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Abstract

A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of
edge-emitting broad area semiconductor devices is considered. A numerical scheme based
on a split-step Fourier method is presented and implemented on a parallel compute clus-
ter. Simulations of the model equations are used for optimizing of existing devices with
respect to the emitted beam quality, as well as for creating and testing of novel device
design concepts.

1 Introduction

High power high brightness edge-emitting (EE) broad area semiconductor (BAS) lasers and
optical amplifiers are compact devices playing a key role in different laser technologies. They
have a relatively simple geometry (Fig. 1(a)) allowing an efficient pumping through a broad
electric contact on the top of the device and are able to operate at the high power (tens of Watts)
regimes. However, once operated at high power regimes, BAS devices suffer from a relatively
low quality of the emitted beam which has undesirable broad optical and lateral spectra. A high
quality of the beam amplified in BAS amplifiers or generated by BAS lasers is a very important
issue of the modern semiconductor laser technology, and there are several BAS device concepts
for improving of the emitted beam.

Mathematical modeling, simulations and analysis play a significant role in optimization of ex-
isting devices or creation of novel design concepts [1]. Typically, the length (z dimension) and
width (x-dimension) of EE BAS devices (see Fig. 1(a)) are in a few millimeter and hundreds of
micrometer range, respectively, whereas the height (y dimension) of the active zone where the
optical beam is generated and amplified is, typically, not larger than a micrometer. Since full
3-dimensional dynamical simulations of semiconductor devices with different spatial and tem-
poral scales is not possible, we replace all y-dependent quantities by some effective vertical
averages. To simulate the generation and/or propagation of the optical fields along the cavity
of EE BAS devices we use a 2+1 dimensional system of PDEs, described briefly in this paper.
The model is based on the traveling wave (TW) equations for counter-propagating and laterally
diffracted slowly varying optical fields which are coupled to the ODE for induced polarizations
and diffusive rate equation for carrier densities [2, 3]. The well-posedness of this model was
studied in [4], while different algorithms used for the numerical integration of the model were
considered in [5, 6, 7].

Precise dynamic simulations of long and broad or tapered devices and tuning/optimization of
the model with respect to one or several parameters, require huge CPU time and memory
resources. A proper resolution of rapidly oscillating fields in typical BAS devices on a sufficiently
large optical frequency range requires a fine space (106 − 107 mesh points) and time (up
to 106 points for typical 5 ns transients) discretization. Dynamic simulations of such devices
can easily take one or even several days of computations on a single processor computer.
Some speedup of computations can be achieved by using problem-dependent relations of the
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Figure 1: Schemes of different EE BAS device configurations. (a): standard EE BAS laser. (b):
BAS laser with a dual angular plane wave injection. (c): BAS amplifier with a spatially periodic
electrical contact.

grid steps, including also variable steps in the lateral dimension. All these grid optimizations,
however, are not sufficient when one- or a few- parameter studies with the simulation times up
to 1000 ns should be performed. It is obvious, that the required computations in an acceptable
time can only be done by means of parallel computers and parallel solvers.

In this paper we present a split-step Fourier method based numerical algorithm for the integra-
tion of the 2+1 dimensional traveling wave model of BAS devices. It was implemented on the
parallel compute cluster at the Weierstrass Institute in Berlin and was successfully used for sim-
ulations of different BAS devices with an improved quality of the beam [3, 8, 9, 10, 11]. In this
paper we present two examples of such BAS devices (see Fig. 1(b) and (c) which were proposed
in our theoretical papers [12, 13, 14]. In the first device, a pair of coherently injected plane waves
at the adjoint angles to the laser axis (Fig. 1(b)) can create a periodic carrier grating, which in
turn can suppress all but one lateral modes of the laser [12, 13]. The second device has period-
ically modulated (PM) electrical contact or active zone in both spatial directions (Fig. 1(c)), what
can lead to a significant improvement of the amplified beam in BAS amplifiers [14].

