the data
and any model can be used after smoothing. The algorithm is suitable even for very low signal-to-noise-
ratio due to the gained efficiency by considering the geometric properties of the measurement space:



Each signal value in a diffusion weighted image is associated to its position in voxel space and the
(gradient) orientation. Here, R3 stands for the 3D voxel position space and S? for the unit sphere, where
the diffusion gradient orientations are distributed. The measurement space can thus be described by a
combined space R3 x S2. In [Becker et al., [2012], POAS has been proven to be able to reduce noise in
dMRI data without blurring the structural borders in the images which constitutes its adaptive properties.

This article aims to extend and substantiate the original POAS proposal in several very important direc-
tions. We will start with the consideration of multi-shell data as required by higher order models. Basically,
the method POAS could be applied separately for each b-value. However, this is not efficient as we would
ignore helpful information for adaptation by considering only data from one shell. We will illustrate this in
the paper. We present an algorithm allowing for simultaneous smoothing of all g-shells. We denote this
generalization multi-shell POAS (msPOAS). To our best knowledge this is the first smoothing algorithm
for multi-shell dMRI data, that uses the geometry of the measurement space and a vector structure of
the data from the different shells. Second, we will make significant simplifications to the algorithm in com-
parison to the single-shell method to accelerate it for practical purposes and enable easier theoretical
accessibility. Third, we will present some heuristics which suggest the generalizability of the theoretical
properties in |Becker and Mathé| [2013] to msPOAS. A theoretical proof is hampered by the lack of an
explicit formula for the Kullback-Leibler divergence in case of dMRI data. The corresponding simulations
show that msPOAS behaves as expected in typical situations. Finally, we evaluate msPOAS considering
real multi-shell and single-shell dMRI data and give recommendations how to use the method.

2. THEORY

When performing a dMRI-scan, we do not directly observe the image, which we are interested in. The
scanner yields complex-valued data in k-space, which relates to the signal attenuation due to water
diffusion. For Cartesian acquisitions the data is transformed via Fourier transformation to a diffusion
weighted image [Callaghanl [1991]. In case of parallel imaging with an NMR phased array of L receiver
coils [Roemer et al., [1990], this image is reconstructed from the data of all coils. The details depend
on the acquisition method among which the dominant ones are SENSE [Pruessmann et al.,|1999] and
GRAPPA [Griswold et al., 2002]. The complex signal in image space is typically transformed to a real
positive number by considering a magnitude image and thus neglecting the phase component. The data
is generally pre-processed to compensate for artifacts due to motion [Storey et al., 2007, [Mohammadi
et al.,|2013], magnetic field inhomogeneities [Andersson et al., [2003,Mohammadi et al., [2012b} |Ruthotto
et al., 2012|, eddy currents [Jezzard et al., (1998, |]Andersson and Skarel 2002, Mohammadi et al., 2010]
or noise [Kristoffersen, 2012, Mohammadi et al., [2012a]. The corresponding methods are applied at dif-
ferent steps of the processing pipeline. Our method for multi-shell position-orientation adaptive smoothing
will be directly applied to the reconstructed diffusion weighted images to improve and stabilize the subse-
quent modeling and the analysis of the data. Ideally, it should be executed after all other pre-processing
steps have been done.

After a short summary of the original method POAS [Becker et al., 2012], we discuss necessary ex-
tensions for the generalization of this algorithm to multi-shell dMRI data. First, we derive a specific
perspective on dMRI multi-shell data based on the measurement process that allows a description by
a quite sophisticated function .S, see Equations and (10). Second, we reconstruct missing data for
this function by spherical interpolation. Third, we study the probability distribution of the measurement
error. Then, our new algorithm for msPOAS is presented in Section Afterwards, we discuss further
modifications that improve, simplify and accelerate the method. Specifically, we introduce an advanced
parameter choice strategy for the crucial parameter of the algorithm and a simplified discrepancy for the
measurement space that relates to the associated geodesics and exhibits the properties of a pseudo-
metric. Additionally, we justify a simplified approximation for the statistical penalty which determines the



adaptivity of the procedure. In the first instance some of the parameters are introduced only on a super-
ficial level to improve readability. For details we refer the reader to their specific discussion in Section 2.4
and to Becker et al.|[2012].

2.1. Background: Position-orientation adaptive smoothing (POAS). In this section, we summarize
the main ideas of the original method POAS [Becker et al.,[2012]. This takes advantage of the following
interpretation of the measurement space.

In diffusion weighted imaging, one measures integral values on a regular grid of voxel v € V C R3
to infer on the structure of the analyzed tissue from the properties of the diffusion of water therein.
Measurements may be performed for a single or for varying b-values (b > 0). For each b-value, data is
acquired with varying diffusion gradients § € G. These can be identified with elements of the 2-sphere
suchthat G C S? := {§ € R3 : ||§|| = 1}. The method POAS is limited to dMRI-measurements with
a single b-value allowing a description of the measured signal by the following function,

(1) S:VxG>3 (7§ S@3§ R, VxGCR xS

Here, the signal depends on the voxel position ¥ € V' and the diffusion gradient direction § € G. A
generalized version for multiple b-values is given in Section Additionally, the full dataset contains at
least one non-diffusion weighted image Sy that is acquired without applying any magnetic field gradi-
ent. In case of several Sy-images, we consider the corresponding mean image 5‘0. However, for better
readability we will use Sy instead of Sy for notation. The signal attenuation S (%, §)/.So (%) can then be
related to the diffusion properties.

POAS is based on the Propagation-Separation approach for pointwise estimation of piecewise smooth
functions [Polzehl and Spokoiny, 2006]. Here, we assume the simplest version, i.e., a local constant
model, to accelerate and stabilize the estimation procedure. In particular, we assume that the measure-
ment space can be partitioned into regions with almost constant values separated by discontinuities. This
assumption seems to be reasonable for dMRI data, see |Becker et al.|[2012]. No assumption is made on
the size and shape of the homogeneous regions. In comparison, the application of the common Gaussian
filter to the diffusion-weighted images actually relies on the assumption of a globally smooth image in-
tensity value. The obvious violation of this assumption in dMRI data manifests itself as the blurring effect
at borders. In Sections[2.4]and[5] we discuss possible consequences of a violated structural assumption
for POAS and msPOAS.

The Propagation-Separation approach is an iterative procedure that uses a weighted mean of the obser-
vations to infer on the true function value via the expectation of the respective observation. The adaptive
weights depend on a location and on an adaptation kernel, denoted by K, and K ,4. The former deter-
mines the local neighborhood under consideration and the latter tests for local homogeneity. Specifically,
it uses the information of the previous iteration step to improve the new estimation by restricting the es-
timator as far as possible to observations of the same homogeneous region. This avoids blurring of the
observed structure in dMRI data. During iteration the local neighborhood increases while the adaptation
becomes more restrictive.

In POAS, the location kernel determines a local neighborhood of the whole measurement space of dMRI,
V x G C R3 x S?, using the discrepancy

1/ - -1 R
(2) Aﬁ(ml,mg) = H <R§2 (’Ul — Ug), Flg.2 R§1) HR,/@’ mi,me €V X G, m;= (Ui,gi),
where [|.|| p ., denotes the r-weighted Riemannian 2-norm on the special Euclidean motion group SE(3)
and Rz, € SO(3) is any rotation with Rgz,e. = g;, see Becker et al. [2012, Section 2.2 and Appendix
A.3]. For a given sequence of increasing bandwidths {h(k)}’,j*zo with (%) > 0, this allows to define the



following non-adaptive estimator

@ $Ymy= [ > wlihs2n)/N,)
neVxG
with non-adaptive weights
(4) Eg;)z = Koc (An(m, N)/h(k)> and Ng:) = Z @7(_5%
neVxaG

Here, we consider a weighted quadratic mean instead of a weighted arithmetic mean to ensure that the
estimator remains in the same class of probability distributions as the observations, which we assumed to
be non-central y-distributed. If this distribution belongs to an exponential family this estimator is related
to local maximum likelihood estimation, see|Polzehl and Spokoiny|[2006]. The non-adaptive estimator for
k = 0 with a sufficiently small location bandwidth h(9) is used to initialize POAS.

A slight modification of the weights leads to the adaptive estimator

(5) SOmy= | S @ihs2(n)/ N,
neVxG

as it is used in POAS. Here, we set
(6) 167(,];)1 = wﬁ,’f% - Kag (sfﬁ%/A) and N,Sf) = z )

mn>
neVxG

where A > 0 denotes the adaptation bandwidth and the statistical penalty
(7) sion = NyVKL (Pé‘%fl)(m)/&’ PS(’“*”(n)/[’)

bases upon the Kullback-Leibler divergence between the two standardized non-central Xz-distributions
with 2L degrees of freedom and non-centrality parameters

(S* D (m))*/6® —2L)y and  ((S*V(n))?/6° —2L)y,

where ()4 denotes the maximum of x and 0. More details concerning the probability distribution of
the observations and the approximation of the Kullback-Leibler divergence can be found in Sections [2.3]
and

After initialization we iterate computation of the adaptive weights in Equation (6), to infer on the ho-
mogeneous regions, and computation of the adaptive estimator (5), to approximate the corresponding
expected value. Increasing h(*) with each iteration step k, the procedure stops after a prespecified num-
ber k* of steps. Since POAS provides a certain stability of estimates, £* should be chosen to provide a
reasonable computation time and still a sufficient quality of estimates within homogeneous regions. The
specific choice of parameters for POAS and the appropriate smoothing of the Sy-image are discussed in
Becker et al.|[2012, Section 2.5].

