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Abstract

In computational simulations of fluid flows, instabilities at the Neumann bound-
aries may appear during backflow regime. It is widely accepted that this is due
to the incoming energy at the boundary, coming from the convection term, which
cannot be controlled when the velocity field is unknown. We propose a stabi-
lized formulation based on a local regularization of the fluid velocity along the
tangential directions on the Neumann boundaries. The stabilization term is pro-
portional to the amount of backflow, and does not require any further assumption
on the velocity profile. The perfomance of the method is assessed on a two-
and three-dimensional Womersley flows, as well as considering a hemodynamic
physiological regime in a patient-specific aortic geometry.

1 Introduction

Let us consider an incompressible fluid in a domain Ω⊂Rd , d = 2,3, whose boundary
is decomposed as

∂Ω := Γin ∪ Γout∪Σ,

with Γin and Γout denoting the boundaries with Dirichlet data (i.e., known velocity pro-
file) and Neumann data (i.e., known stresses), respectively. We consider an incom-
pressible, Newtonian fluid, modeled through the incompressible Navier-Stokes equa-
tions for the velocity uuu : Ω×R+→ Rd and the pressure p : Ω×R+→ R:

ρ∂tuuu+ρuuu ·∇∇∇uuu−∇∇∇ ·σσσ(uuu, p) = 000 in Ω,

∇∇∇ ·uuu = 0 in Ω,

uuu = uuuin on Γin,

uuu = 000 on Σ,

σσσ(uuu, p)nnn =−poutnnn on Γout,

(1)

In (1), ρ stands for the fluid density, µ denotes the dynamic fluid viscosity and the fluid
Cauchy-stress tensor is given by σσσ(uuu, p) :=−pIII+2µεεε(uuu) and εεε(uuu) := (∇∇∇uuu+∇∇∇uuuT)/2.
Furthermore, uuuin represents a given velocity profile and pout a given pressure data.

Let us denote with (·, ·)X the usual scalar product in the Sobolev space L2(X), for
X ⊂ Rd , and with ‖ · ‖0,X the associated norm. Then, the quantities

E(t) :=
ρ

2
‖uuu‖2

0,Ω , D(t) := 2µ‖εεε(uuu(s))‖2
0,Ω
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denote the total (purely kinetic) energy of the 3D fluid system given by (1) and the
dissipative effects, respectively. Using standard arguments, in the case of an isolated
system, i.e., uuuin = 0 and pout = 0, the energy balance of system (1) yields

dtE(t) =−D(t) −
(

ρ

2
|uuu|2,uuu ·nnn

)
Γout

. (2)

Notice that the last term of the right hand side of (2) cannot be bounded, when the
velocity profile at the outlet is unknown. Hence, a stable energy balance cannot be
guaranteed a priori during backflow, i.e., when uuu · nnn < 0 on Γout. This issue typically
arises when cutting the physical domain and imposing Neumann boundary conditions
(as in Problem (1)), which do not consider the physical convective effects present in
the neglected parts of the physical domain. In practice, this might cause large unphysi-
cal oscillations in the velocity near the outlet, compromising the stability, the feasability
and the reliability of the numerical simulations (see, e.g., Figure 1).

Figure 1: A typical backflow instability arising in blood flow simulations: velocity vectors
on the outlets at the time of peak outflow (left) and the time when backflow starts in
the first outlet (center and right).

Different treatments to overcome this problem have been already proposed in the liter-
ature. A first group of methods consist in imposing additional constraints on the veloc-
ity field at the Neumann boundary, e.g. via enforcing the shape of the velocity profile.
Due to the global mass conservation, this directly controls the magnitude of the ve-
locity field on Γout, ensuring the overall stability. However, this shape constraint has to
be imposed through Lagrange multipliers [16], which might involve considerable mod-
ifications of the numerical solver and might increase the overall computational cost.
Simpler variants consist in constraining only the direction of the flow on the Neumann
boundaries, for example enforcing the outlet velocity to be normal to the boundary.
This approach can reduce the oscillations, but it does not necessarely eliminate them
[7].

