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Abstract

Rogue waves, by definition, are rare events of extreme amplitude, but at the same time
they are frequent in the sense that they can exist in a wide range of physical contexts.
While many mechanisms have been demonstrated to explain the appearance of rogue
waves in various specific systems, there is no known generic mechanism or general set
of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear
Schrödinger-type equation together with a concave dispersion profile around a zero dis-
persion wavelength we demonstrate that solitons may experience acceleration and strong
reshaping due to the interaction with continuum radiation, giving rise to extreme-value phe-
nomena. The mechanism is independent of the optical Raman effect. A strong increase
of the peak power is accompanied by a mild increase of the pulse energy and carrier
frequency, whereas the photon number of the soliton remains practically constant. This
reshaping mechanism is particularly robust and is naturally given in optics in the super-
continuum generation process.

1 Introduction

The appearance of waves with extreme amplitude has been observed in varous physical sys-
tems [1, 2, 3, 4, 5, 6, 7, 8]. Their appearance is most drastically illustrated for the case of
ocean waves [9, 10, 11], with waves exceeding the average wave crest by a factor two or even
more and causing serious damage to ocean-going ships. Recently, similar phenomena have
also been reported in optics where extreme events were observed in the soliton-supporting red
tail of supercontinua (SC) in fibers [6]. Substantial progress has also been made in the under-
standing of the mechanisms behind the optical rogue waves [12, 13, 14, 15]. Currently, most
explanations follow one of two alternatives: solitons or breathers. The former involves soliton
fission and selective Raman shifting of the largest solitons to the long-wavelength side of the
spectrum [13, 14]. The latter builds on the dynamics of known special solutions of the propaga-
tion equation as Akhmediev breathers [15, 16] or the Peregrine soliton [17].

A different possibility has been demonstrated in [18], where rogue waves result from the unusual
interaction of fundamental solitons with the low-level radiation background. The main mecha-
nism refers to a reflection process between pulses that originates from the wave blocking effect
in fluid dynamics [19]. In optics, it was first demonstrated as the “optical push broom effect” in
a fiber Bragg grating [20]. The reflection of pulses has also been discussed in recent works on
beam collisions [21, 22] and soliton trapping [23, 24]. In fact, this particular kind of the reflection
process appears in many wave-supporting physical systems and may be interpreted as a sim-
ple analogue of the event horizon [25]. Moreover, the fiber-optical analogue of an event horizon
[26, 27] requires only generic preconditions and can be understood in terms of the familiar cross
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phase modulation (XPM) [28] between continuum radiation in the normal dispersion range and
solitons. We will refer to the continuum radiation as dispersive wave (DW).

For our approach, it is crucial that event horizon analogues appear together with the rogue
waves both in fibers [29, 30, 31] and for water waves [32]. The same photonic crystal fiber
used for the experimental verification of an optical event horizon [26] has been shown to exhibit
optical rogue waves [14]. The reason is that the conditions for all-optical reflection at an optical
event horizon are inherently given in the SC process [18, 24, 33]. However, the highly complex
SC generation involves several types of collision processes. In particular, soliton fusion and
multiple collisions between solitons can be observed, which appear superimposed on a low-
level radiation background. As soliton-soliton collisions can lead to the emergence of a so-called
“champion soliton” [34] and have been shown to contribute to the formation of optical rogue
waves [35], it is important to separate the contributions of different processes.

In the following, we demonstrate a typical SC generation scenario leading to one giant soliton
that appears even before the first binary collision between solitons takes place. Its emergence
can clearly be identified as resulting from the interaction between the soliton and DWs. The
resulting giant soliton posses all generic features of rogue waves.

2 Propagation model for the SC generation

It has been shown that the standard nonlinear Schrödinger equation, describing self-phase
modulation and second -order dispersion and including only the additional effect of third-order
dispersion, suffices to observe rogue waves in the SC generation process [35]. However, the
rogue waves are generated by interactions of ultrashort few-cycle pulses. The latter are accu-
rately described beyond the standard treatment with an envelope approximation. In addition,
the investigations of dramatic concentration of energy into a rogue wave initiated by DWs pre-
suppose a correct modeling of nonlinear processes between spectrally disparate waves and
the energy transfer between them. To derive such a basic propagation equation for the real-
valued optical field E(z, t), e.g., in a single-mode fiber with the propagation constant β(ω), it
is convenient to introduce a complex-valued E(z, t) such that in the frequency domain

Eω(z) = Eω(z)−
i∂zEω(z)

|β(ω)|
. (1)

Note thatE = Re[E ]. The definition (1) can be understood by considering a linear superposition
of forward waves

E(z, t) =
∑
ω

Aωe
i[β(ω)z−ωt], A−ω = A∗ω

for which one immediately obtains

E(z, t) = 2
∑
ω>0

Aωe
i[β(ω)z−ωt].