2.2. Description of the data. Using the notation from Section for the voxel set V' and the gradient
set (G, we generalize the description of the signal to multi-shell dMRI data. The signal value in Equa-
tion then additionally depends on the b-value b € B C (0, 00). We denote the number of different

shells or applied b-values by B := | B| € N. Furthermore, we interpret the non-weighted data Sy as a
shell with b = 0. In other words, the data are sampled from B + 1 functions
(8) Sb:VXGb9<17,§)HSb(17,§)€R, be By :ZBU{O},

where G}, is the set of gradients that have been measured on the shell with b-value b. As in Section|2.1]
we consider the mean of all measured non-diffusion weighted images and denote it by Sy, too. Further-
more, So(¥,0) := Sy(¥) and Gy = {0}.
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If the gradient scheme (7, is identical on all shells, the measured data can be easily arranged in a vector
of length 28 + 1 such that

(©) (S0 (), Sty (T, §) s Sby (7, 7)) € RPFL

This will be advantageous for our new method msPOAS as it enables the use of the whole information
of all g-shells for adaptation. Else, that is, if the gradient schemes G, C S? do not coincide for the
measured b-values b € B the vector in (©) will not be complete. We use the following interpolation
method to replace the missing values Sy (7, ), for every b € B with § ¢ Gy. The data structure is
visualized in Figure[T]

FIGURE 1. Diffusion weighted data .S for an arbitrarily selected slice of the multi-shell
data described in Section [3] a) Slice of the non-diffusion weighted data. b) Same slice
taken with diffusion-weighting gradient § € S? and b-value b = 800s/mm?. ¢) Same
slice taken with the same gradient § and b-value b = 2000s/mm?. The intensity
of the non-diffusion weighted image in a) has been down-weighted to make all three
images visually feasible at once. d) shows the data within a single voxel (see arrow)
as a 3D plot for all measured diffusion gradients in red and green at b = 8008/mm2
and b = 2000s/mm2, respectively. For comparison the non-diffusion-weighted value
is repeatedly shown as blue point for each gradient. The distance of the points to the
center of the sphere is the corresponding signal value. Each 3D diffusion weighted
image (a-c) is fully described by the set {.Sy(, §) }sc C R of signals in voxel space
for a fixed diffusion gradient direction § € G (if b # 0) and the b-value b € Bj.
Conversely, the data in a single voxel 7 € V' equals the set {S(7, §)} e € R3B+1
of vectors, see (d).

Let b € B be a fixed b-value and consider a gradient direction § §é G, that has not been included
in the measurement on the corresponding shell. Then, we search for a triple of measured gradients

{ggé)g)}?zl C Gy, such that the gradient direction ¢ lies within the resulting spherical triangle

. H @ 3
9€ D8 g) Ybg) Ybg)



o® g®

A (F,0@,9®)

Q

A (7,60, 9®@)
o g @

FIGURE 2. Spherical interpolation: The gradient § ¢ Gy, lies within the spherical tri-
angle which is formed by ggi)g),ggi)g), gg’)g) € (Y. The corresponding weights cgé)g),
[ = 1,2,3, depend on the respective proportion of the surface area of the partial

triangles A(ﬁ,ggélé),ggézé)) with [1,ly # [. On the right, we illustrate an exam-

ple, where minimization of the total angular distance leads to a triangle which does
not contain the gradient g. Here, the angular distances satisfy arccos((g, 98)@))) <

arccos((ﬁ,gg’)gﬁ), but § ¢ A(g(4),gE;?§),gEz?§)). The same holds with gg?g) in

place of 98)5)- For simplicity, the figure shows two-dimensional triangles instead of

spherical triangles.

~

3
and the corresponding total angular distance > arccos({({, ggé g‘)>) is minimal. Here, (-, ) denotes the
=1 '
Euclidean scalar product of two vectors. The missing value S,(?, §) is then generated by linear spherical
interpolation
3

Lo ! Lo
Sb(v) g) = Z Cgb)yg)Sb(U, ggb)hg‘))
=1
(o)
(0.9)
ical triangle A(gg’)g), QEZ,)g)’gEg,)g))' Forl € {1,2,3} we set

with weights ¢ defined as the spherical Bary-coordinates [Carfora, 2007, 3.1(c)] of ¢ within the spher-

area(A(7, a0y alizh )
CEQ@ = - (”’(9)) (b’g) . wherely,lo € {1,2,3}\ {I}, 11 # s

2
area(2(9(,5): 8.5 .)))
This interpolation is illustrated in Figure [2]

For completion and for the estimation of denoised .Sy-images in msPOAS, we additionally create a vec-
tor (9) for g € Gy, i.e., for § = 0, using the mean value of the signals on the corresponding shell

Su(7,0) :=[Go| ™" > Su(#,9),
geGy
where |G| € N is the number of gradients measured on the shell with b-value b.

Finally, we get the desired vector function defined on the measurement space V' x G C R? x S? by

(10) S:V x G 3 (#,§) — (So(0), S, (T,9), ... Soy (#,5)) " € RFF,
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where G := {Uye g, Gb S2U{0} is the union of all gradient directions measured on any shell including

the artificial direction 0. Here, we distinguish for b-values b > 0 between values S, (¥, ) that have been
measured (§ € G}), values that have been interpolated on some shell as the gradient direction has been
used on a different shell (§ € Gy \ Gy, b’ > 0) and a mean signal for § € G|, such that

Sb({): g)v ifge G
SO sy(@gl ), g e Gy \ Gl >0
(11) S(,9) = { w0 8pg) TTECy \Cp b >
G| ™! 32 S(7.g) it g € Go.
geGy

Due to the interpolation we lose the statistical independence of the “observations” {S (', §) } ge- Es-
timates will be constructed as weighted averages of the observed values {S,(7, §) }jec,- The inter-
polated observations {Sy(7, §) } gec\c, are solely used to determine the adaptive weights, see Sec-

tion[2.41

2.3. Probability distribution of the observations. The statistical penalty in Equation is based on
the Kullback-Leibler divergence. This requires knowledge of the probability distribution of the observa-
tions, up to some parameter 6. For the generalization to multi-shell data we consider the joint probability
distribution, see Equation (14). Additionally, we discuss the probability distribution of the single-shell data
in more detail. In [Becker et al., 2012, Section 2.3], we treated this topic very briefly. This time, we want to
provide a better understanding for the relationship of the unknown parameter 6 and the expected value,
which we estimate by msPOAS. In particular, this sheds light on the impact of the variance o, i.e., the
amount of noise in the data, and the number of coils L.

For a fixed b-value, the measurement error of a complex dMRI-signal is usually assumed to follow a
Gaussian distribution. This is motivated by the central limit theorem valid for the sum of many independent
random errors summing up to the final measurement error in general experimental setups. Assuming
the same variance o for the real and the imaginary part of a signal, this leads with L = 1 for the
standardized magnitude image S, (¥, §)/o to a non-central -distribution with two degrees of freedom

and non-centrality parameter ) = \/IE (S2(7,9)] o — 2.

For L > 1, the probability distribution of the reconstructed signals .S depends on the applied reconstruc-
tion algorithm. Let Sb,c(ﬁ, g) denote the absolute value of the Fourier transformed signal measured on
receiver coil ¢ for the voxel ¥ € V with gradient § € G U {6} and b-value b € Bjy. For the Sum-of-
Squares reconstruction algorithm the diffusion weighted image is reconstructed as the square-root of the
quadratic sum of the single-coil signals

see e.g. [Roemer et al.| [1990], Aja-Fernandez et al.| [2009]. With a homogeneous variance o? for all
receiver coils, we get

(12) Su(3.)/0 ~ xor(6) with 6= \[E[S}(7.5)] /o? 2L
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The method msPOAS estimates the true expected value [E [Sy (¥, §)] of the observations which relates
to the parameter 6 via the function

7 D(L+1 1 62
(13) wu(0) == 5 r((g);:(z)) Fy <_27L,_2>

where Lg?;l) denotes the generalized Laguerre polynomial, I' is the Gamma function, and 1 F} the

confluent hypergeometric function. For their relation used in Equation see e.g. [El-Sayed [2000].

The non-central x-distribution remains a valid model, with lower number of degrees of freedom, if com-
bination weights are either 0 or 1, i.e., location dependent subsets of images are combined. Generally,
the sum-of-squares formula is the simplest approximation of the reconstruction of the NMR phased array
signal, that does not require any assumption on the magnetic field of the different receiver coils [Roemer.
et al.l [1990]. More sophisticated parallel acquisition methods like SENSE and GRAPPA, lead to het-
eroscedastic variance and correlated noise with slight changes in the distribution [Thunberg and Zetter-
berg, [2007]. However, it has been shown [Dietrich et al., 2008] that the non-central x-distribution is also
approximately valid for these reconstruction methods. For a detailed discussion concerning GRAPPA we
refer to/Aja-Fernandez et al.|[2011].