2 Mathematical model

After an appropriate scaling, the traveling wave (TW) model for longitudinal-lateral dynamics of
the complex slowly varying amplitudes of the counter-propagating fields E±(z, x, t), polariza-
tion functions P±(z, x, t) and real carrier density function N(z, t, x) can be written as follows
[7]: (

∂
∂t
± ∂

∂z

)
E± = − i

2
∂2

∂x2E
± − i

[
β(N, ‖E‖2)− iD

2

]
E± − iκ∓E∓,

∂
∂t
P± = iωP± + γ (E± − P±) ,

1
µ
∂
∂t
N = D ∂2

∂x2N + I(z, x)−R(N)−<e
∑
ν=±

Eν∗ [G(N, |E±|2)−D]Eν ,

(1)

where ‖E‖2 = |E+|2 + |E−|2 is proportional to the local field intensity, whereas the operators
β,D and functions G, ñ, R denote the propagation factor, the Lorentzian approximation of the
material gain dispersion, the gain peak value, the refractive index change, and the spontaneous
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recombination, respectively:

β(N, |E±|2) = ∆− ñ(N) +
i(G(N,‖E‖2)−α)

2
, DE±=g (E± − P±) ,

G(N, ‖E‖2) = g′Ntr
1+ε‖E‖2 log

(
max(N,N∗)

Ntr

)
, ñ(N) = 2σNtr

√
N/Ntr,

R(N) = AN +BN2 + CN3.

(2)

In general, this model should be considered in the unbounded region Q = Qz,x × (0, T ],
where Qz,x = {(z, x) : (z, x) ∈ (0, L)×R} is the spatial domain, L represents the device
length, x is the coordinate of the unbounded lateral axis of the device, and T is the length of
the time interval where we perform the integration. In our numerical simulations we choose a
large enough lateral interval [−X,X] containing the considered BAS device and assume that
the field and carrier density functions E± and N are periodic along the lateral axis:

E±(z, x+ 2X, t) = E±(z, x, t), N(z, x+ 2X, t) = N(z, x, t), (z, x, t) ∈ Q. (3)

This assumption restricts our considerations of the model equations to the truncated domain
QX = QX

z,x×(0, T ],QX
z,x = {(z, x) : (z, x) ∈ (0, L)×[−X,X]}. The boundary conditions

for the optical fields E± at the device facets (z, x) ∈ 0× [−X,X] and (z, x) ∈ L× [−X,X]
in (1) are given by

E−(L, x, t) = r1(x)E+(L, x, t) + F [E+(L, ·, t− τ)] ,

E+(0, x, t) = r0(x)E−(0, x, t) + a(x, t), (x, t) ∈ [−X,X]× [0, T ],
(4)

where r0,1, a and F are the field amplitude reflectivity coefficients, the complex amplitude of the
optical field injection, and another optical source determined by the reinjected delayed optical
field [10], respectively. The initial conditions

E±(z, x, 0) = E±0 (z, x), P±(z, x, 0) = P±0 (z, x), N(z, x, 0) = N0(z, x), (5)

are defined for (z, x) ∈ QX
z,x. If properly stated, they are not important, since after some

transients the trajectories approach one of the stable attractors.

The coefficients κ±, ∆, α, g′, σ, Ntr, N∗, ε, µ, D, I , A, B and C represent the complex field
coupling due to the Bragg grating, the static detuning due to the built-in refractive index profile,
the internal losses of the field, the differential gain, the differential index, the carrier density at
the transparency, the gain clamping carrier density, the nonlinear gain compression, the scaling
factor related to the ratio of the photon and carrier life times, the carrier diffusion coefficient,
the current injection density, and three recombination factors, respectively. Finally, g, ω and γ
denote the amplitude, the central frequency and the half width at half maximum of the Lorentzian
fitting of the gain profile.