A second group of methods is based on achieving stability imposing the total outlet
pressure σσσ(uuu, p)nnn = pout +ρ|uuu|2/2 at the open boundary, hence modifying the Neu-
mann boundary condition (1)5 (see, e.g., [9]). However, this might lead to unphysical
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solutions [13]. Inspired from [15, 14], a similar strategy consists in modifiying the Neu-
mann boundary condition (1)5 as

σσσ(uuu, p)nnn =−p̄outnnn+β
ρ

2
|uuu ·nnn|− uuu on Γout , (3)

with

|uuu|− :=
uuu−|uuu|

2
, β ≥ 0, (4)

so that the Neumann condition is only perturbed in the presence of backflow. In partic-
ular, two variants of this method were recently reported. The first, developed in [7, 3]
in the context of hemodynamics, is based on the choices β ≤ 1.0 and p̄out = pout, and
will be denoted in what follows as inertial stabilization. The second, using β = 1 and
p̄out = pout + f (U,Q)ρ/2, has been proposed in [10] for respiratory mechanics and
it is also suitable for blood flows. Here, f (U(x),Q) corresponds to an approximation
of |uuu ·nnn|− uuu, based on a assumed velocity profile U(x) on the open boundary and a
given - or computed - flux Q, allowing the simultaneous imposition of pressure and
flows rates. Note that, for all these techniques, the global stability is ensured if β = 1,
according to Equation (2).

The aim of this work is to propose a new stabilized formulation, based on a local
regularization of the fluid velocity along the tangential directions on the Neumann
boundaries. The stabilization consists in a symmetric penalization of the tangential
variation of the outlet velocity, proportional to the amount of backflow, and it does not
require any assumption on the velocity profile.

The rest of the paper is organized as follows. The tangential regularization is intro-
duced in Section 2. In Section 3 the performance of the method is assessed through
extensive numerical examples in the blood flow regime. In order to explain the be-
haviour observed in the numerical examples, Section 4 discusses a possible analyti-
cal estimation of the stabilization parameter in terms of the mesh size. Finally, Section
5 draws the conclusions.

2 Tangential regularization for backflow stabilization

2.1 Formulation

Let us consider the standard Sobolev spaces on Ω, L2(Ω) and H1(Ω), and let us
define

H1
0 (Ω) :=

{
vvv ∈ H1(Ω) | vvv = 0 on Γin∪Σ

}
. (5)

The variational form of Problem (1) reads: Find uuu ∈ H1(Ω) satisfying (1)3−4, and p ∈
L2(Ω) such that {

A(vvv,vvv)−B(p,vvv) =−(poutnnn,vvv)Γout
,

B(q,uuu) = 0,
(6)
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for all vvv ∈ H1
0 (Ω) and q ∈ L2(Ω), with

A(uuu,vvv) := ρ (∂tuuu,vvv)Ω
+ρ (uuu ·∇∇∇uuu,vvv)

Ω
+2µ (εεε(uuu),εεε(vvv))

Ω
, B(p,vvv) := (p,∇∇∇ · vvv)

Ω
. (7)

Note that, setting vvv = uuu, we obtain the energy balance (2) for the nonforced system.
Motivated by the fact that (2) does not allow a control a priori on the energy, in order
to avoid the arise of artificial oscillations we propose to modify the weak formulation
(6)1 as

A(uuu,vvv)+
ρ

2

d−1

∑
j=1

T j(uuu,vvv)−B(p,vvv) =−(poutnnn,vvv)Γout
, (8)

with the dissipative terms

T j(uuu,vvv) :=
(

γ |uuu ·nnn|− tttᵀj ∇∇∇uuu, tttᵀj ∇∇∇vvv
)

Γout
. (9)

In (9), the vectors ttt j, j = 1, . . . ,d−1 stand for the tangential directions to Γout, γ ∈R+

is a stabilization parameter and |uuu ·nnn|− is the negative part of the normal velocity,
defined as in (4).

We observe that the modified variational formulation (8) formally restricts the space
of the velocity solution to

H1
T :=

{
vvv ∈ H1(Ω) | (∇vvv)|Γout ∈ L2(Γout)

}
⊂ H1(Ω)

However, it is worth noticing that this condition is much less restrictive than, e.g.,
enforcing directly the shape or the direction of the velocity profile on the Neumann
boundary Γout.