For the sake of simplicity, we concentrate on the case of a fixed number of degrees of freedom 2L/ <
2 L. Additionally, we assume the variance o2 to be known or an appropriate approximation &2 to be
achievable. Generally, variance estimation for dMRI data is a challenging problem. A survey of estimation
procedures can be found in/Aja-Fernandez et al.|[2009]. In|Becker et al.|[2012, Appendix C], we proposed
a new estimation procedure that is also feasible for low signal-to-noise-ratio and if no background can be
defined in the image. Similar to POAS and msPOAS is based on the Propagation-Separation approach
[Polzehl and Spokoinyl [2006]. The achieved results could be improved by the new approximation of the
Kullback-Leibler divergence that we discuss in Section In any case, the variance estimation should be
performed before pre-processing steps such as registration-based motion and eddy-current correction.
The interpolation which is part of the registration process, leads to a reduced variability and to spatial
correlation of the data, while the bias # — ES' between the true parameter and the expectation of the
signal remains unchanged. This would in turn bias the variance estimates.

The measurement errors for different b-values are statistically independent since each g-shell is mea-
sured on its own. Therefore, the joint probability density fg/g of the random variable S(%, §) € RB+H!
in Equation equals the product of the corresponding marginal densities fs, /., b € By, i.e.

%
(14) fs)o(u) = Hfsbl/o(ul% u=(ug,...,u)” €RPTL by :=0.
1=0

For simplicity, we do not distinguish the notation of the signals S/o and the interpolated signals S /o and
the corresponding random variables S/ ~ fg/, and S/o ~ fs /4, respectively.

2.4. Multi-shell position-orientation adaptive smoothing (msPOAS). The method msPOAS can be
applied to multi-shell data with fixed or varying gradient schemes. In the following, we modify the non-
adaptive estimator (3) which we used for initialization of POAS. In particular, we discuss the choices of
the location bandwidths {h(k)}ﬁ*zo and of the balancing parameter s for the case of multi-shell dMRI
data. Afterwards, we introduce a generalized statistical penalty which uses the information of all g-shells
for adaptation. This is based on the interpolated signals which we described by a vector function in
Equation (10). However, the interpolated values will be used for adaptation only and not in the estimator
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in order to ensure statistical independence of the observations that are included into the estimator. Finally,
we present the algorithm msPOAS.

As for POAS, we fix two non-increasing kernel functions Kj,. and K,q with compact support [0, 1].
The effect of different choices for the kernels is negligible, see e.g. |Scott| [1992, Section 6.2.3]. For the
implementation of the algorithm we set

1 for 0 < x < 0.5,

(15) Kioe(w) := (1 =2%)4  and Kaa(v) = {(2 —2x)y for05<a

Furthermore, let 6,(., .) denote some appropriate discrepancy on R3 x S2. For instance, we may use
0k(91,92) == Ax(g1, 92), see Equation (2), as in the original work or the simplified metric in Section
Equation (23). For simplicity, we do in the following no longer distinguish between the original data S and
the interpolated data S denoting both by S. Additionally, we apply the interpolation in Equation to

the adaptive estimates Sék) defined below, replacing Sy by S”IEk) in the respective formulas. Once again,

we denote the resulting values S’ék) by S’ISk).

For initialization of the algorithm we introduce a non-adaptive estimator which is similar to Equation (3).
There, the estimator was defined as a weighted quadratic mean of the observations in order to ensure
that it belongs to the same class of probability distributions as the observations. Here, we follow a slightly
different strategy. In Section we justify an approximation of the probability distribution of the obser-
vations by a Gaussian distribution with appropriate parameters. As the weighted mean of independent
Gaussian distributed observations is again Gaussian, this motivates to replace the weighted quadratic
mean by a weighted arithmetic mean. Thus, we define for each b € By and all measurement points
m € V x G} the non-adaptive estimator

—(k _ —(k
(16) S m) = > wSn)/ Ny, € R
TlGVXGb

with

. ——(k .

W), = Kioe (Sx(m,m)/A®) and Nyyi= 30 @il

neVxGy

which is similar to Equation @). For m,n € V x G we set @ﬁf;)l = E,(qli;ng, where m = (z?mﬁ)
implies mg = (U, g) and n = (T, 0) yields ng = (Un,g) for some arbitrary but fixed gradient
G € G. This reduces the R3 x S%-discrepancy d,. for Sg-images to the Euclidean metric in voxel space
and hence enables its application to the Sp-image.

The non-adaptive weights mﬁ% depend on the respective b-value b € By via the location band-

width A(%). The bandwidths are measured in units of voxel counts with respect to the smallest of the
three voxel extensions. We chose h(?) = 1, i.e., one unit of the shortest edge of the voxel. The pre-
specified sequence of bandwidths {h(’“)}’,j*:0 should be increasing with h(®) > 0. However, it seems
to be recommendable to ensure a constant variance reduction of the non-adaptive estimates during it-
eration. Hence, in our implementation, we chose the bandwidths {h(k')}’,j*zo such that the variance of
the non-adaptive estimate is reduced by 25%, up to boundary effects in voxel space. As the number of
applied gradients may vary for the distinct g-shells, this leads to a choice of {h(k’)}’,j*zo which depends
via the respective gradient scheme (G, 3 § on the considered b-value b € By. Additionally, we get a
dependence on the gradient § itself by compensating possible inhomogeneities of the gradient scheme.
More precisely, we fix some voxel 7, close to the center of the voxel space V' and calculate for allb € By
and every Gy, € G}, the sequence of location bandwidths {A(*) (b, G, ) }¥7_| such that
(k)

—(k) \2 —(k—1)\2
Z (wﬁ?! — 1951 Z (wv&n_l))2’
neVxGy (Nm,b) neVxGy (Nm,b )
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where m = (U, gm) € V x Gy. The resulting bandwidths {h(*) (b, G,) }¥"_, are then used for all
voxels U € V.

The parameter ~ balances between spatial and spherical smoothing in V' C R3 and G C S%. One pos-
sible choice of s > 0 has been discussed in|Becker et al.|[2012, Section 2.5], where we set (k) (g) =
%o/h(k) (g). For multi-shell data, this leads again to a dependence on b € By and § € Gy, The precise
choice of sz depends on the data at hand. More precisely, 3¢y balances between variance reduction and
possible bias by smoothing on the sphere. In the initial step it determines spherical resolution. For a given
total number of applied gradient directions N, (summed over all shells) the quantity Ny(1 — cos(1))
is the mean number of neighboring gradients directions with positive weights, if RO = 1. we suggest
to select 3¢y such that this number is between 5 and 10, i.e., 27y depends on the number of measured
diffusion-weighting gradients. The value of 3¢y should be the larger the lower the signal-to-noise-ratio in
order to stabilize the estimates in the first iteration steps. However, larger values may introduce a bias.
This bias will be effectively reduced during iteration due to the restrictions imposed by the statistical
penalty.

For the adaptive estimator, we take advantage of the whole information in the data vector (10). This
requires an appropriate modification of the statistical penalty in Equation (7). With a slight abuse of
notation we introduce an abbreviatory notion for the Kullback-Leibler divergence of two non-central x-
distributions with expectation (; and (2, respectively, setting

KL (C156G2) = KL (Plu-1(¢1)) Plu-1(c)))

where Py = yor/ (/) and the function ;z~! is defined via Equation for all { > \/§P(L +
1/2)/T(L) and p=1(¢) = 0, else.

In the construction of the statistical penalty we replace the unknown expected value ¢ = ESy,(m)/o by

its estimate ¢ := S’(k) m)/&. We observe that Equation (T4) yields for the Kullback-Leibler divergence
b
of the multivariate densities fS(m)/& and fé(n)/& that

e )

be By

where S := S is as in Equation (T0). Therefore, we may redefine the statistical penalty as

S-1), &)
(17) shi= > N VKL (Sb ) 5 (")>

o 1
be By

Here, N(kgl) relates for each b-value to the achieved variance reduction using the adaptive weights

m,

m m

(18) ) = ) - Kaa (sE0/0)

where the adaptation parameter A > 0 determines the impact of the adaptivity. Its specific choice can be
found in Section Taking the impact of the spherical interpolation into account, we consider the same
classification of cases as for the interpolation formula (17). For b = 0, we down-weight the influence of
the Sy-images to compensate the already achieved variance reduction. Otherwise, the Sy-images would
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dominate the adaptation in an undesirable manner. Hence, for m = (¥, G, ) we set

max > 12),(712 ifb>0A gm € Gy,
k' <k neVxaGy
-1
B max ( Y7, clgll /N(’f) o itb>0,Gm € Gy,0 < b #b,
(19) (kzj = klgk g (’Um, b,gm )’b
m p—
I’ ~ (k:/) . N

%}‘;‘f( jean NG 54) +IGl it >0 G € G,

max Y @ | - [So| ! ith=0AGn € Gy
L k'<k neV xGo

where |G| denotes the number of measured gradients on the shell with b-value b and | Sp| is the number

of acquired Sp-images that form the mean image S;. The constants cl()l)% and the gradients g%m are

given in Section Note, that we consider the maximal variance reduction Nﬁfé = 11?2{ (+) until

step k in order to ensure that the sequence {Nﬁfé}ﬁ;o is non-decreasing. This allows to preserve an
achieved adaptation quality during iteration.

Finally, we may introduce the algorithm for multi-shell position-orientation adaptive smoothing (msPOAS).
For simplicity we denote h(¥) := h(*) (b, §) and s := s(h(¥)), see the discussion above.