Most of the parameters are spatially non-homogeneous and even discontinuous depending on
the device geometry. More details about the meaning and typical values of all parameters can be
found in [2, 3]. Normalization of the equations and typical values of the normalized parameters
are given in [7]. It is noteworthy, that γ ≈ 102−103 and µ ≈ 10−3 represent the fast relaxation
of the polarizations P± and slow dynamics of the carrier density N , respectively. Typical size of
the dimensionless domain is determined by X ≈ 5− 30 and L ≈ 1− 10, whereas D ≈ 0.5
and most of other parameters are of orderO(1).
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3 Numerical scheme

The computation domain QX is discretized using a uniform in space and time grid QX
h =

QX
h,z,x × ωh,t, where QX

h,z,x = ωh,z × ωh,x, and

ωh,x = {xj : xj = j hx, j = −J/2, . . . , J/2− 1, hx = 2X/J},
ωh,z = {zk : zk = k h, k = 0, . . . , K, h = L/K},
ωh,t = {tm : tm = mh, m = 0, . . . ,M, M = T/h}.

The time discretization step h is equal to the spatial step in z-direction, what allows an accurate
optical field propagation along the characteristic lines z ± t = const. We note, that h is the
maximal allowed time step: its further increasing violates the Courant-Friedrichs-Lewy CFL)
condition and, therefore, stability of the numerical schemes.

All spatially depending parametersP (z, x), spatially and temporarily depending functionsF (x, t)
and unknown functions U(z, x, t) in Eqs. (1)-(5) are approximated by their grid analogs defined
on QX

h :
Pk,j = P (zk, xj), Fm

j = F (xj, t), Um
k,j ≈ U(zk, xj, tm).

When constructing numerical schemes we exploit a discrete Fourier transform of complex and
real laterally-periodic functions U(z, x, t), where U = E± or U = N . Namely, we assume that
a complex function Uj(z, t) := U(z, xj, t) (representing the fieldsE+ andE−) on the uniform
lateral mesh ωh,x can be expressed as a linear combination of the orthonormal grid-functions

eiπ`xj/X |J/2−1
`=−J/2:

Uj(z, t) =
[
F−1

(
Û`(z, t)

∣∣J/2−1

`=−J/2

)]
j

:=
1

J

J/2−1∑
`=−J/2

Û`(z, t)e
iπ`xj/X , (6)

where the Fourier coefficients Û`(z, t) are defined as

Û±` (z, t) =
[
F
(
Uj(z, t)

∣∣J/2−1

j=−J/2

)]
`

:=

J/2−1∑
j=−J/2

Uj(z, t)e
−iπ`xj/X . (7)

These transforms are used for the approximation of ∂2

∂x2U at any grid point xj :

∂2

∂x2
U(z, xj, t) ≈

1

J

J/2−1∑
`=−J/2

(
−π

2`2

X2

)
Û`(z, t)e

iπ`xj/X . (8)

When U represents the carrier density N and is real, it can be expressed as a linear com-
bination of the real orthogonal grid-functions cos (π`xj/X) |J/2`=0, and sin (π`xj/X) |J/2−1

`=1 .
An equivalent complex expression of such combination can be written as (6) with the com-
plex Fourier coefficients (7) satisfying the relations N̂−J/2 = N̂∗−J/2 and N̂` = N̂∗−`, ` =

0, . . . , J/2− 1.
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3.1 Splitting scheme

The TW model (1)-(5) is integrated numerically using a splitting scheme, where the lateral field
diffraction and carrier diffusion are resolved with the fast Fourier transform, and the remaining
coupled hyperbolic system in (1) is integrated along the characteristics using finite differences.
The stiff ODE for the polarization functions P± in (1) (γ is large !) is resolved using an exponen-
tially weighted scheme with the forward values forE±, which ensures, that limγ→∞ P

± = E±.

Let us assume, that the grid functions E±,mk,j , P±,mk,j and Nm
k,j are known for the time layer tm.