Remark 1 The choice of penalizing the tangential derivatives is motivated by the ob-
servation that velocity instability typically arises along the open boundary. It is worth
noticing that this term is not consistent with the Navier-Stokes equations, for example
it does not reproduce a Womersley flow exactly. Other options, like the penalization
of the normal derivative instead of the tangential ones -a strategy which would be
consistent with the Womersley solution - have been also tested, without achieving a
stable solution. The choice of the tangential derivative will be better clarified also in
the stability analysis presented in the next sections.

2.2 Energy balance

The energy balance for the modified variational formulation (8) reads

dtE(t) =−D(t)− ρ

2

∫
Γout

{
(uuu ·nnn)|uuu|2−|(uuu ·nnn)|−γ

d−1

∑
j=1
|tttᵀj ∇∇∇uuu|2

}
dΓ . (10)
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Let us decompose the outlet boundary as Γout =Γb ∪ Γo, where Γb := {x∈Γout | uuu(x) ·
nnn< 0} (backflow boundary), and Γo := Γout\Γb (outflow boundary). We can rewrite the
energy estimate (10) as

dtE(t) =−D(t)− ρ

2

∫
Γo

(uuu ·nnn)|uuu|2 dΓ− ρ

2

∫
Γb

|uuu ·nnn|
(
γ|ttt∇∇∇uuu|2−|uuu|2

)
︸ ︷︷ ︸

E

dΓ. (11)

The term E, denoting the energy injection due to backflow, can be estimated as

E≥C(uuu)
∫

Γb

(
γ|ttt∇∇∇uuu(x)|2−|uuu(x)|2

)
dΓ , (12)

where C(uuu)> 0 is a constant which depends on uuu. Thus, the regularization terms (9)
allow to achieve a stability in the sense of energy (E> 0) under the condition

∫
Γb

|uuu|2dΓ <
∫

Γb

γ

d−1

∑
j=1
|tttᵀj ∇∇∇uuu|2dΓ. (13)

Note that the existence of a parameter γ ≥ 0, such that the condition (13) is satisfied,
is ensured by the Poincaré’s lemma, since, by construction, uuu = 0 on ∂Γb. Moreover,
defining (9) based on the penalization of the normal derivative as discussed in Remark
1, would not allow to apply Poincaré’s lemma straightforwardly .

2.3 Time semi-discretization

The time discretization of the stabilization term T j has to be consistent with the one
used for the convective term uuu ·∇∇∇uuu. Denoting the time discretized convection with
uuu∗ ·∇∇∇uuun, n being the current time step, the tangential regularization terms should be
defined as

T j(uuun,vvv) :=
(

γ |uuu∗ ·nnn|− tttᵀj ∇∇∇uuun, tttᵀj ∇∇∇vvv
)

Γout
,

in order to maintain an energy balance analogous to (10), also in the time semi-
discrete framework. In particular, using a semi-implicit approach for the convection,
i.e. uuu∗ = uuun−1, the regularization does not introduce any further nonlinearity in the
problem.

3 Numerical experiments for blood flows

3.1 2D Womersley flow

The first set of benchmarks is based on a two-dimensional Womersley flow, describing
the solution to the time-dependent Navier-Stokes equations in the rectangular domain
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Ω := [0,2R]× [0,L]⊂ R2, driven by an oscillating pressure gradient

∂ p
∂x

= 0 ,
∂ p
∂y

=−δ p
L

sin(ωt) ,

for a given pressure drop δ p and a given frequency ω . In particular, since the velocity
profile does not vary along the y direction, there is no physical convection and thus the
Navier-Stokes solution matches the solution of the corresponding Stokes problem.

For all numerical examples in this section, we set the physical constants to ρ = 1
g/cm3, µ = 0.035Po, L = 5cm, R = 1cm, δ p = 2666 dyn/cm2, ω = 4π rad/s, corre-
sponding to typical values for arterial blood flows. We impose the analytical veloc-
ity profile as a Dirichlet boundary condition on y = 0, and pout = 0 on y = L. The
Navier-Stokes equations are solved numerically through a finite element method with
monolithic-(uuu, p) time marching-scheme, implemented in FreeFem++ [12]. In particu-
lar, we employ stabilized P1/P1 velocity/pressure finite element spaces. The time step
is chosen as τ = 0.002s, and the convective term is semi-discretized as in Section
2.3.