Therefore the complex field contains only positive frequencies for the forward propagation. In
this formulation the negative-frequency part of E(z, t) corresponds to the backward waves. In
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the unidirectional approximation, E(z, t) is closely related to the analytic signal for the electric
field E(z, t) = 2

∑
ω>0Eω(z)e

−iωt and thus to the pulse envelope. In general, E(z, t) de-
scribes both forward and backward waves, which are mutually coupled by nonlinear interaction.
Moreover, expressing, e.g., a cubic nonlinear term in terms of the complex field, one sees that
contributions of the different four-wave mixing processes are now separated. For a favorable
dispersion profile β(ω) one can then omit higher harmonic generation without any reference to
the carrier frequency and the slowly varying envelope approximation.

The basic propagation equation for E(z, t) in a Kerr medium reads [36, 37]

i∂zEω + |β(ω)|Eω +
3ω2χ(3)

8c2|β(ω)|
(|E|2E)ω = 0, (2)

and possesses many useful features of the nonlinear Schrödinger equation while being bidirec-
tional. Parameters c and χ(3) are the speed of light and the third-order nonlinear susceptibility,
respectively. For unidirectional propagation only the positive-frequency part of |E|2E contributes
to Eq. (2). The latter is then equivalent to the unidirectional forward Maxwell equation [38], but
with the benefit of a clear separation of third-harmonic generation terms.

The fiber propagation constant may be obtained by numerical integration of the group delay
β1(ω) = β′(ω) and then approximated following [39]. Figure 1 depicts an exemplary group
delay β1 = β′(ω) and related group-velocity dispersion β2 = β′′(ω) of a photonic crystal fiber.
The presence of absorptive resonances in the ultraviolet as well as vibrational resonances in the
infrared causes a characteristic concave group-velocity dispersion profile with a ZDW located
at 0.87µm wavelength, which may appear shifted due to waveguide dispersion effects. In our
simulations, dispersive properties are described by β(ω) = n(ω)ω/c, where the refractive
index n(ω) is approximated by a suitable rational function. The chosen rational representation
leads to a physically correct approximation of chromatic dispersion throughout the transparent
region of dielectric media [39].

Equation (2) is subject to the conservation laws

I1 =
∑
ω

n(ω)

ω
|Eω|2, I2 =

∑
ω

n(ω)|Eω|2 (3)

where I1,2 are finite and proportional to the time-averaged photon flux and power, respectively
[36]. Our approach correctly models nonlinear processes between spectrally disparate waves,
i.e., four-wave mixing processes and XPM between solitons and DW as well as between indi-
vidual solitons. If the slow envelope description with respect to a carrier frequency ω0 applies,
Eq. (2) reduces to the standard nonlinear Schrödinger equation [28] with the nonlinearity pa-
rameter γ = (3ω0χ

(3))/[4ε0c
2n2(ω0)Aeff], where Aeff is the effective fiber area.

For our numerics we use either a de-aliased pseudospectral method, with the implementation
of the Runge-Kutta integration scheme in the frequency domain and adaptive step-size control,
or a more direct split-step Fourier approach with sufficiently small fixed steps. The numerics
are controlled by tracing the integrals of motion. Quality of the time discretization is ensured by
exemplary runs with the considerably larger number of harmonics.
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Figure 1: Concave group delay β1 = β′(ω) and related group-velocity dispersion β2 = β′′(ω),
with the extracted wavelengths for the initial higher-order soliton at λs = 897 nm, one ejected
fundamental soliton at λs = 1030nm and a dispersive pulse at λd = 614nm (vertical dashed
lines).