In the time-stepping algorithm we split the diffraction, diffusion processes and the nonlinear
interaction. To find the grid functions at the new time layer tm+1 we proceed as follows. In
the first step of our algorithm we consider only the nonlinear interaction and make a simple
prediction of the carrier density at the new time layer:

eNm+1
k,j −N

m
k,j

µh
= −

(
G(Nm

k,j, ‖Em
k,j‖2)− g

)
‖Em

k,j‖2 − g<e
∑
ν=±

Eν,m∗
k,j P ν,m

k,j

+Ik,j −
eNm+1
k,j R

(
Nm
k,j

)
Nm
k,j

, k = 0, . . . , K, j = 1, . . . ,M.

(9)

Due to the slow carrier dynamics (the diffusion is moderate and the factor µ is small) we use a
simple implicit-explicit linearized scheme with a totally ignored carrier diffusion at this step.

In the next step we neglect the field diffraction and find intermediate approximations for the
optical fields and new polarization functions:

eE±,m+1
k,j −E±,mk∓1,j

h
= −iβ(

eNm+1
k,j ,‖Emk,j‖

2) eE±,m+1
k,j +β(Nm

k∓1,j ,‖E
m
k∓1,j‖

2)E±,mk∓1,j

2

−gk,j(
eE±,m+1
k,j −P±,m+1

k,j )+gk∓1,j(E
±,m
k∓1,j−P

±,m
k∓1,j)

4

−iκ
∓
k,j

eE∓,n+1
k,j +κ∓k∓1,jE

∓,m
k∓1,j

2
, k, k ∓ 1 ∈ {0, . . . , K};

Ẽ+,m+1
0,j = r0,jẼ

−,m+1
0,j + am+1

j , Ẽ−,m+1
K,j = r1,jẼ

+,m+1
K,j + Fh

[
E

+,m+1− τ
h

K,·

]
,

P±,m+1
k,j =

γk,j(1−e(iωk,j−γk,j)h)
γk,j−iωk,j

Ẽ±,m+1
k,j + e(iωk,j−γk,j)hP±,mk,j , k = 0, . . . , K,

j = 1, . . . ,M.

(10)

We note, that the scheme above is linear with respect to Ẽ±,m+1
k,j and P±,m+1

k,j and can be
separately resolved for each k = 0, . . . , K .

In the final step of our algorithm we take into account the carrier diffusion and field diffraction.
Namely, we solve the linear equations

∂

∂t
N = µD

∂2

∂x2
N,

(
∂

∂t
± ∂

∂z

)
E± = − i

2

∂2

∂x2
E±

within the time (and space) interval of length h, whereas the initial conditions are given by
the previously obtained estimates Ñ and Ẽ±. To integrate these equations we use lateral dis-
cretizations of the functions N and E±, approximate their second lateral derivatives by (8) and
solve the resulting systems of the differential equations in the (lateral) Fourier domain:

N̂`(z, t+ h) = e−µD
π2`2

X2 hN̂`(z, t), Ê±` (z ± h, t+ h) = ei
π2`2

2X2 hÊ±` (z, t).
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Figure 2: Scheme of the computational grid (z and t coordinates only). Vertical dashed lines:
splitting of the grid QX

h to smaller sub-grids QX,l
h . Full and grey shaded bullets: the actual

(already computed) and the next time layers, respectively. Arrows: data streams which should
be read or recorded by different processes πl before the next time iteration. Green dots: ghost
points of the sub-grid containing an information received from the corresponding border point
(red bullets) of the adjacent sub-grid.

The inverse discrete Fourier transform (6) and the discretization of the functions N and E±

along the longitudinal z direction give us the following equations, which completes the descrip-
tion of our numerical scheme:

Nm+1
k,j = 1

J

J/2−1∑
`=−J/2

[
e−µD

π2`2

X2 h
J/2−1∑
s=−J/2

Ñm+1
k,s e−i

2π`s
J

]
ei

2π`j
J ,

E±,m+1
k,j = 1

J

J/2−1∑
`=−J/2

[
ei
π2`2

2X2 h
J/2−1∑
s=−J/2

Ẽ±,m+1
k,s e−i

2π`s
J

]
ei

2π`j
J ,

k = 0, . . . , K, j = 1, . . . ,M.