B Input parameters: Sequence of location bandwidths {h}’g;o, balancing parameter k,
adaptation parameter A > 0.

W Initialization: géo) (m) == ?éo) (m) and Nr()% = Nﬁg?b forallm € V x Gy, b € By.

B lteration: For each b € By and m := (Ui, Gm) € V X Gy do the following. Interpolate the
missing values of géfc_l)( ) and Nf:)b,, b € B\ {b}, according to Equations and (79).
Then, calculate the statistical penalty

G(k—1) (k—1)
k)—ZNkl)ICL<S _(m) 5, (")>7 nev x Gy

o o
bEBo
the adaptive weights
0i8) = Kioe (8:(m,m)/h0)) - Kog (sE0/N) . n eV x Gy,

the corresponding sum over the adaptive weights

(k) _ K
oy =max | af) |
) k' <k
- neVxaGy

and the adaptive estimator

S my =S ah)Sy(n)/NE),

neV xGy

W Stopping: Stop if £ = k* and return S'b(k*)(m) foreachb € Byandallm € V x Gy, else set
k:=k+ 1.

In |Becker and Mathé|[2013] theoretical properties of the Propagation-Separation approach have been
studied. These results are restricted to noise distributions that belong to an exponential family and do
not generalize to non-central chi-distributed observations. However, the examples in Section give
sufficient evidence, that the general behavior of the algorithm remains unchanged. We included them in
this article in order to provide a better understanding for the procedure, its performance during iteration
and the impact of the maximal location bandwidth h(k™),
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2.5. Advanced choice of the adaptation bandwidth. We present an advanced parameter choice strat-
egy for the adaptation bandwidth A which is the crucial parameter of the procedure. It determines the
amount of adaptation. For A — co msPOAS simply is a non-adaptive filter with the kernel function K¢
and the bandwidth A*"). For A — 0 the adaptive estimator only includes a non-vanishing weight 12)7(,]1“7)1
at m = n and the msPOAS result coincides with the original data. We call this effect for small values
of \ “adaptation to noise” as msPOAS then interprets variability of the signal caused by noise as dis-
continuities. Hence, A should be sensible to the structure of the data allowing as much adaptation as
possible, but avoiding adaptation to noise. The propagation condition [Polzehl and Spokoiny! [2006] en-
ables a choice of A which is independent of the data at hand. It has been reformulated and analyzed
in a recent article by Becker and Mathe|[2013]. The basic idea is to ensure, under homogeneity, for the
adaptive estimator a similar behavior as for the non-adaptive estimator, which is optimal in this situa-
tion. That is, the impact of the adaptation should be negligible supposing a globally constant parameter
function 6(.) = 6.

The parameter choice is formulated with respect to the parameter 8 € © C R that determines the
probability distribution Py of the observations. For dMRI data the rescaled observed signals Sy(.) /o ~
X2r(0/0), b € By, relate to the non-centrality parameter 6 via

(20) Omp = (E[Sp(m)] fo) €O,  m eV x Gy

For the parameter choice we consider an artificial data set with parameters {Hm,b}meVXGb1 b € By,
such that the (artificial) observations satisfy Sp(m) ~ Py, , with 0, , = 0, for some ), € ©. For

— k ~
m € V x (G, we denote the resulting non-adaptive estimate by 9,(%)5, and the adaptive one by Hfs)b

— k ~
replacing in Equation the expectation ES,(m) by the corresponding estimate Sl(, )(m) or Slgk) (m),

respectively.

Now, we analyze the behavior of the non-adaptive estimator. This has been studied in |Polzehl and
Spokoiny|[2006] supposing an exponential family model with unbiased observations EY; = 6; instead of
non-central chi-distributions. This model includes Gaussian, Gamma, Poisson, Bernoulli and many other
probability distributions. Then, the non-adaptive estimator satisfies under homogeneity for each b-value
b€ Byandallm € V x (3, the exponential bound

@) P (N(’“) KkL@®, o) > z> <27, Sy(n) S Py, 0,0, foraln eV x Gy

m,b m,bs

This means that the Kullback-Leibler divergence between the exact parameter 8, and the corresponding

. (K . - . —~—(k .
estimator an’)b decreases (in probability) at least with rate NV ;l)b Thus, we aim to ensure the same rate

for the adaptive estimator supposing a non-central chi-distribution.
Let us consider the procedure for single-shell data, first. This can be done by simulating data
id
{m7 Sb(m)}mEVXGb g Ru Sb(m> ll\/ ]P)957

for some least favorable 8, € ©, where b € By is fixed. Then, we choose for b € By the minimal
value Ay such that the following condition is satisfied for this fixed parameter 6y,

Let the function 3 : {0,...,k*} x (0,1) x © - Rt with A > 0and m € V x G fixed
be defined by

3 (k, p; 0y) = inf {z >0:P (N(’“) KLOGP (m, \), 0) > z) < p} :

m,b

where éék) (m, \) denotes the adaptive estimator resulting from the algorithm with adapta-

tion bandwidth A > 0 and observations .Sy (n) X Py, foralln € V' x Gy. We say that A
is chosen in accordance with the propagation condition of level ¢ > 0 for 6, € © if the
function 3, (., p; 8p) is non-increasing for all p € (e, 1) [Becker and Mathé, 2013].



13

Here, the behavior of 3 is invariant w.r.t. the choice of m € V x G} since Equation and the
error distribution hold on the whole measurement space V' X (. The parameter 8, is appropriate if it
yields a sufficiently large value )\, such that the propagation condition remains valid for a certain range
of parameters ©; C © including the true but unknown parameters ¢, ,,, with m € V' x G with high
probability. Simulations show that 8, =~ 3 satisfies the desired.

For the multi-shell data the same strategy has been implemented with

Z N(k) /Cﬁ(él()k) (m, A),0,) inplace of Nr(r]z)blCE(él()k) (m, ), 0p),

m,b
be By

—_ k ~
where the missing values of an?b and 9£k) (m) follow again by interpolation, see Equations (T0) and (T9).

This is motivated by the equivalent modification of the statistical penalty, see Equation (7). Selection of A
is then done using the gradient schemes and b-values at hand and specifying appropriate values of &,
for the different shells. In practice, we approximate the probability

PSS NOKLOE (m,N),0,) > =
beBy

by the corresponding relative frequency

|V X G‘il Z 1M(k)(z)(m)7
meV xG A

where |V x G| denotes the number of observations m and

MP () ={meVxG: Y NWKLOM (m,2),0) > =
be By

The approximation and the propagation condition are restricted to the interior of the design space in
order to avoid boundary effects. Simulations are carried out using an artificial data set that ensures a
sufficiently large number of effectively independent regions for estimating the propagation level on the
basis of a single realization.

For our real datasets described in Section the adaptation bandwidth A = 20 yield the propagation
level ¢ = 5 - 107°. This means, that (in probability) 5 of 10° estimates would adapt to noise in a
homogeneous setting. One of the considered datasets contains single-shell measurements and the other
one multi-shell data with three g-shells (including the Sy-image with b = 0). Hence, the choice of A
seems to be invariant w.r.t. the number of shells. Furthermore, it shows a certain stability w.r.t. the number
of measured gradients as the first dataset was measured with 60 gradient directions and the second
one with 100 per g-shell. Probably, the choice of ¢y, which is given in Section has compensated
the impact of this difference. Additionally, we observed for a fixed value of A with varying degrees of
freedom 2L’ always the same propagation level. In Section |5, we will discuss the mutual effects of the
adaptation bandwidth A and the noise variance o.

The introduced choice of the adaptation bandwidth provides a better interpretability than our previous
strategy. In particular, this enabled a detailed evaluation which provided the mentioned invariances of A
w.r.t. the numbers of shells, gradients and receiver coils. Additional theoretical benefits are discussed in
[Becker and Mathe, [2013].

2.6. Simplified discrepancy in the measurement space. We introduce a new and simplified discrep-
ancy on R3 x S? in order to accelerate the algorithm and avoid possible artifacts which may be introduced
by the local approximation of our recent discrepancy 4.
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In the original work [Becker et al., [2012], we embedded the measurement space R? x S? into the special
Euclidean motion group SE(3) following an approach of Duits and Franken| [2011]. For processing of
dMRI data, the authors recommended left-invariant SE(3)-operations because of their close relation to
Euclidean-invariant operations on the orientation-marginal. The embedding provides a group operation,
a definition of a (R3 X SQ)-convqution and several discrepancy functions. The canonical discrepancy
on SE(3) is the Riemannian 2-norm since it refers to the SE(3)-geodesics. We used it for the definition
of the discrepancy Ax(.,.) on R3 x S?, see Equation (2). Then, the squared non-adaptive estimator
in Equation (3) corresponds to a (discrete) convolution on R3 x S? [Becker et al., 2012, Appendix A.3].
Since the typical kernel estimation on R can be described as (discrete) convolution on R this property
seems natural. Additionally, the method POAS yield quite convincing results on simulated and real dMRI
data [Becker et al.| 2012, Section 4].

However, the Riemannian 2-norm is defined via integral curves [Dungey et al., |2003]. In order to get
an explicit formula, we switched to a local approximation. The special Euclidean motion group SE(3) is
defined as the semi-direct product of the Euclidean space R3 and the special orthogonal group SO(3),
such that

SE(3) := R3 x SO(3).