3 Accelerated solitons in the supercontinuum generation

For investigations of the SC, we launch a hyperbolic secant pulse (center wavelength 897nm)
into the anomalous dispersion regime of the fiber close to the ZDW = 842 nm. Figure 2 show
the evolution of the SC in the time domain for soliton orders N = 74 and N = 111. For a
nonlinear fiber with γ = 0.1W−1m−1 these correspond to a peak power of 54 kW and 96 kW
respectively. In all cases the formation of the SC involves soliton fission [38] and modulation in-
stability [40], ensuring the increase of the initial spectral width by one to two orders of magnitude
[41].

Figure 2 illustrates the decay of two high-order solitons in the presence of third-order dispersion,
leading to a multitude of fundamental soliton trajectories after millimeters of propagation length.
This process has also been termed soliton fission [38]. In Fig. 2 the soliton trajectories stand
out against the low-power dispersive background as temporally highly confined regions of high
peak intensity, which are marked yellow or orange. If undisturbed, the soliton trajectories should
appear as straight lines in the z-t plane, with a slope dictated by their group velocity. While
inspection of Fig. 2 reveals many undisturbed soliton trajectories, there also appear curved
ones, which are indicative of soliton acceleration (concave) or deceleration (convex). Some of
these characteristic trajectory bends are obviously caused by soliton collisions.

The acceleration of solitons in the SC can also be observed under the influence of the Raman
effect [33]. The related soliton fusion process or, more generally, multiple collisions between
solitons have been suggested as a possible driver mechanism behind rogue waves [42, 35].
This mechanism is based on the emergence of a so-called “champion soliton” in a nearly inte-
grable system close to the standard nonlinear Schrödinger equation [34], where a high number
of fundamental solitons undergoes turbulent collisions. In the SC process, giant solitons are
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Figure 2: Temporal evolution of |E(z, t)|2 of a higher-order soliton injected close to the ZDW
into the fiber along z for a typical SC generation process by soliton fission for the soliton order
(a) N = 74 and (b) N = 111. Note that the calculation does not involve the Raman effect.

5



0

2

4

6

8

D
is

ta
nc

e 
(c

m
)

0 1 2
Time delay (ps)

0 1 2
Time delay (ps)

Power (arbitrary units)

0 1Power

(a) (b)

A
A‘

B

Figure 3: (a) Temporal evolution of |E(z, t)|2 of a higher-order soliton along z for a SC genera-
tion for N = 28. (b) Cross sections for selected z-values.

observed after only a few such collision processes. However, a mechanism which could explain
rogue wave observations solely by soliton collisions could not be identified up to now. In [18]
another collision process inherently present in the SC process has been demonstrated. This
mechanism has the ability of significantly increasing the peak power of solitons and results from
the interaction between the dispersive continuum background and the particular solitons. Their
mutual interaction leads to the acceleration of the soliton, which is accompanied by the genera-
tion of transient giant waves, fulfilling three main criteria for rogue waves [43]. The interaction of
the soliton with the dispersive radiation is accompanied by soliton-soliton collisions, which may
further manipulate soliton properties. Although any trajectory of the solitons can be traced back
in the numerical data, it is still difficult to irrefutably pinpoint the rogue wave generation mecha-
nism in the statistical data. However, Fig. 2 already reveals an important characteristics of the
newly suggested rogue wave generation mechanism. In both examples, the soliton acceleration
starts in an advanced stage of the SC, clearly isolated from the early very dense interaction
scenario during the initial soliton decay.

4 Rogue waves by low soliton orders

To gain deeper insight into the part of the interaction process that is independent of soliton-
soliton collisions, we performed calculations at lower soliton numbers. Figure 3 represents a SC
generated by a soliton of order N = 28. The reduction to much fewer fundamental solitons
ejected by the fission process allows the generation of only one giant wave in the SC, without
any collision with other solitons.

Figure 3 shows the typical SC evolution in the time domain. With the rather moderate peak
power in this example, the impact of modulation instability can be neglected [44]. The funda-
mental solitons produced in the fission process exhibit durations between 10 and 20 fs with dif-
ferent peak powers, appearing as pronounced lines that clearly stand out from the background.
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The fission process also generates DWs in the normal dispersion regime [38, 41]. The further
away from the zero-dispersion wavelength the solitons are being generated, the slower they will
propagate [44], accumulating delay (Fig. 3). As we deliberately excluded Raman scattering in
our analysis, we observe the same propagation dynamics as in [18], with the noted exception
that only one accelerated soliton is generated and that soliton-soliton scattering is reduced. In
fact, inspection of Fig. 3 reveals that the trajectory of this soliton cannot be influenced by rare
isolated scattering events within the segment AB. In this case, the physical mechanisms behind
this peculiar acceleration and the accompanied increase of the peak power appears clearly iso-
lated from competing processes, without the problem of superposition of different mechanisms.