(11)

3.2 Parallelization

Our problem (1)-(5) and the numerical scheme (9)-(11) are well suited for the execution on
parallel compute clusters using distributed memory techniques. To distribute the computational
work among different processes πl|nl=1 we decompose the computational grid QX

h along the
longitudinal z- direction into n non-overlapping sub-grids QX,l

h . The first n − 1 sub-grids QX,l
h

have s longitudinal grid points zk each, whereas the number of zk in the last sub-grid is smaller
or equal to s. In such a manner, any process πl operates on the sub-grid

QX,l
h = ωlh,z × ωh,x × ωh,t, ωlh,z = ωh,z ∩ [(l − 1)sh,min{(ls− 1)h, L}] ,

s = ceil ((K + 1)/n) , l = 1, . . . , n.

A schematic representation of the full computational grid and its splitting to smaller sub-grids is
given in Fig. 2).

Before computing the grid functions at the next time layer (grey shaded bullets in Fig. 2) each
process πl should exchange the current time layer values of E±, P± and N at the boundaries
of the sub-grid QX,l

h (red bullets in the same figure) with the adjacent processes πl−1 and
πl+1. This information is recorded to the specially created ghost grid points (green dots) at the
adjacent side of the sub-grids QX,l−1

h and QX,l+1
h . The left and right ghost points of the sub-
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grid QX,l
h in the consequent computations of the process πl are treated like usual grid points

(z(l−1)s−1, xj, t
m) and (zls, xj, t

m) which are not directly accessible by πl.

The processes π1 and πn operating on the end sub-grids QX,1
h and QX,n

h have no left or right
adjacent sub-grid. The required sub-grid boundary information in these cases is given by the
longitudinal boundary conditions (4) including optional optical injection and optical feedback
functions a(x, t) and F [E+(L, x, t − τ)] (violet in-pointing arrows in the same figure). The
scalability analysis of the proposed parallel algorithm can be done as in [5]. It proves that the
algorithm scales linearly with respect to the number of processors used to solve the given prob-
lem.

In additional to the solution of the scheme (9)-(11) on the sub-grid QX,n
h , the last process πn

records the emitted field E+(L, x, t) and calculates distributions of the optical feedback (if
considered). Thus, the fact that QX,n

h has, possibly, less grid points then the other sub-grids
(size of ωnh,z can be smaller than s) could be advantageous seeking to speed up the simulations.

The numerical scheme (9)-(11) and the parallel algorithm were implemented and executed on a
48 node HP Blade server using the HPMPI library. The nodes are interconnected via Infiniband
4xDDR (20 Gbit/s).

4 Simulations of BAS devices

Mathematical modeling and fast numerical simulations are a powerful method used in optimiza-
tion of the existing BAS devices or in creation of the novel design concepts for different real
world applications. Below in this section we simulate two theoretically proposed BAS devices
(shown also in Fig. 1(b) and (c)) showing an improved quality of the emitted beam.

4.1 Stabilization of a BAS laser by a dual off-axis optical injection

In our theoretical papers [12, 13] a new control method of BAS lasers was proposed, which, as
we believe, should suppress all but one optical mode, i.e., should stabilize the emitted beam.
This control is achieved by a pair of coherent optical plane waves injected into the BAS laser at
the adjacent angles to the laser axis (Fig. 1(b)). Mathematically, this optical injection is described
by the function

a(x, t) = a0e
i(ωt+2πxα/λ0−π/2) + a0e

i(ωt−2πxα/λ0+π/2) = 2a0e
iωt sin (αk0x)

entering boundary conditions (4). The parameters±α, λ0 and ω in the expression above denote
the free space angles of the injected beams (see Fig. 1(d)), the central wavelength of the emitted
field, and the frequency detuning of the optical injection from the central frequency 2πc

λ0
(c: speed

of light in vacuum). The factor |a0|2 is proportional to the intensity of the optical field injected
into the laser.