The former describes translations and the latter describes rotations in R3. The approximation of the
Riemannian 2-norm bases upon the left-invariant coordinates k; of SE(3) setting

3 /2 ¢
(22) ||, ~ inf <Z kP r (kD RS+ |k‘6|)> [T exp(kin) =mg, 5,
=1 i=1

where M,;, denotes the matrix representation of m € SE(3) and A; are the left-invariant vector fields
of SE(3) in matrix representation. The parameter « balances between distances on the sphere and in
voxel space, see Section For i = (0,R) € R3 x SO(3), the coordinates k1, ko and k3 relate
to the spatial coordinates of FAlflf} € R3 and the others to the angular coordinates depending on the
rotation matrix R € SO(3), only. We refer to [Becker et al. [2012, Appendix A] for more details. While
the exact discrepancy A(.,.) on R? x S? is well-defined w.r.t. the embedding of R? x S? into SE(3),
its local approximation violates a certain invariance. More precisely, the approximation depends on an
additional rotation angle which appears in the parametrization of SO(3) but not in the parametrization
of S?, see Figure |3 To avoid possible artifacts, we introduce a new discrepancy function that is also
easier to compute.

By definition of the group product on SE(3)
my -sg(3) M2 = (U1, R1) 'sg(3) (U2, R2) = (U1 + Rit2, R1R2),  may,ma € SE(3),

the rotation group SO(3) acts on the translation group R?, not vice versa. Hence, R? and SO(3) play
different roles. Nevertheless, in the approximated discrepancy A(.,.) on R? x S?, see Equations (2),
and we get two well separated parts, the squared Euclidean metric

3
> k=5 - B
=1

and the term k3 + k2 + |kg| depending on the two gradients g1, Go € S. Against the comprehensible
conjecture that both parts would interact this implies that the Euclidean and the spherical distances of
voxels and gradients respectively can be considered on its own. The Euclidean metric as distance in voxel
space complies with our intuition, but we want to overcome the violation of the mentioned invariance.
Hence, we propose the great-circle distance, which describes the shortest distance between two points
on the sphere following the spherical geodesics. It equals the radian, that is, the arc length between the
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Comparison of distances &, and A¢

15 2.0 25

1.0
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0.0 0.5 1.0 15
S

FIGURE 3. Pairwise scatterplot of discrepancies d,; and A for k = .5, ||, —T2|| = 0.
Each point corresponds to a gradient pair out of 60 gradients. The line where both
values would coincide is shown in red.

vectors g1, g2 € S? on the corresponding unit circle. It can be calculated by
91,9
d§2(gl792) : arCCOS<91792> S [07 ‘]?

where (., .) denotes the Euclidean scalar product. Replacing in A, (., .) the SO(3)-term by the spherical
geodesic we get

_ >)1/2

(H{/’l — 172||2 + K2 arccos2<§'1,gg

In order to identify each gradient § € S? with the opposite direction —g we consider the absolute value
of the scalar product in dsz(.,.). Further, we recommend a slight modification to ensure the triangle
inequality, see Proposition[1] This leads to the definition

(23) Su(my,ma) == |01 — || + k1 arccos |(G1, Go)|,  m1,ma € R? x S%

Now, we analyze the behavior of our new discrepancy dy (., .). It provides a number of theoretical prop-
erties which justify its appropriateness. The associated proof is given in Appendix [Al

Proposition 1. The function 6, : (R® x S?) x (R3 x S?) — R satisfies the following properties:
1 6, is a pseudometric on R® x S?. In particular, we have
(24) Ok [ml,mQ] =0 iff m =mgormy = (17, g) andmsg = (U, —57)

2 6, is invariant w.r.t. the left-action of SE(3) on R x S?, that is, Euclidean invariant in the voxel
space R3 and rotation invariant in the gradient space S?.

3 The non-adaptive estimator in Equation can be described by an (R3 x S?)-convolution.

4 The method msPOAS is invariant w.r.t. the left-action of SE(3) on R? x S? if the non-adaptive
weights base upon the discrepancy 9,, in Equation (23).

5 The non-adaptive weights @gf% resulting from Equation (@) with d,, in place of A, are increasing
w.r.t. k for all points m,n € R3 x S2.
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Non-central x densities — Gaussian approximations L=2
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FIGURE 4. Densities of non-central y-distributions with 2. = 4 degrees of freedom
and approximating Gaussian densities.

In contrast to a metric, a pseudometric allows the case d,;(m1, ma) = 0 with m; # ma. Equation
is in agreement with the general interpretation of dMRI data, where we do not distinguish between one
direction ¢ and its opposite — g which follows from the symmetry of the diffusion process.

2.7. Simplified approximation of the statistical penalty.

The adaptation of the algorithm depends via the statistical penalty of the Kullback-Leibler divergence.
This is based upon the probability distribution of the measurement observations, which we discussed in
Section As a result, for known noise variance o2 the standardized data S, () /o may be considered
as non-central y-distributed. Due to the lack of an explicit formula of the Kullback-Leibler divergence be-
tween two non-central y-distributions, we seek for an appropriate approximation. The following approach
improves and accelerates the results in[Becker et al.|[2012], Appendix B].

We approximate the noncentral y-distribution with 2.’ degrees of freedom and noncentrality parameter
by a Gaussian distribution with mean

2
n_ T ow-ny (07
u(0,2L)—\/;]L1/2 < 2)

v(0,2L) = 2L + 6% — 1i%(6,2L))

and variance

such that the first and second moments of the original and approximating distributions coincide. This is
motivated by Figure [4] where we compare various non-central x-distributions with their corresponding
Gaussian approximation.

Then, we approximate the Kullback-Leibler divergence of two non-central x-distributions xo7/ ¢, and
X2L/,6, BY

[M(el, 2L/) — (b2, 2L,)]2

(01, 2L7) + v(02,2L"))]’

IC‘C(XQL’,Hl 5 X2L’,92) =
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Exact (black) and approximated (red) KL discrepancies (L=2) Absolute (black) and relative (red) error (L=2)

© -

FIGURE 5. Left: Contour plots of Kullback-Leibler divergence between two non-central
x-distributions with 2L, = 4 degrees of freedom (black) and its symmetrized Gaussian
approximations (red), Right: absolute (black) and relative (red) error of the approxima-
tion.

which can be interpreted as a symmetrized Kullback-Leibler divergence of the approximating Gaussian
distributions. In the definition of the statistical penalty this leads to

gé’“‘f)<m>,éé’“‘j><n>>w 0 Rk )
o) T R D) + oS D w/a)]

(25) KL <

where
B8 m) o) = v(Bym), 2) = 21/ + [ |5V m)f)]|” — [ D /e

with 0 (m) := p = <§ék_1)(m)/a) and p as in Equation (T2).

The relative and absolute error of this approximation are given in Figure [5} where the exact Kullback-
Leibler divergence is calculated via a numerical integration. This would be prohibitive in msPOAS due to
the computational workload. We show the results for 4 degrees of freedom. For other values of 2L we
observed a very similar behavior.

3. METHODS

3.1. Simulations. In order to provide some more intuition for the behavior of the algorithm, we show
two simple examples on a one-dimensional design X' := {1, ...,4000}. Here, we use the R-package
aws [Polzehl, |2013], where the Propagation-Separation approach has been implemented for one-, two-
and three-dimensional designs. It differs from (ms)POAS via the applicable designs only. We consider a
piecewise constant test function 61 (.) and a piecewise polynomial test function 62(.). Then, we simu-
late observations that follow a non-central chi-distribution with non-centrality parameter 8;, [ = 1,2 and
2L = 4 degrees of freedom, i.e., Y; ~ x4 (6;(X;)) for all X; € X. The plots were provided by the
function aws () setting hmax := h(*") := 4000 and 1kern = "Triangle™" usingthe same ker-
nel functions as in Eq. (5). The sizes of the considered test functions compare well with the parameters
in our real data, see Section Similar situations have been considered in |Becker and Mathé| [2013]
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for Gaussian distributed noise. However, it was not sure that these results remain valid for y-distributed
observations as the theoretical results in |Becker and Mathé| [2013] were restricted to another class of
probability distributions.

3.2. Experimental data. We first re-analyzed the 7T dataset from a whole body MR scanner (MAGNE-
TOM 7T, Siemens Healthcare, Erlangen, Germany) used and described already in |Becker et al.| [2012].
The scanner was equipped with gradients with a peak amplitude of 70mT/m and a maximum slew rate
of 200T /m/s (SC72, Siemens Healthcare, Erlangen, Germany). Diffusion weighting gradients were ap-
plied for 60 directions at a b-value of 10005/mm2. 7 interspersed S images were acquired. The scan
was repeated 4 times. An optimized monopolar Stejskal-Tanner sequence according to [Morelli et al.
[2010] together with the ZOOPPA approach described in [Heidemann et al.| [2012] has been used for
the scan. The experiment was performed using a single channel transmit, 24-channel receive phased
array head coil (Nova Medical, Wilmington, MA, USA). 91 slices with 10% overlap were acquired at a
field-of-view (FoV) of143 x 147mm? resulting in an isotropic high resolution of 800um. Further imag-
ing protocol parameters were: TR 14.1s, TE 65ms, BW 1132Hz/pixel, ZOOPPA acceleration factor of
4.6. A healthy young volunteer was scanned four times using this protocol in one session after obtaining
written informed consent in accordance with the ethical approval from the University of Leipzig. Total
acquisition time was 65min.