We numerically isolated the soliton, separated it from accompanying continuum radiation, and
fitted the model function f(t) = P0 sech

2[(t−t∗)/t0] to its intensity envelope (Fig. 4, FWHM =
1.76t0). Compared to the steady propagation at z < 2.2 cm, Fig. 4(a) confirms a deviation
of t∗(z) from the initial linear trajectory by −600 fs at point B (z = 4.5 cm). This temporal
shift is accompanied by approximately 4 % change of pulse energy ∝ I2 and by a more than
twofold increase of peak power P0(z), [solid and dashed curves in Fig. 4(b), respectively].
Pulse duration scales accordingly from an initial 20 fs (FWHM) to sub-10 fs at B. Furthermore,
a Fourier analysis indicates that the center wavelength λ0(z) of the soliton shifts from 1060 to
985 nm within the 2.3 cm propagation from A to B, reflecting the according energy transfer.

Under similar conditions, the impenetrability of the soliton trajectory was referred to as an optical
event horizon for the DW [26]. In [45] it has been shown how the interaction at the optical event
horizon and the accompanied frequency shift of the soliton can be exploited for an efficient
manipulation of a strong signal pulse by a weak DW. Here we have the same situation occurring
between two small portions of a SC in a photonic crystal fiber, with a lot of unrelated dynamics
happening at the same time.

Rogue waves, subject to non-Gaussian statistics, have previously been shown to appear in
the fiber SC generation without Raman frequency shift in [35], where rogue events have been
related to multiple collisions between optical solitons. In our case, however, there is no other
soliton anywhere close between A to B. Therefore, appearance of a rogue wave can only be
explained by nonlinear continuum-soliton interaction. Namely, for each soliton velocity there is a
spectral slice of dispersive non-solitonic radiation that propagates at nearly identical group ve-
locity. Group-velocity matching significantly increases the nonlinear interaction length between
continuum and soliton and may lead to significant reshaping of the latter. Comparing to the en-
ergy of the DW within temporal overlap with the soliton [dotted line in Fig. 4(b)], it is striking that
changes of any of the soliton parameters t∗(z), λ0(z), and P0(z) are strongly correlated with
the strength of the DW, see positions A and A’ marked in Figs. 3–4.

5 Controlled generation of giant waves

For further investigation of this scenario, we numerically isolated the primary soliton and se-
lected segments of the DW in Fig. 3(a) right at the onset of the trajectory curvature, making
a deterministic interpretation of the acceleration process of the soliton uncoupled from the
SC generation process possible. To this end, we inject into the fiber a fundamental soliton at
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Figure 4: (a) Visualization of the soliton propagating from A to B in Fig. 3. Temporal delays
are shown relative to the unperturbed propagation of the soliton at z = 1.5–2 cm. For clarity,
the width of the soliton has been stretched by a factor 5. Color coding visualizes λ0(z), which
changes from 1060 to 985 nm (red and blue, respectively). (b) Development of soliton parame-
ters λ0(z) (thick red line), pulse energy ∝ I2 (solid black line), and peak power P0(z) (dashed
line). Energy content of the DW within ±1.5τ interval around t∗(z) is shown as a dotted line.
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Figure 5: Time domain (a) and spectral (b) evolution along the fiber with a fundamental soliton
at λs = 1.03µm and a dispersive pulse at λd = 0.614µm, representing a typical scattering
process of a DW at an optical horizon at the edge of a soliton. (c) and (d) the same for cascaded
scattering with three dispersive pulses at λd = 0.614µm.

λs = 1030 nm of 26.6 fs FWHM duration together with slightly slower propagating 53.2 fs time
segments of DWs near the velocity-matched wavelength of λd = 614nm. The extracted pa-
rameters fulfill the necessary conditions to induce a small yet sufficient increase of the refractive
index by the soliton to build up an optical event horizon for the DW [26, 45].