The velocity profiles resulting from the stabilized formulation, compared with the Stokes
solution – which agrees with the analytical solution presented in [8] – are shown in Fig-
ure 2 for two different mesh sizes. We also compare our approach against the inertial
stabilization (3), showing in both cases the velocity profile obtained with the smallest
stabilization parameters (γ for the proposed tangential regularization, β for the inertial
stabilization), so that the simulation remained stable. The tangentially regularized so-
lution seems to better approximate the Stokes profile in all cases. Moreover, in Figure
2 (bottom), we also illustrate how the different stabilizations perturb the pressure pro-
files at both inlet and outlets, and we do not observe any relevant differences between
both approaches.

It is worth noticing that refining the computational mesh allows to reduce the size
of the stabilization parameters. This could be explained by the fact that, since in a
Womersley flow the convection is a purely numerical artifact, in the continuous limit no
stabilization is needed. We will observe later the same behavior also in more complex
examples, and we will sketch in Section 4 how the energy of spurious oscillations can
be controlled through a stabilization parameter depending on the mesh element size.

Remark 2 Further numerical results suggested that the tangential stabilization pa-
rameter can also be reduced when increasing the approximation order of the velocity,
for example when using P2 elements. A similar feature was not observed for the iner-
tial stabilization, see Figure 3.

3.2 3D Womersley flow

As a next step towards realistic physiological regimes, we consider a 3D Womersley
flow in a cylindrical domain of radius R = 1cm and length L = 5cm, subject to an
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(a) h = 0.06: β = 0.3 v/s γ = 0.0008
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(b) h = 0.03: β = 0.1 v/s γ = 0.0001

Figure 2: Velocity (top) and pressure profiles (bottom) at t = 0.5s on the Neumann
boundary with P1/P1 elements for the 2D-Womersley example, comparing the Stokes
solution (green), inertial stabilization (red) and tangential regularization (cyan). The
dashed pressure curves represent the profiles in the Dirichlet boundary, while contin-
uous lines correspond to the results on the Neumann boundary.
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Figure 3: Velocity (top) and pressure (bottom) profiles at t = 0.5s on the Neumann
boundary using P2/P1 elements for the 2D-Womersley example, comparing the
Stokes solution (green), inertial stabilization (red) and tangential regularization (cyan),
for h = 0.06, β = 0.1 and γ = 0.00003.

oscillating pressure drop of amplitude δ p = 2000 dyn/cm2. The other parameters are
chosen as in the two dimensional case. For the numerical solution, we emploied a
non-incremental Chorin-Temam projection method [6, 11, 18] for solving the Navier-
Stokes equations. The discretization was based on a time-step of 0.002 s, P1/P1
finite element spaces for velocity and pressure and an SUPG stabilization for the
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convection [5].

The simulations were setup as follows: first, a Stokes simulation (validated against
the periodic analytical solution, see, e.g., [8]) was run with a given pressure gradi-
ent (δ p/L)sinωt between inlet and outlet. The resulting velocity profile was used as
Dirichlet boundary condition at the inlet for the Navier-Stokes simulations, while a
homogeneous pressure was enforced at the outlet.

The results, summarized in Figure 4, show a similar behavior as in the 2D case. Refin-
ing the mesh improves the approximation and the tangential regularization performs
better than the inertial stabilization, in terms of the outlet velocity profile.

(a) h = 0.06: Stokes (green), NS with γ = 0.001 (cyan), NS with β = 0.1 (red)

(b) h = 0.03: Stokes (green), NS with γ = 0.0002 (cyan), NS with β = 0.05 (red)

Figure 4: Velocity profiles at t = 1s (peak backflow) on the Neumann boundary for the
3D-Womersley example, comparing the Stokes solution (green), stabilization with (3)
(red) and tangential regularization (cyan).

3.3 3D Patient specific aorta

Our next example consists in the simulation of the blood flow in a patient-specific
aorta, obtained from the euHeart database (www.euheart.eu), see Figure 5. The
geometry was segmented from medical images using a segment growing registration
algorithm [1, 2], and the finite element mesh was generated using 3-matic (Materialise,
Leuven, Belgium) and TetGen [17]. For the numerical simulations, we considered two
different level of refinement for the computational mesh (Figure 5), denoted in what
follows as coarse (52K tetrahedra, 10K nodes, maximum element size hmax= 0.11 cm)
and fine (320K tetrahedra, 60K nodes, maximum element size hmax= 0.055 cm).