The second example data has been acquired on a 3T MAGNETOM Trio scanner (Siemens AG, Health-
care Sector, Erlangen, Germany) using a reduced FoV-technique as described in [Heidemann et al.
[2010]. The FoV was 161 x 58mm around the motor cortex resulting in an isotropic in-plane resolu-
tion of 1.2mm. 34 slices of 1.3mm slice thickness. Diffusion weighted data were acquired at 2 different
b-values: b = 800s/mm? and b = 2000s/mm? each with 100 gradient directions as suggested
by |Caruyer et al.|[2011]. 21 interspersed Sy-images at b = 20s/m]rn2 were acquired. One healthy adult
volunteer (male, age: 36) participated in the study approved by the local ethics committee after giving
written informed consent. The total scan time was 22min. Data was corrected for eddy currents and mo-
tion artifacts [Mohammadi et al.,[2010] using the ACID toolbox (http://www.diffusiontools.
com/) for SPM.

Both datasets have been smoothed using the msPOAS method described in this article. The adaptation
bandwidth )\ of the procedure has been fixed at a value of 20 as detailed in Section[2.5] The number of ef-
fective coils, that determines the degrees of freedom of the non-central y-distribution, see Section 2.3} is
very difficult to estimate from the data. Fortunately, msPOAS is relatively robust against misspecification
of L, as will be shown for the second dataset in Figure We therefore use L' = 2 for the first dataset
to mimic an average influence of two coils to the resulting distribution, and L' = 1, 4, 16 for the second
dataset to analyze the dependence of the results from the choice of L’ which is difficult to estimate from
the data. We do not explicitly analyze the dependence of the results on the choice of the noise variance o
or on the adaptation bandwidth A\ as the qualitative behavior can be extracted from the definition of the
adaptive weights in Eq. (18), see also the discussion section. kg has been chosen in accordance with
our suggestions in Section [2.4based on the number of gradient directions for both datasets, where 0.5
for the first and 0.3 for the second dataset have shown best performance of msPOAS.

We estimated the noise standard deviation o using the method described in [Becker et al.|[2012] and
the methods “Bk-M1-x” and “Bk-M2-x” described in |Aja-Fernandez et al.|[2009]. The estimates for o
from the former method are rather independent of L’. For the first dataset we get consistently values
around 75, for the second dataset values around 30 have been estimated. The results from the latter two
methods depend on L, providing

5 69.2— L)
OBEk— —x — . ’
Ph=MI=x V2LT(L' +1/2)

G Bb_12—y = 58.3/(2L))


http://www.diffusiontools.com/
http://www.diffusiontools.com/
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for the first and
(L)
6Bk M1_r = 417 :
Ph=M1=x VRLT(L' +1/2)

for the second data set. However, estimation of L’ is very difficult. Based on our experience with these
variance estimates we decided to use for our calculations, i.e., ¢ = 75 for the single-shell data and
o = 30 for the double-shell data. Finally we note, that based on these estimates for o the noncentrality
parameter of the considered x-distributions is in the range of [0, 8], therefore we considered these values
in the simulated univariate example and for the propagation level.

6BE- M2y = 33.T/(2L)

For the first (single-shell) dataset we explicitly compare the msPOAS results with the results of POAS
obtained in |Becker et al. [2012]. There, we used A\ = 12, kg = 0.6, 0 = 66, and L' = 2. The
different choices of the adaptation bandwidth A in POAS and msPOAS may result from the explicit cou-
pling of the Sp-images in the adaptation. The simplified discrepancy and the new approximation of the
Kullback-Leibler divergence should have only minor impact. For comparison we estimate the diffusion
tensor model, as it is the most widely used in practice and we also did in our previous publication [Becker.
et al.l 2012]. The diffusion tensor has been estimated using a non-linear method described in [Polzehl
and Tabelow|[2009]. Then, FA maps have been calculated based on the tensor estimates.

For the second dataset we compared msPOAS with the results of a simple approach that applies POAS
separately on each shell of the double-shell dataset. We denote this latter approach for smoothing multi-
shell data the naive POAS method.

For the naive POAS method we used the same variance estimate o = 30 as for msPOAS and a medium
L' = 4. We chose an adaptation parameter \ for POAS such that a fair comparison can be made. For the
naive POAS approach on the multi-shell data we searched for a value of A that provided optimal results,
i.e., A = 6. The recombined smoothed diffusion weighted data again forms a double-shell dataset.

For the multi-shell dataset we estimated a one-stick-one-ball model [Behrens et al., [2003] to evaluate
the variability of directional estimates in a model that goes beyond the diffusion tensor model. To do this
we used the FSL standard parameters and sampled 50 directions for the sticks. The model has been
evaluated for the original data, for the msPOAS result, and for the result from the naive POAS approach.

We also calculated fiber tracks using a streamline FACT algorithm [Mori et al., [1999] implemented in the
package dti based on diffusion tensor modeling of the multi-shell data.

3.3. Software. For data preparation, motion and eddy-current correction we used SPM [Friston et al.,
2006] and the ACID-toolbox [Mohammadi et al., 2010].

The computations for msPOAS and POAS in this study were performed with our R-package dti [Tabelow
and Polzehl, [2013] (version 1.1-5). For the simulations we used our R-package aws |Polzehl,2013]. Both
packages are freely available on CRAN (http://cran.r—-project.org). Adetailed description
of the usage of the package dti can be found in |Polzehl and Tabelow|[2011]. The implementation uses
FORTRAN and native R-code. Diffusion tensor estimates and FA maps were produced using the package
dti.

The one-stick-one-ball model has been computed using FSL [Smith et al., [2004].
4. RESULTS
4.1. Simulations. In Figure @we present the results for the one-dimensional test-functions 61 (.) and

02(.) with A = 20. For both examples, we show two plots with increasing location bandwidths 71 =
485, 3610 and ho = 81, 3610 corresponding to the iteration steps k1 = 30, 39 and ko = 22, 39. This
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FIGURE 6. Univariate examples for adaptive smoothing of noncentral x-distributed
observations for an optimal and for an extremely large bandwidth. From left to right:
Local constant noncentrality parameter (NCP), 61 (.), with location bandwidths h; =
485, 3610, and locally smooth NCP, f5(.), with location bandwidths ho = 81, 3610.
Observations are presented as green dots, the expected values as blue lines, smooth-
ing results are shown as black lines.

illustrates the progress of the estimation function during iteration. The maximal number of iterations is
k* = 39. In the steps k1 = 30 an ky = 22 the mean-squared error is minimal.

We may conclude that msPOAS provides the following (heuristic) properties.

B The algorithm separates homogeneous compartments with sufficiently large discontinuities. This
allows (almost) consistent estimation of the unknown expected value, which refers to the unknown
parameter function 61 (.). This is illustrated in Figure[f] see 2 € {1, ..., 1600} in the local constant
example.

B The separation property fails if the discontinuities are small. In this case, the algorithm leads to
a bounded estimation bias since different homogeneous compartments are treated as one, see
x € {1601, ...,4000} in the same plots as before.

B For model misspecification, i.e., for piecewise smooth parameter functions the estimator is forced
into a step function, see the piecewise smooth example #5(.) in Figure@ This can be interpreted
as an intrinsic stopping criterion of the algorithm as it ensures a bounded estimation bias. There-
fore, the maximal location bandwidth h**) and as a consequence the number of iteration steps k*
are restricted by the resulting computational workload, only. The choice of h**) should ensure a
reasonable computation time still providing a certain smoothness within homogeneous regions.

4.2. Experimental data. The multi-shell data has been processed by our implementation of msPOAS
within 15 minutes on a single core of a HP SL390s compute server with an Intel Xeon, Six-Core 3467
MHz. The same computation using POAS for each shell separately required more then one hour. This
significant acceleration effect is due to the simplifications and approximations for the discrepancy and
the Kullback-Leibler divergence. For the much larger single-shell dataset msPOAS used 3 hours and
18 minutes, while POAS used 4 hours and 37 minutes computation time on a single core of the same
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machine. Our implementation has been parallelized using OpenMP which significantly speeds up the
computation compared with these single core results.

We start with the analysis of the first (single-shell) dataset, that has been used in |Becker et al.| [2012]
to introduce POAS. In Figure [7]we show a color-coded FA map for an axial slice of the original data (a).

FIGURE 7. Comparison of color-coded FA maps of the single shell dataset also used
in Becker et al.| [2012]. a) Original noisy data, b) msPOAS reconstruction, c) POAS
reconstruction as in|Becker et al.|[2012], d) mean image of four repeated measurements
from the same session.

The smoothing effect by msPOAS is obvious in Figure [7[b), while there is no blurring effect on borders.
For comparison we give again the result of the single-shell POAS from |Becker et al.|[2012] for the same
slice. There are of course small differences in detail: The first reason is, that msPOAS for a single shell
is not identical with POAS, as information from diffusion weighted and .S images is now combined to
improve adaptivity, see Section Second, the parameter choice for A is different in accordance with
the advanced parameter choice strategy detailed in Section[2.5] Third, we choose a smaller value for kg
as the new discrepancy leads to slightly smaller distances on the sphere, see Figure[3] In Figure [7(d) we
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show the color-coded FA obtained from all four (unsmoothed) scans. This image can to a certain degree
serve as a ground truth for the evaluation of the msPOAS (or POAS) result.