In a suitable reference frame, Fig. 5(a) illustrates a scattering process of a DW at the propagation
front of a soliton in the time domain, a process that has previously been dubbed as “reflection
in the event horizon” [26]. The main point here is a strong reshaping of both, the soliton and the
DW, in contrast to the standard setup of reflection process, where only the weak pulse changes
its properties [20, 21, 22, 23]. Figure 5(b) elucidates the identical situation in the spectral do-
main, leading to a slight blue shift of the soliton together with a more pronounced red shift of the
DW. However, the properties of the fundamental soliton are only slightly changed. To amplify the
manipulation of the soliton, we increase the number of DWs and simulate a scattering process
between three DWs and a soliton [Fig. 5(c,d)].
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Figure 6: Relative change of soliton parameters by the interaction with three segments of the
resonant DW as shown in Figs. 5(c,d). (a) Peak power, (b) energy, (c) photon number defined
by Eq. (3) (see [36]).

Compared to a single scattering event, a nearly threefold increase is thereby achieved. Con-
sequently, throughout the scattering processes, the soliton experiences a further increase of
its group velocity, resulting in an accelerated trajectory, as is also observed in the SC genera-
tion [Fig. 3(a)]. In the frequency domain, each scattering event further shifts the soliton towards
shorter wavelengths [Fig. 5(d)], with an opposite effect on the non-solitonic continuum radiation.

The relative change of all soliton parameters by the interaction process with the DW is shown
in Fig. 6. In particular, it is reassuring that the photon number of the soliton (red line) is practi-
cally conserved in this process. Consequently, a slight increase of the soliton energy (blue line)
results from the frequency shift of the soliton center frequency towards higher values. In con-
trast to these rather mild changes of pulse energy and photon number, there is a pronounced
increase of peak power (black line). Given the rather small frequency shift of the soliton, such
a dramatic effect can only result from the strong dependence of the soliton properties from the
dispersion value. The frequency-shifted soliton experiences a considerably smaller β2 (Fig. 1)
than the input pulse. Considering that the energy of a soliton is connected to the peak power
P0 and β2 via E = 2

√
P0|β2|/γ, the decrease of β2 cannot be compensated by a reduction

of E as E grows, too. As γ does not vary appreciably, consequently, P0 is forced to grow mas-
sively, depending on the variation of β2. The stronger the frequency shift, therefore, the smaller
β2-values can be achieved.

We repeated these simulations with several segments of continuum radiation. Figure 7 shows
the fundamental soliton after the collision with 3, 6, and 9 wave packets, resulting in an up to
threefold increase of the soliton peak power. The soliton peak power and temporal width strongly
depend on the pulse parameters of the DW [45], and even higher soliton peak powers can be
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achieved with segments of the continuum containing more energy.

6 Criteria for rogue waves

In [18] it has been demonstrated that giant solitons generated by acceleration fulfill the gen-
erally accepted main criteria for rogue waves, namely their heavy-tail amplitude distribution,
their unpredictability, and the appearance of events that significantly exceed the average wave
height. See [43] for a detailed discussion. In the following, we want to provide a more detailed
discussion of criteria which have been brought up. These criteria are discussed in their order of
importance as in [43], with the original citation marked in italics.

1. In the science of ocean waves, there was a suggestion to call a wave “rogue” if its amplitude
is more than twice (or 2.5 times) that of the average amplitude of the significant wave height.
With some restrictions, this definition can be extended to other fields as well. In our research we
observe peak amplitudes that exceed the average wave crest by up to a factor 5 [18]. In fact, in
this sense optical rogue waves are more roguish than their ocean analogues.

2. Another important feature of a rogue wave is its unpredictability. Figuratively speaking, a
rogue wave is a wave that “appears from nowhere and disappears without a trace”. Thus, to a
large extent, the phenomenon is chaotic. Fundamental solitons have often been excluded as
possible candidates for rogue waves as they are stable and may therefore not simply disap-
pear. However, once the soliton is driven towards the zero-dispersion wavelength, this paradigm
becomes shattered. When driven beyond this critical wavelength, the soliton will immediately
decay. At the verge of this critical condition, soliton parameters may vary dramatically according
to input conditions, which, in turn, dramatically affect the peak power of the resulting soliton.