We have performed a series of simulations for the fixed detuning (ω = 0 in this example) and
increased intensity of the optical injection (i.e., parameter |a0|2). The observed laser dynam-
ics (optical spectra, far-fields, field intensities) for different injection intensities is summarized in
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Figure 3: Stabilization of the BAS laser by the
optical injection. (a): mapping of the optical
spectra, (b): mapping of the far-fields com-
puted at some time instant, and (c): maximal,
minimal and mean power of the emitted field
for the increased injection power and fixed
ω = 0.

Figure 4: Amplification of the optical beam
in the equally biased conventional (left) and
the PM EE BAS amplifiers with (dx, dz) =
(8, 400)µm, and Q = 1.02 (right). First and
second rows show lateral distributions of the
carrier density and central part of the far-fields
computed for selected longitudinal positions
z.

Fig. 3. Here one can distinguish three qualitatively different regimes, separated by thin vertical
lines in Fig. 3. Once the injection intensity is too small, the spatial-temporal dynamics of the
system is similar to that one of the free-running BAS laser. This can be recognized by multiple
peaks of the optical spectrum (panel (a)), by scattered far-field instants (panel (b)), as well as by
a non-stationary output field (differing minimal and maximal intensities in panel (c)). For moder-
ate and large injected field intensities the laser operates at a continuous wave regime (a single
spectral line in panel (a) and coinciding minimal and maximal powers in panel (c)). An inspec-
tion of the far-fields at these injections, however, allows us to distinguish two different regimes.
Namely, for moderate injections we have a stationary state which has a well pronounced cen-
tral angular component (a stabilized mode of the laser), whereas for larger injections only the
angular components corresponding to the injected beam angles α are present. In this regime
our BAS laser is operating like an amplifier for the injected beams, but does not generate light
by itself.

4.2 BAS amplifiers with periodically modulated electrical contacts

An elegant way to improve the lateral beam profile in EE BAS amplifiers was suggested in the
recent theoretical work [14]. It was shown, that a periodic modulation of the gain and refractive
index in both longitudinal and lateral directions (see Fig. 1(c)) can lead to a significant compres-
sion of the far-fields, what is desirable in the real world applications.

A crucial condition for the desired beam shaping is a proper choice of the lateral and longitudinal
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modulation periods dx and dz, which should satisfy the relation

Q =
2d2

xnb
λ0dz

≈ 1,

where nb is the background refractive index in the semiconductor device (typically about 3 ÷
3.5). The mathematical model used in [14], however, was oversimplified: it was neglecting a
strong nonlinear interaction of carriers and optical fields in high-power devices, i.e., was only
suitable for simulations of very small fields (and polarizations) which have no impact to the
carrier distribution (see the carrier rate equation in Eq. (1)).

In the present work we have performed simulations of the standard BAS amplifier (left panels
of Fig. 4) and of the BAS amplifier with the PM electrical contact (right panels of the same
figure) operating in moderate and high power regimes. In these regimes the carrier distribution is
strongly depleted, causing also lateral irregularities in the carrier (i.e., gain and refractive index)
modulation amplitudes: see the black curves in the second row panels of Fig. 4, representing the
carrier densities at z = 4.8 mm. The simulations have shown, that the desired beam shaping in
the PM BAS amplifiers can be also obtained using our more realistic modeling approach. It can
be seen when comparing the far-fields of the simple (left) and PM amplifiers (right) at the lower
row panels of this figure. It is noteworthy, that even though a part of the field amplified in the
PM device is radiated at the side band components at ≈ ±7.2◦, the intensity of the remaining
central angle field still can be higher than that one of the field amplified in the conventional BAS
device (compare the upper row panels).
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