We now provide the results for the multi-shell dataset considering the b-values b = 800s/mm? and
b= 20005/mm2. In Figure we show the diffusion weighted data for a slice before and after recon-
struction using msPOAS. The adaptive smoothing effect of msPOAS is apparent for both shells. Simul-
taneously, we demonstrate that the result of msPOAS is rather robust against misspecification of the
effective number of coils L’ by showing corresponding results for L' = 1,4, 16. This is a very helpful
property of msPOAS as the estimation of L’ from the data is a highly non-trivial task and the value of
L’ might not be homogeneous in voxel space. For the question, how the msPOAS results depend on the
estimate of o and on the choice of \ see the discussion section.

In the last row e) we show the result of a naive POAS analysis. For a fair comparison of msPOAS with
the naive POAS approach, we choose the adaptation parameter A = 6 for POAS, such that the shell at
b = 800s/mm? shows similar results as the msPOAS approach. The outer shell at b = 2000s/mm?
has a significantly lower signal-to-noise ratio and the size of discontinuities approximately scales with
the b-value. As a result, the diffusion-weighted image is somewhat blurred as the image contrast is not
sufficient for the adaptation to work. Our new method msPOAS is therefore able to achieve much better
results then the naive approach, as the larger contrast at the inner shells is used to improve adaptation
also at the shells with higher b-value.

In Figure [9 we show the fiber track reconstruction using a streamline FACT algorithm [Mori et al, [1999]
after DTl modeling for the multi-shell data. Comparison is given for smoothed multi-shell data after the
naive POAS approach (left) and after msPOAS (right). We include only fiber tracks with a minimal length
of 25 line segments for a better visibility. The Figure shows, that after msPOAS the reconstruction of the
fibers even with this very simple algorithm is much richer then the one obtained from the naive POAS
approach, see for example the occurrence of the U-Fibers. This confirms the observation from Figure [§]
that msPOAS indeed leads to improved results compared to the naive single-shell POAS approach.

Finally, we illustrate quantitatively that directional information is much less variable allowing, e.g., more
precise fiber tracking, see also Figure[9] We therefore analyze in Figure [T0]the variability of the estimated
directions in a one-stick-one-ball model for a small region. The central slice of the region consisting of 10
slices is shown in Figure [10R). The white square illustrates the location of the 20 x 20 voxel region-of-
interest. The one-stick-one-ball model estimated a sample of 50 directions for the stick. In Figure [10p) we
illustrate for one voxel these directions by plotting them using their representation by spherical angles ¢
and #. In light red we show the directions for the original non-smoothed data, in black we show the corre-
sponding points after smoothing with msPOAS. We now want to quantify the observation in Figure [T0p)
that these points are much more concentrated. We therefore compare the mean angular deviation (MAD)
for the sample directions from its mean direction in the original data and after msPOAS reconstruc-
tion. For the voxel considered in Figure [T0p) the circles illustrate the location of the mean direction and
this MAD which corresponds to the radius. The mean directions for the original data and the data after
msPOAS of course differ. In total, after msPOAS the MAD is much smaller implying that the estimate is
much less variable. In Figure [T0c) we plot the ratio of the MAD for the msPOAS reconstructed data with
the MAD of the original non-smoothed data as a function of the fractional anisotropy in a DTI model for
the data. If there is some improvement is the sense, that the directional estimates are less variable after
msPOAS, this ratio is expected to be less then 1. The horizontal line in Figure [TOt) represents this value.
We observe that for most voxels especially for those with higher anisotropy the ratio is indeed smaller
than 1 (mean value 0.57 for FA > 0.3). In Figure [10d) we show the same plot for the data analyzed
with the naive POAS approach (mean value 0.64 for F'A > 0.3). Obviously for more isotropic voxels the
variability of the directional estimate is much larger due to the lower anisotropy. In Figure [TOg) we show
the improvement for the variability of the directional estimates after msPOAS for the “white matter” voxels
only, which we loosely characterize by F'A > 0.3) here. These voxel may of course also contain gray



FIGURE 8. Comparison of the diffusion weighted data for a slice of the double-shell
experimental dataset. The left row shows the data at the b = 800s/mm?-shell, the
right row at the b = 20003/mm2-shellz a) Original noisy data, b) msPOAS recon-
struction (L=1), ¢c) msPOAS reconstruction (L=4), d) msPOAS reconstruction (L=16),
e) reconstruction using POAS on each shell separately.
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FIGURE 9. Fiber tracks from a diffusion tensor model of the double-shell data using
a FACT algorithm with a minimal fiber length of 25 segments for better visibility. Left:
Tracks from POAS reconstruction. Right: Tracks after msPOAS reconstruction.

matter. The main point, however, is that it possesses a larger enough directional anisotropy. The MAD is
less after msPOAS for most of the voxels. Finally, we demonstrate, that a slight improvement of msPOAS
compared to the naive POAS approach can be found: In Figure [T0f) we plot the improvement of the MAD
compared to the non-smoothed data (ratio) for the naive POAS method versus the msPOAS approach.
Most points lie below the identity line.

5. DISCUSSION

We developed a novel approach for noise reduction in multi-shell diffusion-weighted data (msPOAS). For
a maximum usage of information it exploits the geometry of the measurement space formed by (voxel)
position and (gradient) orientation as well as the vector structure of the measurements on the different
shells, including the Sy-images. The method avoids blurring of the structures observed in dMRI and
considerably enhances the signal-to-noise ratio. We have demonstrated that msPOAS is relatively robust
against the choices of method parameters and against misspecification of the number of effective coils
at a position, which is the parameter that is most difficult to get from the data.

The various examples in Section (4| nicely confirm the effectiveness of our new noise reduction procedure
msPOAS. Through a series of examples with simulated data and real dMRI data we illustrated its behav-
ior. The method avoids blurring and consequently preserves observed structure by restricting smoothing
to (almost) homogeneous compartments. To our knowledge, msPOAS is the first procedure which ap-
plies directly to the diffusion weighted images of multi-shell measurements by smoothing simultaneously
all g-shells. This includes an explicit coupling of the smoothing of the Sy-image with the other shells. The
advantages of this approach become obvious when comparing smoothing results of msPOAS with our
former procedure POAS for single-shell data, applied to each g-shell separately.

Re-using data from our previous publication [Becker et al.,|2012] we demonstrated that msPOAS achieved
at least similar results on single-shell data as POAS, which was explicitly designed for this kind of data.
We then presented a multi-shell dataset with high spatial and angular resolution. This not only showed
that msPOAS indeed reduces the noise in the data, but also provides superior results than the naive
POAS approach for each shell. The reason is, that the diffusion-weighted signal at the shells with higher
b-value is further attenuated. Discontinuities are scaled down, such that with a comparable noise level,
the contrast diminishes. This provides a more complicated situation for adaptation using (single-shell)
POAS on higher shells. In contrast, msPOAS uses a vector representation of the data for all shells, and
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FIGURE 10. Mean angular deviation (MAD) in a 1-stick-1-ball model from the estimated
mean direction of the stick: a) Color coded FA from diffusion tensor model with the
region-of interest that has been analyzed, b) Sampled “stick directions” expressed in
spherical angles ¢ and 6 for the original data (light red) and the msPOAS reconstruction
(black) for one white matter voxel, c) Ratio of the MAD for the msPOAS reconstruction
and for the original data, d) Ratio of the MAD for the POAS reconstruction for each shell
and for the original data, e) Comparison of the MAD for the msPOAS reconstruction
and for the original data using voxels with a minimal fractional anisotropy of 0.3, f)
Comparison of the ratio of the MAD for the msPOAS and the original data with its
counterpart from the POAS reconstruction on each shell using voxels with a minimal
fractional anisotropy of 0.3.
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is thus able to achieve the same quality of adaptation on all shells. We demonstrated this superiority
by comparing the smoothed diffusion weighted images directly, by showing resulting fiber tracks, and by
quantitatively analyzing the variability of directional estimates in the sticks-and ball model.

As msPOAS and POAS are both based on the Propagation-Separation approach the general behavior is
quite similar for example in case of partial volume effects or in their relation to smoothing methods based
on anisotropic diffusion. We therefore refer the reader also to the discussion of POAS in Becker et al.
[2012, Section 5] for comparison.

In order to simplify and accelerate msPOAS compared to the original POAS approach, we introduced
several modifications. These modification can be directly used also in the original POAS approach.
Due to computational complexity, the Kullback-Leibler divergence had to be approximated already in
POAS [Becker et al., 2012]. Our new approximation, introduced in this article, considerably accelerates
the computations while also behaving better (not shown here). The new discrepancy provides several
useful mathematical properties. It is a pseudometric and ensures Euclidean invariance in voxel space
and rotation invariance in gradient space. In contrast to the original POAS approach the embedding of
R3 x S? into the special Euclidean motion group SE(3) is only needed for the mathematical theory, but
no longer for definition of the algorithm. Therefore, it is much simpler to understand than the previous
approach.

MsPOAS is a method that can be applied in case of low signal-to-noise ratio. In such situations modeling
the original data by any method leads to a high variability of estimated parameters and characteristics.
This variability is essentially reduced by the proposed adaptive smoothing procedures without seriously
compromising the structural information in the data. Note, that in case of high signal-to-noise ratio the
algorithm essentially leaves the data unchanged.