3. The third feature is related to the probability distribution function (PDF) of the wave ampli-
tudes. Namely, large waves appear much more often than they would according to Gaussian

11



R
el

at
iv

e 
fre

qu
en

cy

Optical power (kW)
101

100

10-2

102

Pareto distribution:

100

10-2

Solitons

Weibull distribution:

Total

Weibull distribution:10-2

10-4

10-6

(a)

(c)

R
el

at
iv

e 
fre

qu
en

cy
R

el
at

iv
e 

fre
qu

en
cy

Radiation

(b)

p(x) = kxk
min/x

k+1

k = 0.940, xmin = 1.725

p(x) = ba−bxb−1e−(x/a)b

a = 1.128, b = 1.138

p(x) = ba−bxb−1e−(x/a)b

a = 0.24, b = 0.43

Figure 8: Statistical distribution on a log-log scale for (a) the anomalous dispersion regime with
a fit to a Pareto distribution, (b) the normal dispersion regimen with a fit to a Weibull distribution,
and (c) the whole spectrum without filtering of any kind with a fit to a Weibull distribution.

statistics. Experimental studies on rogue waves usually produce elevated tails of the PDF. The
heavy-tailed probability of rogue waves, which is typical for rare-but-extreme events, has been
demonstrated for the fiber supercontinuum scenario using a spectral filter [35, 46], yet also
without such filtering [35, 18] as filtering may produce misleading results [48].

As filtering obviously plays an important role, we have extracted separate statistics from our
simulation results. Figure 8 present the statistics (a) for the anomalous regime, (b) the normal
dispersion regime, and (c) the whole spectrum without filtering of any kind. This analysis clearly
reveals a deviation from a Gaussian distribution. However, we observe another interesting fea-
ture. The long tail behavior for the dispersive waves differs from that of the solitons. In [47] it has
been observed that collisions between solitons create giant dispersive waves. In our case, how-
ever, we cannot attribute the dispersive waves with high peak powers solely to soliton-soliton
collisions.

12



4. Is the phenomenon of “rogue waves” linear or nonlinear? Present approaches are inclined to
the version of their nonlinear nature. Indeed, linear theories of rogue waves can only produce
Gaussian PDFs, so the appearance of large waves would have very small probability. In our
case, the presented phenomenon is clearly nonlinear.

5. What is the onset of appearance of “rogue waves”? Is the phenomenon related to modulation
instability? The latter question was first posed by Peregrine in his paper of 1983 in relation to
ocean waves. There is little doubt that one or other form of instability is indeed responsible
for generating large waves. The supercontinuum generation process as modeled here is fully
capable of producing a modulation instability [41, 40]. It manifests itself via certain periodic
spikes at the beginning of the supercontinuum generation process. It is known that the MI can
initiate soliton fission, but is not a necessary prerequisite for the fission process [44]. This finding
is also demonstrated in Fig. 2 and Fig. 3.

6. How does the spectral content of a wave field evolve in order to produce a rogue wave? In
optics, as well as in other fields like capillary waves, the spectral content starts with a single or
narrow spectral component that spreads, first into a triangular spectrum shape, while then later
it creates a so-called “supercontinuum”. In one form or other, this happens in other fields too.
Here the described rogue wave formation in the supercontinuum generation process requires
two different wavelengths, which can widely be separated. Therefore extremely broad spectra
have to be considered for their observation.

7 Conclusion

Here we discussed a new mechanism that contributes to rogue wave formation in optical fiber
supercontinua. This mechanism relies on interaction between a dispersive wave in the normal
dispersion regime and a soliton in the anomalous dispersion regime. The mechanism proposed
here does not presuppose any special nonlinear effects that are unique to optical systems. In
comparison to previously discussed mechanisms of rogue wave formation, our approach essen-
tially only presupposes a nonlinear Schrödinger type scenario, with a reactive nonlinearity and
a concave dispersion profile, the latter enabling copropagation of radiation with opposite signs
of dispersion with equal group velocity. Suitable conditions are found in a variety of physical
systems and also outside optics, e.g., for gravity-capillary waves [49]. Our explanation is there-
fore immediately applicable to a wider class of physical systems. We therefore believe that the
previously disregarded scattering of DWs and solitons provides new insight in the fascinating
appearance of extreme-value wave phenomena in a multitude of physical scenarios.
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