At the inlet boundary (ascending aorta), we impose a plug flow profile with ampli-
tude based on the PC-MRI measured flow rate from the same patient (peak flow
rate of 350 cm3/s). At the outlets, three-elements Windkessel models where used to
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Figure 5: Frontal and top views of the coarse (left) and fine (right) meshes for the
patient-specific aorta geometry. The outlets (1 to 3) are numbered according to the
initial direction of the flow.

represent the effect of the neglected downstream circulation, calibrated in order to ap-
proximate the available measured pressures and the measured flows on each outlet
[4].

Figures 6, 7 and 8 show the snapshots of the velocity at the selected instants during
backflow for three different Neumann boundaries. In each case, we compare the re-
sults without regularization and with the minimal value of the stabilization parameter
γ , for which the spurious oscillations have been removed. We observe that also in this
example, where the physical convection is important, we are able to choose a smaller
stabilization parameter when the characteristic mesh element size decreases.

4 On the stabilization of spurious oscillations in finite
element solutions

In this section, we will investigate how the control of spurious oscillations through the
regularization parameter γ , can be related to the element size h.

Let us first restrict to the two-dimensional case. We assume that on the open boundary
we have a “spurious” velocity field, i.e., uncorrelated values of the velocity with support
contained in two (in general in a few) boundary elements, e.g. as depicted in Figure 9.
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Figure 6: Patient-specific aorta: velocity vectors on the first outlet at time t = 0.34s.
Left: fine mesh, without regularization. Center: coarse mesh, regularization with the
minimum values of γ = 0.0025. Right: fine mesh, regularization with the minimum
values of γ = 0.0008.

Figure 7: Patient-specific aorta: velocity vectors on the second outlet at time t = 0.39s.
Left: fine mesh, without regularization. Center: coarse mesh, regularization with the
minimum values of γ = 0.0025. Right: fine mesh, regularization with the minimum
values of γ = 0.0008.

Figure 8: Patient-specific aorta: velocity vectors on the third outlet at time t = 0.39s.
Left: fine mesh, without regularization. Center: coarse mesh, regularization with the
minimum values of γ = 0.0025. Right: fine mesh, regularization with the minimum
values of γ = 0.0008.
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Figure 9: A sketch of spurious oscillations arising at an open boundary, in the case of
piecewise linear finite elements for the velocity.

For the configuration depicted in Figure 9, we can directly compute the value of γ

which satisfies piecewise the stability condition (13) for each subdomain of Γb where
the support of uuu is an interval of length 2h, namely∫ 2h

0
|uuu|2dx <

∫ 2h

0
γ|∂xuuu|2dx, (14)

by replacing u = unx/h for 0≤ x≤ h and u = un(2h− x)/h for 0≤ x≤ h. This yields∫ h

0
x2/h2dx+

∫ 2h

h
(2h− x)2/h2dx < γ/h2 (15)∫ h

0
x2dx+

∫ 2h

h
(2h− x)2dx < γ2h (16)

h2/3 < γ. (17)

Note that, by construction, in this configuration the stabilization parameter γ term does
not depend on the amplitude of the velocity field. In three dimensions, a similar depen-
dency of the parameter γ on h can be obtained analogously by assuming a support
of the spurious velocity of O(h), so that the condition (13) can be directly related to
Poincaré’s inequality, yielding γ = O(h2).

5 Conclusions

We presented a backflow stabilization technique for incompressible fluid simulations,
based on a tangential regularization of the velocity field, which fits naturally within
a standard finite element formulation. The proposed formulation has been assessed
through several numerical tests, considering two- and three-dimensional Womersley
problems, and blood flow through a patient-specific aorta.
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As an additional outcome of the numerical tests, we observed that the size of the
stabilization parameter may decrease with the mesh size. The analysis of a simplified
configuration showed that a stabilization parameter γ =O(h2) can be chosen in order
to control the energy induced by purely spurious oscillations in the velocity profile.
This behavior is in fact in agreement with the numerical experiments.

Future work will consist in the extension to respiratory mechanics. In the airflow
regime, since the dynamic pressure is much larger than the static one, a careful
treatment of the boundary condition is necessary, in order to achieve a satisfactory
accuracy of the overall pressure field. A possible generalization of the tangential reg-
ularization could be based on including a correction term for the outlet velocity profile,
similarly to what has been proposed in [10] in the case of inertial stabilization.
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