The presented procedure benefits from a high number of measured gradient directions, and also from
sampling additional shells. If all g-shells have an identical gradient scheme then the algorithm could be
accelerated as no spherical interpolation is needed. In contrast, varying gradient schemes benefit from
a higher angular resolution, but possibly suffer from a slightly biased statistical penalty due to the inter-
polation. In any case, increasing the number of gradients limits a possible bias introduced by assuming
local constant parameters on the sphere. If the number of gradient directions is too low, say less than 20,
msPOAS reduces to a separate adaptive smoothing of the diffusion weighted images with fixed gradients.
This requires a sufficient image contrast.

One important aspect of the presence of noise in dMRI data is the bias in the estimated quantities. The
parameter characterizing the diffusion weighted signal, i.e. 8, 5, differs from the expected value ES, (m)
of the signal distribution in a noisy situation, see Equations and in Section It is, however,
the expected value, that is actually measured. The relative difference between ESy(m) and 6, is
especially large in case of a small non-centrality parameter, i.e., small signal-to-noise ratio. MsPOAS
essentially leads to largely improved, i.e., less variable estimates for the expectation value of the distribu-
tion. Therefore, Equation can be in principle used for assessing the true parameter 6, ;, and correct
for this bias. In practice, this requires a precise determination of the noise variance o2 and the effectively
applied number of receiver coils L', which is a challenging problem in itself and goes beyond the scope
of this article.

The msPOAS algorithm uses o and L' as data-dependent input parameters. They should be estimated
separately by any method that is available and suitable for the data. In this article we assumed homo-
geneous ¢ and L’ over the voxel space. Fortunately, msPOAS has proven to be relatively robust with
respect to misspecification of L’. On the other hand, msPOAS can be easily adapted to a heteroscedas-
tic situation at the cost of more complicated presentation and larger need for memory and computation
time. If o is underestimated, the adaptation will be very restrictive such that msPOAS does not change
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the data at all. In contrast, if o is overestimated, oversmoothing occurs with blurring of discontinuities. An
accurate estimate for o can therefore improve the results of msPOAS.

Besides o and L’ there are several other parameters that influence the results of msPOAS. Most of them
can be chosen independent of the specific realization of the data. Here, we summarize our recommenda-
tions for their selection. The kernel functions have only very minor impact on the results, see Section
and can, e.g., be chosen as in Eq. for efficient computation. For the adaptation bandwidth A there
exist two extreme cases, A = oo and A = 0 as can be seen from Eq. and already mentioned in
Section In the former case, the msPOAS result is a non-adaptive estimate as the adaptation term
always equals 1. In the latter case, the data will not be changed by msPOAS as the statistical penalty will
be infinity for any pair of distinct locations in measurement space. A can be basically chosen using the
propagation condition developed in Section[2.5] Fortunately, it does not depend on the realization of the
noise and only weakly on the noise distribution which in our case also includes the values of o and L’
for the data at hand. However, from our experience the A-values used in this paper are a good starting
point for any dataset. Adjustment can be easily done having in mind the two limits of msPOAS, that is,
A = ooand A = 0. ltis an important point that the choice of \ and the estimate of ¢ influence msPOAS
in a similar manner such that a misspecification of o can be to some degree balanced by the choice of \.
The choice of kg influences the amount of smoothing on the sphere in the first iteration steps. Again, the
values used in this paper can serve as a good reference. For a larger number of gradients or relatively
good signal-to-noise ratio it can be chosen slightly smaller. The number of iteration steps £* relates to
the last value in the sequence of increasing location bandwidths h{%) _Its choice should balance the com-
putation time and the desired smoothness within homogeneous regions, see Section As discussed
next, possible consequences of a violated structural assumption can be reduced by diminishing £*.

We should critically discuss the assumption of msPOAS, that dMRI data is characterized by regions with
homogeneous diffusion-weighted signal separated by discontinuities. This assumption is certainly only
an approximation of a more realistic piecewise smooth model. In Figure 6| we showed, that in case of a
violation of this assumption msPOAS forces the final estimator into a step function if the maximal location
bandwidth A(*") is sufficiently large. The same Figure also shows, that intermediate steps of the iteration
of msPOAS show results with less error compared to the true situation. Thus, in practice a careful choice
of k* and visual inspection might improve the results. Even, if k* is chosen large, the analysis shows,
that the final stable msPOAS result is a step function approximation.

Additionally, we recall that msPOAS requires independent data in each point of the measurement space.
As registration introduces spatial correlation into the data, applying msPOAS before registration may
seem preferable. On the other hand, unregistered data might lead to spurious discontinuities, which
msPOAS may identify. In our experience, msPOAS benefits from registered data without being harmed
by the small spatial correlation caused by it. It would be a nice piece of future research to combine
registration methods with msPOAS to further improve results.

Finally, we emphasize that msPOAS should not be combined with other smoothing methods. Previous
application of, e.g., a Gaussian filter would only hamper the performance of msPOAS due to the induced
spatial correlation and the resulting blurring. In fact, msPOAS performs very similar to a non-adaptive
filter within homogeneous regions, while it does not blur the observed structure at discontinuities.

6. CONCLUSION

Multi-shell dMRI acquisition has become a wide-spread application. In this article we introduced a new
noise reduction method msPOAS (multi-shell position orientation adaptive smoothing) for this data. The
method does not mask the real structure by blurring borders. It outperforms naive approaches, which
smooth each g-shell separately, by being the first algorithm that combines information from all shells
for structural adaptive smoothing. Due to its computational efficiency it can be also applied in practical
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applications. One of the strengths of msPOAS is that it is applied directly to the dMRI data and does not
use any dMRI model, see |Assemlal et al.| [2011] for an overview. Thus, the method does not introduce
a bias towards any of them. As a consequence any model can be used after smoothing for further data
analysis.
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APPENDIX A. THEORETICAL PROPERTIES OF THE SIMPLIFIED METRIC

We want to verify Proposition[1]in Section For that purpose, we remind some results from Duits and
Franken|[2011]. First, we define a (R? x S?)-convolution via the embedding of SE(3) into R x S? by

(26)  (p*rsxs2 @) (V1,01) = /Rg /82 p (jo(ﬁl — 1), Rg;ﬁ) q (U2, 2) dpi(G2)dva,

where Rz € SO(3) is any rotation with Rge, = § € S? and j denotes the surface measure on S2.
Next, we consider the left-regular action L : SE(3) — B(R x S?) of SE(3) on R? x S?, where B(H)
denotes the space of all linear, bounded and invertible functions H — H. This action is defined by

L,(m):= R Y7 —w),R 7)) eR*xS?  n:=(w,R)€SE®3),m:=(7,7) € R® x §?.
Using the same notation we describe the left-regular action Lof SE(3) on Lo (R? x S?) by
L,[U)(m) :=U(L,(m)) = UR YT —w),R'g), U €Ly(R®xS?).
An operator
P : Ly(R3 x %) — Ly(R3 x §?)
is called left-invariant if for all n € SE(3) it holds
Loo®=>D0L,.

In Becker et al. [2012], we limited ourselves to left-invariant SE(3)-methods. In the following, we show
that msPOAS is indeed left-invariant.

Proof sketch of Proposition[]

1 Pseudometric:

W 6. (m1, mg) = 0iff U1 = U and arccos |(g1, g2)| = 0. The latter holds iff | (g1, G2)| = 1,
that is, iff §1 = ga or 1 = — g by definition of S%.

B J, is non-negative since the Euclidean metric ||. — .|| and arccos : [0, 1] — [0, 7/2] are
non-negative.

B The symmetry of J, follows from the symmetry of the Euclidean metric and the scalar
product.

B Triangle inequality: arccos |(g1, g2)| measures the arc length of the great circle passing
through the gradients g1, go € S%. The great circles are known to be the geodesics of S?
relating to the shortest surface-path between the two points 7, o € S%. Hence, it satisfies
the triangle inequality such as the Euclidean metric and as a consequence d:

Sx(m1,m3) < 0x(m1, ma) + dx(ma,m3),  my,ma,mg € R® x S
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2 Left-invariance of d,: Let n := (i, R) € SE(3) and m; := (¥, ;) € R? x %, = 1,2. Then,
we get by the rotation invariance of the Euclidean metric and of the scalar product

Ok (Lp[mi], Lp[me]) = ok [(R‘l(ﬁl —@),Rtq1), (R (v — ), R‘lgg)]
= |IRY(¥ — & — v + )| + 3 ' arccos (R G, R 5a)|
= ||th — Ta| + 2 Larccos |(G1, 3|
= 0x(my, ma).
3 Convolution: We know from property (2) with R := Rg, that
8 (m1,ma) = R (T — B) || + 2" arceos [(R21g1, (0,0, 1)7)].

This allows to describe the non-adaptive estimator, which equals a weighted mean, by a discrete
convolution on R3 x S?, see Equation (Z6).

4 The left-invariance of msPOAS follows with property (3) analogous to/Becker et al.|[2012, Appendix
A.3] since the choice of the parameters {h(k’)}’,j*zo and s« is defined as for POAS.

5 The monotonicity of the non-adaptive weights follows from the definition of §,; and the monotonicity
of the sequence of location bandwidths {h(k)}’,j*zo since Kjq. is non-decreasing.
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